Research Article
Print
Research Article
Three novel species of Distoseptispora (Distoseptisporaceae) isolated from bamboo in Jiangxi Province, China
expand article infoZhi-Jun Zhai, Jun-Qing Yan, Wei-Wu Li, Yang Gao, Hai-Jing Hu, Jian-Ping Zhou, Hai-Yan Song, Dian-Ming Hu
‡ Jiangxi Agricultural University, Nanchang, China
Open Access

Abstract

Decaying bamboo in freshwater is a unique eco-environment for fungi. Three new Distoseptispora (Distoseptisporaceae) species, D. meilingensis, D. yongxiuensis and D. yunjushanensis from submerged decaying bamboo culms in Jiangxi Province, China, were discovered, based on phylogenetic analyses and morphological characters. The combined data of ITS-LSU-SSU-Tef1 sequences were used to infer the phylogenetic relationship between D. meilingensis, D. yongxiuensis, D. yunjushanensis and related species. Both molecular analyses and morphological data supported D. meilingensis, D. yongxiuensis and D. yunjushanensis as three independent taxa.

Keywords

Hyphomycetes, phylogenetic analysis, Sordariomycetes, taxonomy, three new taxa

Introduction

Distoseptispora was established by Su et al. (2016) as the single genus in Distoseptisporaceae. This genus morphologically resembles Ellisembia and Sporidesmium (Subramanian 1992; Shenoy et al. 2006; Yang et al. 2018), while they are not in sister clades in molecular phylogenetic trees (Su et al. 2016; Luo et al. 2019; Hyde et al. 2020, 2021). Multigene analysis showed that Distoseptispora formed a stable and well-supported clade within Distoseptisporales as a sister clade to Aquapteridospora (Luo et al. 2019; Hyde et al. 2020, 2021). Aquapteridospora has been raised as a new family Aquapteridosporaceae for the divergence time (110 million years ago (mya)) falling within the family-level range (50–130 mya) (Hyde et al. 2021). Aquapteridospora and Distoseptispora are similar in having macronematous, mononematous, unbranched conidiophores, mono- or polyblastic, holoblastic, conidiogenous cells and acrogenous, solitary conidia. Distoseptispora can easily be distinguished from Aquapteridospora by its short conidiophores and obclavate or cylindrical, rostrate, euseptate or distoseptate conidia. Additionally, Distoseptispora has terminal conidiogenous cells which lack circular scars (Hyde et al. 2021).

Distoseptispora was regarded as saprobic lignicolous fungal genus, which has the ability to decompose lignocelluloses in wood (Wong et al. 1998; Hyde et al. 2016). In recent years, the number of new taxa in Distoseptispora is steadily increasing and currently comprises 35 species, which have been discovered mostly in freshwater and some in terrestrial habitats (Su et al. 2016; Dong et al. 2021; Hyde et al. 2021; Li et al. 2021). Except for the two species, D. adscendens and D. leonensis, which were found from Hungary and Malaysia, respectively (Shoemaker and White 1985; Mckenzie 1995), 19 of the 33 species has been discovered in Thailand, while the remaining 14 species were introduced from China (Table 2). In China, Distoseptispora species are almost exclusively reported in Yunnan Province (Su et al. 2016; Luo et al. 2018; Hyde et al. 2019; Phookamsak et al. 2019; Li et al. 2021). Only three species, D. martinii, D. bambusae and D. suoluoensis, have been discovered from Guizhou Province (Xia et al. 2017; Yang et al. 2018; Sun et al. 2020). In this study, we introduce three new species of Distoseptispora, including D. meilingensis, D. yongxiuensis and D. yunjushanensis from Jiangxi Province in subtropical China. We describe the novel species, based on morphological illustrations and phylogenetic analyses. A synopsis of the morphological characters of Distoseptispora species is also provided.

Materials and methods

Samples collection, morphological observation and isolation

Dead bamboo samples from different freshwater habitats in Jiangxi Province, China, were taken to the lab for detection of fungi using a Nikon SMZ-1270 microscope (Nikon Corporation, Japan). Micro-morphological characteristics were observed and captured using a Nikon ECLIPSE Ni-U compound microscope (Nikon Corporation, Japan), equipped with a Nikon DS-Fi3 camera. All measurements were calculated using PhotoRuler Ver. 1.1 software (The Genus Inocybe, Hyogo, Japan) and figures were processed using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, USA). Pure cultures of the fungi were obtained by the single spore isolation method (Chomnunti et al. 2014). The germinating conidia were transferred to potato dextrose agar (PDA) and incubated at 25 °C for two weeks. The fungal cultures were deposited in the Jiangxi Agricultural University Culture Collection (JAUCC) and the holotypic specimens with MycoBank numbers (842065, 842066, 842067) were deposited in the Herbarium of fungi, Jiangxi Agricultural University (HFJAU) .

DNA extraction, PCR amplification and sequencing

Fungal genomes were extracted from fresh mycelium using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1987). Four deoxyribonucleic acid (DNA) barcodes (ITS, LSU, SSU and Tef-1α) were chosen for polymerase chain reaction (PCR) using the primer pairs ITS1/ITS4 (White et al. 1990), LR0R/LR7 (Hopple and Vilgalys 1999), NS1/NS4 (White et al. 1990) and EF983F/EF2218R (Örstadius et al. 2015), respectively. Amplification reactions were carried out in a volume of 25 μl, containing 12.5 μl 2 × Taq PCR MasterMix (Qingke, Changsha, China), 1 μl each forward and reverse primer (0.2 μM), 1 μl template DNA (circa 50–100 ng) and 9.5 μl ddH2O. Amplifications were conducted under the following conditions: 3 min at 98 °C, 35 cycles of 10 s at 98 °C, 10 s of annealing at 55 °C and extension at 72 °C for 10 s, with a final 2-min extension at 72 °C. Sequencing reactions were conducted with the corresponding forward and reverse primers commercially by QingKe Biotechnology Co. (Changsha, China). All sequences were edited with Sequencher v.4.14 (GeneCodes Corporation, USA) and have been deposited in the NCBI GenBank database (Table 1).

