Research Article |
Corresponding author: Danilo E. Bustamante ( ddanilobm@gmail.com ) Corresponding author: Martha S. Calderon ( martha.calderon@untrm.edu.pe ) Academic editor: Priscila Chaverri
© 2019 Danilo E. Bustamante, Manuel Oliva, Santos Leiva, Jani E. Mendoza, Leidy Bobadilla, Geysen Angulo, Martha S. Calderon.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Bustamante DE, Oliva M, Leiva S, Mendoza JE, Bobadilla L, Angulo G, Calderon MS (2019) Phylogeny and species delimitations in the entomopathogenic genus Beauveria (Hypocreales, Ascomycota), including the description of B. peruviensis sp. nov. MycoKeys 58: 47-68. https://doi.org/10.3897/mycokeys.58.35764
|
The genus Beauveria is considered a cosmopolitan anamorphic and teleomorphic genus of soilborne necrotrophic arthropod-pathogenic fungi that includes ecologically and economically important species. Species identification in Beauveria is difficult because of its structural simplicity and the lack of distinctive phenotypic variation. Therefore, the use of multi-locus sequence data is essential to establish robust species boundaries in addition to DNA-based species delimitation methods using genetic distance, coalescent, and genealogical concordance approaches (polyphasic approaches). In this regard, our study used multilocus phylogeny and five DNA-based methods to delimit species in Beauveria using three molecular makers. These polyphasic analyses allowed for the delimitation of 20–28 species in Beauveria, confirming cryptic diversity in five species (i.e. B. amorpha, B. bassiana, B. diapheromeriphila, and B. pseudobassiana) and supporting the description of B. peruviensis as a new taxon from northeastern Peru. The other five species were not evaluated as they did not have enough data (i.e. B. araneola, B. gryllotalpidicola, B. loeiensis, B. medogensis, and B. rudraprayagi). Our results demonstrate that the congruence among different methods in a polyphasic approach (e.g. genetic distance and coalescence methods) is more likely to show reliably supported species boundaries. Among the methods applied in this study, genetic distance, coalescent approaches, and multilocus phylogeny are crucial when establishing species boundaries in Beauveria.
Beauveria, fungal diversity, multi-locus phylogeny, Peru, polyphasic approaches, species delimitation
Around 1800, a silkworm disease called “calcine”, “real del segno” or “muscardine” was causing great trouble in Italy and France (
The genus Beauveria is considered a cosmopolitan genus of soilborne necrotrophic arthropod-pathogenic fungi that includes ecologically and economically important species (
Based on the end of dual nomenclature for different morphs of the same fungus in 2011 (
Initially, Beauveria was delimitated based on diagnostic features, and three species were recognized, i.e., B. bassiana, B. brongniartii and B. alba (Limber) Saccas (de Hoog, 1972). New additions were included by
In the Amazonian region, a total of five species have been reported (
Given the problems with species delimitation in fungi using morphology, molecular data are becoming the standard for delimiting species and testing their traditional boundaries (
In this study, we analyzed species of the newly circumscribed genus Beauveria, including an unreported species isolated from coffee farms in northeastern Peru, based on morphological observations, phylogenetic inferences, and DNA-species delimitation methods. Three nuclear molecular markers (Bloc, rpb1, and tef1) were used to examine their phylogenetic relationships and to assess species boundaries within the genus Beauveria.
