Phylogenetic studies uncover a predominantly African lineage in a widely distributed lichen-forming fungal species

Paul M. Kirika¹², Pradeep K. Divakar³, Ana Crespo³, George Mugambi⁴, Elizabeth A. Orock⁵, Steven D. Leavitt⁶, Grace W. Gatheri¹, H. Thorsten Lumbsch⁶

¹ Department of Plant Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya ² Botany Department, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya ³ Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040 Spain ⁴ Department of Biological Sciences, Karatina University, P.O. Box 1957-10101, Karatina, Kenya ⁵ Department of Botany and Plant Physiology, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon ⁶ Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, U.S.A.

Corresponding author: H. Thorsten Lumbsch (tlumbsch@fieldmuseum.org)

Academic editor: G. Rambold | Received 20 April 2016 | Accepted 4 June 2016 | Published 15 June 2016

Abstract

A number of lichen-forming fungal species are widely distributed. Here, we investigate biogeographic patterns in a widely distributed isidiate taxon – Parmelinella wallichiana – using molecular sequence data. Our results revealed that Parmelinella wallichiana, as currently circumscribed, is not monophyletic but falls into four clades, two of them represented by a sample only. A third clade, occurring in Africa and southern India is described as a new species, Parmelinella schimperiana Kirika & Divakar, sp. nov. Our study adds a further example of previously overlooked, geographically distinct, lineages that were discovered using molecular data.

Key words

Africa, genealogical criteria, molecular systematics, new species, Parmeliaceae, Parmelinella, parmelioïd lichens, phylogeny, taxonomy
Introduction

The advent of DNA sequence technologies and advances in molecular phylogenetic methods have revolutionized our understanding on species delimitation and systematics in lichens and fungi in general (reviewed in Crespo and Lumbsch 2010; Lumbsch and Leavitt 2011; Divakar and Crespo 2015; Leavitt et al. 2015a). Molecular sequence data have led to the circumscription of previously overlooked species-level lineages and a number of taxonomic re-evaluations of widely distributed species in lichenized fungi. Diverse examples of widely distributed nominal taxa masking multiple, species-level diversity include: *Cladia aggregata* (Parnmen et al. 2012), *Melanelixia glabra* (Divakar et al. 2010a), *Melanelixia fuliginosam. glabratula* (Leavitt et al. 2012), *Melanohalea elegantula, M. exasperata* (Leavitt et al. 2013a), *Montanelia tominii* (Leavitt et al. 2015b), *Parmelia saxatilis* (Molina et al. 2011a), *P. sulcata* (Divakar et al. 2005, Molina et al. 2011b), *Parmelina quercina* (Argüello et al. 2007), *P. tiliacea* (Nuñez-Zapata et al. 2011), *Protoparmelia badia* (Singh et al. 2015), *Physconia distorta* (Divakar et al. 2007), *Rhizoplaca melanophthalma* (Leavitt et al. 2013b), and *Sphaerophorus globosus* (Högnaabba and Wedin 2003). These studies demonstrate that some supposedly cosmopolitan taxa may include previously unrecognized diversity. Thus re-evaluation of widely distributed species applying molecular sequence data is prerequisite to understanding biogeographic patterns in broadly distributed taxa. Furthermore, inaccurate species assessment may have negative consequences for conservation purposes or understanding of diversification patterns.

Parmelinella is a small genus (ca. 10 species) and belongs to the parmelioid clade in the family Parmeliaceae (Divakar et al. 2015). The species included in this genus are characterized by a pored epicortex, isolichenan in the cell walls, subirregular lobes, cylindrical or bifusiform conidia, simple cilia and rhizines, and a yellow-grey upper cortex - containing secalonic acid derivatives and atranorin (Elix 1993; Crespo et al. 2010; Thell et al. 2012). Species in the genus are mainly distributed in subtropical to tropical regions of Africa, Asia, Australasia and South America. *Parmelinella chozoubae, P. manipurensis* and *P. nimandairana* are restricted to Asia; *P. salacinifera*, is reported from Southeast USA, central and south America, and Thailand; *P. simplicior* occurs in Asia and East Africa; and *P. cinerascens, P. lindmanii, P. mutata* and *P. versiformis* are endemic to South America (Elisaro et al. 2010; Benatti 2014). For a long time only four additional *Parmelinella* species were known from India (Divakar and Uperti 2005), but recent studies added six species to the genus, most of which had previously been known to occur only in South America (Elisaro et al. 2010; Benatti 2014). Of the ten species, only two, *P. simplicior* and *P. wallichiana*, have previously been reported from East Africa (Swinscow and Krog 1988; Alstrup et al. 2010).

