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Abstract
Five ascomycetous strains were isolated from dead branches and leaves of Salix (Salicaceae) and Osman-
thus fragrans (Oleaceae), respectively. BLAST searches with ITS sequences in GenBank suggested a high 
degree of similarity to Botryosphaeria dothidea. To accurately identify these strains, we further analysed 
their morphological characteristics of asci, ascospores, all conidiophore cells and conidia. Phylogenetic 
relationships, based on ITS, rpb2, tef1 and tub2 gene sequences, confirmed our strains represented two 
novel species, which are introduced here as B. salicicola and B. osmanthuse spp. nov.
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Introduction

The genus Botryosphaeria (Botryosphaeriales, Botryosphaeriaceae) was established by Ce-
sati and Notaris (1863) and is widely distributed throughout many geographical and 
climatic regions of the world, with the exception of polar regions (Phillips et al. 2013). 
Species of Botryosphaeria are reported in many woody plants as endophytes, saprobes and 
pathogens (Crous et al. 2006; Liu et al. 2012; Phillips et al. 2013; Ariyawansa et al. 2016; 
Dissanayake et al. 2016; Slippers et al. 2017). Some species of Botryosphaeria are aggres-
sive pathogens that pose a significant threat to agricultural and forest ecosystems (Slip-
pers and Wingfield 2007). Botryosphaeria dothidea is known to cause serious diseases, 
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such as Apple ring rot (Slippers and Wingfield 2007; Marsberg et al. 2017). Moreover, 
according to the database of the common names of plant diseases in Japan, 14 species of 
the genus Botryosphaeria cause diseases on 30 plant species (Yukako et al. 2021).

Botryosphaeria has been considered as one of the hot topics in fungal taxonomy for 
a long time, based on its universality, including areas and hosts (from 1863 to 2022) 
(Cesati and Notaris 1863; Shoemaker 1964; Pennycook and Samuels 1985; Slippers et 
al. 2004; Slippers and Wingfield 2007; Liu et al. 2012; Phillips et al. 2008, 2019; Xu 
et al. 2015; Ariyawansa et al. 2016; Zhou et al. 2016, 2017; Li et al. 2018, 2020; Vu et 
al. 2019; Chen et al. 2020; Chu et al. 2021; Yukako et al. 2021). More than 300 spe-
cies epithets are listed in MycoBank (https://www.mycobank.org, 17 October 2022), 
but only about 7% of Botryosphaeria species currently have associated DNA sequences 
data. In the past, species in Botryosphaeria were defined, based on morphological char-
acters alone or on host association, but studies have shown these are inadequate char-
acters to identify species (Shoemaker 1964; Pennycook and Samuels 1985; Slippers et 
al. 2004). With the advent of DNA sequencing methods, the nomenclature and iden-
tification of Botryosphaeria species have significantly improved (Phillips et al. 2013).

Some species of Botryosphaeria are aggressive pathogens in China, mainly distrib-
uted in the southwest, such as B. fabicerciana, B. fujianensis, B. fusispora, B. kuwatsu-
kai, B. dolichospermatii, B. pseudoramosa and B. wangensis as shown in Table 4. In this 
study, five strains were isolated during surveys of fungi on new woody hosts (Salicaceae 
and Oleaceae) in Guizhou and Guangxi Provinces, China. Combining morphology and 
phylogenetic analyses, these isolates represent two novel Botryosphaeria species, which 
are described and illustrated here. The discovery of new species within this genus is im-
portant to help researchers better understand the diversity and ecology of Botryosphaeria.

Materials and methods

Sampling, fungal isolation and morphological observation

Fungi were isolated from dry branches of Salix (Salicaceae) and diseased leaf pieces of Os-
manthus fragrans (Oleaceae) collected in forest parks in Guizhou and Guangxi Provinces, 
China, respectively. Samples were placed in envelopes and returned to the laboratory 
as described by Senanayake et al. (2020). Fruiting bodies (including asci, ascospores, 
conidiophore cells and conidia) on natural substrates were observed using a Zeiss Scope 
5 compound microscope Axioscope 5 (Carl Zeiss Microscopy GmbH, Jena, Germany) 
with the microscope techniques of differential interference contrast light (DIC) and 
photographed using an AxioCam 208 colour (Carl Zeiss Microscopy GmbH, Jena, Ger-
many) camera and saved as JPG files. Approximately 30 measurements of new species 
were made of each feature using the ZEN 3.0 (blue edition) (Jena, Germany) software.

Pure cultures were obtained using a single spore isolation method as described in Sena-
nayake et al. (2020). The germinated spores were transferred to fresh potato dextrose agar 
(PDA) plates and incubated at 25 °C for 14 days. Type specimens were deposited in the Her-
barium of the Department of Plant Pathology, Agricultural College, Guizhou University 
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(HGUP). Ex-type cultures were deposited in the Culture Collection at the Department 
of Plant Pathology, Agriculture College, Guizhou University, P.R. China (GUCC). Taxo-
nomic information of the new species was submitted to MycoBank (www.mycobank.org).

DNA extraction, PCR and sequencing

Mycelium growing on PDA for seven days was scraped off with a sterile scalpel. 
Total DNA was extracted with a (Biomiga#GD2416, San Diego, California, USA) 
BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416) following the manufac-
turer’s protocol. Four loci (ITS, rpb2, tef1 and tub2) were amplified with the respective 
forward and reverse primers (Table 1). PCR cycling conditions were followed accord-
ing to Yukako et al. (2021). For ITS: initial denaturation (94 °C, 5 min), 40 cycles of 
amplification (denaturation 94 °C, 45 s; annealing 48 °C, 30 s; and extension 72 °C, 
90 s) and final extension (72 °C, 2 min); for tef1: initial denaturation (94 °C, 5 min), 40 
cycles of amplification (denaturation 94 °C, 30 s; annealing 52 °C, 30 s; and extension 
72 °C, 45 s) and final extension (72 °C, 2 min); for tub2: initial denaturation (94 °C, 
5 min), 40 cycles of amplification (denaturation 94 °C, 30 s; annealing 52 °C, 30 s; and 
extension 72 °C, 60 s) and final extension (72 °C, 2 min); and for rpb2: initial dena-
turation (95 °C, 5 min), touch-down amplification (5 cycles of 95 °C for 45 s, 60 °C for 
45 s and 72 °C for 120 s; 5 cycles of 95 °C for 45 s, 58 °C for 45 s and 72 °C for 120 s; 
and 30 cycles of 95 °C for 45 s, 54 °C for 45 s and 72 °C for 120 s) and final elongation 
at 72 °C for 8 min. PCR products were sequenced by SinoGegoMax (Beijing, China).

Table 1. Primers used in this study.

Used genes Primer Direction Sequence (5’–3’) Reference
tef1 EF1-688 Forward CGGTCACTTGATCTACAAGTGC Alves et al. (2008)

EF1-1251 Reverse CCTCGAACTCACCAGTACCG
ITS ITS1 Forward TCCGTAGGTGAACCTGCGG White et al. (1990)

ITS4 Reverse TCCTCCGCTTATTGATATGC
tub2 BT-2a Forward GGTAACCAAATCGGTGCTGCTTTC Glass and Donaldson (1995)

BT-2b Reverse ACCCTCAGTGTAGTGACCCTTGGC
rpb2 fRPB2-5f2 Forward GATGATAGAGATCATTTTGG Liu et al. (1999)

fRPB2-7cR Reverse CCCATAGCTTGTTTACCCAT

Phylogenetic analyses

Newly-generated sequences were deposited in GenBank. All the taxa used in the phy-
logenetic analyses are provided in Table 2. These sequences were compared with the 
GenBank database using the Basic Local Alignment Search Tool (BLAST) and avail-
able sequences of species in the genus containing ex-type or representative isolates were 
downloaded from GenBank and previous publications (Li et al. 2018, 2020; Vu et 
al. 2019; Chen et al. 2020; Chu et al. 2021; Yukako et al. 2021). Alignments for the 
individual locus matrices were generated with the online version of MAFFT v. 7.307 
(Katoh et al. 2019). Ambiguous sequences at the start and the end were deleted and 
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the alignments edited with MEGA6 (Tamura et al. 2013) for maximum alignment and 
minimum gaps. Sequence matrix v. 1.7.8 was used to concatenate the aligned sequenc-
es (Vaidya et al. 2011). Neoscytalidium dimidiatum (CBS 145.78 and CBS 251.49) 
and Cophinforma atrovirens (MFLUCC 11-0425 and MFLUCC 11-0655) were used 
as outgroup. Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian 
Inference (BI) were used to place the newly-discovered strains into a phylogenetic 
framework and estimate phylogenetic relationships with other Botryosphaeria spp.

ML analysis was performed using IQ-TREE (Nguyen et al. 2015; Trifinopoulos 
et al. 2016) on the IQ-TREE web server (http://iqtree.cibiv.univie.ac.at, 17 October 
2022). The MP analysis was implemented to test the discrepancy of the ITS, rpb2, tef1 
and tub2 sequence datasets with PAUP v. 4.0b10 (Swofford 2002). Gaps were treated 
as missing data, which were interpreted as uncertainty of multistate taxa. Phylogenetic 
trees were generated using the heuristic search option with tree bisection re-connection 
(TBR) branch swapping. “Maxtrees” was set to 5000, the tree length (TL), consistency 
index (CI), homoplasy index (HI), retention index (RI) and rescaled consistency index 
(RC) were calculated. Bayesian Inference analysis was made with MrBayes 3.2.6 (Ron-
quist et al. 2012) based on a best substitution model for ITS: GTR+G, rpb2: K2P+I, 
tef1: HKY+G and tub2: HKY+G. BI was performed using six Markov Chain Monte 
Carlo runs for 5,000,000 generations, sampling every 1000 generations. The first 25% 
resulting trees were discarded as burn-in phase of each analysis.

MP, ML bootstrap support values greater than 70% and BI posterior probability val-
ues greater than 0.90 were denoted at the nodes and separated by “/”. Bootstrap values 
less than 70% and BI posterior probability values less than 0.90 were labelled with “_”.

Results

The MP, ML and Bayesian analyses resulted in trees with similar topologies and the 
MP tree is shown in Fig. 1. The combined data matrix of ITS–rpb2–tef1–tub2 consist-
ed of 1805 characters (ITS: 466, rpb2: 716, tef1: 286 and tub2: 337), of which 1579 
characters were constant and 13 variable characters were parsimony uninformative. 
Maximum Parsimony analysis of the remaining 213 parsimony informative characters 
produced a tree with the following parameters: TL = 291; CI = 0.862; HI = 0.137; RI 
= 0.931; and RC = 0.803.

In the phylogenetic tree (Fig. 1), the isolates from this study formed two dis-
tinct, well-supported clades and, thus, were considered to represent two previously 
unknown species. Botryosphaeria osmanthuse GUCC 21433, GUCC 21433.1 and 
GUCC 21433.2 without the DNA base differences in four loci amongst strains (ITS, 
rpb2, tef1 and tub2) form an independent branch with strong support (ML = 85, 
PP = 0.94) sister to B. puerensis. Botryosphaeria salicicola (GUCC 21230 and GUCC 
21230.1) clustered sister to B. corticis, B. fabicerciana, B. fusispora, B. fujianensis, B. 
kuwatsukai and B. rosaceae, although with weak-supports (ML = 75). These two novel 
taxa were also supported by DNA base pair differences (Table 3).
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Table 2. Taxa used for molecular phylogenetic analyses and their GenBank accession numbers. (T) = 
ex-type strains.

Species Strain Host Country GenBank accession numbers
ITS tef1 tub2 rpb2

Botryosphaeria agaves CBS 133992T Agave sp. Thailand JX646791 JX646856 JX646841 N/A
B. agaves MFLUCC 10-0051 Agave sp. Thailand JX646790 JX646855 JX646840 N/A
B. auasmontanum CMW 25413T Pinus sp. Namibia KF766167 N/A N/A N/A
B. corticis CBS 119047T Vaccinium corymbosum USA DQ299245 EU017539 EU673107 N/A
B. corticis ATCC 22927 Vaccinium sp. USA DQ299247 EU673291 EU673108 N/A
B. dothidea CBS 115476T Prunus sp. Switzerland AY236949 AY236898 AY236927 N/A
B. dothidea CBS 110302 Vitis vinifera Portugal AY259092 AY573218 EU673106 N/A
B. fabicerciana CBS 127193T Eucalyptus sp. China HQ332197 HQ332213 KF779068 N/A
B. fabicerciana CMW 27121 Eucalyptus sp. China HQ332198 HQ332214 KF779069 N/A
B. fujianensis CGMCC 3.19099T Vaccinium uliginosum China MH491973 MH491977 MH562330 N/A
B. fujianensis BJFUCC 180226-3 Vaccinium uliginosum China MW251380 MW251388 MW251379 N/A
B. fusispora MFLUCC 10-0098T Entada sp. Thailand JX646789 JX646854 JX646839 N/A
B. fusispora MFLUCC 11-0507 Caryota sp. Thailand JX646788 JX646853 JX646838 N/A
B. guttulata CGMCC3.20094T N/A China MT327839 MT331606 N/A N/A
B. guttulata GZCC 19-0188 N/A China MT327833 MT331601 N/A N/A
B. kuwatsukai CBS 135219T Malus domestica China KJ433388 KJ433410 N/A N/A
B. kuwatsukai LSP 5 Pyrus sp. China KJ433395 KJ433417 N/A N/A
B. dolichospermatii CGMCC 3.19096T Vaccinium uliginosum China MH491970 MH491974 MH562327 N/A
B. dolichospermatii CGMCC 3.19097 Vaccinium uliginosum China MH491971 MH491975 MH562328 N/A
B. minutispermatia GZCC 16-0013T Dead wood China KX447675 KX447678 N/A N/A
B. minutispermatia GZCC 16-0014 Dead wood China KX447676 KX447679 N/A N/A
B. osmanthuse GUCC 21433T GUCC 21433 China OL854215 OP650906 OP669376 OP650903
B. osmanthuse GUCC 21433.1 Osmanthus fragrans China OL854216 OP650907 OP669377 OP650904
B. osmanthuse GUCC 21433.2 Osmanthus fragrans China OL854217 OP650908 OP669378 OP650905
B. pseudoramosa CERC 2001T Eucalyptus hybrid China KX277989 KX278094 KX278198 MF410140
B. pseudoramosa CERC 2983 Melastoma sanguineum China KX277992 KX278097 KX278201 MF410143
B. puerensis CSF6052 T Eucalyptus urophylla China MT028569 MT028735 MT028901 MT029057
B. qingyuanensis CERC 2946T Eucalyptus hybrid China KX278000 KX278105 KX278209 MF410151
B. qingyuanensis CERC 2947 Eucalyptus hybrid China KX278001 KX278106 KX278210 MF410152
B. quercus MFLUCC:14-0459 T Quercus sp. Italy KU848199 N/A N/A N/A
B. ramosa CBS 122069T Eucalyptus 

camaldulensis
Bell 

Australia
EU144055 EU144070 KF766132 N/A

B. ramosa CGMCC 3.18004 Acacia sp. China KX197073 KX197093 KX197100 N/A
B. rosaceae CGMCC 3.18007T Malus sp. China KX197074 KX197094 KX197101 N/A
B. rosaceae CGMCC 3.18008 Amygdalus sp. China KX197075 KX197095 KX197102 N/A
B. salicicola GUCC 21230T Salix China OL854218 OP669379 OP750032 N/A
B. salicicola GUCC 21230.1 Salix China OL854219 OP669380 OP750033 N/A
B. scharifii CBS 124703T Mangifera indica Iran JQ772020 JQ772057 N/A N/A
B. sinensia CGMCC 3.17722T Populus sp. China KT343255 N/A N/A N/A
B. tenuispora MUCC 2900 Aucuba japonica Japan LC585276 LC585148 LC585172 N/A
B. tenuispora MUCC 237T Leucothoe fontanesiana Japan LC585278 LC585150 LC585174 LC585196
B. wangensis CERC 2298T Cunninghamina 

deodara
China KX278002 KX278107 KX278211 MF410153

B. wangensis CERC 2299 Cunninghamina 
deodara

China KX278003 KX278108 KX278212 MF410154

Cophinforma 
atrovirens

MFLUCC 11-0425 T Eucalyptus sp. Thailand JX646800 JX646865 JX646848 N/A

C. atrovirens MFLUCC 11-0655 Eucalyptus sp. Thailand JX646801 JX646866 JX646849 N/A
Neoscytalidium 
dimidiatum

CBS 145.78T Homo sapiens United 
Kingdom

KF531816 KF531795 KF531796 N/A

N. dimidiatum CBS 251.49 Juglans regia USA KF531819 KF531797 KF531799 N/A

Note: Newly generated sequences are indicated in bold.
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Taxonomy

Botryosphaeria salicicola J. E. Sun, C. R. Meng & Yong Wang bis, sp. nov.
MycoBank No: 843685
Figs 2a–i

Etymology. In reference to the host from which the fungus was first isolated.

Figure 1. Trees resulting from MP analysis of the combined ITS, rpb2, tef1 and tub2 sequence alignment for 
forty-three isolates in Botryosphaeria. RAxML and MP bootstrap support values (ML, MP ≥ 70%) and Bayesian 
posterior probability (PP ≥ 0.90) are denoted on the nodes (ML/MP/PP). The tree was rooted to Neoscytalidium 
dimidiatum (CBS 145.78 and CBS 251.49) and Cophinforma atrovirens (MFLUCC 11-0425 and MFLUCC 
11-0655). The new species are highlighted in pale red. The scale bar indicates 8.0 expected changes per site.
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Diagnosis. Botryosphaeria salicicola is characterised by oval to broadly fusiform 
ascospores (25.2 × 10.8; L/W = 2.3 vs. 22.7× 7.8 µm, L/W = 2.9) and cylindrical to 
clavate asci (65–170 × 20–30 µm), with moderate growth rate.