Table 1.

Sequences used in this study.

Taxa Voucher LSU ITS SSU Tef-1α
Aquapteridospora aquatica MFLUCC 17-2371 NG_075413 NR_172447
Aquapteridospora fusiformis MFLU 18-1601 MK849798 MK828652 MN194056
Aquapteridospora lignicola MFLU 15-1172 KU221018
Distoseptispora adscendens HKUCC 10820 DQ408561
Distoseptispora appendiculata MFLUCC 18-0259 MN163023 MN163009 MN174866
Distoseptispora aquatica GZCC 19-0452 MZ227216 MW133908 MW134689
Distoseptispora aquatica MFLUCC 16-0904 MK849794 MK828649 MK828315
Distoseptispora aquatica MFLUCC 18-0646 MK849793 MK828648
Distoseptispora aquatica MFLUCC 16-1357 MK849796 MK828650 MK828317
Distoseptispora aquatica S-965 MK849792 MK828647 MK828314 MN194051
Distoseptispora bambusae MFLUCC 20-0091 NG_074430 NR_170068 NG_070348
Distoseptispora bambusae MFLU 20-0261 MT232718 MT232713 MT232716 MT232880
Distoseptispora bambusae MFLU 17-1653 MT232717 MT232712
Distoseptispora cangshanensis MFLUCC 16-0970 MG979761 MG979754 MG988419
Distoseptispora caricis CPC 36498 MN567632 NR_166325
Distoseptispora clematidis MFLUCC 17-2145 MT214617 MT310661 MT226728
Distoseptispora clematidis KUN-HKAS 112708 MW879523 MW723056 MW774580
Distoseptispora dehongensis KUMCC 18-0090 MK079662 MK085061 MK087659
Distoseptispora euseptata MFLUCC 20–0154 MW081544 MW081539
Distoseptispora euseptata DLUCC S2024 MW081545 MW081540 MW084994
Distoseptispora fasciculata KUMCC 19-0081 NG_075417 NR_172452 MW396656
Distoseptispora fluminicola DLUCC 0391 MG979762 MG979755 MG988420
Distoseptispora fluminicola DLUCC 0999 MG979763 MG979756 MG988421
Distoseptispora guttulata MFLU 17-0852 MF077554 MF077543 MF077532 MF135651
Distoseptispora hydei MFLUCC 20-0481 MT742830 MT734661
Distoseptispora leonensis HKUCC 10822 DQ408566
Distoseptispora lignicola MFLUCC 18-0198 MK849797 MK828651 MK828318
Distoseptispora longispora HFJAU 0705 MH555357 MH555359 MH555431
Distoseptispora martinii CGMCC 318651 KX033566 KU999975 KX033537
Distoseptispora meilingensis JAUCC 4727 OK562396 OK562390 OK562402 OK562408
Distoseptispora meilingensis JAUCC 4728 OK562397 OK562391 OK562403 OK562409
Distoseptispora multiseptata MFLUCC 15-0609 KX710140 KX710145 NG_065693 MF135659
Distoseptispora multiseptata MFLU 17-0856 MF077555 MF077544 MF077533
Distoseptispora neorostrata MFLUCC 18-0376 MN163017 MN163008
Distoseptispora obclavata MFLUCC 18-0329 MN163010 MN163012
Distoseptispora obpyriformis DLUCC 0867 MG979765 MG979757 MG988423
Distoseptispora palmarum MFLUCC 18-1446 MK079663 MK085062 MK079661 MK087660
Distoseptispora palmarum MFLU 18-0588 NG_067856 NR_165897 MK087660
Distoseptispora phangngaensis MFLU 17-0855 MF077556 MF077545 MF077534 MF135653
Distoseptispora phangngaensis MFLUCC 16-0857 NR_166230
Distoseptispora rayongensis MFLUCC 18-0415 NG_073624 NR_171938 NG_073504
Distoseptispora rayongensis MFLU 18-1045 MH457137 MH457172 MH457169
Distoseptispora rostrata MFLUCC 16-0969 MG979766 MG979758 MG988424
Distoseptispora rostrata DLUCC 0885 MG979767 MG979759 MG988425
Distoseptispora rostrata MFLU 18-0479 NG_064513 NR_157552
Distoseptispora saprophytica MFLUCC 18-1238 NG_075419 NR_172454 MW396651
Distoseptispora songkhlata MFLUCC 18-1234 MW287755 MW286482 MW396642
Distoseptispora submersa MFLUCC 16-0946 MG979768 MG979760 MG988426
Distoseptispora suoluoensis MFLUCC 17-0224 NG_068552 NR_168764 NG_070113 MF135654
Distoseptispora suoluoensis MFLU 17-0854 MF077558 MF077547 MF077536
Distoseptispora tectonae MFLUCC 15-0981 MW287763 MW286489 MW396641
Distoseptispora tectonae MFLUCC 12-0291 KX751713 KX751711 KX751710
Distoseptispora tectonae S-2023 MW081543 MW081538
Distoseptispora tectonae GZ 25 MH555358 MH555361
Distoseptispora tectonigena MFLUCC 12-0292 KX751714 NR_154018
Distoseptispora thailandica MFLUCC 16-0270 MH260292 MH275060 MH260334 MH412767
Distoseptispora thysanolaenae KUN-HKAS 112710 MW879524 MW723057
Distoseptispora thysanolaenae KUN-HKAS 102247 MK064091 MK045851 MK086031
Distoseptispora xishuangbannaensis KUMCC 17-0290 MH260293 MH275061 MH260335 MH412768
Distoseptispora yongxiuensis JAUCC 4725 OK562394 OK562388 OK562400 OK562406
Distoseptispora yongxiuensis JAUCC 4726 OK562395 OK562389 OK562401 OK562407
Distoseptispora yunjushanensis JAUCC 4723 OK562398 OK562392 OK562404 OK562410
Distoseptispora yunjushanensis JAUCC 4724 OK562399 OK562393 OK562405 OK562411
Distoseptispora yunnansis MFLUCC 20–0153 MW081546 MW081541 MW084995