Parmelinella wallichiana is the only widely distributed species in this genus and is known from Africa, Asia, Australia and South America. While it is widespread in East Africa and Asia, the species is known from a few localities in Australia and South America. *Parmelinella wallichiana* normally reproduces asexually by isidia and grows in wide range of ecological environments. The species is most frequently epiphytic but
also found rarely on rocks. Studies have demonstrated broad, intercontinental distributions of a number of lichen-forming fungi that reproduce via asexual propagules (see e.g. Divakar et al. 2005; Molina et al. 2011a and b; Leavitt et al. 2013a; Roca-Valiente et al. 2013; Divakar et al. 2016).

This study aims to assess biogeographic patterns in the widely distributed, isidiolate, lichen-forming fungal species *Parmelinella wallichiana*. To this end, we generated DNA sequences of nuclear ribosomal internal transcribed spacer region (ITS1, 5.8S and ITS2), large subunit (nuLSU) and mitochondrial small subunit (mtSSU). Pheno-
typical features were re-evaluated and compared in light of the relationships inferred from the phylogenetic reconstructions.

Materials and methods

Taxon sampling

A DNA data matrix was assembled using sequences of nuclear ITS, nuLSU and mitochondrial SSU rDNA of 21 samples, representing 18 specimens of *P. wallichiana* s. lat. from Africa, Asia and S. America assembled together with DNA sequences of *P. aff. wallichiana* and *P. lindmanii* (Elisaro et al. 2010) downloaded from GenBank. GenBank accession numbers and information of studied materials are shown in Table 1. The data sets include 12 sequences from previous publications (Blanco et al. 2004; Divakar et al. 2004; Divakar et al. 2006; Divakar et al. 2010b; Eliasaro et al. 2010; Kirika et al. 2015), and 25 were newly generated for this study. Three specimens of *Bulbothrix isidiza* were used as an out-group since it has been shown to belong to a sister group in a previous study (Kirika et al. 2015).