Type. China, Guizhou Province, Guiyang City, 26°65'N, 106°63'W, from 
branches of Salix sp., 20 June 2020, C.R. Meng, HGUP 21230 (holotype), ex-type 
culture GUCC 21230.

Description. Saprobic on dead branches of Salix. Teleomorph: Ascomata superfi-
cial, becoming erumpent at maturity, aggregated, thick-walled, wall composed of dark 
brown, thick-walled textura angularis, becoming thinner-walled and hyaline towards 
the inner layers, 160 µm diam. Hamathecium comprising hyaline, septate, branched, 
2–3.5 µm wide filamentous pseudoparaphyses. Asci 65–170 × 20–30 µm, 8-spored, 
bitunicate, cylindrical, to clavate, stipitate. Ascospores 22–26 × 9.0–13 µm (average 
= 25.2 × 10.8 µm, n = 20, L/W = 2.3), irregularly biseriate in the ascus, hyaline, 
guttulate, smooth with granular contents, aseptate, oval to broadly fusiform, widest 
in the middle or upper third of the ascospore, tapering to the obtuse base and apex. 
Anamorph: Not observed.

Culture characteristics. Ascospores germinate on PDA within 24 hours at room 
temperature (25 °C). Colonies with white fluffy mycelium on PDA (90 mm), after 
7 days becomes grey-black at the bottom of centre, olivaceous-grey at the bottom of 
edge, white mycelium, raised, fluffy, dense filamentous.

Table 3. The DNA base differences in four loci between the two new species and closely-related species.

Species Strain number ITS (1–458 
characters)

tef1 (459–703 
characters)

tub2 (704–1039 
characters)

rpb2 (1040–1754 
characters)

Botryosphaeria salicicola GUCC 21230 0 0 0 –
GUCC 21230.1 0 0 0 –

B. corticis CBS 119047 10 (gap: 2) 11 (gap: 6) 6 (gap: 0) –
ATCC 22927 10 (gap: 2) 11 (gap: 6) 6 (gap: 0) –

B. fabicerciana CBS 127193 4 (gap: 3) 8 (gap: 2) 3 (gap: 1) –
CMW 27121 4 (gap: 3) 8 (gap: 2) 3 (gap: 1) –

B. fujianensis CGMCC 3.19099 4 (gap: 3) 8 (gap: 2) 4 (gap: 1) –
BJFUCC 180226-3 4 (gap: 3) 8 (gap: 2) 4 (gap: 1) –

B. fusispora MFLUCC 10-0098 4 (gap: 3) 10 (gap: 3) 3 (gap: 1) –
MFLUCC 11-0507 4 (gap: 3) 10 (gap: 3) 3 (gap: 1) –

B. kuwatsukai CBS 135219 4 (gap: 4) 7 (gap: 2) – –
LSP 5 4 (gap: 4) 7 (gap: 2) – –

B. rosaceae CGMCC 3.18007 4 (gap: 4) 7 (gap: 2) 2 (gap: 0) –
CGMCC 3.18008 4 (gap: 4) 7 (gap: 2) 2 (gap: 0) –

B. dothidea CBS 115476 8 (gap: 2) 12 (gap: 4) 3 (gap: 1) –
CBS 110302 8 (gap: 2) 12 (gap: 4) 3 (gap: 1) –

Species Strain number ITS (1–456 
characters)

tef1 (471–702 
characters)

tub2 (703–1034 
characters)

rpb2 (1035–1750 
characters)

Botryosphaeria osmanthuse GUCC 21443 0 0 0 0
GUCC 21443.1 0 0 0 0
GUCC 21443.2 0 0 0 0

B. puerensis CSF6052 1 (gap: 1) 13 (gap: 4) 8 (gap: 0) 8 (gap: 0)
B. dothidea CBS 115476 5 (gap: 1) 9 (gap: 2) 12 (gap: 0) –

CBS 110302 5 (gap: 1) 9 (gap: 2) 12 (gap: 0) –
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Distribution. China, Guizhou Province, Guiyang City.
Other material examined. China, Guizhou Provice, Guiyang City, 26°65'N, 

106°63'W, from dead branches of Salix, 20 June 2020, C.R. Meng, HGUP 21230, 
living culture GUCC 21230.1.

Notes. NCBI BLAST searches of ITS sequences from our strains suggested a high 
degree of similarity (99–100%) to Botryosphaeria dothidea. However, B. salicicola and 

Figure 2. Botryosphaeria salicicola (GUCC 21230, holotype) a–c ascomata on natural substrate d section 
through ascomata f mature asci g ascospores h colony on PDA (left: above, right: reverse). Scale bars: 
400 µm (b); 200 µm (c); 50 µm (d); 40 µm (e); 20 µm (f, g); 15 mm (h).
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B. dothidea show distant phylogenetic relationships in the phylogeny. Botryosphaeria 
salicicola has longer asci (65–170 × 20–30 µm vs. 63–125 × 16–20 µm) than B. doth-
idea and longer ascospores (25.2 × 10.8; L/W = 2.3 vs. 22.7× 7.8 µm, L/W = 2.9) 
(Slippers et al. 2004). The phylogenetic analyses indicate that Botryosphaeria salicicola 
forms an independent branch with respect to B. corticis, B. fabicerciana, B. fusispora, 
B. fujianensis, B. kuwatsukai and B. rosaceae. Comparing the morphological character-
istics shows that B. corticis has longer ascospores than B. salicicola (29.3 × 11.6 µm vs. 
25.2 × 10.8 µm) (Phillips et al. 2006); B. fusispora has shorter asci than B. salicicola 
(77.5–112.5 × 20–25 µm vs. 65–170 × 20–30 µm) (Liu et al. 2012); B. rosaceae has 
longer ascomata than B. salicicola (170–290 µm vs. 160 µm) (Zhou et al. 2017). The 
sexual morphs of B. fabicerciana (Chen et al. 2011), B. fujianensis (Chu et al. 2021) 
and B. kuwatsukai (Xu et al. 2015) are unknown.

Botryosphaeria osmanthuse J. E. Sun, C. R. Meng & Yong Wang bis, sp. nov.
MycoBank No: 843684
Figs 3a–i

Etymology. In reference to the host from which the fungus was first isolated.
Diagnosis. Botryosphaeria osmanthuse is characterised by aseptate narrowly fusiform 

conidia (16.0–20.5 × 5.0–6.0 µm (average = 17.0 × 5.3 µm, n = 45, L/W = 3.2) and 
short-length conidiogenous cells (8.5–10.5 × 2.3–2.8 µm), with moderate growth rate.

Type. China, Guangxi Province, Nanning City, 22°51'N, 108°19'E, from leaves 
of Osmanthus fragrans, 20 October 2017, C.R. Meng, HGUP 21433 (holotype), ex-
type living culture GUCC 21433.

Description. Saprobic on living leaves of Osmanthus fragrans. Teleomorph: Not 
observed. Anamorph: Conidiomata up to 200 µm diam., covered with hyphae, 
black, globose, ostiolate, solitary, separate, uniloculate, immersed to semi-immersed. 
Conidiomatal wall composed of thick-walled, dark brown cells of textura angularis, 
becoming thin-walled and hyaline towards the inner region. Conidiophores reduced 
to conidiogenous cells. Conidiogenous cells 8.5–10.5 × 2.3–2.8 µm (average = 10 × 
2.5 µm, n = 20), holoblastic, discrete, hyaline, cylindrical to lageniform, phialidic with 
periclinal thickening. Paraphyses not were seen. Conidia 16.0–20.5 × 5.0–6.0 µm (av-
erage = 17.0 × 5.3 µm, n = 45, L/W = 3.2), hyaline, thin-walled, smooth with granular 
contents, unicellular, aseptate narrowly fusiform, base subtruncate to bluntly rounded.

Culture characteristics. Conidia germinate on PDA within 24 hours at room 
temperature (25 °C) with germ tubes produced from both ends of the conidia. Colo-
nies with white fluffy mycelium on PDA (90 mm), after 7 days becomes raised, fluffy, 
white mycelium, dense filamentous.

Distribution. China, Guangxi Province, Nanning City.
Other material examined. China, Guangxi Province, Nanning City, 22°51'N, 

108°19'E, from living leaves of Osmanthus fragrans, 20 October 2017, C.R. Meng, 
HGUP 21433, living culture GUCC 21433.1 and GUCC 21433.2.
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Notes. NCBI BLAST searches of ITS sequences from our strains suggest a high 
degree of similarity (99–100%) to Botryosphaeria dothidea. However, DNA bases in the 
two loci (tef1 and tub2) showed a high amount of difference between B. osmanthuse 
and B. dothidea. Botryosphaeria osmanthuse shows close phylogenetic affinity to B. pu-
erensis (Fig. 1). Comparing the morphological characteristics, conidia of B. osmanthuse 
(av. 17.0 × 5.3; L/W = 3.2) are narrower and shorter than B. puerensis (av. 26.8 × 6.4; 
L/W = 4.2) (Li et al. 2020). Botryosphaeria osmanthuse was first isolated from Osman-
thus fragrans (Oleaceae), while B. puerensis has been reported from Eucalyptus urophylla 
(Myrtaceae).

Figure 3. Botryosphaeria osmanthuse (GUCC 21433, holotype) a–c colonies on natural substrate 
d section through conidiomata e–g conidiophores and conidia h conidia i colony on PDA (left: above, 
right: reverse). Scale bars: 300 µm (b); 140 µm (c); 50 µm (d); 20 µm (e); 10 µm (f–h); 15 mm (i).
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Discussion

Two new species of Botryosphaeria, B. salicicola and B. osmanthuse, are described and il-
lustrated from southern China in this paper. Previously reported Botryosphaeria species in 
China are listed in Table 4. Thirteen Botryosphaeria species were described from nine dif-
ferent areas in southern China, covering three climatic zones (northern sub-tropical zone, 
central sub-tropical zone and warm temperate zone) along an altitudinal gradient (Hui 
2021). Most species, such as B. fabicerciana, B. fujianensis, B. fusispora, B. kuwatsukai, 
B. dolichospermatii, B. minutispermatia, B. pseudoramosa, B. qingyuanensis and B. wan-
gensis, often caused serious diseases on their hosts (Xu et al. 2015; Ariyawansa et al. 2016; 
Zhou et al. 2016, 2017; Li et al. 2018, 2020; Vu et al. 2019; Chen et al. 2020; Chu et 
al. 2021). Geographical and climatic regions have a large influence on the taxonomy, 
ecological distribution and pathogenicity of Botryosphaeria species (Phillips et al. 2013).

Table 4. List of Chinese Botryosphaeria strains.

Species Strain Host/ Natural substrate Regions Fungi References
Botryosphaeria 
fabicerciana

CBS 127193 Eucalyptus sp. Fujian Pathogens Li et al. (2018)
CMW 27094 Eucalyptus sp. Fujian Pathogens Li et al. (2018)
CMW 27121 Eucalyptus sp. Fujian Pathogens Li et al. (2018)
CERC 2930 Eucalyptus sp. Yunnan Pathogens Li et al. (2018)
CERC 3446 Eucalyptus sp. Guangdong Pathogens Li et al. (2018)
CERC 2912 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2018)
CERC 2913 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2018)

B. fujianensis CGMCC 3.19099 Vaccinium uliginosum Fujian Pathogens Chu et al. (2021)
BJFUCC 180226-3 V. uliginosum Fujian Pathogens Chu et al. (2021)
BJFUCC 180226-4 V. uliginosum Fujian Pathogens Chu et al. (2021)

B. fusispora CSF6063 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF6178 E. globulus Yunnan Pathogens Li et al. (2020)
CSF5872 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF5950 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF6160 E. globulus Yunnan Pathogens Li et al. (2020)
CSF6056 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)

B. guttulata CGMCC3.20094 Decaying branch Guizhou Saprobes Chen et al. (2020)
GZCC 19-0186 Decaying branch Guizhou Saprobes Chen et al. (2020)
GZCC 19-0188 Decaying branch Guizhou Saprobes Chen et al. (2020)

B. kuwatsukai CBS 135219 Malus domestica Unknown Pathogens Xu et al. (2015)
LSP 5 Pyrus sp. Unknown Pathogens Xu et al. (2015)

B. dolichospermatii CGMCC 3.19096 V. uliginosum Fujian Pathogens Chu et al. (2021)
CGMCC 3.19097 V. uliginosum Fujian Pathogens Chu et al. (2021)
GZCC 16-0013 Dead wood Guizhou Saprobes Ariyawansa et al. (2016)
GZCC 16-0014 Dead wood Guizhou Saprobes Ariyawansa et al. (2016)

B. pseudoramosa CERC 2001 E. hybrid Guangxi Pathogens Li et al. (2018)
CERC 2982 Unknow Guangxi Pathogens Li et al. (2018)
CERC 2983 Melastoma sanguineum Guangxi Unsure Li et al. (2018)

CGMCC 3.18739 Eucalyptus sp. Guangxi Unsure Li et al. (2018)
CERC 3462 Eucalyptus sp. Guangxi Unsure Li et al. (2018)
CERC 2019 E. urophylla & E. grandis Guangxi Unsure Li et al. (2018)
CERC 2987 Me. sanguineum Guangxi Unsure Li et al. (2018)
CERC 3455 Eucalyptus sp. Guangxi Unsure Li et al. (2018)
CERC 2988 Me. sanguineum Guangxi Unsure Li et al. (2018)
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Species Strain Host/ Natural substrate Regions Fungi References
B. qingyuanensis CERC 2946 E. hybrid Guangdong Pathogens Li et al. (2018)

CERC 2947 E. hybrid Guangdong Pathogens Li et al. (2018)
B. ramosa CGMCC 3.18004 Acacia sp. Hainan Unsure Vu et al. (2019)

CGMCC 3.18006 Myrtaceae Guangdong Unsure Vu et al. (2019)
B. rosaceae CGMCC 3.18007 Malus sp. Shandong Unsure Zhou et al. (2017)

CGMCC 3.18008 Amygdalus sp. Shandong Unsure Zhou et al. (2017)
CGMCC3.18009 Malus sp. Shandong Unsure Zhou et al. (2017)
CGMCC3.18010 Pyrus sp. Shandong Unsure Zhou et al. (2017)

CFCC 82350 Malus sp. Unknown Unsure Zhou et al. (2017)
CGMCC3.18011 Pyrus sp. Shandong Unsure Zhou et al. (2017)

B. sinensia CGMCC 3.17722 Populus sp. Henan Unsure Zhou et al. (2016)
CGMCC 3.17723 Morus sp. Henan Unsure Zhou et al. (2016)
CGMCC 3.17724 Juglans regia Henan Unsure Zhou et al. (2016)

CFCC 82346 J. regia Beijing Unsure Zhou et al. (2016)
CFCC 82255 Ma. pumila Beijing Unsure Zhou et al. (2016)

B. wangensis CERC 2298 C. deodara Henan Pathogens Li et al. (2018)
CERC 2299 C. deodara Henan Pathogens Li et al. (2018)

CGMCC 3.18744 C. deodara Henan Pathogens Li et al. (2018)
CERC 2300 C. deodara Henan Pathogens Li et al. (2018)

CSF5820 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF5733 Eucalyptus sp. Yunnan Pathogens Li et al. (2020)
CSF5944 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF5971 E. urophylla & E. grandis Yunnan Pathogens Li et al. (2020)
CSF5781 E. globulus Yunnan Pathogens Li et al. (2020)
CSF6174 E. globulus Yunnan Pathogens Li et al. (2020)
CSF5737 Eucalyptus sp. Yunnan Pathogens Li et al. (2020)

B. archontophoenicis HKU (M) 3539 Archontophoenix alexandrae Hong Kong Saprobes Index Fungorum and mycobank
B. brunneispora HKU (M) 3987 Trachycarpus fortune Hubei Unsure Index Fungorum and mycobank
B. cunninghamiae N/A Cunninghamia lanceolata China Saprobes Index Fungorum and mycobank
B. puerensis HMAS 255719 E. urophylla & E. grandis China Pathogens Index Fungorum and mycobank
B. qinlingensis BJFC S1576 Quercus aliena var. 

acuteserrata
Shaanxi Unsure Index Fungorum and mycobank

B. yedoensis N/A Prunus yedoensis Taiwan Unsure Index Fungorum and mycobank

Botryosphaeria species have been known to exist in many woody plants (Crous 
et al. 2006; Liu et al. 2012; Phillips et al. 2013; Ariyawansa et al. 2016; Dissanay-
ake et al. 2016; Slippers et al. 2017). Botryosphaeria dothidea, the type species of 
the genus (Slippers and Wingfield 2007), is known from numerous hosts (Phillips 
et al. 2013; Marsberg et al. 2017) and was isolated from an Asphondylia gall on 
Lamiaceae in Italy and Poland (Zimowska et al. 2020). Other species of Botryospha-
eria have often been isolated from many wood plants (Table 2). Amongst them, 
B. fabicerciana, B. fusispora, B. kuwatsukai, B. pseudoramosa, B. rosaceae, B. wan-
gensis and B. puerensis often exist in many economic plants, such as Eucalyptus sp., 
Pyrus sp., Malus sp., Citrus sp. and Vaccinium sp. (Phillips et al. 2006; Lazzizera et 
al. 2008; Zhou et al. 2017; Li et al. 2018, 2020; Chen et al. 2020). Our strains were 
isolated from the Salix (Salicaceae) and O. fragrans (Oleaceae) of woody plants. In 
contrast, the few hosts or natural substrates of the known species belong to the 
Salicaceae and Oleaceae.
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Abstract
Eucalyptus spp. are widely planted in Colombia as an important component of a growing paper and pulp 
industry. Leaf and shoot blight caused by Calonectria spp. was one of the first disease problems to emerge 
in these plantations. A survey of Eucalyptus plantations in four forestry regions of Colombia during 2016 
resulted in a large number of Calonectria isolates from soil samples collected in the understories of trees 
having symptoms of Calonectria leaf and shoot blight. The aim of this study was to identify and resolve the 
phylogenetic relationships for these isolates using DNA sequence comparisons of six gene regions as well 
as morphological characters. From a collection of 107 isolates, seven Calonectria species residing in three 
species complexes were identified. Two of these represented undescribed species, namely C. exiguispora 
sp. nov. and C. guahibo sp. nov. Calonectria parvispora and C. spathulata were the most commonly iso-
lated species, each of which accounted for approximately 30% of the isolates. The results suggest that 
Colombia has a wide diversity of Calonectria spp. and that these could challenge Eucalyptus plantation 
forestry in the future.
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Introduction

Colombian plantation forestry is based primarily on non-native Pinus and Eucalyptus 
species, which have been widely deployed as an important component of the growing 
wood and paper industry. These plantations are based on short rotations, and in the 
case of Eucalyptus, clonal propagation has been established rapidly during the course of 
the last decade. There are currently approximately 540 000 ha of commercially man-
aged plantations, of which Eucalyptus makes up a substantial component (20%) of this 
resource (MADR; https://www.minagricultura.gov.co/).