Data analyses

Reference sequences of 35 Distoseptispora species and three Aquapteridospora species, based on recent publications (Luo et al. 2019; Hyde et al. 2020; Monkai et al. 2020; Dong et al. 2021, Li et al. 2021) were downloaded from GenBank. Detailed information on fungal strains used in this paper are provided in Table 1.

All obtained sequences were aligned using the online service of MAFFT (Madeira et al. 2019) and refined manually in MEGA v.7.0 (Kumar et al. 2016). Maximum Likelihood (ML) analysis was conducted with RAxML 8.0 using a GTR-GAMMA model of evolution (Stamatakis 2014). Non-parametric bootstrap analysis was implemented using 1,000 replicates to estimate ML bootstrap (BS) values. Bayesian Inference (BI) analysis was carried out with MrBayes v.3.2 under partitioned models (Ronquist et al. 2012). The best-fit models of nucleotide substitutions were selected according to the Akaike Information Criterion (AIC) implemented in jModelTest2.1.1 (Darriba et al. 2012) on XSEDE in the CIPRES web portal (Miller et al. 2010). The models for ITS, LSU, SSU and Tef-1α datasets used for phylogenetic analysis are GTR+I+G model (-lnL = 4965.1122), GTR+I+G model (-lnL = 2716.7536), TIM2+G (-lnL = 4344.2295) and TrN+I+G (-lnL = 4479.4914), respectively. The datasets were run for 10,000,000 generations, with four chains and trees sampled every 1,000 generations. The first 10% trees were discarded as burn-in. We used three Aquapteridospora species as outgroups. The Bayesian consensus tree with posterior probabilities (PP) was visualised with FigTree v.1.4.4 (Rambaut 2018) and was edited in Adobe Illustrator CS6. Our aligned matrices and trees can be obtained from TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29465).

Results

Molecular phylogenetic results

According to the results of BLAST analysis and sequence alignment, the ITS sequence of D. meilingensis has 11 different loci from those of D. yongxiuensis, the ITS sequence of which shares 99% similarity (five different loci) with that of D. suoluoensis. The ITS sequence of D. yunjushanensis is 97% similar (22 different loci) to that of D. obclavata. The aligned matrix for the combined analysis, ITS + LSU + SSU + Tef-1α, had 4015 bp, including ITS 596 bp, LSU 799 bp, SSU 1715 bp and Tef-1α 905 bp. The topologies of trees generated by ML and BI analyses are highly similar. The Bayesian tree with BS and PP is shown in Fig. 1. All species of Distoseptispora form a monophyletic group (BS/PP = 100/1.00). D. yongxiuensis groups together with D. suoluoensis (BS/PP = 60/0.99). These two species and collections of D. meilingensis form a strong-supported clade (BS/PP = 99/1.00), which is strongly linked with sequences of D. bambusae (BS/PP = 100/1.00). Collections of D. yunjushanensis form a moderate-support clade (BS/PP = 81/1.00) with the lineage consisting of D. obclavata and D. rayongensis.

Figure 1. 

Phylogenetic tree of Distoseptispora, inferred from the combined regions (ITS-LSU-SSU-Tef 1α) using Bayesian Inference (BI) analysis. The Aquapteridospora clade was used as the outgroup. The lineages with new species were shown in bold. PP ≥ 0.95 and BS ≥ 75% were indicated around the branches. The new sequences generated in this study are given in bold.

Taxonomy

Distoseptispora meilingensis Z. J. Zhai & D. M. Hu, sp. nov.

MycoBank No: 842067
Fig. 2

Etymology

Referring to the collecting site of the Meiling Mountain in Jiangxi Province, China.

Holotype

HFJAU 10009.

Description

Saprobic on culms of bamboo. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies effuse, brown to dark brown, hairy. Mycelium mostly immersed, composed of pale to dark brown, septate, branched, smooth, hyaline to subhyaline hyphae. Conidiophores 69–192 × 4–7 μm (x‒ = 120.6 × 5.5 μm, n = 25), macronematous, mononematous, erect, cylindrical, straight or slightly flexuous, 5–12-septate, yellowish-brown or brown, robust at the base. Conidiogenous cells holoblastic, mono- to polyblastic, integrated, terminal, cylindrical, yellowish-brown or brown. Conidia 32‒64.5 × (7‒)9‒12.5 μm (x‒ = 43.7 × 9.8 μm, n = 30), acrogenous, solitary, straight or slightly curved, obclavate, 5–7-distoseptate, thick-walled, rounded at the apex, truncate at the base, tapering towards apex, bud scars disjunctors at base, mostly brown when mature.