DNA extraction and PCR amplification

Total genomic DNA was extracted from small pieces of thallus devoid of any visible damage or contamination using the USB PrepEase Genomic DNA Isolation Kit (USB, Cleveland, OH) in accordance with the manufacturer’s instructions. We generated sequence data from nuclear ribosomal markers, the ITS region and a fragment of the nuLSU, in addition to a fragment of the mtSSU. Polymerase-chain-reaction (PCR) amplifications were performed using Ready-To-Go PCR Beads (GE Healthcare, Pittsburgh, PA, USA) using the dilutions of total DNA. Fungal ITS rDNA was amplified using ITS1F primers (Gardes and Bruns 1993), ITS4 and ITS4A (White et al. 1990; Larena et al. 1999); mtSSU rDNA was amplified using the primers mrSSU1, mrSSU3R and mrSSU2R (Zoller et al. 1999); nuLSU rDNA was amplified using LR0R and LR5 (Vilgalys and Hester 1990). PCR products were visualized on 1% agarose gel and cleaned using ExoSAP-IT (USB, Cleveland, OH, USA). Cycle sequencing of complementary strands was performed using BigDye v3.1 (Applied Biosystems,
<table>
<thead>
<tr>
<th>Species</th>
<th>Seq/DNA code</th>
<th>Locality</th>
<th>Collector(s)</th>
<th>Voucher specimen</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbothrix isidiza</td>
<td>15505</td>
<td>India: Sikkim</td>
<td>Divakar</td>
<td>MAF</td>
<td>KX341998, KX341920, KX341923, KX341925</td>
</tr>
<tr>
<td></td>
<td>BUIS3186</td>
<td>Congo</td>
<td>Mamush s/n</td>
<td>MAF-Lich 15511</td>
<td>GQ919263, GQ919238, GQ919211</td>
</tr>
<tr>
<td></td>
<td>BUIS3761</td>
<td>Madagascar: Col de Tapia N Ambositra</td>
<td>Ertz 12878 (BR)</td>
<td>MAF-7653</td>
<td>GQ919210, GQ919237, GQ919211</td>
</tr>
<tr>
<td>Parmelinella wallichiana</td>
<td>3122</td>
<td>Brazil: Curitiba</td>
<td>S. Eliasaro</td>
<td>UPCB</td>
<td>GQ267091</td>
</tr>
<tr>
<td></td>
<td>BRYC56001</td>
<td>Cameroon: Eloya</td>
<td>Chatterjee & Divakar</td>
<td>MAF-7653</td>
<td>GQ919263, GQ919238, GQ919211</td>
</tr>
<tr>
<td></td>
<td>7653</td>
<td>India: Uttaranchal</td>
<td>Divakar</td>
<td>MAF</td>
<td>GQ919263, GQ919238, GQ919211</td>
</tr>
<tr>
<td></td>
<td>322</td>
<td>India: South India</td>
<td>Kirika & Lumbsch, 4678</td>
<td>MAE</td>
<td>KX341980, KX341990, KX341999</td>
</tr>
<tr>
<td></td>
<td>4678</td>
<td>India: Eastern</td>
<td>Kirika, 3432</td>
<td>EA, F, MAE</td>
<td>KX341998, KX342001</td>
</tr>
<tr>
<td></td>
<td>9310</td>
<td>Kenya: Eastern</td>
<td>Kirika, 3487</td>
<td>EA, F</td>
<td>KX341984, KX341985, KX341986, KX341994, KX341999</td>
</tr>
<tr>
<td></td>
<td>9311</td>
<td>Kenya: Eastern</td>
<td>Kirika, 3334</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>9312</td>
<td>Kenya: Eastern</td>
<td>Kirika, 3432</td>
<td>EA, F</td>
<td>KX341984, KX341985, KX341986, KX341994, KX341999</td>
</tr>
<tr>
<td></td>
<td>9397</td>
<td>Kenya: Rift Valley</td>
<td>Kirika, 3334</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>9398</td>
<td>Kenya: Rift Valley</td>
<td>Kirika, 3432</td>
<td>EA, F</td>
<td>KX341984, KX341985, KX341986, KX341994, KX341999</td>
</tr>
<tr>
<td></td>
<td>9399</td>
<td>Kenya: Rift Valley</td>
<td>Kirika, 3334</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>9467</td>
<td>Kenya: Coast</td>
<td>Kirika, 3334</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>9647</td>
<td>Kenya: Coast</td>
<td>Kirika & Lumbsch, 2815</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>9693</td>
<td>Kenya: Coast</td>
<td>Kirika, 3334</td>
<td>EA, F</td>
<td>KX341987, KX342000, KX342002, KX342003, KX342004</td>
</tr>
<tr>
<td></td>
<td>250204</td>
<td>China: Yunnan</td>
<td>Crespo, Blanco & Arguello</td>
<td>MAF-L-10411</td>
<td>DQ267842</td>
</tr>
<tr>
<td></td>
<td>3131</td>
<td>Brazil: Curitiba</td>
<td>S. Eliasaro</td>
<td>UPCB</td>
<td>GQ267091</td>
</tr>
</tbody>
</table>
Phylogenetic studies uncover a predominantly African lineage...

Foster City, CA, USA) and the same primers used for PCR amplifications. Sequenced PCR products were run on an ABI 3730 automated sequencer (Applied Biosystems) at the Pritzker Laboratory for Molecular Systematics and Evolution at the Field Museum, Chicago, IL, USA.

Sequence editing and alignment

New sequences were assembled and edited using GENEIOUS v8.1.7 (Biomatters Ltd. 2005–2015). Multiple sequence alignments for each locus were performed using the program MAFFT v7 (Katoh et al. 2005; Katoh and Toh 2008). For the ITS and nuLSU sequences, we used the G-INS-i alignment algorithm and ‘20PAM / K=2’ scoring matrix, with an offset value of 0.3, and the remaining parameters were set to default values. We used the E-INS-i alignment algorithm and ‘20PAM / K=2’ scoring matrix, with the remaining parameters were set to default values for the mtSSU sequences. The program Gblocks v0.91b (Talavera and Castresana 2007) was used to delimit and remove ambiguous alignment nucleotide positions from the final alignments using the online web server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html), implementing the options for a less stringent selection of ambiguous nucleotide positions, including the ‘Allow smaller final blocks’, ‘Allow gap positions within the final blocks’, and ‘Allow less strict flanking positions’ options.