As plantation forestry has grown globally, damage due to insect pests and microbial 
pathogens has become increasingly important (Wingfield et al. 2008, 2015; Paine et 
al. 2011). Relevant diseases of planted Eucalyptus in Colombia include stem canker 
caused by species of Cryphonectriaceae and Botryosphaeriaceae (van der Merwe et al. 
2001; Rodas et al. 2009), wilt and dieback caused by Ceratocystis neglecta (Rodas et al. 
2008), Myrtle rust caused by Austropuccinia psidii (Rodas et al. 2015; Granados et al. 
2017), as well as leaf and shoot blight caused by Calonectria species (Rodas et al. 2005). 
Of these, Calonectria leaf and shoot blight was amongst the first disease problems to 
emerge (Rodas et al. 2005; Rodas and Wingfield 2020).

Species of Calonectria (Hypocreales, Nectriaceae) have a wide distribution globally, 
especially in tropical and sub-tropical regions (Crous 2002; Lombard et al. 2010b; 
Marin-Felix et al. 2017). These fungi represent some of the most aggressive pathogens 
of agricultural, forestry, horticultural and ornamental plants (Crous 2002; Lombard et 
al. 2010b). Calonectria spp. are best known as root, shoot and foliar pathogens and can 
be associated with various disease symptoms, including damping-off, seedling blight, 
leaf and shoot blight, leaf spot, stem lesions, collar and root rot, fruit rot, and cutting 
rot (Sharma et al. 1984; Mohanan and Sharma 1985; Crous et al. 1991, 1998; Ferreira 
et al. 1995; Crous 2002; Old et al. 2003; Lombard et al. 2010b; Lopes et al. 2018).

In Colombia, the first outbreak of Calonectria leaf and shoot blight in Eucalyptus 
plantations occurred in 1998, where Calonectria spathulata was shown to be the pre-
dominant pathogen (Rodas et al. 2005). High humidity and abundant free moisture 
in this region result in conditions highly conducive to disease outbreaks (Crous 2002; 
Rodas et al. 2005). Infections by Calonectria spp. have consequently resulted in severe 
defoliation and significant negative impacts on the growth of susceptible genotypes 
(Rodas et al. 2005).

Calonectria spp. are typically soil-borne fungi and many of these move between the 
soil environment and the leaf canopy of host trees (Crous 2002; Li et al. 2022). Previ-
ous studies of Calonectria leaf and shoot blight on Eucalyptus in Colombia considered 
only isolates from infected leaves (Rodas et al. 2005; Rodas and Wingfield 2020). In 
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order to provide a more comprehensive overview of Calonectria species associated with 
Eucalyptus in Colombia, soil samples were collected from Eucalyptus plantations in 
Colombia, resulting in a large number of isolates. The aim of this study was to identify 
and resolve the phylogenetic relationships for these isolates using multi-gene DNA 
sequence comparisons as well as morphological characteristics.

Materials and methods

Sampling and fungal isolations

During 2016, surveys of Eucalyptus plantations were conducted in different for-
estry farms located across four provinces of Colombia, namely, Cauca, Risaralda, 
Valle del Cauca, and Vichada (Fig. 1; Suppl. material 2). Soil samples were taken in 
the understories of Eucalyptus trees having symptoms of Calonectria leaf and shoot 
blight. In addition, random soil samples were collected from the native vegetation 
surrounding the Eucalyptus plantations in these regions. Soils were packed in plastic 
bags and transferred to the laboratory for isolation. The samples were baited with 
germinating alfalfa (Medicago sativa) seeds following the method recommended by 
Crous (2002).

A dissection microscope was used to locate conidiophores and conidia typical of 
Calonectria on the infected alfalfa sprouts. These were lifted from the infected tissues 
using a sterile hypodermic needle and transferred to Petri dishes containing 2% (w/v) 
malt extract agar (MEA; 20 g malt extract, Biolab, Midrand, South Africa; 20 g Difco 
agar, Becton Dickinson, Maryland, USA; 1 L deionised water). Primary isolations were 
incubated for 3–7 d at 25 °C to allow fungal growth. Single hyphal tips were cut from 
the fungal colonies, transferred to fresh MEA plates, and incubated at 25 °C to ob-
tain pure cultures. These cultures were deposited in the culture collection (CMW) of 
the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 
South Africa. Representative cultures, including the ex-type strains of novel taxa, were 
deposited in the CMW-IA (the culture collection of Innovation Africa, University of 
Pretoria, Pretoria, South Africa). Dried-down specimens of sporulating cultures were 
deposited in the PRU (H.G.W.J. Schweickerdt Herbarium of the University of Preto-
ria, Pretoria, South Africa).

DNA extraction, PCR amplification and sequencing

Prepman Ultra Sample Preparation Reagent (Thermo Fisher Scientific, Waltham, MA, 
USA) was used to extract the total genomic DNA from 7-d-old isolates grown on 
2% MEA, following the manufacturer’s suggested protocols. A fragment of the ac-
tin (ACT), calmodulin (CMDA), histone H3 (HIS3), translation elongation factor 
1-alpha (TEF1), β-tubulin (TUB2), and DNA‐directed RNA polymerase II second 
largest subunit (RPB2) gene regions were amplified using the primers ACT-512F and 
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ACT-783R (Carbone and Kohn 1999), CAL-228F and CAL-2Rd (Carbone and Kohn 
1999; Groenewald et al. 2013) CYLH3F and CYLH3R (Crous et al. 2004), EF1-
728F and EF2 (O’Donnell and Cigelnik 1997; Carbone and Kohn 1999), T1 and 
CYLTUB1R (O’Donnell and Cigelnik 1997; Crous et al. 2004), and fRPB2‐5F and 
fRBP2‐7cR (Liu et al. 1999), respectively.

The PCR reactions and conditions were the same as those used by Pham et al. 
(2019) and Liu et al. (2020). ExoSAP-IT PCR Product Cleanup Reagent (Thermo 
Fisher Scientific, Waltham, MA, USA) was used to purify the Amplicons. Cleaned-up 
amplified fragments were sequenced in both directions using an ABI PRISM 3100 
DNA sequencer (Thermo Fisher Scientific, Waltham, MA, USA) at the Sequencing 
Facility of the Faculty of Natural and Agricultural Sciences, University of Pretoria. 
Geneious Prime 2022.1.1 was used to assemble and edit the raw sequences (https://
www.geneious.com). Sequences obtained in this study were deposited in GenBank 
(http://www.ncbi.nlm.nih.gov).

Phylogenetic analyses

The sequences generated in this study were compared with those for previously 
published species of Calonectria sourced from the GenBank database (http://www.
ncbi.nlm.nih.gov/) and subjected to phylogenetic analyses. Alignments of all se-
quences were assembled using the online version of MAFFT v. 7 (http://mafft.cbrc.
jp/alignment/server/) (Katoh and Standley 2013) and then confirmed manually in 
MEGA v. 7 (Kumar et al. 2016). Maximum likelihood (ML) and Bayesian inference 
(BI) analyses were performed on data sets for each individual gene region and the 
combined data set. The most appropriate models were obtained using the software 
jModeltest v. 1.2.5. (Posada 2008). ML analyses were conducted using RaxML v. 
8.2.4 on the CIPRES Science Gateway v. 3.3 (Stamatakis 2014) with a default GTR 
substitution matrix and 1,000 rapid bootstraps. BI analyses were performed using 
MrBayes v. 3.2.6 (Ronquist et al. 2012) on the CIPRES Science Gateway v. 3.3. 
Four Markov Chain Monte Carlo (MCMC) chains were run from a random start-
ing tree for five million generations, and trees were sampled every 100th generation. 
The first 25% of trees sampled were eliminated as burn‐in, and the remaining trees 
were used to determine the posterior probabilities. Sequences for two isolates (CBS 
109167 and CBS 109168) of Curvicladiella cignea were used as the outgroup taxa in 
all phylogenetic analyses. Phylogenetic trees were viewed using MEGA v. 7 (Kumar 
et al. 2016).

Morphology

The isolates were grown on synthetic nutrient-poor agar (SNA) (Nirenberg 1981) or 
together with alfalfa sprouts to induce the production of the asexual structures. Fruit-
ing structures were initially mounted in water and replaced with 85% lactic acid for 
observation. Crosses between single hyphal tip isolates on minimal salt agar (MSA) 
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were made to induce the production of a sexual state, as described by Pham et al. 
(2019). Nikon microscopes (Eclipse Ni, SMZ 18, Tokyo, Japan) were used to study 
the morphological characteristics. Images were captured using a Nikon DS-Ri2 camera 
mounted on the microscopes using the NIS-Elements BR program. Up to fifty meas-
urements were made of all characteristic structures whenever possible. Dimensions 
were presented as minimum-maximum and with average ± standard deviation for the 
key morphological characteristics.

Figure 1. Geographic location of the sampling sites in Colombia, indicated as blue dots on the map, and 
the diversity of Calonectria spp. isolated from each region.
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Colony characteristics were observed on 6-d and 30-d-old cultures on 2% MEA. 
Colours were described using the charts of Rayner (1970). Three replicates for each 
species were prepared to determine the optimum growth temperature. A mycelial plug 
(5 mm diam) from the margins of actively growing 4 d-old cultures was transferred to 
the centres of Petri dishes containing MEA. These cultures were grown at temperatures 
ranging from 5–35 °C at 5 °C intervals. Colony diameters perpendicular to each other 
were measured when colony growth reached the edges of Petri dishes at an optimum 
temperature, and averages were computed.

Results

Fungal isolates

A total of 107 isolates having morphological characteristics typical of Calonectria 
spp. were obtained from the soil samples (Suppl. material 2). Of these, 46 were from 
Cauca, 38 from Risaralda, 14 from Valle del Cauca, and nine from Vichada. Up 
to four different Calonectria spp. were detected in each of these regions (Figs 1, 2). 

Figure 2. Relative occurrence of Calonectria species associated with Eucalyptus plantations in Colombia. 
Different species are represented by different colours. Isolates obtained from different regions are repre-
sented by different patterns in the bar chart.
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Two of the most commonly isolated species each accounted for approximately 30% 
of the isolates (Fig. 2). The remaining isolates represented 1.9–17.8% of any one 
species (Fig. 2). All isolates were fast growing on SNA and MEA, producing abun-
dant aerial mycelia, and scarce numbers of sclerotia, chlamydospores or fruiting 
structures in 3–4 w.

Phylogenetic analyses

Sequence data were generated for all 107 isolates, which were approximately 250 bp 
for the ACT gene region, 660 bp for the CMDA, 430 bp for the HIS3, 1000 bp for the 
RPB2, 500 bp for the TEF1, and 560 bp for the TUB2. For the phylogenetic analyses 
of each individual data set, the HKY+G model was selected for ACT, the GTR+G 
model for CMDA, the GTR+G for HIS3, the TIM2ef+G for RPB2, the TPM1uf+G 
for TUB2, and the TPM3uf+I+G for TEF1. The ML tree for each individual gene 
region with bootstrap support values of ML and posterior probabilities of BI are pre-
sented in Suppl. material 1.

The combined sequence data set used in the phylogenetic analyses included 191 
ingroup taxa and 3 315 characters, including alignment gaps. Concatenated sequence 
alignments of the six gene regions together with closely related Calonectria species 
were deposited in Zenodo (10.5281/zenodo.7195911). Topologies of the trees result-
ing from the ML and BI analyses were concordant and showed similar phylogenetic 
relationships between taxa. The ML tree with bootstrap support values for the ML and 
the posterior probabilities obtained from BI is presented in Fig. 3. Isolates considered 
in this study were all in the Prolate Group (Liu et al. 2020) and resided in either the 
C. brassicae, C. candelabrum or C. pteridis species complex.

The majority of the isolates resided in the C. brassicae species complex. Fifty-eight 
isolates in this complex clustered in three different clades. Of these, 32 isolates grouped 
in the same clade with the ex-type isolate of C. parvispora, 19 isolates clustered together 
with C. brachiatica, and seven with C. pini.

In the C. candelabrum species complex, 40 isolates clustered in three groups. Of 
these, four isolates grouped together with C. colombiana, 34 isolates with C. spathulata, 
and two isolates resided in a well-supported clade (ML/BI = 100/1.00) distinct from 
any known species in this complex and thus represent a novel taxon.

The remaining nine isolates residing in the C. pteridis species complex were closely 
related to C. gordoniae but formed an independent clade (ML/BI = 100/1.00) distinct 
from C. gordoniae, as well as other species in this complex. These isolates represent an 
undescribed taxon in Calonectria.

Taxonomy

Based on phylogenetic analyses and morphological observations, isolates collected 
from soils in Eucalyptus plantations and their adjacent native vegetation in Colombia 
represented five previously described species, namely, C. brachiatica, C. colombiana, 
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Figure 3. Phylogenetic tree based on maximum likelihood (ML) analysis of a combined DNA data set of 
ACT, CMDA, HIS3, RPB2, TEF1 and TUB2 sequences for Calonectria spp. Bootstrap values ≥ 70% for 
ML analyses and posterior probabilities values ≥ 0.90 obtained from Bayesian inference (BI) are indicated 
at the nodes as ML/BI. Bootstrap values < 70% or probabilities values < 0.90 are marked with “*”, and 
nodes lacking the support values are marked with “−”. Isolates representing ex-type material are marked 
with “T”. Curvicladiella cignea (isolate CBS 109167 and CBS 109168) represents the outgroup.
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C. parvispora, C. pini and C. spathulata, and two novel species. One of these novel taxa 
resided in the C. candelabrum species complex and the other in the C. pteridis species 
complex. Descriptions for these species are provided as follows.

Figure 3. Continued.
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Calonectria exiguispora N.Q. Pham, Marinc. & M.J. Wingf., sp. nov.
MycoBank No: 846456
Figs 4, 6A, B

Etymology. “exiguus” (Latin) = small + “spora” (Latin) = spores, referring to the small 
macroconidia produced by this species.

Diagnosis. Phylogenetically close to C. piauiensis and C. brassianae but differs in 
having smaller macroconidia.

Type. Colombia: Risaralda, Quinchía. Soils in Eucalyptus plantation. August 
2016. C.A. Rodas. (Holotype PRU(M) 4501, stored in a metabolically inactive 
state; ex-holotype CMW 49752, CMW-IA 160). GenBank: OP796405 (ACT); 
OP822275 (CMDA); OP822382 (HIS3); OP822489 (RPB2); OP822168 (TEF1); 
OP822596 (TUB2).

Description. Sexual morph not observed. Conidiophores scarce on SNA, 
consisting of conidiogenous apparatus and stipes, branched or simple. Stipes infre-
quent, elongated, septate, 75–273 µm long, 2–5 µm wide near base, tapering towards 
apex, simple or occasionally dichotomously branched, mostly being part of conid-
iogenous apparatus; vesicles terminal, slightly inflate to ellipsoidal, 2–5 µm wide. 
Conidiogenous apparatus hyaline, simple or branched in 1–3 (–4) tiers, uncommon-
ly developing from stipes; main axis upright, septate, 20–275 × 3–7 µm; branches 
doliiform to cylindrical, primary branches 8–39 × 3–7 µm, secondary branches 8–24 
× 2–6 µm, tertiary branches 10–23 × 2–5 µm, quarternary branches 10–14 × 3–4 µm. 
Conidiogenous cells holoblastic, hyaline, discrete, cylindrical to tapered above, often 
constricted near base, with periclinal thickening, 8–20 × 3–5 (11.8 ± 2.71 × 3.2 ± 0.5) 
µm. Macroconidia hyaline, cylindrical, round at apex, 1-septate, septum sub-median 
or median, guttulate, 21–40 × 3–4 (30.9 ± 4.09 × 3.5 ± 0.23) µm. Chlamydospores 
present, scarce, in clumps or in chains. Mega- and microconidia not observed.