Figure 2. 

Distoseptispora meilingensis (HFJAU10009, holotype) a, b colonies on bamboo culms c–e conidiophores with conidia f conidiogenous cells g, n conidiogenous cells with conidia h–m conidia o germinating conidium p culture on PDA from above and reverse. Scale bars: 100 µm (a, b), 20 µm (c–e, o), 5 µm (f-n).

Cultural characteristics

Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 17–23 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse brown to dark brown.

Material examine

China, Jiangxi Province, Nanchang City, Meiling Mountain, alt. 305 m, near 28.79°N, 115.72°E, on decaying bamboo culms submerged in a freshwater stream, 16 Aug 2021, Z. J. Zhai, SLT-3 (HFJAU10009, holotype), ex-type living culture, JAUCC 4727 = JAUCC 4728.

Notes

Distoseptispora meilingensis clusters with the clade including D. suoluoensis and D. yongxiuensis with high support in the phylogenetic tree (Fig. 1). Distoseptispora meilingensis is distinct from D. suoluoensis (Yang et al. 2018) and D. yongxiuensis by its conidial colour (mostly brown, yellowish-brown to dark olivaceous and yellowish-brown or brown, respectively). Furthermore, D. meilingensis has shorter conidia (32–64.5 μm vs. (65–)80–125(–145) μm) than those of D. suoluoensis (Yang et al. 2018) and slightly shorter conidiophores (69–192 μm vs. 112–253 μm) than those of D. yongxiuensis. Distoseptispora meilingensis resembles D. bambusae in similar habitats and polyblastic conidiogenous cells (Sun et al. 2020). However, D. meilingensis can be distinguished from D. bambusae in its longer conidiophores (69–192 μm vs. 40–96 μm), slightly wider (up to 12.5 μm vs. up to 9.5 μm) and brighter (light brown vs. brown) conidia (Sun et al. 2020). A comparison of morphological features of Distoseptispora species is provided in Table 2.

Table 2.

Synopsis of morphological characteristics, habitats, hosts and district compared across Distoseptispora species.