Phylogenetic analyses

Phylogenetic relationships were inferred using maximum likelihood (ML), and Bayesian inference (BI). Exploratory phylogenetic analyses of individual gene topologies showed no evidence of well-supported (≥ 70% bootstrap values) topological conflict, thus relationships were estimated from a concatenated, three-locus (ITS, nuLSU, mtSSU) data matrix using a total-evidence approach (Wiens 1998). We used the program RAxML v8.1.11 (Stamatakis 2006; Stamatakis et al. 2008) to reconstruct the concatenated ML gene-tree using the CIPRES Science Gateway server (http://www.phylo.org/portal2/). We implemented the ‘GTRGAMMA’ model, with locus-specific model partitions treating all loci as separate partitions, and evaluated nodal support using 1000 bootstrap pseudoreplicates. Exploratory analyses using alternative partitioning schemes resulted in identical topologies and highly similar bootstrap support values. We also reconstructed phylogenetic relationships from the concatenated multi-locus data matrix under BI using the program BEAST v1.8.2 (Drummond and Rambaut 2007). We ran two independent Markov Chain Monte Carlo (MCMC) chains for 20 million generations, implementing a relaxed lognormal clock, a birth-death speciation process prior. The most appropriate model of DNA sequence evolution was selected for each marker using the program PartitionFinder v1.1.1 (Lanfear et al. 2012), treating the ITS1, 5.8S, ITS2, nuLSU, and mtSSU as separate partitions. The
first 2 million generations were discarded as burn-in. Chain mixing and convergence were evaluated in Tracer v1.5 (Rambaut and Drummond 2009), considering ESS values >200 as a good indicator. Posterior trees from the two independent runs were combined using the program LogCombiner v1.8.0 (Drummond et al. 2012), and the final maximum clade credibility (MCC) tree was estimated from the combined posterior distribution of trees.

Morphological and chemical studies

Morphological characters, including lobe shape, size and width, cilia and rhizines were studied using a Leica Wild M 8 dissecting microscope. All the specimens of \textit{P. wallichiana} included in the molecular analysis were evaluated (see Table 1). In the case of the new species, additional herbarium specimens were also studied.

Observations and measurements of ascospores were made in water, at 40× (objective) and 10× (eye piece) magnification with a Leica Leitz DM RB microscope. For each species at least 20 spores from different specimens were measured. Mean value (M) and standard deviation (SD) were calculated. In the description of the new species, the results of the measurements are given as (minimum value observed) M ± SD (maximum value observed). M, SD and n (number of spores measured) are expressed within parentheses. Chemical constituents were identified by thin layer chromatography using standard methods (Orange et al. 2010). Extraction of secondary metabolites for TLC analysis was done by pacing small pieces of the thallus in Eppendorf tubes and then adding a few drops of acetone in the tube. The resulting extract was then spotted on glass plates coated with Silica gel using capillary tubes. Plates were developed in Camag horizontal developing chamber (Oleico Lab Stockholm) using solvent system A (Toluene:Dioxane:acetic acid, 45:15:2), plates were then air dried, sprayed with 10% sulphuric acid and then heated in an oven at 110 degrees Celsius to visualize the spots. Substances were identified by comparing the spots with controls (Orange et al. 2010).

Results and discussion

A total of 28 new DNA sequences of \textit{Parmelinella wallichiana} were generated for this study (Table 1). These were deposited in GenBank under accession numbers KX341978-KX342008. The dataset included samples from wide geographic regions as Asia, East Africa and South America. The final alignment of the combined data set was 2174 positions in length and was comprised of 458 unambiguously aligned nucleotide position characters in ITS, 844 in the nuLSU, and 872 in the mtSSU. As the topologies of the single locus phylogenies did not show any conflicts they were analyzed in a concatenated data matrix (data not shown). The ML and BI analyses were identical in their topology and hence only the ML tree with support values of both analyses is depicted in Figure 1.
Phylogenetic relationships among *Parmelinella* taxa based on a maximum-likelihood (ML) analysis of a concatenated, three locus dataset (ITS, nuLSU & mtSSU rDNA). Since the ML and Bayesian inference topologies were identical, only the ML topology is shown here. Posterior probabilities ≥ 0.95/ML bootstrap values ≥ 70% are given above the branches.

Figure 1. Phylogenetic studies uncover a predominantly African lineage...
Specimens representing *Parmelinella wallichiana* did not form a monophyletic lineage (Fig. 1). This is inconsistent with currently hypothesized species boundaries based on phenotypical features (Divakar and Upreti 2015; Benatti 2014). Species-level polyphyly is commonly found in Parmeliaceae and other groups of lichen-forming fungi (see reviews by Crespo and Lumbsch 2010; Lumbsch and Leavitt 2011).