Fungal strains were isolated from infected coffee borers (Hypothenemus hampei) obtained from infected coffee berries according to
Fifty-five fungal strains were incubated as monosporic cultures on PDA at 25 °C for 15 days. Morphological characterization of the fungus was performed as described by
Genomic DNA was extracted from semisolid PDA cultures using the NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany), following the manufacturer’s instructions. Three genes were sequenced, i.e., Bloc, rpb1, and tef1. Each gene was amplified using polymerase chain reaction (PCR) with MasterMix (Promega, Wisconsin, USA) in the following reaction mixture: 10 ng of DNA and 0.25–0.5 pmol of forward and reverse primers for a total volume of 10 μl. The PCR protocols and primer combinations for Bloc (B5.1F, B5.4F, B3.1R, B3.3R), rpb1 (RPB1A, RPB1A_VH6R, RPB1B_VH6Fa, RPB1B_G2R), and tef1 (983F, 1567RintB) followed
Species | Country | Strain | Bloc | RPB1 | tef1 |
---|---|---|---|---|---|
B. acridophila | Colombia | HUA 179219 | – | JX003857 | JQ958613 |
Colombia | HUA 179221 | – | JX003853 | JQ958615 | |
Colombia | HUA 179220 | – | JX003852 | JQ958614 | |
Colombia | MCA 1181 | – | MF416628 | – | |
B. amorpha | Australia | ARSEF4149 | HQ880735 | HQ880876 | HQ881006 |
USA, Colorado | ARSEF7542 | HQ880736 | HQ880877 | HQ881007 | |
Chile | B518a | HQ880737 | HQ880878 | HQ881008 | |
Peru | ARSEF1969 | HQ880738 | HQ880879 | AY531907 | |
Brazil | ARSEF2641 | HQ880739 | HQ880880 | AY531917 | |
B. asiatica | China | ARSEF4384 | HQ880716 | HQ880857 | AY531935 |
China | ARSEF4474 | HQ880717 | HQ880858 | AY531936 | |
Korea | ARSEF4850 | HQ880718 | HQ880859 | AY531937 | |
B. australis | Australia | ARSEF4580 | HQ880719 | HQ880860 | HQ880994 |
Australia | ARSEF4622 | HQ880721 | HQ880862 | HQ880996 | |
Australia | WCN2015 | KT961698 | HQ880861 | HQ880995 | |
B. bassiana | Japan | ARSEF1040 | HQ880689 | HQ880830 | AY531881 |
Australia | ARSEF300 | HQ880690 | HQ880831 | AY531924 | |
Italy | ARSEF1564 | HQ880692 | HQ880833 | HQ880974 | |
Japan | ARSEF7518 | HQ880693 | HQ880834 | HQ880975 | |
Vietnam | ARSEF751 | HQ880694 | HQ880831 | AY531954 | |
Brazil | ARSEF1478 | HQ880695 | HQ880836 | AY531890 | |
Morocco | ARSEF1811 | HQ880696 | HQ880837 | AY531901 | |
B. brongniartii | Japan | ARSEF7516 | HQ880697 | HQ880838 | HQ880976 |
USA, Oregon | ARSEF10278 | HQ880700 | HQ880841 | HQ880979 | |
Korea | ARSEF7268 | HQ880703 | HQ880844 | HQ880982 | |
USA, New York | ARSEF6213 | HQ880706 | HQ880847 | HQ880985 | |
Japan | ARSEF4363 | HQ880707 | HQ880848 | HQ880986 | |
Japan | ARSEF4362 | HQ880708 | HQ880849 | HQ880980 | |
USA, Kentucky | ARSEF2271 | HQ880710 | HQ880851 | HQ880988 | |
USA, Oregon | ARSEF10277 | HQ880711 | HQ880852 | HQ880989 | |
France | ARSEF979 | HQ880714 | HQ880855 | HQ880992 | |
B. caledonica | Switzerland | ARSEF1567 | HQ880747 | HQ880888 | AY531894 |
Scotland | ARSEF2567 | HQ880748 | HQ880889 | AY531915 | |
Denmark | ARSEF8024 | HQ880749 | HQ880890 | HQ881012 | |
Brazil | ARSEF2251 | HQ880750 | HQ880891 | AY531912 | |
USA, Georgia | ARSEF7117 | HQ880751 | HQ880892 | HQ881013 | |