Species Conidiophores (μm) Conidia (μm) Conidia septation Conidia characteristics Habitat Host District References
Distoseptispora meilingensis 69192 × 47 3264.5 × (7‒) 912.5 57-distoseptate Obclavate, mostly bright brown when mature Freshwater Dead bamboo culms China, Jiangxi This study
D. yongxiuensis 112253 × 49 46–74 (‒86) × 10–13 (‒16) 69-euseptate Obclavate or obspathulate, olivaceous to yellowish-brown or brown, guttulate Freshwater Dead bamboo culms China, Jiangxi This study
D. yunjushanensis 100175 × 5.510 39‒67.5 (‒77) × (7–)9.5–13.5(–16.5) 713-distoseptate Obpyriform or obclavate, olivaceous when young, dark brown when mature Freshwater Dead bamboo culms China, Jiangxi This study
D. adscendens 28‒46 × 8‒10 (80‒)350‒500 × 15‒18 80-distoseptate Cylindrical, hemispherical apex, hyaline Terrestrial Decaying wood of Fagus sylvatica Hungary Shoemaker and White (1985), Réblová (1999)
D. appendiculata 62‒86 × 4.5‒5.5 67‒89 × 10‒16 13‒17-distoseptate Obpyriform or obclavate, olivaceous or dark brown, with gelatinous sheath around tip Freshwater Unidentified submerged wood Thailand, Khwaeng Phra Luo et al. (2019)
D. aquatica 29‒41 × 7‒9 110‒157 × 13.5‒16.5 15‒28-distoseptate Obclavate, dark brown with bluish-green to malachite green tinge Freshwater Unidentified submerged wood China, Yunnan Su et al. (2016)
D. bambusae 40‒96 × 4‒5.5 45‒74 × 5.5‒9.5 5‒10-distoseptate Obclavate, olivaceous or brown Terrestrial Dead bamboo culms China and Thailand Sun et al. (2020), Monkai et al. (2020)
D. cangshanensis 44‒68 × 4‒8 58‒166(‒287) × 10‒14 Multi-distoseptate Obclavate or lanceolate, rostrate, olivaceous or brown Freshwater Unidentified submerged wood China, Yunnan Luo et al. (2018)
D. caricis 35‒90 × 6‒7 (55‒)65‒85(‒100) × 15‒16(‒17) 5‒10-distoseptate Obclavate, brown, septa with central pore, basal cell pale brown, with truncate hilum Terrestrial Leaves of Carex sp. Thailand, Chiang Mai Crous et al. (2019)
D. clematidis 22‒40 × 4‒10 120‒210 × 12‒20 28‒35-distoseptate Oblong, obclavate, cylindrical or rostrate, brown with green tinge, bud scars or disjunctors present at the site of attachment Terrestrial Dried branches of Clematis sikkimensis Thailand, Chiang Rai Phukhamsakda et al. (2020)
D. dehongensis 45‒80 × 4‒5 17‒30 × 7.5‒10 3‒5-distoseptate Obpyriform to obclavate, broad cylindrical or irregular, olivaceous Freshwater Unidentified submerged wood China, Yunnan Hyde et al. (2019)
D. euseptata 19‒28 × 4‒5 37–54 × 8‒9 4‒7-euseptate Obpyriform to obclavate, often constricted at septa, olivaceous Freshwater Unidentified submerged wood China, Yunnan Li et al. (2021)
D. fasciculata 12‒16 × 5‒6 46‒200 × 10‒16.5 10‒40-distoseptate Subcylindrical to obclavate, olivaceous when young, dark brown when mature Freshwater Unidentified submerged wood Thailand, Nakhon Si Thammarat Dong et al. (2021)
D. fluminicola 21‒33 × 5.5‒6.5 125‒250 × 13‒15 17‒34-distoseptate Oblong, obclavate, cylindrical or rostrate, brown with green tinge Freshwater Unidentified submerged wood China, Yunnan Su et al. (2016)
D. guttulata 55‒90(‒145) × 3.5‒5.5 75‒130(‒165) × 7‒11 11‒14(‒20)-euseptate Obclavate or lanceolate, rostrate, mid to dark brown or olivaceous Freshwater Unidentified submerged wood Thailand, Prachuap Khiri Khan Yang et al. (2018)
D. hydei 87‒145 × 3‒7 32‒58 × 10‒15 7‒9-distoseptate Obpyriform to fusiform, olivaceous to brown, with a hyaline, globose, gelatinous sheath around tip Terrestrial Dead bamboo culms Thailand, Phitsanulok Monkai et al. (2020)
D. leonensis Up to 175 × 6‒7 (38‒)50‒75(‒85) × 11‒15 7‒12-distoseptate Obclavate, rostrate, brown Terrestrial Dead culms of Freycinetia sp. Malaysia McKenzie (1995)
D. lignicola 84‒124 × 4‒5 60‒108 × 7‒9 5‒9-euseptate Obclavate, curved, brown Freshwater Unidentified submerged wood Thailand, SaiKhu Waterfall Luo et al. (2019)
D. longispora 17‒37 × 6‒10 189‒297 × 16‒23 31‒56-distoseptate Obclavate, elongated, brown to yellowish-brown Freshwater Unidentified submerged wood China, Yunnan Song et al. (2020)
D. martinii 50‒110 × 3.5‒4.5 15‒20 × 11‒16 Transversal septa Transversal ellipsoid, oblate or subglobose, muriform, pale brown to brown Terrestrial Unidentified dead branches China, Guizhou Xia et al. (2017)
D. multiseptata 29‒47 × 4‒6 147‒185 × 12‒14 Multi-distoseptate Obclavate, rostrate, dark olivaceous green Freshwater Unidentified submerged wood Thailand, Prachuap Khiri Khan Hyde et al. (2016)
D. neorostrata 93‒117 × 5.5‒6.5 109‒147 × 13‒15 Multi-distoseptate Obclavate, rostrate, dark olivaceous to mid or dark brown Freshwater Unidentified submerged wood Thailand, Khwaeng Phra Khanong Nuea Luo et al. (2019)
D. obclavata 117.5‒162.5 × 5‒7 46‒66 × 9‒11 9-11-distoseptate Obclavate, olivaceous to pale or dark brown, guttulate Freshwater Unidentified submerged wood Thailand, Khwaeng Phra Khanong Nuea Luo et al. (2019)
D. obpyriformis 97‒119 × 5‒7 53‒71 × 12‒16 9‒11-distoseptate Obpyriform, olivaceous to pale or dark brown, guttulate Freshwater Unidentified submerged wood China, Yunnan Luo et al. (2018)
D. palmarum 90‒165 × 4‒7 35‒180 × 7–11 7‒27-distoseptate Oblong, obclavate, greenish-black to brown Terrestrial Rachis of Cocos nucifera Thailand, Trat Hyde et al. (2019)
D. phangngaensis 18–30(–40) × 4.3‒6.5 165–350 × 14–19 Multi-distoseptate Elongate, obclavate, rostrate, dark olivaceous to mid or dark brown Freshwater Unidentified submerged wood Thailand, Phang Nga Yang et al. (2018)
D. rayongensis 75–125 × 3.5–5.5 (36–)60–106(–120) × 9–14.5 9‒13-euseptate, rarely 14–15-septate Obclavate or obspathulate, rostrate, pale brown or pale olivaceous, with percurrent proliferation Freshwater Unidentified submerged wood Thailand, Rayong Hyde et al. (2020)
D. rostrata 82‒126 × 5‒7 115‒155 × 9‒11 (15‒)18‒23-distoseptate Obclavate or lanceolate, rostrate, olivaceous to pale brown Freshwater Unidentified submerged wood China, Yunnan Luo et al. (2018)
D. saprophytica 50–140 × 3.2–4.2 14.5–30 × 4.5–7.5 2‒6-distoseptate Subcylindrical to obclavate, olivaceous to brown Freshwater Unidentified submerged wood Thailand, Songkhla Dong et al. (2021)
D. songkhlaensis 70–90 × 4–5.5 44–125 × 9–14.5 9‒16-distoseptate Obclavate, constricted at septa, olivaceous to brown Freshwater Unidentified submerged wood Thailand, Songkhla Dong et al. (2021)
D. submersa 55‒73 × 7‒9 95‒123 × 15‒19 17‒23(‒28)-distoseptate Obclavate, brown to dark brown or olivaceous Freshwater Unidentified submerged wood China, Yunnan Luo et al. (2018)
D. suoluoensis 80‒250 × 4.5‒5.8 (65‒)80‒125(‒145) × 8‒13 8‒10-euseptate Narrowly obclavate or obspathulate, yellowish-brown or dark olivaceous, verrucose, with percurrent proliferation Freshwater Unidentified submerged wood China, Guizhou Yang et al. (2018)
D. tectonae 19.5‒95 × 4.5‒9 45‒270 × 11‒16 10‒40-distoseptate Obclavate, brown to dark brown or olivaceous Terrestrial/Freshwater Dead twig of Tectona grandis (Lamiaceae) Thailand, Prachuap Khiri Khan Hyde et al. (2016)
D. tectonigena Up to 110 × 5‒11 (83‒)148‒225(360‒) × (10‒)11‒12(‒13) 20–46-distoseptate Flexuous, cylindrical-obclavate, elongated, verruculose, dark reddish-brown Terrestrial Dead twig of Tectona grandis (Lamiaceae) Thailand, Chiang Rai Hyde et al. (2016)
D. thailandica 15‒26 × 3‒6 130‒230 × 13.5‒17 35–52-distoseptate Oblong, obclavate, cylindrical or rostrate, reddish-brown to brown Terrestrial Dead leaves of Pandanus sp. Thailand, Prachuap Khiri Khan Tibpromma et al. (2018)
D. thysanolaenae 30‒80 × 3.5‒5.5 21.5‒80 × 6.5‒12.8 8–14-distoseptate Elongated obclavate, light to dark brown, flat apex, with conspicuous spore attachment loci Terrestrial Dead culms of Thysanolaena maxima China, Yunnan Phookamsak et al. (2019)
D. xishuangbannaensis 12‒17 × 2‒5 160‒305 × 8‒15 Up to 40-distoseptate Cylindrical-obclavate, green-brown to brown, tapering towards apex Terrestrial Dead leaf sheaths of Pandanus utilis China, Yunnan Tibpromma et al. (2018)
D. yunnanensis 131–175 × 6‒7 58‒108 × 8‒10 6‒10-euseptate Obclavate, rostrate, mid-olivaceous to brown Freshwater Unidentified submerged wood China, Yunnan Li et al. (2021)