Specimens representing *P. wallichiana* s. lat. fell into four distinct well-supported clades. Clade ‘A’ included samples from Kenya, Cameroon, and a single sample from South India. Clade ‘B’ included a single sample from coastal region (Coast Province) of Kenya. Clade ‘C’ included most samples from Asia; and clade ‘D’ was represented by a single sample from South America (Brazil). Specimens in clade ‘A’ are characterized in having smaller ascospores (5–10 × 5–7.5 µm), whereas they are larger (15–20 × 9–14 µm) in clade ‘C’. Further, the same strongly supported monophyletic clades – ‘A’ and ‘C’ – were recovered in reciprocally monophyletic clades in the independent gene trees (data not shown) (Hudson and Coyne 2002). Presence of the same clades in different single-locus genealogies can be taken as strong evidence that the clades are reproductively and evolutionarily isolated lineages representing distinct species-level lineages (Dettman et al. 2003; Pringle et al. 2005; de Quieroz 2007). The relationships among the clades were well supported (Fig. 1). Clade ‘B’ formed sister-group relationship with clade ‘A’, whereas clade ‘D’ was sister to *P. lindmanii*, and clade ‘C’ sister to a clade including clade ‘D’ and *P. lindmanii*. The type material of *Parmelinella wallichiana* is from Nepal in the Himalayas (Hale 1976a; Divakar and Upreti 2005). Since all samples sequenced by us from the Himalayan regions (China and India) clustered in clade ‘C’, we consider this clade as *P. wallichiana* s. str.

For clade ‘A’ there are a few potential names available that we studied. For example, *Parmelia junodi* was described from the Cape Province in South Africa (Steiner 1907) and *Parmelia tiliacea* var. *eximia* has been described from Tanzania (Steiner 1888). These taxa have previously been considered synonyms of *P. wallichiana* (Hale 1976a). However, according to a recent study by Benatti (2014), *Parmelia tiliacea* var. *eximia* is a synonym of *Parmelinella cinerascens* and the type material of *Parmelia junodi* contained mixture of different species, such as *Parmelinopsis minarum* or *P. horrescens* and a fragment to belonged *Parmelinella cinerascens*. Thus we conclude that those two names are synonyms of *Parmelinella cinerascens*. The latter is a rare species occurring in South America and until recently was classified in the genus *Canoparmelia* (Elix et al. 1986). Recently, based on morphological data, *Canoparmelia cinerascens* was transferred to the genus *Parmelinella* (see Benatti 2014). Unfortunately, we were unable to sequence this species and hence cannot confirm the phylogenetic position of *C. cinerascens*. Samples clustered in clade ‘A’ collected from Africa and South India are morphologically similar to *Parmelinella wallichiana* s. lat. Since there is no name available for this clade, a new species is described below to accommodate samples from Africa and South India (clade ‘A’). Further, the segregation of this new taxon from *P. wallichiana* s.str. is corroborated by morphological data, discussed below. The new species has a disjunct distribution occurring in Africa and South India. There are
abundant examples of this disjunct distribution pattern in flowering plants (see e.g. Mani 1974; Kadereit 2004).

Clades ‘B’ and ‘D’ were each represented by a single specimen from Kenya and Brazil, respectively. The sample from the coastal region of Kenya (clade ‘B’) has a deviating morphology, i.e. very narrow, sublinear and dichotomous lobes, although the specimen from coastal Brazil (clade ‘D’) was more similar to *P. wallichiana* s. lat. In both cases, study of additional samples will be required before a formal description of these putative species.