Australia | ARSEF4302 | HQ880752 | HQ880893 | HQ881014 | |
B. diapheromeriphila | Ecuador | QCNE 186272 | – | JX003848 | JQ958610 |
Ecuador | QCNE 186714 | – | MF416648 | MF416491 | |
Ecuador | MCA 1557 | – | JX003848 | JQ958610 | |
B. hoplocheli | Reunion | Bt116 | KM453967 | KM453957 | KC339703 |
Reunion | Bt121 | KM453968 | KM453956 | KC339704 | |
Reunion | Bt124 | KM453969 | KM453955 | KC339699 | |
Reunion | Bt125 | KM453970 | KM453953 | KC339701 | |
Reunion | Bt128 | KM453972 | KM453952 | KC339705 | |
Reunion | Bt129 | KM453973 | KM453951 | KC339706 | |
Madagascar | Bt96 | KM453974 | KM453950 | KC339709 | |
Reunion | Bt99 | KM453975 | KM453949 | KC339710 | |
B. kipukae | USA, Hawaii | ARSEF7032 | HQ880734 | HQ880875 | HQ881005 |
B. lii | China | RCEF5500 | JN689373 | JN689374 | JN689371 |
B. malawiensis | China | GZU12142 | MG052638 | MG052645 | MG052641 |
China | GZU12141 | MG052639 | MG052644 | MG052640 | |
Australia | ARSEF4755 | HQ880754 | HQ880895 | HQ881015 | |
Australia | BCC17613 | HQ880755 | HQ880896 | HQ881016 | |
Malawi | ARSEF7760 | HQ880756 | HQ880897 | DQ376246 | |
B. peruviensis | Peru | UTRF21 | MN094752 | MN100113 | MN094767 |
Peru | UTRF24 | MN094753 | MN100119 | MN094768 | |
Peru | UTRF25 | MN094754 | MN100114 | MN094769 | |
Peru | UTRF26 | MN094758 | MN100120 | MN094770 | |
Peru | UTRF35 | MN094755 | MN100115 | MN094771 | |
Peru | UTRF37 | MN094756 | MN100116 | MN094772 | |
Peru | UTRF38 | MN094759 | MN100121 | MN094773 | |
Peru | UTRF40 | MN094760 | MN100122 | MN094774 | |
Peru | UTRF42 | MN094761 | MN100123 | MN094775 | |
Peru | UTRF58 | MN094762 | MN100124 | MN094776 | |
Peru | UTRP6 | MN094763 | MN100125 | MN094777 | |
Peru | UTRP7 | MN094764 | MN100127 | MN094778 | |
Peru | UTRP13 | MN094765 | MN100126 | MN094779 | |
Peru | UTRP17 | MN094766 | MN100117 | MN094780 | |
Peru | UTRP19 | MN094757 | MN100118 | MN094781 | |
B. pseudobassiana | Portugal | ARSEF3220 | HQ880722 | HQ880863 | AY531928 |
USA, Kentucky | ARSEF3405 | HQ880723 | HQ880864 | AY531931 | |
USA, Wisconsin | ARSEF3216 | HQ880725 | HQ880866 | AY531927 | |
USA, Maryland | ARSEF3529 | HQ880726 | HQ880867 | HQ880998 | |
France | ARSEF4933 | HQ880726 | HQ880870 | AY531938 | |
Canada | ARSEF1855 | HQ880727 | HQ880868 | HQ880999 | |
Canada | ARSEF2997 | HQ880728 | HQ880869 | HQ881000 | |
China | ARSEF6229 | HQ880730 | HQ880871 | HQ881001 | |
Korea | ARSEF7242 | HQ880730 | HQ880865 | HQ880997 | |
B. scarabaeicola | Korea | ARSEF5689 | – | DQ522380 | DQ522335 |
Japan | ARSEF1685 | HQ880740 | HQ880881 | AY531899 | |
Korea | ARSEF5689 | HQ880741 | HQ880882 | AY531939 | |
Korea | ARSEF7043 | HQ880742 | HQ880883 | AY531948 | |
Korea | ARSEF7044 | HQ880743 | HQ880884 | AY531949 | |
Korea | ARSEF7279 | HQ880743 | HQ880885 | HQ881009 | |
Korea | ARSEF7280 | HQ880744 | HQ880886 | HQ881010 | |
Korea | ARSEF7281 | HQ880746 | HQ880887 | HQ881011 | |
B. sinensis | China | RCEF3903 | – | JX524283 | HQ270151 |
B. staphylinidicola | Korea | ARSEF5718 | – | EF468881 | EF468776 |
B. varroae | France | ARSEF8259 | HQ880732 | HQ880873 | HQ881003 |
Switzerland | ARSEF2694 | HQ880733 | HQ880874 | HQ881004 | |