Distoseptispora yongxiuensis Z. J. Zhai & D. M. Hu, sp. nov.

MycoBank No: 842066
Fig. 3

Etymology

With reference to Yongxiu, from where the holotype was collected.

Holotype

HFJAU10007

Description

Saprobic on decaying bamboo culms. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies effuse, brown, hairy, glistening, often inconspicuous. Mycelium partly superficial, partly immersed in the substratum, composed of hyaline to pale brown, septate, branched hyphae. Conidiophores 112–253 × 4–9 μm (x‒ = 198 × 6.9 μm, n = 15), macronematous, mononematous, solitary or aggregated at the base, cylindrical, straight or slightly flexuous, 8–13-septate, olivaceous to dark brown, sharply curving near the base, paler at the apical part, rounded at the apex. Conidiogenous cells integrated, terminal, monoblastic, rarely polyblastic, cylindrical, olivaceous to dark brown. Conidia 46–74(‒86) × 10–13(‒16) μm (x‒ = 65.6 × 12.6 μm, n = 30), acrogenous, solitary, obclavate or obspathulate, straight or flexuous, rostrate, 6–9-euseptate, olivaceous to yellowish-brown or brown, becoming paler or hyaline towards the apex, guttulate, 2.5–4 μm wide at the base and 2.5–5 μm wide at the apex, with a darkened scar at the base.

Figure 3. 

Distoseptispora yongxiuensis HFJAU 10007, holotype) a Colonies on bamboo culm b, d conidiophores with conidia c conidiogenous cell bearing conidium e conidiogenous cells with young conidia f-k conidia l germinating conidium m culture on PDA from above and reverse. Scale bars: 100 µm (a), 20 µm (b–e, l), 5 µm (f–k).

Cultural characteristics

Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 24–32 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse dark brown to black.

Material examined

China, Jiangxi Province, Jiujiang City, Yongxiu County, alt. 680.5 m, 29.09°N, 115.62°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-70 (HFJAU 10007, holotype), ex-type living culture, JAUCC 4725 = JAUCC 4726.

Notes

In the multi-gene phylogenetic tree (Fig. 1), D. yongxiuensis clusters with D. suoluoensis. Nonetheless, D. yongxiuensis can be distinguished from D. suoluoensis by its shorter conidia (46–74(‒86) μm vs. (65–)80–125(–145) μm) and polyblastic conidiogenous cells (Yang et al. 2018). Additionally, D. suoluoensis has the percurrent proliferation of conidia, while it was not observed in D. yongxiuensis. Distoseptispora yongxiuensis is similar with D. bambusae (Sun et al. 2020), D. palmarum (Hyde et al. 2019) and D. meilingensis for the polyblastic conidiogenous cells, but D. yongxiuensis has wider conidia than those of D. bambusae (10–13(‒16) μm vs. 5.5–9.5 μm) (Sun et al. 2020), shorter conidia than those of D. palmarum (46–74(‒86) μm vs. 35–180 μm) (Hyde et al. 2019) and paler (yellowish-brown or brown vs. bright brown) conidia than those of D. meilingensis.

Distoseptispora yunjushanensis Z. J. Zhai & D. M. Hu, sp. nov.

MycoBank No: 842065
Fig. 4

Etymology

The epithet refers to the collecting site from the Yunjushan Mountain in China.