Colonies on 2% MEA in the dark for 6 d, white on surface, pale luteous in re-
verse, with moderate amount of aerial mycelium, with entire edges. Optimal growth 
temperature at 25 °C reaching 65.2 mm in 6 d, followed by 20 °C (57.3 mm), 15 °C 
(39.8 mm), 10 °C (19.7 mm), 5 °C (8.2 mm), no growth at 30 °C and 35 °C. Colonies 
kept at 30 °C and 35 °C being relocated to 25 °C for another 6 d revived (30 °C) and 
showed no growth (35 °C). Colonies on 2% MEA in the dark for 30 d, white to umber 
on surface, umber to dark brick in reverse, with flat mycelia.

Distribution. Colombia.
Material examined. Colombia: Risaralda, Quinchía. Soils in Eucalyptus sp. plan-

tation. August 2016. C.A. Rodas. (PRU(M) 4502, stored in a metabolically inactive 
state; culture CMW 49753, CMW-IA 161).

Notes. Calonectria exiguispora is a member of the C. candelabrum species complex 
(Liu et al. 2020). It shares some characteristics with other species in the complex, such 
as 1-septate macroconidia and ‘ellipsoidal to obpyriform’ shape vesicle. However, it can 
be distinguished from most species in the complex by its smaller conidial dimensions 
(21–40 × 3–4 µm, avg. 30.9 × 3.5 µm) except for C. brevistipitata (29–35 × 3–4 µm, avg. 
31 × 3.5 µm, isolated from Mexican soil) and C. stipitate (27–37 × 3–6, avg. 32 × 4 µm, 
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isolated from Colombian Eucalyptus sp.) (Lombard et al. 2016). Nevertheless, these two 
species are distantly related to C. exiguispora (Fig. 3). Recently Liu et al. (2020) reduced 
C. stipitata to synonymy with C. spathulata, the conidial dimensions of which range 
from 48–100 × 4–6 µm (avg. 80 × 6 µm). They regarded the smaller conidial dimensions 
of C. “stipitata” as representing intraspecific variation. Calonectria exiguispora is phyloge-
netically closely related to C. piauiensis and C. brassianae, which were isolated from soils 
associated with Eucalyptus brassiana trees in Brazil (Alfenas et al. 2015). These two spe-
cies, however, have much larger conidial dimensions: C. piauiensis (38–60 × 3–5 µm, 
avg. 49 × 4.5 µm) and C. brassianae (35–65 × 3–5 µm, avg. 53 × 4 µm) (Alfenas et al. 
2015). It can be differentiated from its most closely related species by sequences of ACT, 
CMDA, HIS3, RPB2, TEF1 and TUB2 gene regions.

Calonectria guahibo N.Q. Pham, Marinc. & M.J. Wingf., sp. nov.
MycoBank No: 846457
Figs 5, 6E, F

Etymology. Name refers to the indigenous people, Guahibo, native to Vichada, Colombia.
Diagnosis. Closely related to C. gordoniae but differs in having smaller macroconidia.
Type. Colombia: Vichada, Cumaribo. Soils in Eucalyptus plantation. August 

2016. C.A. Rodas. (Holotype PRU(M) 4503, stored in a metabolically inactive 

Figure 4. Micrographs of Calonectria exiguispora sp. nov. (ex-holotype: CMW 49752 = CMW-IA 160). 
A conidiophores formed on SNA B stipes and vesicles C conidiogenous apparatus D chlamydospores 
E conidia (× 400) F conidia (×1 000). Scale bars: 100 µm (A); 50 µm (D, E); 25 µm (C); 10 µm (B, F).
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state; ex-holotype CMW 49791, CMW-IA 162). GenBank: OP796480 (ACT); 
OP822350 (CMDA); OP822457 (HIS3); OP822564 (RPB2); OP822243 (TEF1); 
OP822671 (TUB2).

Description. Sexual morph not observed. Conidiophores scarce on SNA, com-
posed of conidiogenous apparatus and stipes. Stipes part of conidiogenous appara-
tus, elongated, septate, 81–223 µm long, 2–5 µm wide near base, tapering towards 
apex, simple, infrequently branched; vesicles slightly inflated to clavate, 2–5 µm wide. 
Conidiogenous apparatus hyaline, branched irregularly in 2–3 (–4) tiers; main axis 
upright, septate, 25–83 × 4–6 µm; branches doliiform to cylindrical, primary branches 
11–23 × 4–6 µm, secondary branches 7–16 × 3–5 µm, tertiary branches 9–11 × 3–4 µm. 
Conidiogenous cells holoblastic, hyaline, discrete, cylindrical to ovoid, tapering to-
wards apex, with perclinal thickening, 6–12 × 2–4 (9.3 ± 1.46 × 3.0 ± 0.52) µm. 
Macroconidia hyaline, cylindrical with round ends, 1-septate, straight, septum me-
dian or sub-median, 26–42 × 3–4 (31.7 ± 3.59 × 3.2 ± 0.19) µm. Chlamydospores 
present in clumps or in chains. Mega- and microconidia not observed.

Colonies on 2% MEA after 6 d in the dark, growing circular, with fluffy aerial 
mycelia, above white to pale luteous towards centre, reverse luteous to umber towards 
centre. Optimal growth temperature at 30 °C reaching 61 mm, followed by 25 °C 
(57.5 mm), 20 °C (48.3 mm), 15 °C (21.8 mm), and no growth at 5, 10, and 35 °C. 
Colonies kept at 5, 10, and 35 °C revived after being relocated to 25 °C. Colonies on 
2% MEA in the dark for 30 d, with cottony mycelia filled entire Petri dish, above saf-
fron to umber with patches of white, reverse dark brick to sepia.

Figure 5. Micrographs of Calonectria guahibo sp. nov. (ex-holotype: CMW 49791 = CMW-IA 162). 
A conidiophores formed on SNA B stipes and vesicles C conidiogenous apparatus D chlamydospores 
E conidia (× 400) F conidia (×1 000). Scale bars:  100 µm (A);  50 µm (D);  25 µm (C, E);  10 µm (B, F).
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Distribution. Colombia.
Material examined. Colombia: Vichada, Cumaribo. Soils in Eucalyptus sp. plan-

tation. August 2016. C.A. Rodas, CMW 49782.
Notes. Calonectria guahibo forms part of the C. pteridis species complex as a sister 

taxon to C. gordoniae. Calonectria gordoniae was reported from Florida, USA, caus-
ing leaf spots and blotches on loblolly bay (Gordonia lasianthus) and is known to 
produce macroconidia (45–81 × 4–6 µm, avg. 61.7 × 5 µm) and microconidia (20–
42 × 3–4 µm, avg. 32.5 × 3.6 µm) (Leahy et al. 2000). Leahy et al. (2000) reported 
slightly curved conidia which were not observed in C. guahibo. Calonectria guahibo can 
be distinguished by its smaller conidia (26–42 × 3–4 µm, avg. 31.7 × 3.2 µm) from 
other closely related species, i.e. C. ovata (50–110 × 4–6 µm, avg. 70 × 5 µm) (Victor 
et al. 1997), C. pseudovata (55–50 × 4–7, avg. 69 × 5 µm) (Alfenas et al. 2015), and 
C. terricola (40–53 × 3–6 µm, avg. 46 × 4.5 µm) (Lombard et al. 2016). It can be dif-
ferentiated from its most closely related species by sequences of ACT, CMDA, HIS3, 
RPB2, TEF1 and TUB2 gene regions.

Discussion

A relatively large number of Calonectria species were discovered from soils collected 
in Eucalyptus plantations in four forestry regions of Colombia. All of the isolates were 
identified based on DNA sequence comparisons for six gene regions and supported by 
morphological characteristics. Seven species residing in three species complexes were 
identified. These include five previously described species, C. brachiatica, C. parvispora 
and C. pini in the C. brassicae species complex, and C. colombiana and C. spathulata 

Figure 6. Culture morphology of Calonectria exiguispora (A–D) at 25 °C and C. guahibo (E–H) at 30 
°C in the dark for 6 d (A, C, E, G) and 30 d (B, E, F, H) at its optimum temperature A, B CMW 49752 
(ex-holotype) C, D CMW 49753 E, F CMW 49791 (ex-holotype) G, H CMW 49782.
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in the C. candelabrum species complex and two novel taxa for which the names 
C. exiguispora and C. guahibo have been provided.

Calonectria parvispora was one of the most commonly isolated species (29.9%) 
and was recovered from two forestry regions (Fig. 1). This species has previously been 
found in soils collected from Brazil and Colombia (Marin-Felix et al. 2017), but this 
is the first record of this species from soils associated with Eucalyptus. Interestingly, 
C. brachiatica and C. pini in the C. brassicae species complex were also found, which 
were previously isolated from Pinus cuttings displaying collar and root rot symptoms 
in Colombian nurseries (Lombard et al. 2009; Lombard et al. 2010a). Calonectria pini 
was previously collected in Valle da Cauca (Lombard et al. 2010a), and its appearance 
in this study suggests that it has a relatively wide distribution in Colombia.

Calonectria exiguispora, described in this study, has extended the total number of 
species of the C. candelabrum species complex to 20 (Liu et al. 2020; Sanchez-Gonzalez 
et al. 2022). In addition, two previously described species in the C. candelabrum spe-
cies complex, C. colombiana and C. spathulata, were also found. The latter species rep-
resented the majority of the isolates (31.8%). This is relevant because C. spathulata is a 
well-known pathogen commonly associated with leaf and shoot blight on Eucalyptus, 
and it has been reported from plantations in tropical regions of South America (Crous 
and Kang 2001; Crous 2002; Rodas et al. 2005). In this study, C. spathulata was also 
isolated from soils collected in natural rainforests surrounding Eucalyptus plantations 
in Risaralda, where the first outbreak of the disease occurred. It is possible that it is 
native to this area, but further studies, including those at a population genetics level, 
would be required to resolve that question.

Calonectria guahibo represents a new addition to the C. pteridis species complex, 
which now includes eight species (Liu et al. 2020), all of which have 1-septate mac-
roconidia and clavate or ovate vesicles. Calonectria guahibo appears to have a limited 
distribution, with all isolates obtained from soils collected in plantations in Vichada, 
and interestingly, it was the only species found in this region. Although the C. pteridis 
species complex incorporates some of the most important pathogens of Eucalyptus 
(Crous 2002; Graça et al. 2009; Alfenas et al. 2013, 2015), nothing is known regard-
ing the pathogenicity of the newly described C. guahibo.

Many previous reports of Calonectria spp. are considered to be of dubious significance 
because identifications were mostly based on morphology. It is now well-recognised that 
multi-gene markers together with morphological comparisons are required to identify 
these fungi with confidence. Consequently, this study has provided a more comprehen-
sive understanding of the species diversity and distribution of Calonectria in Colombian 
Eucalyptus plantations. This should contribute to the establishment of an effective man-
agement strategy for the diseases caused by these fungi in plantations and nurseries.

Results of previous investigations and the present study have shown that soils asso-
ciated with commercially propagated Eucalyptus spp. in tropical and subtropical regions 
represent a niche that is remarkably rich in species of Calonectria (Alfenas et al. 2015; 
Lombard et al. 2015; Li et al. 2017; Pham et al. 2019, 2022; Wu and Chen 2021). 
New species of these important fungi will most likely emerge when more extensive 
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surveys are extended for the remaining areas in Colombia in the future. Further studies 
should also be conducted to determine the relative importance of the many Calonectria 
spp. residing in the soils associated with Eucalyptus plantations in the country.
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Abstract
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Introduction

Basic information on the distribution, ecology and taxonomy of species is fundamen-
tal for revealing biodiversity patterns and providing effective conservation guidelines. 
Field species inventories carried out by specialists (Vondrák et al. 2016, 2018; Spribille 
et al. 2020) as well as survey of herbaria and literature records (Isocrono et al. 2007; 
Himelbrant et al. 2018) are fundamental for lichen biodiversity research, sometimes 
triggering taxonomic advances, including the description of new species (Spribille et 
al. 2020; Leavitt et al. 2021; Vondrák et al. 2022). Furthermore, temporal continuity 
of basic biodiversity data from a given region may allow comparison of biodiversity 
patterns across time, to track the effect of global changes (Hauck et al. 2013).

Unfortunately, basic biodiversity data on lichens are often missing, even for rel-
atively well-explored areas, thus hampering conservation efforts (Hunter and Webb 
2002; Rubio-Salcedo et al. 2013). However, some notable exceptions exist, as in the 
case of the Alps, which are amongst the lichenologically best known areas of the world, 
thanks to their long-lasting and accurate exploration. To date, 3046 lichenised infrage-
neric taxa are known from the area (Nimis et al. 2018a), but this number is likely to in-
crease with the widening of exploration and the deepening of taxonomical knowledge.

Within the Alps, the historical region of Tyrol is certainly one of the best-explored, 
with one of the oldest known “checklists”: in their compilative monograph “Die 
Flechten (Lichenes) von Tirol, Vorarlberg und Liechtenstein”, Dalla Torre and Sarnthein 
(1902) summarised a huge amount of information on the lichen biota of the Tyrolean 
area, mainly based on original papers, based predominantly on multiple field explora-
tions by Ferdinand Arnold (1828–1901) and Ernst Kernstock (1852–1900). These 
data largely contributed to the present lichen inventory of Trentino-Alto Adige, that 
is the lichenologically richest region of Italy, with 1573 infrageneric taxa of lichenised 
fungi reported to date (Nimis and Martellos 2022).

In particular, Arnold intensely explored the area of Paneveggio and Predazzo 
(Arnold 1879, 1880, 1887, 1897), whose localities are famous amongst lichenologists, 
due to the many specimens collected there and distributed in several public herbaria, 
as well as to the new species described from this area. Since 1967, the area of Paneveg-
gio was included in the Paneveggio-Pale di San Martino Natural Park, that extends 
south of Paneveggio to incorporate almost all the Pale di San Martino dolomitic chain 
and a metamorphic mountain area at the orographic right side of the Vanoi River. 
Since its institution, this Park has attracted lichen research thanks to the fame resulting 
from Arnold’s explorations. In particular, since the mid-nineties the administration of 
the Park promoted a new phase of exploration that focused both on lichen floristics 
(e.g. Nascimbene and Caniglia 2003; Thor and Nascimbene 2007) and ecology (e.g. 
Nascimbene and Caniglia 1997, 1999; Nascimbene et al. 2008), expanding the re-
search effort to almost all of the protected area.

In this work, we summarise about 150 years of lichenological exploration of the 
Paneveggio-Pale di San Martino Natural Park, providing an updated checklist of its 
lichenised fungi.
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Materials and methods

Study area

The Paneveggio Pale di San Martino Natural Park, spanning an elevational gradient of 
about 2000 m (from 1200 m in Val Canali to 3192 m on Mt. Vezzana) and covering 
a surface of about 20,000 hectares, includes the typical mountain environments of the 
Alps, being located in the south-eastern part of the Alpine chain (Fig. 1). As a Natural 
Park, it includes both core areas under strict protection and buffer areas where some hu-
man activities are allowed, for example, logging, tourism and winter recreation activities.

The territory is characterised, from a geological point of view, by a high diversity of 
substrates. The sedimentary rocks of the Mesozoic emerge on the orographic left of the 
Cismon Stream, while igneous and metamorphic rocks of the Paleozoic emerge in the 
western part of the Park. The metamorphic unit is made up of quartz-containing phyl-
lite and mica-schists emerging in the Scanaiol, Arzon and Tognola-Valcicolera Group. 
Porphyric rocks characterise the Lagorai chain, from Tognazza-Cavallazza group to-
wards the west up to the edge of the Park, including the Bocche-Iuribrutto group. 
Sedimentary rocks include both well-stratified evaporitic-arenaceous formations origi-
nating between late Paleozoic and early Mesozoic (e.g. Bellerophon and Werfen forma-
tions) and compact dolomitic rocks (Sciliar Dolomite) which can be over a thousand 
metres thick. These heterogeneous sedimentary rocks characterise the landscape of the 
Pale di San Martino chain that reach and even exceed 3000 metres (e.g. Cimon della 
Pala, Mt. Mulaz, Vezzana).

The morphology of the territory influences climatic conditions: the natural barrier 
formed by the Pale di San Martino and Lagorai mountain ranges interrupts the flow of 
humid currents coming from the Adriatic Sea, determining very humid, sub-oceanic 
conditions on the southern slopes and cooler and drier (i.e. more continental) condi-
tions in the northern area beyond Rolle Pass that, thus, represents a climatic border. 
This is reflected in differences of annual precipitation, that is higher in the southern 
part (i.e. San Martino di Castrozza 1550 mm/y, Val Canali 1500 mm/y) than in the 
northern part (i.e. Paneveggio 1180 mm/y and Predazzo 1100 mm/y). Mean annual 
temperature varies between 8 °C at 1100 m (e.g. Val Canali and Predazzo), 5.5 °C at 
1500 m (e.g. San Martino di Castrozza) and -1 °C at 2900 m (Pale di San Martino).