France | ARSEF8257 | HQ880733 | HQ880872 | HQ881002 | |
B. vermiconia | Chile | ARSEF2922 | HQ880753 | HQ880894 | AY531920 |
Cordyceps cicadae | Korea | ARSEF7260 | HQ880757 | HQ880898 | HQ881017 |
Blackwiella cardinalis | USA | OSC93610 | – | EF469088 | EF469059 |
Ascopolyporus polychrous | – | PC546 | – | DQ127236 | DQ118745 |
The phylogeny was based on concatenated data combining Bloc, rpb1, and tef1 (101 sequences, Table
Although 26 species have been molecularly confirmed in Beauveria (
We explored five different DNA-based delimitation methods using Bloc, rpb1, and tef1 data sets to assess species boundaries in Beauveria. Although B. acridophila, B. blattidicola M. Chen, Aime, T.W. Henkel & Spatafora, B. diapheromeriphila, B. locustiphila, and B. staphylinidicola (Kobayasi & Shimizu) B. Shrestha, Kepler & Spatafora lack Bloc sequences, these species were used in the analysis to evaluate its status in the new circumscribed Beauveria. Two of these DNA-based delimitation methods are based on genetic distance [statistical parsimony network analysis (SPN) (
To perform the GMYC delimitation method, an ultrametric tree was constructed in BEAST v.2.0.2 (
To validate the outcomes of single locus species delimitation, a multilocus BPP was applied using the program BP&P v.2.0 (
GCPSR was implemented by identifying independent evolutionary lineages (IELs) and by exhaustive subdivision of strains into phylogenetic species. The criteria used to identify IELs and exhaustive subdivision were the same as those used by
In the phylogeny of Beauveria species, the analyzed data matrix included 1592 base pairs (bp) for Bloc, 2890 bp rpb1, and 1181 bp for tef1 of 101 individuals. Phylogenetic trees obtained from ML and BI analyses confirmed the robustly supported monophyly of the genus Beauveria (Fig.
Phylogenetic tree based on maximum likelihood inference of combined Bloc, RPB1, Tef1 data. Value above branches = Maximum likelihood bootstrap values (BS) / Bayesian posterior probabilities. Grey bars represent species delimitation results from ABGD-, SPN-, GMYC- and BPP based algorithmic methods based on Bloc, RPB1, and Tef1 sequences. Scale bar indicates the number of nucleotide substitution per site. a: delimited as the same species. B. araneola, B. gryllotalpidicola, B. loeiensis, B. medogensis, and B. rudraprayagi were not delimited by any DNA-based algorithm due to abundant missing data in their sequences.
Genetic distance (p-distances) in percentage for species of Beauveria for three markers.
Taxa | Markers | ||
Bloc | RPB1 | tef1 | |
B. australis – B. asiatica | 1.3 | 0.4 | 0.2 |
B. bassiana – B. staphylinidicola | 3.1 | 0.5 | 0.2 |
B. bassiana – B. peruviensis | 3.5–4.1 | 0.3–0.5 | 0.2–0.4 |
B. peruviensis – B. staphylinidicola | 4.1–4.7 | 0.7–1.1 | 0.2 |
The species-delimitation methods based on genetic distance (ABGD, SPN), coalescence (GMYC, BPP), and genealogical concordance (GCPSR) showed incongruent results for the three genes (Fig.
Species number in Beauveria identified under DNA-based species-delimitations methods and phylogeny.