Holotype

HFJAU10005

Description

Saprobic on decaying bamboo culms submerged in freshwater habitats. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies effuse, olivaceous or dark brown, hairy, velvety. Mycelium mostly immersed, consisting of branched, septate, smooth, subhyaline to pale brown hyphae. Conidiophores 100–175 μm × 5.5–10 μm (x‒ = 129×7.1 μm, n = 30), single or in groups of 2 or 3, macronematous, mononematous, erect, straight or slightly flexuous, 4–7-septate, unbranched, olivaceous to dark brown, smooth, cylindrical, rounded at the apex. Conidiogenous cells monoblastic, integrated, terminal, determinate, pale to dark brown, cylindrical. Conidia 39‒67.5(‒77) μm × (7–)9.5–13.5(–16.5) μm (x‒ = 52 × 12 μm, n = 30), acrogenous, solitary, obpyriform or obclavate, thick-walled, tapering towards the rounded apex, slightly curved, truncate at the base, 7–13-distoseptate, guttulate, smooth-walled, olivaceous, dark brown when mature, sometimes with the percurrent proliferation which forms another conidium from the conidial apex.

Figure 4. 

Distoseptispora yunjushanensis (HFJAU 10005, holotype) a, b colonies on bamboo culms c–f conidiophores with conidia g-i young conidia j-l mature conidia m conidium with proliferation n germinating conidium o, p culture on PDA from above and reverse. Scale bars: 100 µm (a, b), 20 µm (c–f, m, n), 5 µm (g–l).

Cultural characteristics

Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 12–18 mm diam. at 14 days at 25 °C, in natural light, with fluffy, dense, thin olivaceous mycelium in the centre, becoming sparse and paler at the entire margin; reverse dark brown, pale brown at the smooth margin.

Material examined

China, Jiangxi Province, Jiujiang City, Yongxiu County, Yunjushan Mountain, alt. 672.5 m, 29.23°N, 115.59°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-42 (HFJAU 10005, holotype), ex-type living culture, JAUCC 4723 = JAUCC 4724.

Notes

In the phylogenetic analysis, D. yunjushanensis clusters with D. obclavata and D. rayongensis with moderate support (BS/PP = 81/1.00). However, D. yunjushanensis is easily distinguished from D. obclavata by its comparatively wider (5.5–10 μm vs. 5–7 μm) conidiophores and conidia ((7–)9.5–13.5(–16.5) μm vs. 9–11 μm) (Luo et al. 2019). Moreover, the percurrent proliferation of conidia was not observed in D. obclavata (Luo et al. 2019). Distoseptispora yunjushanensis has shorter conidia (39‒67.5(‒77) μm vs. (36–)60–106(–120) μm) and wider conidiophores (5.5–10 μm vs. 3.5–5.5 μm) than those of D. rayongensis (Hyde et al. 2020). The morphology of D. yunjushanensis is similar to D. guttulata and D. songkhlaensis in having the obclavate conidia, but differs in having wider (5.5–10 μm vs. 3.5–5.5 μm and 4–5.5 μm) conidiophores, shorter (39–67.5(‒77) μm vs. 75–130(–165) μm and 44–125 μm) and proliferating conidia (Yang et al. 2018; Dong et al. 2021). Additionally, D. yunjushanensis can be distinguished from D. guttulata by its distoseptate conidia (Yang et al. 2018).

Discussion

Previous reports of Distoseptispora were mainly concentrated in tropical areas, such as Thailand (Chiang Rai, Phitsanulok, Phang Nga; Luo et al. 2019) and southwest Yunnan, China (Su et al. 2016; Luo et al. 2018). Nonetheless, several new taxa were found sporadically in subtropical China, for example, Distoseptispora martinii (Xia et al. 2017), D. suoluoensis (Yang et al. 2018) and D. bambusae (Sun et al. 2020) in Guizhou Province and D. euseptata and D. yunnansis in northwest Yunnan (Li et al. 2021). The ongoing discovery of this taxa from other geographic regions in subtropical China will deepen our understanding of the species in this genus. In this study, we introduced another three new species of Distoseptispora from Jiangxi Province of subtropical China. It is interesting to note that all these species in subtropical China, except D. yunjushanensis and D. martinii, formed a well-supported monophyletic clade in the phylogenetic tree and this clade was at the basal position (Fig. 1). Distoseptispora yunjushanensis and D. martinii were otherwise phylogenetically placed within other clades (Fig. 1) and, therefore, we suppose that other lineages might also comprise more Distoseptispora species distributed in subtropical China. Further discovery of Distoseptispora species in more extensive areas in subtropical and other regions of China are needed to be addressed if the phylogenetic position of species reflects their geographical and ecological distribution.

Distoseptisporaceae is a holomorphic group of Sordariomycetes that are saprobic on decaying wood and plant debris in terrestrial and freshwater habitats (Su et al. 2016). The genus Distoseptispora seems not to have specific habitat preferences, as most species were reported from submerged wood in freshwater habitats, while some were introduced from terrestrial habitats (Table 2). So far, only five species of Distoseptispora have been found on bamboo, two of them (Distoseptispora bambusae and D. hydei, Table 2) from terrestrial habitats, the other three (this study) from freshwater. There may be more species in this genus existing on bamboo waiting to be discovered and further studies are needed to clarify if a specific species in Distoseptispora is specific to its host.

Acknowledgements

We are grateful to Deng-Mei Fan and Yi Yang (Agricultural college, Jiangxi Agricultural University) for the valuable advice in the context of this study. This study was supported by the National Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Natural Science Foundation of Jiangxi Province (20151BAB214002) and Science and Technology Plan Project of Jiangxi Province (GJJ160417).