The regional climate influences the distribution of vegetation types, with mixed 
Abies alba-Fagus sylvatica-forests in the montane belt (1000–1800 m) of the southern 
part and Picea abies-Larix decidua-Pinus cembra formations in the montane (1300–
1800 m) and subalpine (1800–2300 m) belts of the northern part, including the fa-
mous Paneveggio Forest. In the alpine belt (2300–2700 m), primary grasslands prevail, 
dominated by Carex curvula in the acidic part of the Park and by Sesleria caerulea and 
Carex sempervirens in the carbonatic part. The nival belt (> 2700 m) hosts pioneer, dis-
continuous vegetation types, as in the case of chasmophytic assemblages whose com-
position depends on the geological substrate. Freshwater habitats (springs, rivulets, 
creeks) and bogs are more frequent in the porphyric-metamorphic part of the Park, 
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while in the carbonatic part, superficial waters are rare due to Karst phenomena, being 
mainly related to snow-ice melting in high elevation ranges and small springs. Overall, 
the vascular flora is rich (about 1500 species), including several endemic taxa, such as 
Campanula morettiana, Primula tyrolensis, Saxifraga facchinii and Rhizobotrya alpina, 
that are restricted to the Dolomites.

The data

Between 1878 and 1886, the Bavarian lichenologist Ferdinand Arnold (1828–1901) 
carefully explored the region of Val di Fiemme, including the area of Paneveggio and 
Predazzo, for a total of 146 days of fieldwork (Arnold 1887). In summer 1884, he was 
supported by Hugó Lojka (1844–1887), who explored the Travignolo Valley, leading 
to several interesting findings (Arnold 1887). The data collected by Arnold, the oldest 
source on the lichen biota of the study area, are scattered in several main papers (Arnold 
1869, 1875, 1879, 1880, 1886, 1887, 1889, 1893, 1896, 1897), that were later summa-
rised in the monograph by Dalla Torre and Sarnthein (1902) (with a few genera treated 
by Magnus 1905). Arnold distributed a considerable number of exsiccata of specimens 
collected in the Paneveggio-Predazzo area in his “Lichenes exsiccati”, whose duplicates 
can be currently found in various herbaria, for example, CANB, COLO, DUKE, F, 
FR, GB, GZU, LD, M, NY, O, PC, S, UPS and WIS. Additional numbers were traced 
in, for example, Flora exs. Austro-hungarica, Lojka, Lichenotheca Universalis, Rehm 

Figure 1. Location of the Paneveggio-Pale di San Martino Natural Park within the Alps.
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- Cladoniae exs. and Zwackh - Lich. exs. Material of some more recent collections has 
been distributed in Plantae Graecenses. Several of Arnold’s specimens are also cited 
in more recent literature (Suppl. material 1). In this work, we included also Arnold’s 
records referring to localities that are in the surroundings of the protected area (e.g. 
Predazzo) for two reasons: 1) to valorise the precious work of Arnold in this region; 2) 
to include species potentially occurring in the protected area since they were collected 
on similar substrates and under comparable environmental conditions.

In the 20th century, the area of Paneveggio was far less explored by lichenologists. 
Maria Cengia Sambo (1888–1939) published some records from the area of Passo 
Rolle (Cengia Sambo 1931), but specimens cited in her work are unfortunately miss-
ing to date. Later, the area was explored by Austrian lichenologists from Graz, mainly 
Josef Poelt (1924–1995) and Josef Hafellner, whose published and unpublished speci-
mens are housed in GZU.

Lichenological research increased again from the late 1990s to the present and is 
still ongoing. Most of the records collected in this period refer to herbarium specimens 
and field observations by Juri Nascimbene, only a few of them having already been 
published (Nascimbene and Caniglia 1997, 1999, 2003; Caniglia et al. 2002; Thor 
and Nascimbene 2007; Nascimbene et al. 2008, 2021). The latter research, discon-
tinuous over time, derives from an alternation of floristic and ecological studies aimed 
at investigating the effects of forest management on lichen diversity. While floristic 
studies covered the entire territory of the Park (although gaps are still present) and a 
wide array of substrates, the ecological studies focused on the Paneveggio Forest and 
included epiphytic and lignicolous lichens only. As in the case of Arnold, our checklist 
also includes some collections from the surroundings of the protected area.

In this work, lichenological exploration is subdivided in three main periods: 1) 19th 
century: mainly Arnold’s collections; 2) 20th century: sporadic collections mainly by 
lichenologists from Graz; 3) 21th century (including the last five years of the previous 
century): mainly Nascimbene’s work.

Data were retrieved from 72 literature sources (the full list is in Suppl. material 1), 
eight herbaria (i.e. GB, GZU, LD, M, S, UPS, lichen herbarium of the Paneveggio-
Pale di San Martino Natural Park, private lichen herbarium of Juri Nascimbene) and 
several field observations, mainly by Juri Nascimbene. They were organised into a geo-
referenced database that to date includes 7351 records. For each record, the following 
information was retrieved, when possible: current name (updated according to Nimis 
and Martellos 2022), name of the taxon in the original source, source type, locality, 
altitude, altitudinal belt, substrate, habitat, collection year and century, collector, iden-
tifier. Most of the historical records were incomplete, for example, by lacking detailed 
information on habitat and substrate. Recent collections and field observations were 
georeferenced and, whenever the indications of the localities allowed it (namely when 
a toponym, a habitat or a substrate were mentioned), historical records were georefer-
enced as well, with an approximation of several hundred metres, due to uncertainty. 
Recently collected specimens were identified by means of standard lichenological pro-
cedures, i.e. observation of morphological and anatomical features and, when needed, 
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study of secondary metabolites by means of thin-layer chromatography in solvents A, 
B’ and C. For some aquatic specimens, belonging to genera Hydropunctaria, Thelidium 
and Verrucaria, molecular studies were carried out to achieve a correct identification.

Only lichenised fungi were considered; lichenicolous fungi and non-lichenised 
fungi usually treated by lichenologists (see Nimis 2016) are not included in this pa-
per. Nomenclature, taxonomy and information on species’ traits refer to Nimis and 
Martellos (2022).

Results

The checklist of the lichenised fungi of the Paneveggio-Pale di San Martino Natural 
Park includes 916 specific and infraspecific taxa (Suppl. material 1), corresponding to 
58.4% of the lichen biota of Trentino-Alto Adige (Nimis and Martellos 2022), 35.2% 
of Italy (Nimis and Martellos 2022) and 30.1% of the Alps (Nimis et al. 2018a). Most 
records (4551, 731 taxa) were retrieved from literature, whereas a lesser amount refers 
to herbarium specimens (1325, 522 taxa) and field observations (1475, 180 taxa).

The species belong to 270 genera (most represented, with more than 20 species each: 
Cladonia, Lecanora, Lecidea s. lat., Rhizocarpon, Verrucaria, Rinodina; 128 genera with 
only one species each), 75 families (most represented, with more than 50 species each: 
Parmeliaceae, Lecanoraceae, Lecideaceae, Teloschistaceae, Verrucariaceae; 22 families 
with only one species each) and 26 orders (most represented, with more than 50 species 
each: Lecanorales, Verrucariales, Caliciales, Lecideales, Teloschistales, Peltigerales).

Chlorolichens are the most frequent group (93.0%), followed by cyanolichens 
(6.0%) and cephalolichens (1.0%); amongst chlorolichens, most have a chlorococ-
coid photobiont (88.3%) and only a few a trentepohlioid photobiont (4.7%). Most 
numerous are crustose forms (68.8%), followed by foliose (15.5%), fruticose (11.2%); 
squamulose (3.4%) and leprose (1.1%) forms are far less represented. Most taxa repro-
duce sexually (76.5%), while 23.5% reproduce asexually, mainly by soredia (17.0%), 
followed by isidia (4.1%) and thallus fragmentation (2.4%).

The number of subcontinental taxa is 22 (2.4%), that of suboceanic taxa 80 
(8.7%), while only two taxa can be considered as oceanic (0.2%).

Four taxa are new to Italy, i.e. Fuscidea mollis var. caesioalbescens, Hydropunctaria 
scabra, Protoparmelia badia var. cinereobadia and Variospora paulii. Eighteen other 
taxa are new to Trentino Alto Adige, i.e. Acarospora sphaerospora, Bacidina arnoldiana, 
Chrysothrix chlorina, Circinaria hoffmanniana, Dermatocarpon arnoldianum, Gyalecta 
erythrozona, Lecanora bicincta var. bicincta, Lecanora caesiosora, Lempholemma 
intricatum, Miriquidica plumbea, Myriolecis agardhiana subsp. sapaudica, Myriolecis 
invadens, Myriospora myochroa, Parmotrema arnoldii, Rhizocarpon geographicum subsp. 
arcticum, Sarcogyne urceolata, Staurothele sapaudica and Variospora macrocarpa. One 
species, belonging to genus Lecanora, still awaits a formal description as new to science 
(Nascimbene, pers. comm.). In previous, recent publications, several other species 
from the study area were recorded as new to Italy or Trentino Alto Adige (e.g. Thor 
and Nascimbene 2007; Nascimbene et al. 2021).
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Figure 3. Georeferenced collection sites referred to the 19th (yellow dots), 20th (red dots) and 21st (blue 
dots) centuries; the continuous black line indicates the borders of the Paneveggio-Pale di San Martino 
Natural Park.

Figure 2. Number of lichen taxa recorded in the three exploration periods and their overlapping.
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Ninety-one species are Red-listed: 62 epiphytic lichens (Nascimbene et al. 2013) 
and 25 terricolous lichens (Gheza et al. 2022), including four species of Cladonia sub-
gen. Cladina (Ravera et al. 2016).

Only 57 taxa were recorded in all of the three exploration periods, whereas 271 
were recorded in two of them, the largest overlap being between the 19th and 21st 
centuries, sharing 236 species (Fig. 2). Five hundred and ninety species were recorded 
only in one century (19th: 284, 20th: 24, 21st: 281). Overall, 601 taxa (3794 records) 
were recorded in the 19th century, 116 (186 records) in the 20th and 585 (3371) in the 
21st century.

Figure 5. Number of lichen taxa on the main substrate types.

Figure 4. Number of lichen taxa in each altitudinal belt.
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The spatial distribution of historical (Arnold’s) and recent (20th and 21th centuries) 
records reflects the exploration history, with Arnold’s localities concentrated in the 
northern part of the protected area (and its surroundings; Fig. 3) and recent records 
also scattered in the southern part of the Natural Park, both in the dolomitic and meta-
morphic areas where, however, some gaps still remain.

The montane belt was the most explored, with 2654 records of 535 taxa, followed 
by the subalpine, (2296 records of 476 taxa) and the alpine belts (1852 records of 514 
taxa) (Fig. 4). The nival belt was the less explored, with 109 records of 49 taxa (Fig. 4).

The highest number of records is from rocks (2351 records, 458 taxa), followed 
by bark (2003 records, 257 taxa) and soil (665 records, 116 taxa) (Fig. 5). Other sub-
strates, such as deadwood, are less represented. Information about rock type, tree spe-
cies and soil type was not always available. Amongst saxicolous lichens, most records 
are from magmatic and metamorphic siliceous rocks (1368 records, 287 taxa), while 
carbonatic rocks are poorer (873 records, 214 taxa). Epiphytic lichens were mainly 
collected on Picea abies (133 taxa, 730 records), followed by Abies alba (61, 174), 
Larix decidua (48, 527), Pinus cembra (34, 161), Alnus incana (24, 52), Rhododendron 
ferrugineum (24, 48) and Fraxinus excelsior (19, 19). Terricolous lichens were mainly 
from acidic soil (53 taxa), with 25 taxa from carbonatic soil.

Discussion

The Paneveggio-Pale di San Martino Natural Park can be considered as a hotspot of 
both lichenological research, with more than 150 years of exploration, and of lichen 
diversity. Almost one third of the lichen biota of both the Alps and Italy occurs in this 
area, whose surface is ca. 0.06% of their total surface area. This highlights its impor-
tance for lichen conservation and lichenological research, with several regionally and 
nationally new taxa, the occurence of species that still await formal description or of 
taxa that are known from this area only, as in the case of Thelidium paneveggiensis. 
Moreover, lichen diversity is at least 60% of that of vascular plants, indicating that 
lichens strongly contribute to the biodiversity of the protected area.

This level of knowledge of the lichen biota is rare in protected areas of the Euro-
pean Alps. Arnold himself stated that, thanks to the repeated and careful investigations 
he carried out “from the valleys to the highest heights”, the upper Val di Fiemme could 
be considered as the lichenologically best known area of Tyrol at the time (Arnold 
1887). A similar situation is perhaps that of the High Tauern National Park, in which 
over 1100 species have been recorded since the times of Arnold (Türk 2016) on an 
area which is, however, larger by a factor of ten. In the Italian Alps, other checklists 
are available, as in the case of a sector of the Stelvio National Park (Nascimbene et al. 
2012) or for the Sciliar Natural Park in South Tyrol (Nascimbene 2008), but these 
are far less exhaustive and the number of species will certainly increase with further 
exploration. In the case of lichens, not easily detectable and often with a rarefied dis-
tribution (Nimis et al. 2018b), it is difficult to provide exhaustive checklists. However, 
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when exploration is concentrated on relatively small and environmentally heterogene-
ous areas, the number of species can be surprisingly high (Vondrák et al. 2022). At a 
national level, in the absence of comparable knowledge on other protected areas, the 
Paneveggio-Pale di San Martino Natural Park is certainly a priority area for lichen con-
servation, which should be amongst its main management aims.

This small Natural Park has a great climatic, geological and orographical hetero-
geneity that likely enhances lichen diversity (Vondrák et al. 2022). For example, Passo 
Rolle, located in the central part of the study area, is a boundary between oceanic 
(south) and continental (north) climates, as well as a geological and tectonic boundary. 
The climatical heterogeneity determines the occurrence of many species with different 
phytoclimatic affinities, i.e. 22 subcontinental and 82 suboceanic/oceanic taxa. Geo-
logical diversity as well plays an important role in shaping and enriching lichen diversi-
ty, at least with regard to saxicolous and terricolous species: the checklist includes many 
specialists of either siliceous or carbonatic rocks and soils, whose co-occurrence in the 
study area is allowed by the high variety of rock types. Finally, the wide altitudinal range 
offers favourable conditions for montane, subalpine, alpine and nival species. This also 
implies different tree species available for epiphytic lichens along the gradient, from 
broadleaved forests at lower altitudes to coniferous stands in the highest forested belts.

The other component of this lichen hotspot is its exploration history, starting from 
the 19th century. It should be noticed that, at the times of Arnold, explorations were 
much more difficult: although he spent a long time in the study area, the investigations 
carried out in the last decades covered an overall longer timespan and also took into 
account several areas not explored by Arnold. Nevertheless, a high number of taxa was 
recorded only either by Arnold or by Nascimbene, but it is hard to say whether the spe-
cies recorded only in the 19th century could actually have disappeared today. In some 
cases, the lack of recent records is probably due to merely overlooking the widespread 
and common taxa in recent surveys, as in the cases of Athallia pyracea, Circinaria cal-
carea and Physconia grisea that surely still occur. It is also difficult to understand how 
several widespread or locally common species that likely already occurred at the times 
of Arnold went unnoticed in historical times and were recorded only in the 21st cen-
tury, as in the cases of Athallia cerinella, Cladonia symphycarpa, Evernia prunastri and 
Lecidella elaeochroma. On the other hand, some species were recorded only in recent 
times, because they were described recently (e.g. Absconditella lignicola, Anaptychia bry-
orum, Calicium pinicola and Variospora paulii) or were recognised later as independent 
taxa (e.g. Cetrelia cetrarioides, C. monachorum and C. olivetorum). Even when the same 
locality was visited across the three periods, as in the case of Mt. Castellazzo, the over-
lapping of records was relatively low, differences being mainly related to poorly detect-
able species, such as small crustose and endolithic lichens and perhaps also the the bias 
related to the effect of different collectors. Under these circumstances, the checklist is 
likely more an image of lichen diversity taken with a long exposure time rather than 
a generalised framework for directly assessing changes of the lichen biota across time, 
that can be only achieved with resampling of small and clearly localised plots. Only 
in the case of some easily-detectable species, sensitive to environmental changes (e.g. 
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Nephroma laevigatum, Sticta fuliginosa and Usnea longissima) that were not recorded in 
recent years, we could hypothesise that they actually disappeared due to global changes 
(i.e., climate, land-use, forest management).

Conclusions

The checklist of the lichens of the Paneveggio-Pale di San Martino Natural Park contrib-
utes to a better knowledge of the lichen biota at a broader level than a mere local check-
list. It has: (1) a biogeographical value, including a high number of records useful to 
better elucidate the distribution of many rare and/or poorly known taxa; and (2) a value 
for biodiversity conservation, providing a framework on which further research can be 
based. Such detailed floristic information is useful to plan new explorations for assess-
ing the occurrence of the rarest species, which is of paramount importance for planning 
future conservation actions. Focusing on this topic with a targeted sampling could help 
to understand the effects of environmental changes in the last 150 years (Hauck et al. 
2013), including increased human impact and the ongoing climate change.

Last but not least, this checklist is a remarkable demonstration that even the best-
studied areas can still reveal many novelties and should not be considered as “accom-
plished missions”, but should be monitored continuously.
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Abstract
Coffee is one of the most important cash crops in Yunnan Province, China. Yunnan is ranked as the 
biggest producer of high-quality coffee in China. During surveys of microfungi from coffee plantations 
in Yunnan, six fungal strains that resemble Nigrogranaceae were collected. Multi-gene analyses of a com-
bined SSU-LSU-ITS-rpb2-tef1-α sequence data matrix were used to infer the phylogenetic position of the 
new species in Nigrograna while morphological characteristics were used to deduce the taxonomic position 
of the new species. Six fungal strains isolated from decaying branches of Coffea arabica represent three 
new saprobic species in Nigrograna. The three new species, N. asexualis, N. coffeae, and N. puerensis, are 
described with full (macro and micro characteristics) descriptions, illustrations, and a phylogenetic tree 
that shows the phylogenetic position of new taxa.
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Introduction

Coffee (Coffea L.) was first planted in Yunnan Province, China in 1982 (Zhang et al. 
2014). To date, about 170 varieties of coffee (Global Biodiversity Information Facil-
ity database (GBIF), available at: https://www.gbif.org/species/2895315 (accessed on 
07 November 2022)) are available in the world, of which Coffea arabica L. is the most 
popular coffee accounting for 75% of the world’s production, while 25% is provided by 
C. canephora Pierre ex A. Froehner, and less than 1% by C. liberica W. Bull and other vari-
eties (Sharma 2020). The coffee production in Yunnan Province is approximately 90% of 
China’s total coffee production (Neilson and Wang 2019), while Pu’er is the largest cof-
fee planting area in Yunnan, in terms of the highest yield and the best quality (Li 2014).