Taxa | Genetic distance | Coalescence | Genealogical concordance | Phylogeny | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABGD | SPN | GMYC | BPP | GCPSR | ||||||||
Bloc | RPB1 | Tef1 | Bloc | RPB1 | Tef1 | Bloc | RPB1 | Tef1 | ||||
B. acridophila | – | 1 | 1 | – | x | x | – | 1 | 1 | – | 1 | 1 |
B. amorpha | 1 | 4 | 3 | 5 | 2 | x | 5 | 3 | 2 | 1 | 1 | |
B. asiatica | 2 | x | 1 | 2 | 1 | x | 2 | 1 | 1 | 1 | 1 | |
B. australis | x | 1 | 1 | 3 | 1 | x | 2 | 1 | 1 | 1 | 1 | |
B. bassiana | 6 | x | 5 | 6 | x | x | 6 | 3 | 3 | 1 | 1 | |
B. blattidicola | – | x | 1 | – | x | x | – | 1 | 1 | – | 1 | |
B. brongniartii | x | 1 | 2 | 2 | 1 | x | 8 | 1 | 1 | 1 | 1 | |
B. caledonica | 1 | 1 | 2 | 1 | 1 | x | 6 | 1 | 1 | 1 | 1 | |
B. diapheromeriphila | – | 2 | 2 | – | x | x | – | 2 | 2 | – | 1 | |
B. hoplocheli | 1 | 1 | 1 | 8 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | |
B. kipukae | 1 | 1 | 1 | 1 | 1 | x | 1 | 1 | 1 | 1 | 1 | |
B. lii | 1 | 1 | 1 | 1 | 1 | x | 1 | 1 | 1 | 1 | 1 | |
B. locustiphila | – | 1 | 1 | – | x | x | – | 1 | 1 | – | 1 | |
B. majiangensis | 1 | x | x | x | 1 | x | 1 | 1 | 1 | 1 | 1 | |
B. malawiensis | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | |
B. pseudobassiana | 1 | 3 | 1 | 2 | 1 | 1 | 9 | 3 | 2 | 1 | 1 | |
B. scarabaeicola | 1 | 1 | 1 | x | 1 | x | 6 | 1 | 1 | 1 | 1 | |
B. sinensis | – | 1 | 1 | – | 1 | x | 1 | 1 | 1 | – | 1 | |
B. staphylinidicola | – | x | x | – | x | x | – | x | x | – | 1 | |
B. varroae | 1 | 1 | 1 | 1 | 1 | x | 2 | 1 | 1 | 1 | 1 | |
B. vermiconia | 1 | 1 | 1 | x | 1 | x | 1 | 1 | 1 | 1 | 1 | |
B. peruviensis | 1 | x | x | 1 | x | x | 2 | 1 | 1 | 1 | 1 | |
Total | 20 | 22 | 28 | 35 | 16 | 3 | 63 | 28*** | 26*** | 16* | 1 | 22 |
Species very similar morphologically to Beauveria bassiana, but differing in the sister phylogenetic relationship with this species (Fig.
PERU. Amazonas: Prov. Rodríguez de Mendoza, Dist. Huambo, latitude -6.469, longitude -77.376, elev. 1642 m, entomopathogenic, 08 Nov. 2017, G. Ángulo, UTRP19 (holotype: UFV5609; isotype: ARSEF14196).
Colony growth on PDA, 15–38 mm diam. after 15 d at 25 C, 1.4–1.9 daily rate of radial growth, velutinous and closely appressed to agar surface, up to 3.5 mm thick, white, changing to yellowish white in older sections of the colony. Conidia aggregated as ca. 0.1 mm spherical clusters and white in mass. Colony reverse colorless or yellowish white to grayish white. Odor indistinct. Vegetative hyphae septate, branched, hyaline, smooth-walled, 1–1.5 μm wide. Conidiogenous cells, phialidic, solitary or occurring in dense lateral clusters, base subsphaerical, 3–6 μm wide, sympodially branched neck tapering into a long slender denticulate rachis, geniculate or irregularly bent, 2.0–3.5 × 1.5–2.5 μm. Conidia, 2–3 × 1–3 μm, Q = 1.0–1.8 (Lm = 2.5 μm, Wm = 2.2 μm, Qm = 1.6), mainly globose, slightly ellipsoid, oblong or cylindrical, hyaline, aseptate, walls smooth and thin. Mycelium on the host is granular-pulverulent, sometimes funiculose or rarely producing synnemata, white, rarely yellowish. Hyphae of the aerial mycelium bearing a conidial apparatus as described above. Basal parts of the conidiogenous cells globose, subglobose or somewhat flask-shaped.
This species is widely spread on coffee plantations in the middle altitudes of the Amazon region in northeastern Peru.
B. peruviensis was isolated from coffee borers (Hypothenemus hampei) obtained from coffee grains. Only the asexual stage was found.
The specific epithet ‘peruviensis’ is derived from the country where the samples were collected.