Our results add a further example to a growing body of evidence of the existence of distinct lineages hidden under currently circumscribed species (reviewed in Bickford et al. 2007; Crespo and Lumbsch 2010; Lumbsch and Leavitt 2011). Whereas, some studies found no obvious phenotypical differences and interpreted the discovered additional species diversity as cryptic (reviewed in Crespo and Lumbsch 2010; Lumbsch and Leavitt 2011; Hibbett 2016), re-examination of material falling into different clades uncovered previously unrecognized morphological differences. This has been shown in other cases as well (see e.g. *Parmelia barrenoae*, Divakar et al. (2005); *Physconia thorstenii*, Divakar et al. (2007); *Caloplaca citrina* group Vondrák et al. (2009); *Melanelixia californica*, Divakar et al. (2010); *Parmelia mayi*, Molina et al. (2011a); *Cladia aggregata* group, Parnmen et al. (2012); *Parmotrema perforatum* group, Widhelm et al. in press) and demonstrates the importance of careful re-analysis of morphological and chemical characters in order to phenotypically circumscribe species. Further, the species-level lineages uncovered in this widely distributed isidiate taxon showed biogeographic structure in what was previously believed to be a pantropical species. Although geographical structure of species detection using molecular data has recently been shown to be a common phenomenon in lichenized fungi (Argüello et al. 2007; Divakar et al. 2010a; Otalara et al. 2010; Amo de Paz et al. 2012; Parnmen et al. 2012; Moncada et al. 2014; Leavitt et al. 2015b; Alors et al. 2016); caution must be taken to generalizing for all isidate lichen taxa (Leavitt et al. 2013a; Roca-Valiente et al. 2013; Divakar et al. 2016).

Taxonomic treatment

Parmelinella schimperiana Kirika & Divakar, sp. nov.

MycoBank No. MB 817294

Figure 2

Type. KENYA, Eastern Province, Makueni Co., Wote, Ngutwa village, Matooi hill, dry woodland, 01°49'S, 37°66'E, 1400m, on bark, 12 December 2013, P. Kirika, I. Malombe & K. Matheka, 3703 (holotype: EA, isotype: F). **GenBank accession number.** ITS KX341985, nu LSU KX342003

Diagnosis. Morphologically similar to *P. wallichiana* but differs in having smaller ascospores (5–10 × 5–7.5 µm), being restricted in distribution to Africa and South India, and molecular phylogenetic position (Clade ‘A’; Fig. 1).
Figure 2. Morphology of the new species; Parmelinella schimperiana (holotype [EA]).

Etymology. The taxon name is in the honor of W.G. Schimper, the first botanist to collect lichens in East Africa.

Description. Thallus foliose, adnate to loosely adnate, 3–7 cm across. Lobes broad, irregularly to subirregularly branched, 3–8 mm wide, rounded crenate, with rotund apices, margins ciliate. Cilia simple, frequent in the lobe axils, 0.1–0.6 mm long. Upper surface grey, grey-green smooth, emaculate, usually pruinose, thallus irregularly cracked towards the centre on older parts, isidiate. Isidia laminal, cylindrical, mostly simple or branched 0.1–0.5 mm high, concolorous with the upper surface. Medulla white. Lower surface black with more than 2 mm broad, brown papillate margins, rhizinate. Rhizines black, evenly distributed, simple, 0.2–1 mm long. Apothecia laminal, adnate to sessile, 1–5 mm in diameter. Disc concave, brown, imperforate. Asci 8-spored. Ascospores ellipsoid to subglobose, 5–10 × 5–7.5 µm (M = 5.5–6.4 × 7.6–8.5 µm, ±SD = 0.7–1.0 × 1.0–2.3 µm, n = 100). Pycnidia absent.

Secondary chemistry – Cortex K+ yellow, UV–; medulla K+ yellow turning red, C–, KC–, P+ orange-red, UV–; upper cortex with secalonic acid A and atranorin, medulla with salazinic acid.
Distribution and ecology. At present the new species is known from Kenya, Cameroon and South India. It occurs in montane regions and in dry woodland areas. It is predominantly corticolous and sometimes saxicolous rarely terricolous, found corticolous on *Mangifera indica*, *Juniperus procera*, *Podocarpus* spp., *Lannaea* spp. and on *Eucalyptus* in artificial habitats.

Remarks. *Parmelinella schimperiana* is morphologically most similar to *P. wallichiana*, but differs in having smaller ascospores (5–10 × 5–7.5 µm), whereas the ascospore size in *P. wallichiana* is: 15–20 × 9–14 µm.

Acknowledgments

Newly obtained DNA sequences were generated in the Pritzker Laboratory for Molecular Systematics and Evolution at the Field Museum and at the Molecular Laboratory, Department of Biology, Faculty of Pharmacy, Complutense University of Madrid. This study was supported by a grant of the IDP/The Field Museum Africa Training Fund and the Spanish Ministerio de Ciencia e Innovación (CGL2013-42498-P).
References

Hale ME (1976a) A monograph of the lichen genus Parmelina Hale (Parmeliaceae). Smithsonian Contributions to Botany 33: 1–60. doi: 10.5479/si.0081024x.33