Fungal diversity is highly uncertain; the current estimated numbers are between 
1.5 to 12 million, of which about 150,000 species have been named and classified 
(Hawksworth and Lücking 2017; Hyde et al. 2020; Bhunjun et al. 2022). Fungi are 
important organisms in terrestrial and aquatic ecosystems that are involved in the de-
composition and nutrient cycling of dead plant material (Hyde et al. 2020; Bhunjun et 
al. 2022; Phukhamsakda et al. 2022). Also, saprobic fungi play vital roles in soil food 
chains, decomposition of plant, and animal materials, and solubilization of phospho-
rous (Dighton 2003; Pandey et al. 2008). However, coffee saprobic fungi have been 
poorly investigated (Arias and Abarca 2014; Lu et al. 2022a). Coffee saprobic fungi 
are distributed in 15 orders, and among them, Pleosporales Luttr. is the most common 
order (Lu et al. 2022a).

Pleosporales, belonging to Dothideomycetes O.E. Erikss. & Winka, was first pro-
posed by Luttrell (1955), and later it was formally established by Barr (1987). In 2021, 
it consists of 91 families and 614 genera as the largest order (Hongsanan et al. 2020a; 
Wijayawardene et al. 2022). They are distributed in terrestrial and aquatic habitats 
(Zhang et al. 2008; Jiang et al. 2021). The members of Pleosporales are characterized 
by perithecioid and ostiolar ascomata, with or without periphyses, presence of cellular 
pseudoparaphyses, bitunicate, with ocular chambers or apical ring asci, various shapes 
of ascospores, with pigmentation and septation, and sheath present or absent (Zhang 
et al. 2012; Tennakoon et al. 2021; Yang et al. 2022).

Nigrogranaceae Jaklitsch & Voglmayr (Pleosporales) was proposed as a new fam-
ily by Jaklitsch and Voglmayr (2016) to accommodate Nigrograna Gruyter, Verkley 
& Crous as the type genus. Liu et al. (2017) estimated that the divergence time of 
Nigrogranaceae is around 79 (44–124) Mya in crown age and 131 (86–180) Mya in 
stem age. Nigrogranaceae is monotypic, and they exist as endophytic, human patho-
genic, and saprobic lifestyles (Hongsanan et al. 2020b; Zhang et al. 2020; Boonmee 
et al. 2021). The sexual morph of Nigrogranaceae is characterized by globose and 
black, ostiolar, clavate, and fissitunicate ascomata, with a short stipe and asci with a 
knob-like base, fusoid to narrowly ellipsoid, septate, and smooth or faintly verrucu-
lose ascospores (Jaklitsch and Voglmayr 2016). The asexual morph is characterized by 
pycnidia similar to ascomata, filiform and branched conidiophores, ampulliform or la-
geniform phialides, rod-like to ellipsoid, and hyaline or sub-hyaline conidia (Jaklitsch 
and Voglmayr 2016).
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Nigrograna was introduced by de Gruyter (2012) with N. mackinnonii (Borelli) 
Gruyter, Verkley & Crous (basionym: Pyrenochaeta mackinnonii Borelli) as the type spe-
cies. Pyrenochaeta mackinnonii was reported from a mycetoma patient by Borelli (1976), 
but it was found to be remote from the generic type species P. nobilis De Not. (de Gruyter 
et al. 2010, 2013). Since it was not possible to determine which family in Pleosporales 
P. mackinnonii belongs to, only the new genus Nigrograna was introduced to accommo-
date P. mackinnonii and named as N. mackinnonii (de Gruyter 2012). Later, Nigrograna 
was used as a synonym of Biatriospora K.D. Hyde & Borse, as N. mackinnonii is phy-
logenetically closely related to the type species of Biatriospora (B. marina K.D. Hyde & 
Borse) (Ahmed et al. 2014), while Hongsanan et al. (2020a) treated Biatriospora and 
Nigrograna as two separate genera. In 2022, Nigrograna represents 20 epithets listed 
in Index Fungorum (2022), and the members have been reported as saprobic, human 
pathogenic, and endophytic worldwide (Kolařík 2018; Zhao et al. 2018), showing a 
wide range of hosts (marine and terrestrial habitats) (Hyde et al. 2017; Tibpromma et al. 
2017; Dayarathne et al. 2020). The sexual morph of Nigrograna is characterized by glo-
bose to subglobose and black ascomata, with ostiolar, two-layered peridium, clavate and 
fissitunicate asci, fusoid to narrowly ellipsoid, straight or curved, septate, and smooth 
or verruculose ascospores (Jaklitsch and Voglmayr 2016; Zhang et al. 2020). Asexual 
morph is characterized by globose to subglobose or pyriform pycnidia, filiform and 
branched conidiophores, hyaline, phialidic, discrete conidiogenous cells, sub-hyaline, 
aseptate and ellipsoidal conidia (de Gruyter 2012; Jaklitsch and Voglmayr 2016).

In this study, three saprobic Nigrograna were collected from Coffea arabica 
branches in Yunnan Province, China. One species was isolated as an asexual morph 
(N. asexualis), while the other two isolated as sexual morphs (N. coffeae, N. puerensis) 
are illustrated and described as new species based on morphology and multi-gene phy-
logenetic analyses and are compared with closely related taxa.

Materials and methods

Collection, morphology and isolation

Coffee branch samples were collected from coffee plantations in Pu’er and Xishuang-
banna, Yunnan Province, China. Specimens were put in plastic bags and taken to the 
mycology laboratory at Qujing Normal University. The vertical sections of fruiting 
structures were made for microscope studies and photomicrography. Micro-morpho-
logical characteristics were observed using a Leica DM2500 compound microscope 
and photographed with a Leica DMC4500 camera fitted onto the microscope. Color 
codes in the manuscript followed colorhexa (https://www.colorhexa.com). The meas-
urements were processed in Tarosoft (R) Image Frame Work v. 0.9.7, and photographic 
plates were made in Adobe Photoshop CC 2018. Single spore isolation was carried out 
following Senanayake et al. (2020). Herbarium specimens were deposited at Zhongkai 
University of Agriculture and Engineering (ZHKU), while the living cultures growing 
on potato dextrose agar (PDA) were deposited at the culture collection of Zhongkai 
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University of Agriculture and Engineering (ZHKUCC). Faces of fungi (FoF) numbers 
and Index Fungorum (IF) numbers were obtained as explained in Jayasiri et al. (2015) 
and Index Fungorum (2022).

DNA extraction and PCR amplification

Genomic DNA was extracted from the fresh fungal mycelia which were grown on 
PDA for about two weeks, using Biospin Fungus Genomic DNA Extraction Kit–
BSC14S1 (BioFlux, China) following the manufacturer’s instructions. Lu et al. (2021) 
was followed for the Polymerase Chain Reaction (PCR). Five partial gene regions were 
used in this study viz. the internal transcribed spacer (ITS) region was amplified with 
the primers ITS4 and ITS5 (White et al. 1990), the 18 s small subunit (SSU) region 
was amplified by primers NS1 and NS4 (White et al. 1990), the nuclear ribosomal 28 
s large subunit (LSU) region was amplified by the primers LROR and LR5 (Vilgalys 
and Hester 1990), the partial RNA polymerase II subunit (rpb2) region was amplified 
with the primers RPB2-5F and RPB2-7cR (Liu et al. 1999), and the partial transla-
tion elongation factor 1-alpha (tef1-α) gene was amplified with the primers EF1-983F 
and 2218R (Rehner and Buckley 2005). Lu et al. (2022b) was followed for the am-
plification reactions of different primers. Amplified PCR products were sent to Sango 
Biotechnology Co., Ltd. (Shanghai, China) for sequencing. All sequences generated in 
this study were deposited in GenBank (Table 1).

Phylogenetic analyses

Phylogenetic analyses of the aligned sequences referred to Dissanayake et al. (2020). 
Newly generated reverse and forward sequences were assembled with Geneious program 
(9.1.2) and the preliminary identification was done by the BLASTn search in NCBI (htt-
ps://www.ncbi.nlm.nih.gov). Additional highly similar sequences were downloaded from 
GenBank (https://www.ncbi.nlm.nih.gov/genbank/) based on the BLASTn results and 
recent publications. Single-gene sequence alignments were made in MAFFT v. 7 (http://
mafft.cbrc.jp/alignment/server/), edited in trimAl v1.2 (http://trimal.cgenomics.org), 
and multi-gene alignments were made by Sequence Matrix program (1.7.8) (Vaidya et al. 
2011). The sequence datasets used to build the phylogenetic trees are shown in Table 1.

Phylogenetic analyses were conducted with maximum likelihood (ML) and Bayes-
ian inference (BI) algorithms on the CIPRES Science Gateway portal (https://www.
phylo.org/) (Miller et al. 2012). The ML tree was run with RAxML-HPC v.8 on XSEDE 
(Stamatakis 2014), and GTRGAMMA substitution model with 1000 bootstrap itera-
tions. The BI tree was run with MrBayes on XSEDE (3.2.7a) (Ronquist et al. 2012). 
MrModeltest 2.2 (Nylander 2004) and PAUP v. 4.0b10 (Ronquist and Huelsenbeck 
2003) were used to evaluate the best models of evolution, the evolutionary model of 
SYM+I+G substitution model was selected for LSU, HKY+I+G substitution model 
was selected for SSU, and GTR+I+G substitution model was selected for ITS, rpb2 
and tef1-α. Six simultaneous Markov Chains were run for two million generations 
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Table 1. Taxa names, strain numbers, and corresponding GenBank accession numbers of the taxa used in 
the phylogenetic analyses. Newly generated sequences in this study are indicated in bold. The type species 
are noted with T after the species name, while NA indicates the unavailability of data.

Taxon Strain numbers ITS LSU rpb2 SSU tef1-α
Cyclothyriella rubronotata (Berk. & 
Broome) Jaklitsch & Voglmayr T

CBS 141486 KX650544 KX650519 NA KX650507 KX650574

Cyclothyriella rubronotata CBS 419.85 NA GU349002 GU301875 NA GU371728
Nigrograna antibiotica (M. Kolařík & 
A. Kubátová) M. Kolařík T

CCF 4378 JX570932 KF925327 NA KF925328 JX570934

Nigrograna antibiotica CCF 4998 LT221894 NA LT221895 NA NA
Nigrograna aquatica W. Dong, 
H. Zhang & K.D. Hyde T

MFLUCC 14-1178 MF399065 MF415392 NA MF415394 MF498582

Nigrograna aquatica MFLUCC 17-2318 MT627705 MN913705 NA NA NA
Nigrograna asexualis T ZHKUCC 22-0214 OP450965 OP450971 OP432241 OP450979 OP432245
Nigrograna asexualis ZHKUCC 22-0215 OP450966 OP450972 OP432242 OP450980 OP432246
Nigrograna cangshanensis Z.L. Luo, H.Y. 
Su & K.D. Hyde T

MFLUCC 15-0253 KY511063 KY511064 NA KY511065 NA

Nigrograna carollii M. Kolařík T CCF 4484 LN626657 LN626682 LN626662 LN626674 LN626668
Nigrograna chromolaenae Mapook & 
K.D. Hyde T

MFLUCC 17-1437 MT214379 MT214473 NA NA MT235801

Nigrograna coffeae T ZHKUCC 22-0210 OP450967 OP450973 OP432243 OP450981 OP432247
Nigrograna coffeae ZHKUCC 22-0211 OP450968 OP450974 OP432244 OP450982 OP432248
Nigrograna fuscidula (Sacc.) 
Jaklitsch & Voglmayr T

CBS 141556 KX650550 NA NA NA KX650525

Nigrograna fuscidula CBS 141476 KX650547 NA KX650576 KX650509 KX650522
Nigrograna fuscidula MF1a KX650548 NA NA NA KX650523
Nigrograna fuscidula MF3 KX650549 NA NA NA KX650524
Nigrograna hydei J.F. Zhang, 
J.K. Liu & Z.Y. Liu T

GZCC 19-0050 MN387225 MN387227 NA NA MN389249

Nigrograna impatientis 
J.F. Zhang, J.K. Liu & Z.Y. Liu T

GZCC 19-0042 MN387226 MN387228 NA NA MN389250

Nigrograna jinghongensis 
Wanas. & K.D. Hyde T

KUMUCC 21-0035 MZ493303 MZ493317 MZ508421 MZ493289 MZ508412

Nigrograna jinghongensis KUMUCC 21-0036 MZ493304 MZ493318 MZ508422 MZ493290 MZ508413
Nigrograna kunmingensis 
T.Y. Du & Tibpromma T

ZHKUCC 22-0242 OP456214 OP456379 NA OP456382 OP471608

Nigrograna kunmingensis ZHKUCC 22-0243 OP484334 OP456380 NA OP456383 OP471609
Nigrograna locuta-pollinis 
F. Liu & L. Cai T

CGMCC 3.18784 MF939601 MF939583 MF939610 NA MF939613

Nigrograna locuta-pollinis LC11690 MF939603 MF939584 MF939611 NA MF939614
Nigrograna mackinnonii T CBS 674.75 KF015654 KF015612 KF015703 GQ387552 KF407986
Nigrograna mackinnonii E5202H JX264157 KJ605422 JX264156 JX264155 JX264154
Nigrograna mackinnonii E9303e JN545759 LN626681 LN626666 LN626678 LN626673
Nigrograna magnoliae Wanas. T MFLUCC 20-0020 MT159628 MT159622 MT159611 MT159634 MT159605
Nigrograna magnoliae GZCC 17-0057 MF399066 MF415393 NA MF415395 MF498583
Nigrograna magnoliae MFLUCC 20-0021 MT159629 MT159623 MT159612 MT159635 MT159606
Nigrograna mycophila 
Jaklitsch, Friebes & Voglmayr T

CBS 141478 KX650553 NA NA NA KX650526

Nigrograna mycophila CBS 141483 KX650555 NA KX650577 KX650510 KX650528
Nigrograna mycophila MF6 KX650554 NA NA NA KX650527
Nigrograna norvegica Jaklitsch & 
Voglmayr T

CBS 141485 KX650556 NA KX650578 KX650511 NA

Nigrograna obliqua 
Jaklitsch & Voglmayr T

CBS 141477 KX650560 NA KX650580 NA KX650531

Nigrograna obliqua CBS 141475 KX650558 NA KX650579 KX650512 KX650530
Nigrograna obliqua MRP KX650561 NA KX650581 NA KX650532
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and trees were sampled at every 200th generation (resulting in 10,000 trees), and these 
chains stopped when all convergences met and the standard deviation fell below 0.01. 
All resulting trees were plotted using FigTree v. 1.4.0 (Rambaut 2014) and the layout 
of the trees was made by Microsoft Office PowerPoint 2020.

Results

Phylogenetic analyses

Three new species formed a distinct clade in Nigrograna with strong statistical support 
(N. coffeae and N. puerensis ML = 100%, BIPP = 1.00, and N. asexualis ML = 68%, 
BIPP = 0.97). Multi-locus data (SSU, LSU, ITS, rpb2 and tef1-α) composed of 54 
strains (Table 1), and Cyclothyriella rubronotata strains CBS 141486 and CBS 419.85 
were used as the outgroup taxa. A total of 4485 characters were fed to the phylogenetic 
analysis after alignment, 1–1047 (SSU), 1048–1956 (LSU), 1957–2477 (ITS), 2478–
3510 (rpb2) and 3511–4485 (tef1-α). The topology of the phylogenetic tree generated 
by the ML method was highly similar to that by BI, and therefore it was chosen to 
represent the evolutionary history of Nigrograna.