PERU. Amazonas: Prov. Rodríguez de Mendoza, Dist. Chirimoto, Achamal, -6.535, -77.408, 1351 m alt., 26 Jul. 2017, G. Angulo UTRF21 (UTR) ; -6.534, -77.409, 1345 m alt., 26 Jul. 2017, G. Angulo UTRF22 (UTR) ; -6.544, -77.404, 1435 m alt., 26 Jul. 2017, G. Angulo UTRF23 (UTR); -6.539, -77.401, 1374 m alt., 26 Jul. 2017, G. Angulo UTRF24 (UTR); -6.539, -77.407, 1386 m alt., 26 Jul. 2017, G. Angulo UTRF25 (UTR); -6.543, -77.405, 1428 m alt., 26 Jul. 2017, G. Angulo UTRF26 (UTR); Paraiso, -6.569, -77.383, 1218 m alt., 26 Jul. 2017, G. Angulo UTRF37 (UTR); -6.568, -77.382, 1197 m alt., 26 Jul. 2017, G. Angulo UTRF38 (UTR); -6.567, -77.389, 1387 m alt., 26 Jul. 2017, G. Angulo UTRF39 (UTR); -6.571, -77.385, 1250 m alt., 26 Jul. 2017, G. Angulo UTRF40 (UTR); -6.579, -77.403, 1427 m alt., 10 Aug. 2017, G. Angulo UTRP12 (UTR); -6.58, -77.403, 1444 m alt., 10 Aug. 2017, G. Angulo UTRP13 (UTR); -6.579, -77.404, 1439 m alt., 10 Aug. 2017, G. Angulo UTRP14 (UTR); Trancapata, -6.546, -77.389, 1255 m alt., 26 Jul. 2017, G. Angulo UTRF31 (UTR); -6.564, -77.384, 1161 m alt., 26 Jul. 2017, G. Angulo UTRF34 (UTR); Virgen del Carmen, -6.586, -77.379, 1313 m alt., 26 Jul. 2017, G. Angulo UTRF42 (UTR); -6.586, -77.378, 1271 m alt., 26 Jul. 2017, G. Angulo UTRF43 (UTR); -6.586, -77.377, 1256 m alt., 26 Jul. 2017, G. Angulo UTRF44 (UTR); -6.581, -77.377, 1138 m alt., 26 Jul. 2017, G. Angulo UTRF46 (UTR); Zarumilla, -6.568, -77.376, 1118 m alt., 26 Jul. 2017, G. Angulo UTRF35 (UTR); -6.58, -77.403, 1461 m alt., 10 Aug. 2017, G. Angulo UTRP15 (UTR); -6.58, -77.403, 1149 m alt., 10 Aug. 2017, G. Angulo UTRP16 (UTR); -6.559, -77.385, 1160 m alt., 10 Aug. 2017, G. Angulo UTRP17 (UTR); -6.558, -77.385, 1160 m alt., 10 Aug. 2017, G. Angulo UTRP18 (UTR); Huambo, Chontapamapa, -6.419, -77.557, 1637 m alt., 27 Jul. 2017, G. Angulo UTRF66 (UTR); Dos Cruces, -6.579, -77.378, 1624 m alt., 27 Jul. 2017, G. Angulo UTRF53 (UTR); -6.424, -77.548, 1668 m alt., 27 Jul. 2017, G. Angulo UTRF58 (UTR); -6.425, -77.55, 1642 m alt., 11 Aug. 2017, G. Angulo UTRP19 (UTR); -6.425, -77.55, 1629 m alt., 11 Aug. 2017, G. Angulo UTRP20 (UTR); -6.424, -77.549, 1661 m alt., 11 Aug. 2017, G. Angulo UTRP21 (UTR); -6.425, -77.548, 1671 m alt., 11 Aug. 2017, G. Angulo UTRP22 (UTR); -6.424, -77.548, 1681 m alt., 11 Aug. 2017, G. Angulo UTRP23 (UTR); -6.423, -77.548, 1682 m alt., 11 Aug. 2017, G. Angulo UTRP24 (UTR); -6.422, -77.548, 1671 m alt., 11 Aug. 2017, G. Angulo UTRP25 (UTR); Escobar, -6.42, -77.549, 1666 m alt., 27 Jul. 2017, G. Angulo UTRF59 (UTR); -6.42, -77.549, 1674 m alt., 27 Jul. 2017, G. Angulo UTRF60 (UTR); Omia, El Tingo, -6.469, -77.376, 1431 m alt., 25 Jul. 2017, G. Angulo UTRF19 (UTR); -6.475, -77.381, 1349 m alt., 25 Jul. 2017, G. Angulo UTRF20 (UTR); La Primavera, -6.634, -77.231, 1283 m alt., 25 Jul. 2017, G. Angulo UTRF5 (UTR); -6.64, -77.224, 1362 m alt., 25 Jul. 2017, G. Angulo UTRF7 (UTR); -6.632, -77.222, 1205 m alt., 3 Aug. 2017, G. Angulo UTRP4 (UTR); -6.632, -77.222, 1209 m alt., 3 Aug. 2017, G. Angulo UTRP5 (UTR); -6.638, -77.225, 1280 m alt., 3 Aug. 2017, G. Angulo UTRP6 (UTR); -6.637, -77.225, 1275 m alt., 3 Aug. 2017, G. Angulo UTRP7 (UTR); -6.636, -77.227, 1255 m alt., 25 Jul. 2017, G. Angulo UTRP8 (UTR); -6.632, -77.225, 1238 m alt., 4 Aug. 