References

  • Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5
  • Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsa-Ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, Delapeña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Cabo M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, Decastro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massolajr NS, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, Desouza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951–1041. Persoonia 43(1): 223–425. https://doi.org/10.3767/persoonia.2019.43.06
  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): e772. https://doi.org/10.1038/nmeth.2109
  • Dong W, Hyde KD, Jeewon R, Doilom M, Yu XD, Wang GN, Liu NG, Hu DM, Nalumpang S, Zhang H (2021) Towards a natural classification of annulatascaceae-like taxa II: Introducing five new genera and eighteen new species from freshwater. Mycosphere : Journal of Fungal Biology 12(1): 1–88. https://doi.org/10.5943/mycosphere/12/1/1
  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  • Hopple JJJ, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: Divergent domains, outgroups, and monophyly. Molecular Phylogenetics and Evolution 13(1): 1–19. https://doi.org/10.1006/mpev.1999.0634
  • Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, deSilva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu HX, Yang J, Zeng XY, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar MA, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, Silva GA, Lima CLF, Oliveira RJV, Souza CAF, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liimatainen K, Liu ZY, Liu XZ, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen TC, Xu JC, Zhang ZK, Zhao YC, Zhou JL, Zhu L (2016) Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. https://doi.org/10.1007/s13225-016-0373-x
  • Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SS, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Cáceres ME, Karunarathna SC, Hongsanan S, Phookamsak R, Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, Soares AMS, Plautz HL, Sotão HMP, Xavier WKS, Bezerra JDP, Oliveira TGL, Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblová M, Fournier J, Nekvindová J, Barbosa RN, Santos JEF, Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkalčec Z, Liang JM, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC, Doilom M (2019) Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96(1): 1–242. https://doi.org/10.1007/s13225-019-00429-2
  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsaard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere : Journal of Fungal Biology 11(1): 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
  • Hyde KD, Bao DF, Hongsanan S, Chethana KWT, Yang J, Suwannarach N (2021) Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. Fungal Diversity 107(1): 71–105. https://doi.org/10.1007/s13225-021-00469-7
  • Kumar S, Stecher G, Tamura K (2016) Mega7: Molecular evolutionary genetic analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Li WL, Liu ZP, Zhang T, Dissanayake AJ, Luo ZL, Su HY, Liu JK (2021) Additions to Distoseptispora (Distoseptisporaceae) associated with submerged decaying wood in China. Phytotaxa 520(1): 75–86. https://doi.org/10.11646/phytotaxa.520.1.5
  • Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel Distoseptispora (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere: Journal of Fungal Biology 9(3): 444–461. https://doi.org/10.5943/mycosphere/9/3/2
  • Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Diversity 99(1): 451–660. https://doi.org/10.1007/s13225-019-00438-1
  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47(W1): W636–W641. https://doi.org/10.1093/nar/gkz268
  • Mckenzie EHC (1995) Dematiaceous Hyphomycetes on Pandanaceae. V. Sporidesmium sensu lato. Mycotaxon 56: 9–29.
  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), Institute of Electrical and Electronics Engineers, New Orleans, Louisiana, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  • Monkai J, Boonmee S, Ren GC, Wei DP, Phookamsak R, Mortimer PE (2020) Distoseptispora hydei sp. nov. (Distoseptisporaceae), a novel lignicolous fungus on decaying bamboo in Thailand. Phytotaxa 459(2): 93–107. https://doi.org/10.11646/phytotaxa.459.2.1
  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Gareth Jones E, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo Z, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w
  • Phukhamsakda C, Mckenzie EHC, Phillips AJL, Jones EBG, Bhat DJ, Marc S, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102(1): 1–203. https://doi.org/10.1007/s13225-020-00448-4
  • Réblová M (1999) Studies in Chaetosphaeria sensu lato III. Umbrinosphaeria gen. nov. and Miyoshiella with Sporidesmium anamorphs. Mycotaxon 71: 13–43.
  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Shenoy BD, Jeewon R, Wu WPP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110(8): 916–928. https://doi.org/10.1016/j.mycres.2006.06.004
  • Shoemaker RA, White GP (1985) Lasiosphaeria caesariata with Sporidesmium hormiscioides and L. triseptata with S. adscendens. Sydowia 38: 278–283.
  • Song HY, Sheikha AF, Zhai ZJ, Zhou JP, Chen MH, Huo GH, Huang XG, Hu DM (2020) Distoseptispora longispora sp. nov. from freshwater habitats in China. Mycotaxon 135(3): 513–523. https://doi.org/10.5248/135.513
  • Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bahkali AH, Bhat JD, McKeenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80(1): 375–409. https://doi.org/10.1007/s13225-016-0362-0
  • Subramanian CV (1992) A reassessment of Sporidesmium (hyphomycetes) and some related taxa. Proceedings of the Indian National Science Academy B 58: 179–190.
  • Sun YR, Goonasekara ID, Thambugala KM, Jayawardena RS, Wang Y, Hyde KD (2020) Distoseptispora bambusae sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand. Biodiversity Data Journal 8: e53678. https://doi.org/10.3897/BDJ.8.e53678
  • Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu JC, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6
  • White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, Sninsky JJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong SW, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7(9): 1187–1206. https://doi.org/10.1023/A:1008883716975
  • Xia JW, Ma YR, Li Z, Zhang XG (2017) Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae. Scientific Reports 7(1): e7888. https://doi.org/10.1038/s41598-017-08318-x
  • Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) Pseudostanjehughesia aquitropica gen. et sp. nov. and Sporidesmium sensu lato species from freshwater habitats. Mycological Progress 17(5): 591–616. https://doi.org/10.1007/s11557-017-1339-4