The ML analysis of the combined dataset yielded a best-scoring tree with a fi-
nal ML optimization likelihood value of -23091.568105. The alignment has 1495 

Taxon Strain numbers ITS LSU rpb2 SSU tef1-α
Nigrograna peruviensis (M. Kolařík & 
R. Gazis) M. Kolařík T

CCF 4485 LN626658 LN626683 LN626665 LN626677 LN626671

Nigrograna puerensis T ZHKUCC 22-0212 OP450969 OP450975 NA OP450983 OP432249
Nigrograna puerensis ZHKUCC 22-0213 OP450970 OP450976 NA OP450984 OP432250
Nigrograna rhizophorae Dayar., E.B.G. 
Jones & K.D. Hyde T

MFLUCC 18-0397 MN047085 NA MN431489 NA MN077064

Nigrograna rhizophorae MFLU 19-1234 NA MN017845 MN431490 NA MN077063
Nigrograna samueliana Devadatha, V.V. 
Sarma & E.B.G. Jones T

NFCCI-4383 MK358817 MK358812 MK330939 MK358810 MK330937

Nigrograna thymi Mapook, Camporesi & 
K.D. Hyde T

MFLUCC 14-1096 KY775576 KY775573 NA KY775574 KY775578

Nigrograna yasuniana M. Kolařík T YU.101026 HQ108005 LN626684 LN626664 LN626676 LN626670
Occultibambusa bambusae D.Q. Dai & 
K.D. Hyde T

MFLUCC 13-0855 KU940123 KU863112 KU940170 NA KU940193

Occultibambusa fusispora Phookamsak, 
D.Q. Dai & K.D. Hyde

MFLUCC 11-0127 MZ329036 MZ325466 MZ329032 MZ329028 MZ325469

Occultibambusa pustula D.Q. Dai & 
K.D. Hyde T

MFLUCC 11-0502 KU940126 KU863115 NA NA NA

Paradictyoarthrinium diffractum Matsush. MFLUCC13-0466 KP744455 NA KP744498 NA NA
Paradictyoarthrinium tectonicola Doilom 
& K.D. Hyde T

MFLUCC 13-0465 KP744456 NA KP744500 KP753961 KX437763

Seriascoma didymosporum Phookamsak, 
D.Q. Dai, Karun. & K.D. Hyde T

MFLUCC 11-0179 KU940127 KU940196 KU863116 NA KU940173

Seriascoma honghense H.B. Jiang, 
Phookamsak & K.D. Hyde T

KUMCC 21-0021 MZ329039 MZ325468 MZ329035 NA MZ325470

Versicolorisporium triseptatum Sat. 
Hatak., Kaz. Tanaka & Y. Harada T

HHUF 28815 NR_119392 NA NG_042318 NG_060995 NA
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distinct alignment patterns, with 33.58% completely undetermined characters and 
gaps. Parameters for the GTR + I + G model of the combined SSU, LSU, ITS, rpb2 
and tef1-α were as follows: estimated base frequencies A = 0.247145, C = 0.250645, 
G = 0.263985, T = 0.238225; substitution rates AC = 1.810004, AG = 4.475190, 
AT = 1.758134, CG = 1.340389, CT = 10.583215, GT = 1.000; gamma distribution 
shape parameter α = 0.167006. The phylogenetic tree resulting from RAxML analysis 
is shown in Fig. 1.

Figure 1. The maximum-likelihood phylogram of Nigrograna based on a combined SSU, LSU, ITS, rpb2 
and tef1-α sequence dataset with Cyclothyriella rubronotata CBS 141486 and CBS 419.85 as the outgroup 
taxa (Dayarathne et al. 2020). The maximum-likelihood bootstrap values (ML ≥ 60%, left) and Bayesian 
Inference Posterior Probability values (BIPP ≥ 0.90, right) are shown above the nodes. Strains derived 
from the current study are in blue, while type strains are in bold.
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Taxonomy

Nigrograna coffeae L. Lu & Tibpromma, sp. nov.
Index Fungorum number: IF559425
Facesoffungi Number: FoF12765
Fig. 2

Etymology. Species epithet refers to the host genus “Coffea” where the fungus was isolated.
Holotype. ZHKU 22-0121.
Description. Saprobic on decaying branch of Coffea arabica. Sexual morph: 

Ascomata 90–140 µm high, 140–200 µm wide (x‒ = 115 × 168 µm, n = 10), im-
mersed, solitary, black spots on substrate, subglobose to oval, sometimes obpyriform, 
some with ostiolate. Peridium 10–15 µm wide, composed of 3–5 layers, hyaline to 
brown (#937463) cells of textura angularis. Hamathecium 1.5–3 µm wide, com-
posed of numerous, hyaline, filamentous, septate, branched, pseudoparaphyses. Asci 
50–70 × 7–11 µm (x‒ = 58 × 9 µm, n = 20), 8-spored, bitunicate, fissitunicate, clavate 
to cylindric-clavate, short stalked, some with club-shape pedicel, apically rounded, 
with a small ocular chamber. Ascospores 12–16 × 4–5 µm, (x‒ = 14.4 × 4.6 µm, n = 
30), overlapping uni- to bi-seriately arranged, fusiform, straight or slightly curved, 
hyaline when immature and become pale brown (#e1af33) to dark-brown (#6e5031) 
when mature, mostly 1-septate, few 2 or 3-septate, constricted at each septum, with 
obviously guttulate. Asexual morph: Undetermined.

Culture characteristics. Ascospores germinated on PDA within 24 h and germ 
tubes arising from both ends. Colonies on PDA, reaching 4.5 cm diam. after two 
months of incubation at room temperature (22–26 °C), initially white (#f2f3f4) be-
coming grey (#bbbeb2) to dark brown (#6e5031) at maturity, dense, circular, slightly 
raised, smooth surface, radially fimbriate at the edge, reverse dark green (#3a4543) to 
brown (#937463).

Material examined. Pu’wen Town, Xishuangbanna, Yunnan Province, Chi-
na, on a decaying branch of Coffea arabica, (22°31'18"N, 101°2'44"E, 856.89 m), 
15 September 2021, LiLu, JHPW16 (ZHKU 22-0121, holotype), ZHKUCC 22-
0210 = ZHKUCC 22-0211. GenBank number; ITS: OP450967, LSU: OP450973, 
rpb2: OP432243, SSU: OP450981, tef1-α: OP432247 (ZHKUCC 22-0210, ex-
type); ITS: OP450968, LSU: OP450974, rpb2: OP432244, SSU: OP450982, tef1-α: 
OP432248 (ZHKUCC 22-0211).

Notes. Our phylogenetic analyses showed that Nigrograna coffeae forms an independ-
ent clade (100% ML, 1.00 BIPP, Fig. 1), and is phylogenetically related to N. yasuniana 
and N. jinghongensis. Nigrograna yasuniana was reported as endophytes from Conceveiba 
guianensis Aubl. in Ecuador, but there were not enough morphological data, the com-
parison of base pairs in ITS showed 3.4% differences (15/433 bp), LSU showed 1.5% 
differences (12/812bp), SSU only showed 0.3% differences (3/1028 bp), rpb2 showed 
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Figure 2. Nigrograna coffeae (ZHKU 22-0121, holotype) a, b ascomata on the host substrate c a vertical 
section through an ascoma d peridium e hamathecium f–k asci l germinated ascospore m culture on pda 
from above and reverse n–s ascospores (arrows indicate the septa). Scale bars: 50 µm (c); 10 µm (d–l); 
5 µm (n–s).
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14% differences (117/829 bp), and tef1-α showed 3.2% differences (31/954  bp) 
(Kolařík et al. 2017). Nigrograna jinghongensis was introduced as a saprobic fungus from 
woody litter in China, and our new isolate shares a similar size (12–16 × 4–5 µm vs 
12–15 × 4–5.5 µm) and color (hyaline to dark brown vs yellowish-brown to brown) 
of ascospores with N. jinghongensis (Boonmee et al. 2021), but there are some signifi-
cant differences in the size of the ascomata (90–140 µm high, 140–200 µm wide vs 
300–400 µm high 220–300 µm wide) and the shape of ascospores (fusiform, straight 
or slightly curved vs ellipsoid) (Boonmee et al. 2021). Based on the sequence blast re-
sults, ITS, LSU and rpb2 gene sequences were similar to Nigrograna sp., with 97.5% 
(MZ270683), 98.4% (MK762716), and 86% (MZ508421) respectively, SSU was simi-
lar to N. mycophila with 99% (KX650510), and tef1-α was similar to N. yasuniana with 
96.6% (LN626670). Therefore, we introduce our new isolate as a new species N. coffeae 
based on both morphological characteristics and phylogenetic analyses.

Nigrograna puerensis L. Lu & Tibpromma, sp. nov.
Index Fungorum number: IF559426
Facesoffungi Number: FoF12766
Fig. 3

Etymology. The specific epithet “puerensis” refers to the location Pu’er City, where the 
type species was collected.

Holotype. ZHKU 22-0122.
Description. Saprobic on decaying branch of Coffea arabica. Sexual morph: 

Ascomata 90–180 µm high, 90–150 µm wide (x‒ = 138 × 115 µm, n = 10), immersed, 
with only ostiolar necks visible on the host surface or erumpent, solitary, subglobose to 
ellipsoid, dark brown (#6e5031). Peridium 10–15 µm wide (x‒ = 13 µm, n = 15), outer 
layer consists of 2–3 layers of textura prismatica, brown (#937463) and thick-walled 
cells, inner layer hyaline with thin-walled cells. Hamathecium composed of numerous, 
1.5–2 µm wide (x‒ = 1.8 µm, n = 20), filamentous, hyaline, septate, pseudoparaphyse. 
Asci 50–80 × 8–11 µm (x‒ = 66 × 9.5 µm, n = 20), 8-spored, bitunicate, fissitunicate, 
cylindrical to clavate, short pedicellate, apically rounded, with poorly developed ocular 
chamber. Ascospores 15–18 × 4–5 µm, (x‒ = 16 × 4.5 µm, n = 30), uni- to bi-seriately 
arranged, fusoid, apical cell and basal cell acute, and apical cell slightly wider than basal 
cell, straight or slightly curved, 1-septate, constricted at septum, guttulate, hyaline to 
yellow-brownish (#daceb8) when young, brownish (#937463) when mature. Asexual 
morph: Undetermined.

Culture characteristics. On PDA, colonies reached up to 4 cm diam. after two months 
at room temperature (22–26 °C). Colony dense, circular, slightly raised at the center, sur-
face with white aerial mycelium, fluffy, with a serrate edge, grayish (#c9bfb3) to dark brown 
(#6e5031) from center to edge, reverse dark green (#3a4543) to dark brown (#6e5031).
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Figure 3. Nigrograna puerensis (ZHKU 22-0122, holotype) a, b ascomata observed on host substrate 
c  a vertical section through an ascoma d peridium e hamathecium f–j asci k germinated ascospore 
l–p ascospores q culture on PDA from above and reverse. Scale bars: 50 µm (c); 30 µm (d); 15 µm (e–k); 
5 µm (l–p).
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Material examined. Pu’er City, Yunnan Province, China, on a decaying branch 
of Coffea arabica, (22°36'2"N, 101°0'59"E, 1016.43 m), 16 September 2021, LiLu, 
Puer 1-4 (ZHKU 22-0122, holotype), ZHKUCC 22-0212 = ZHKUCC 22-0213. 
GenBank number; ITS: OP450969, LSU: OP450975, SSU: OP450983, tef1-α: 
OP432249 (ZHKUCC 22-0212, ex-type); ITS: OP450970, LSU: OP450976, SSU: 
OP450984, tef1-α: OP432250 (ZHKUCC 22-0213).

Notes. Nigrograna puerensis clusters with N. carollii with significant statisti-
cal support from ML 100% and BIPP 1.00. In morphology, our new strains best fit 
Nigrograna by having immersed ascomata, clavate and short pedicellate asci, and pale 
to brown, fusoid to narrowly ellipsoid, and septate ascospores (Jaklitsch and Vogl-
mayr 2016; Zhang et al. 2020). Blast search results of ITS, LSU and tef1-α sequence 
data revealed that our taxon (ZHKUCC 22-0212) is similar to N. mackinnonii (96% 
MZ270697, 99% KJ605422, and 95% LT797087 respectively), while the similarity of 
SSU sequence to N. carollii is as high as 99%. Based on nucleotide comparisons, our 
isolate (ZHKUCC 22-0212) differs from N. carollii (CCF 4484) by 9/490 bp (1.8%) 
in ITS, 2/222 bp (1%) in LSU, 2/1306 bp (0.2%) in SSU, and 10/530 bp (2%) in 
tef1-α. Unfortunately, for N. carollii, sufficient morphological data was not available 
to compare with our novel taxon which was isolated as an endophyte on living sap-
wood of wild Hevea brasiliensis Müll. Arg., and N. mackinnonii which was isolated as 
a human pathogen (de Gruyter 2012; Kolařík et al. 2017). In addition, the colony 
morphology of N. carollii on PDA is described as colonies plane, effuse, and light gray 
(Kolařík et al. 2017), while N. puerensis colony surface is seen as white aerial mycelium, 
fluffy, with a serrate edge, and grayish to dark brown from center to edge. Therefore, 
based on morphological and phylogenetic analyses, we introduce N. puerensis as a dis-
tinct new species.

Nigrograna asexualis L. Lu & Tibpromma, sp. nov.
Index Fungorum number: IF559427
Facesoffungi Number: FoF12767
Fig. 4

Etymology. The species epithet ‘asexualis’ refers to the asexual morph.
Holotype. ZHKU 22-0123.
Description. Saprobic on decaying branch of Coffea arabica. Sexual morph: 

Undetermined. Asexual morph: Coelomycetous. Pycnidia 100–230 µm high, 120–
180 µm wide (x‒ = 156 × 144 µm, n = 10), globose to subglobose, or pyriform, im-
mersed, solitary, unilocular, dark brown, papillate ostiole, appearing as black spots on 
host surface. Pycnidial wall 11–16 µm wide (x‒ = 14 µm, n = 15), brown (#937463), 
the wall with pseudoparenchymatous cells. Conidiophores arising from the pycnidial 
wall, up to 46 µm long and 3–4.4 µm wide (x‒ = 3.4 µm, n = 25), filiform, septate, 
hyaline, simple to sparsely branched, with pegs along one or two sides and solitary 
phialides terminally. Phialides 3–6 × 1–2 µm (x‒ = 4.5 × 1.5 µm, n = 15), variable 
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in shape, phialidic, discrete, ampulliform-lageniform-subcylindrical. Conidia 5–6.5 
× 3–4 µm (x‒ = 5.5 × 3.7 µm, n = 30), ellipsoidal, unicellular, aseptate with 1–2 gran-
ules, subhyaline, smooth-walled.

Culture characteristics. Conidium germinated on PDA within 24 h. Colonies 
growing on PDA reaching 5 cm diam. after two months at room temperature (22–
26 °C). Colony dense, circular, surface sparsely hairy, radially striate, with a fimbri-
ate edge, yellowish (#eabf83) to pale brown (#e1af33) at the center and dark brown 
(#6e5031) at the margin, reverse dark brown (#6e5031).

Figure 4. Nigrograna asexualis (ZHKU 22-0123, holotype) a, b conidiomata on the host substrate 
c, d vertical sections of a conidioma e peridium f, g conidiophores with phialides h conidia i culture on PDA 
from above and reverse. Scale bars: 100 µm (c); 50 µm (d); 15 µm (e); 30 µm (f); 20 µm (g); 10 µm (h).
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Material examined. Pu’er City, Yunnan Province, China, on a decaying branch of 
Coffea arabica, (22°36'2"N, 101°0'59"E, 1016.43 m), 16 September 2021, LiLu, Puer 
1-14 (ZHKU 22-0123, holotype), ZHKUCC 22-0214 = ZHKUCC 22-0215. Gen-
Bank number; ITS: OP450965, LSU: OP450971, rpb2: OP432241, SSU: OP450979, 
tef1-α: OP432245 (ZHKUCC 22-0214, ex-type); ITS: OP450966, LSU: OP450972, 
rpb2: OP432242, SSU: OP450980, tef1-α: OP432246 (ZHKUCC 22-0215).

Notes. In multi-gene phylogeny, Nigrograna asexualis formed a separate (68% ML, 
0.97 BIPP) and distinct clade within Nigrograna (Fig. 1). Morphologically, N. asexualis 
conforms to the morphological characteristics of Nigrograna by having hyaline or 
subhyaline, long and branched conidiophores, solitary phialides, and aseptate, ellip-
soidal or cylindrical conidia (Jaklitsch and Voglmayr 2016; Dayarathne et al. 2020; 
Wanasinghe et al. 2020). Blast results of the sequences show that ITS is similar to 
N. fuscidula with 89% (MH856004), and SSU is similar to N. mycophila with 99.8% 
(KX650510). Nigrograna asexualis is different from N. fuscidula and N. mycophila by 
its ellipsoidal conidia, but the similarities of these three species are hyaline, 1-celled, 
smooth-walled conidia forming on philipides (Jaklitsch and Voglmayr 2016). The LSU 
and rpb2 sequences of our strain blast results are similar to N. obliqua, and the similari-
ties are 98.9% (KX650560) and 87% (KX650579) respectively, but N. obliqua lacks 
the asexual morph (Jaklitsch and Voglmayr 2016). The tef1-α sequence of our strain is 
95.8% (MF939615) similar to N. locuta-pollinis, which was isolated from hive-stored 
pollen of Brassica campestris L. that lacks morphology (Zhao et al. 2018). Therefore, we 
introduce N. asexualis as a distinct new species from coffee in China.

Discussion

Members of Nigrograna are distributed worldwide in soil, wood, and other plant de-
bris (Mapook et al. 2020), and the hotspots of Nigrograna are reported as Central and 
South America, where the taxa are also found as human pathogens (Kolařík 2018; Pu-
ing et al. 2020). To date, five Nigrograna species viz. N. cangshanensis (decaying wood, 
Yunnan), N. jinghongensis (dead woody litter, Yunnan), N. kunmingensis (dead twigs of 
Gleditsia sinensis Lam., Yunnan), N. magnoliae (living branches of Magnolia denudate 
Desr., Yunnan), and N. locuta-pollinis (hive-stored pollen, Hubei) have been isolated 
from different hosts in China (Tibpromma et al. 2017; Zhao et al. 2018; Wanasinghe 
et al. 2020; Boonmee et al. 2021; Zhou et al. 2022). In this study, three new sapro-
bic fungi were isolated from decaying branches of Coffea arabica in Yunnan Province, 
China, and this is the first report of Nigrograna species from coffee.