2017, G. Angulo UTRP9 (UTR); Libano, -6.623, -77.235, 1174 m alt., 24 Jul. 2017, G. Angulo UTRF2 (UTR); -6.611, -77.237, 1330 m alt., 24 Jul. 2017, G. Angulo UTRF3 (UTR); -6.625, -77.242, 1235 m alt., 24 Jul. 2017, G. Angulo UTRF4 (UTR); -6.612, -77.237, 1307 m alt., 3 Aug. 2017, G. Angulo UTRP1 (UTR); -6.618, -77.234, 1242 m alt., 3 Aug. 2017, G. Angulo UTRP2 (UTR); -6.626, -77.247, 1284 m alt., 3 Aug. 2017, G. Angulo UTRP3 (UTR); -6.62, -77.235, 1226 m alt., 3 Aug. 2017, G. Angulo UTRP10 (UTR); -6.618, -77.237, 1236 m alt., 4 Aug. 2017, G. Angulo UTRP11 (UTR).
Beauveria peruviensis is practically indistinguishable in morphology to other Beauveria species. The shape and size of the conidia and the colony color of B. peruviensis among other morphological features have been observed in B. bassiana, B. kipukae, B. pseudobassiana, and B. varroae (
Accurate species identification within the entomopathogenic fungi Beauveria is crucial for disease control and prevention (
The use of multi-locus sequence data is essential to establish robust species boundaries (Lumbsch and Levitt 2011), and our results for Beauveria showed well-supported clades, although it resulted in incongruence to the single locus phylogenies (Suppl. material
Regarding the genetic distance methods, the ABGD showed similar results when delimiting Beauveria species to those from the multilocus phylogeny. The additional putative species in ABGD is mainly due to the split of B. bassiana. This confirms that B. bassiana encompasses cryptic lineages as proposed initially by
In the coalescence methods, although 6 species were not included in the BPP analysis due to the lack of their Bloc sequences, this method supports the conservative results obtained from the multilocus phylogeny. BPP supported the status of 16 species (posterior probabilities higher than 0.52), which are not high supportive, but these probabilities are not supportive at all when splitting or merging species in the BPP analysis (Suppl. material
Regarding B. peruviensis, ABGD (Bloc), SPN (Bloc), GMYC, BPP, and the phylogenetic analyses support this species as a different lineage from B. bassiana and B. staphylinidicola. Additionally, the genetic divergence between B. peruviensis and these species is higher than the minimum threshold observed in species of Beauveria (Table
Recently, polyphasic approaches have been used to reflect the natural classification of species within many important fungal genera (
This study was supported by the National Institute of Agrarian Innovation of Peru (Project number: 002-2016-INIA-PNIA-UPMSI/IE).
Tables S1, S2, Figures S1–S4
Data type: molecular data
Explanation note: Table S1. Results of the Generalized Mixed Yule-Coalescent (GMYC) analyses under the single threshold model. Table S2. Highest posterior probabilities of the three-gene Bayesian species delimitation analysis (BPP) by jointing species delimitation and species tree inference. Figure S1. Phylogenetic tree based on maximum likelihood inference of combined Bloc data. Figure S2. Phylogenetic tree based on maximum likelihood inference of combined RPB1 data. Figure S3. Phylogenetic tree based on maximum likelihood inference of combined Tef1 data. Figure S4. Bayesian inference ultrametric gene tree.