Species of Nigrograna are morphologically very similar and overlapping, hence can 
be interpreted as cryptic species. Therefore, it is difficult to delimit the species based 
only on their morphological characteristics (Jaklitsch and Voglmayr 2016; Zhang et al. 
2020). In our research, we found that N. coffeae and N. puerensis have similar morphol-
ogy, but in phylogeny, they are distributed differently within Nigrograna. This confirms 
the view of Jaklitsch and Voglmayr (2016) that the gene sequences are important and 
crucial for the identification of taxa at the genus and the species level.
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Abstract
Three new species of Helminthosporium, H. nabanhensis, H. sinensis and H. yunnanensis collected on dead 
branches of unidentified plants in Xishuangbanna, China, were proposed by morphological and mo-
lecular phylogenetic analysis. Phylogenetic analysis of the combined data of ITS-SSU-LSU-TEF1-RPB2 
sequences was performed using Maximum-Likelihood and Bayesian Inference, although H. nabanhensis 
and H. sinensis lack the RPB2 sequences. Both molecular analyses and morphological data supported 
H. nabanhensis, H. sinensis and H. yunnanensis as three independent taxa within the Massarinaceae.

Keywords
asexual Ascomycota, hyphomycetes, lignicolous fungi, phylogenetic analysis, taxonomy

Introduction

Helminthosporium Link was originally erected by Link (1809) with H. velutinum 
as the type species, and was mainly characterized by macronematous, cylindrical, 
septate conidiophores with polytretic conidiogenous cells that producing solitary 
(rarely in short chains), acropleurogenous, clavate or obclavate, distoseptate co-
nidia with a flat, ringed pore at the base (Ellis 1961, 1971; Luttrell 1964; Seifert 
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et al. 2011). The genus became a repository for a large amount of species due to 
a lack of understanding of the generic concepts. To date, about 770 epithets for 
Helminthosporium are listed in Index Fungorum (2022), but most of these were 
not congeneric with the generic type in development of conidia and conidiophores. 
Ellis (1961) provided a review on Helminthosporium, and accepted ten species. Lut-
trell (1963, 1964) examined the type species and defined the generic concept, and 
Sivanesan (1987) transferred several unrelated pathogens of the Poaceae from Hel-
minthosporium to the genera Cochliobolus (anamorph Bipolaris), Setosphaeria (an-
amorph Exserohilum) and Pyrenophora (anamorph Drechslera). Siboe et al. (1999) 
subsequently provided a synoptic table of the main morphological features that dis-
tinguish 27 accepted Helminthosporium species. Since then, 27 additional species 
have been described in the genus (Zhang et al. 2004, 2007, 2010; Shirouzu and 
Harada 2008; Zhang and Zhang 2009; Zhang and Sun 2010; Zhao and Zhao 2012; 
Wang et al. 2014; Tanaka et al. 2015; Zhu et al. 2016; Alves-Barbosa et al. 2017; 
Tian et al. 2017; Crous et al. 2018, 2019; Zhao et al. 2018; Boonmee et al. 2021; 
Chen et al. 2022). Voglmayr and Jaklitsch (2017) revealed the phylogenetic relation-
ships of Corynespora, Exosporium and Helminthosporium species, synonymized Ex-
osporium with Helminthosporium, and confirmed 17 species in Helminthosporium by 
morphological and molecular systematic analysis, but the generic concept has been 
widened by adding four Corynespora species that produce terminal, monotretic co-
nidiogenous cells. So it is challenging to classify Corynespora and Helminthosporium 
species based on morphology alone because the distinction between monotretic vs. 
polytretic conidiogenous cells is the only character for separating Corynespora and 
Helminthosporium. Based on the records of Species Fungorum 2021, Konta et al. 
(2021) summarized the morphology, host information, locality, sequence data and 
related references of 216 Helminthosporium species reported worldwide. Unfortu-
nately, sequence data for most species are unavailable, and only 27 species are repre-
sented by the DNA sequence in GenBank (Chen et al. 2022).

Helminthosporium is worldwide in distribution, usually found as a common sap-
robe on leaf or twig litter, but one specie, H. solani, is an economically important 
pathogen causing silver scurf disease in potatoes worldwide (Alcorn 1983; Voglmayr 
and Jaklitsch 2017; Boonmee et al. 2021). To date, only 28 species have been re-
corded in China, viz. H. aquaticum, H. bambusicola, H. cantonense, H. chengduense, 
H. chinense, H. citri, H. conidiophorellum, H. constrictum, H. corchori, H. dongxingense, 
H. guangxiense, H. hunanense, H. ipomoeae, H. juglandis, H. lablab, H. ligustri, 
H. marantae, H. multiseptatum, H. nanjingense, H. obpyriforme, H. oplismeni, 
H. ovoideum, H. piperis, H. pseudomicrosorum, H. rhodomyrti, H. sichuanense, 
H. subhyalinum and H. submersum (Zhang et al. 2004; Zhang and Zhang 2009; Zhang 
et al. 2010; Zhang and Sun 2010; Zhao and Zhao 2012; Wang et al. 2014; Zhu et al. 
2016; Zhao et al. 2018; Chen et al. 2022).

Xishuangbanna lies on the northern edge of tropical Southeast Asia. It is locat-
ed in the southwestern part of Yunnan Province, China. It covers 19,125 km2 and 
has a mountainous topography and humid tropical monsoon climate, with an av-
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erage annual temperature of 19.3–23.9 °C, and an average annual precipitation of 
1200–1800 mm. The primary forest vegetation types are tropical seasonal rain forest, 
tropical montane rain forest, evergreen broad-leaved forest, monsoon forest over lime-
stone, and monsoon forest on river banks (Cao and Zhang 1997). Such conditions 
create a very wide range of habitats favoring the growth of various microbial species. 
During our continuing mycological surveys of saprobic microfungi from plant debris 
in this region, three interesting hyphomycetes with morphological features typical 
of Helminthosporium were collected on dead branches. Based on morphological data 
and multi-locus phylogenetic analysis, they were described as new to science in the 
present study.

Materials and methods

Sample collection, isolation and morphological studies

Samples of dead branches were collected from humid environments and river banks 
in the forest ecosystems of Xishuangbanna, Yunnan Province, China, and returned to 
the laboratory in Ziploc bags. Samples were processed and examined following the 
methods described in Ma et al. (2011). Fungi were mounted in a drop of lactic acid 
on microscope slides, and examined and photographed with an Olympus microscope 
(model BX 53), with a 100 × (oil immersion) objective at the same background color 
and scale. Adobe Photoshop 7.0 was used for image processing to assemble photo-
graphs into images. Single-spore isolations were made on potato dextrose agar (PDA) 
following Goh (1999). Colony colors were assessed according to the charts of Rayner 
(1970). All fungal strains were stored in 10% sterilized glycerin at 4 °C for further 
studies. The studied specimens and cultures were deposited in the Herbarium of Ji-
angxi Agricultural University, Plant Pathology, Nanchang, China (HJAUP).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from fungal mycelia grown on PDA, using the Solar-
bio Fungi Genomic DNA Extraction Kit following the manufacturer’s protocol (So-
larbio, China). The DNA amplification was performed by polymerase chain reaction 
(PCR) using the respective loci (ITS, SSU, LSU, TEF1, RPB2). Primer sets used for 
these genes were as follows: ITS: ITS5/ITS4 (White et al. 1990), SSU: 18S-F/18S-
R, LSU: 28S1-F/28S3-R (Xia et al. 2017), TEF1: EF1-983F/EF1-2218R (Rehner 
2001; Zhao et al. 2018) and RPB2: dRPB2-5f/dRPB2-7r (Voglmayr et al. 2016). 
The final volume of the PCR reaction was 25 µl, containing 1 µl of DNA template, 
1 µl each of the forward and reverse primer, 12.5 µl of 2 × Power Taq PCR Master-
Mix and 9.5 µl of double-distilled water (ddH2O). The PCR thermal cycling condi-
tions of ITS, SSU and LSU were initialized at 94 °C for 3 min, followed by 35 cycles 
of denaturation at 94 °C for 30 s, annealing at 55 °C for 50 s, elongation at 72 °C 
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for 1 min, a final extension at 72 °C for 10 min, and finally kept at 4 °C, the TEF1 
and RPB2 were initialized at 95 °C for 3 min, followed by 35 cycles of denaturation 
at 95 °C for 30 s, annealing at a suitable temperature for 30 s, elongation at 72 °C 
for 1 min, a final extension at 72 °C for 10 min, and finally kept at 4 °C. Anneal-
ing temperature was 60 °C for TEF1, 56 °C for RPB2. The PCR products were 
checked on 1% agarose gel electrophoresis stained with ethidium bromide. Purifica-
tion and DNA sequencing were carried out at Beijing Tsingke Biotechnology Co., 
Ltd. China.

Sequence alignment and phylogenetic analysis

The newly generated sequences together with other sequences obtained from GenBank 
(Table 1) were initially aligned using MAFFTv.7 (Katoh and Standley 2013) on the 
online server (http://maffTh.cbrc.jp/alignment/server/), and optimized manually when 
needed. To establish the identity of the isolates at species level, phylogenetic analyses 
were conducted first individually for each locus and then as combined analyses of five 
gene loci (ITS, LSU, SSU, TEF1 and RPB2). Five aligned data sets of ITS, LSU, SSU, 
TEF1 and RPB2 are concatenated using the concatenated sequence function of Phylo-
suite software v1.2.1 (Zhang et al. 2020a), and absent sequence data (i.e., ITS, LSU, 
SSU, TEF1 and RPB2 sequence data) in the alignments were treated with the question 
mark as missing data. Phylosuite software v1.2.1 (Zhang et al. 2020a) was used to con-
struct the phylogenetic tree based on ITS, SSU, LSU, TEF1 and RPB2 sequence data. 
The concatenated aligned dataset was analyzed separately using Maximum likelihood 
(ML) and Bayesian inference (BI). Maximum likelihood phylogenies were inferred 
using IQ-TREE (Nguyen et al. 2015) under Edge-linked partition model for 10000 
ultrafast bootstraps (Hoang et al. 2017). The final tree was selected among suboptimal 
trees from each run by comparing the likelihood scores using the TIM2e+I+G4 for 
ITS+RBP2, TVMe+I+G4 for LSU+SSU, and TNe+R2 for TEF1 substitution model. 
Bayesian Inference phylogenies were inferred using MrBayes 3.2.6 (Ronquist et al. 
2012) under partition model (2 parallel runs, 2000000 generations), in which the ini-
tial 25% of sampled data were discarded as burn-in. The best-fit model was SYM+I+G4 
for ITS+RBP2, LSU+SSU; SYM+G4 for TEF1. ModelFinder (Kalyaanamoorthy et al. 
2017) was used to select the best-fit partition model (Edge-linked) using BIC criterion. 
The trees were viewed in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) and 
further edited in Adobe Illustrator 2021.

Results

Molecular phylogeny

Three new strains of Helminthosporium isolated from dead branches in Xishuangban-
na, Yunnan Province, China, were grown in culture and used for analyses of molecular 
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Table 1. Species and GenBank accession numbers of DNA sequences used in this study. New sequences 
are in bold.

 Taxon Strain Genbank accession numbers

SSU LSU ITS RPB2 TEF1

Byssothecium circinans CBS 675.92 GU205235 GU205217 OM337536 DQ767646 GU349061
Corynespora cassiicola CBS 100822 GU296144 GU301808 – GU371742 GU349052
Corynespora smithii L120 – KY984297 KY984297 KY984361 KY984435
Corynespora smithii L130 KY984419 KY984298 KY984298 KY984362 KY984436
Cyclothyriella rubronotata TR, CBS 121892 – KX650541 KX650541 KX650571 KX650516
Cyclothyriella rubronotata TR9, CBS 141486 KX650507 KX650544 KX650544 KX650574 KX650519
Helminthosporium aquaticum MFLUCC 15-0357, S-096HT KU697310 KU697306 KU697302 – –
Helminthosporium austriacum L132 HT, CBS 139924 KY984420 KY984301 KY984301 KY984365 KY984437
Helminthosporium austriacum L137 – KY984302 KY984302 KY984366 KY984438
Helminthosporium austriacum L169, CBS 142388 – KY984303 KY984303 KY984367 KY984439
Helminthosporium caespitosum L141 – KY984305 KY984305 KY984368 –
Helminthosporium caespitosum L151 – KY984306 KY984306 KY984369 –
Helminthosporium caespitosum L99 HT, CBS 484.77 KY984421 JQ044448 JQ044429 KY984370 KY984440
Helminthosporium chengduense UESTC 22.0024, CGMCC 

3.23575 HT

ON557757 ON557745 ON557751 ON563073 ON600598

Helminthosporium chengduense UESTC 22.0025 ON557756 ON557744 ON557750 ON563072 ON600597
Helminthosporium chiangraiense MFLUCC 21-0087 HT – MZ538538 MZ538504 – –
Helminthosporium chinense UESTCC 22.0026, CGMCC 

3.23570 HT

ON557760 ON557748 ON557754 – ON600601

Helminthosporium chlorophorae BRIP 14521 – – AF120259 – –
Helminthosporium dalbergiae H 4628, MAFF 243853 AB797231 AB807521 LC014555 – AB808497
Helminthosporium endiandrae CBS 138902, CPC 22194 HT – KP004478 KP004450 – –
Helminthosporium erythrinicola CBS 145569 HT – MK876432 NR_165563 MK876486 –
Helminthosporium genistae L128, CBS 139921 KY984422 KY984308 KY984308 KY984372 –
Helminthosporium genistae L129, CBS 139922 KY984423 KY984309 KY984309 KY984373 –
Helminthosporium genistae L142 ET, CBS 142597 – KY984310 KY984310 KY984374 –
Helminthosporium hispanicum L109 HT, CBS 136917 KY984424 KY984318 KY984318 KY984381 KY984441
Helminthosporium italicum MFLUCC 17-0241 – KY815015 KY797638 – KY815021
Helminthosporium juglandinum L118 HT, CBS 136922 – KY984321 KY984321 KY984384 KY984444
Helminthosporium juglandinum L97, CBS 136911 KY984425 KY984322 KY984322 KY984385 KY984445
Helminthosporium leucadendri CBS 135133, CPC 19345 HT – KF251654 KF251150 KF252159 KF253110
Helminthosporium livistonae CPC 32158, CBS 144413 HT – NG_064539 NR_160348 – –
Helminthosporium magnisporum H 4627, MAFF 239278, TS 33 HT AB797232 AB807522 AB811452 – AB808498
Helminthosporium massarinum KT 1564 HT, CBS 139690 AB797234 AB807524 AB809629 – AB808500
Helminthosporium massarinum KT 838EP, MAFF 239604 AB797233 AB807523 AB809628 – AB808499
Helminthosporium microsorum L94 KY984426 KY984327 KY984327 KY984388 KY984446
Helminthosporium microsorum L95 – KY984328 KY984328 KY984389 KY984447
Helminthosporium microsorum L96 ET, CBS 136910 KY984427 KY984329 KY984329 KY984390 KY984448
Helminthosporium nabanhensis HJAUP C2054ET OP555400 OP555398 OP555394 – OP961931

Helminthosporium nanjingensis ZM020380 – – KF192322 – –
Helminthosporium oligosporum L106 – KY984330 KY984330 KY984391 KY984449
Helminthosporium oligosporum L92, CBS 136908 KY984428 KY984332 KY984332 KY984393 KY984450
Helminthosporium oligosporum L93ET, CBS 136909 – KY984333 KY984333 KY984394 KY984451
Helminthosporium quercinum L90 HT, CBS 136921 KY984429 KY984339 KY984339 KY984400 KY984453
Helminthosporium quercinum L91 – KY984340 KY984340 KY984401 KY984454
Helminthosporium sinensis HJAUP C2121 ET OP555399 OP555397 OP555393 – OP961932

Helminthosporium solani CBS 365.75 KY984430 KY984341 KY984341 KY984402 KY984455
Helminthosporium solani CBS 640.85 – KY984342 KY984342 KY984403 –
Helminthosporium submersum UESTCC 22.0021 ON557759 ON557747 ON557753 ON563075 ON600600
Helminthosporium submersum MFLUCC 16-1360 HT MG098796 MG098787 – – MG098586
Helminthosporium submersum MFLUCC 16-1290PT MG098797 MG098788 MG098780 MG098592 MG098587
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sequence data.  Unfortunately, our two species, H. nabanhensis and H. sinensis lack 
the RPB2 sequences. Newly generated sequences were deposited in GenBank. Align-
ment has 75 sequences with 1511 total characters (The combined dataset, ITS:1–
457, LSU:458–993, RBP2:994–1110, SSU:1111–1363, TEF1:1364–1511), 555 
distinct patterns, 487 parsimony-informative, 89 singleton sites, 935 constant sites, 
and Cyclothyriella rubronotata (TR) and C. rubronotata (TR9) were regarded as an 
outgroup. Maximum likelihood and Bayesian Inference analyses of the combined 
dataset resulted in phylogenetic reconstructions with largely similar topologies, and 
bootstrap support values for Maximum likelihood higher than 90% and Bayesian pos-
terior probabilities greater than 0.90 are given above the nodes. The best-scoring ML 
consensus tree (lnL = –10,686.191) with ultrafast bootstrap values from ML analyses 
and posterior probabilities from MrBayes analysis at the nodes are shown in Fig. 1. 
Helminthosporium nabanhensis form a distinct clade sister to H. chlorophorae with 

 Taxon Strain Genbank accession numbers

SSU LSU ITS RPB2 TEF1

Helminthosporium syzygii CBS 145570 HT – MK876433 NR_165564 MK876487 –
Helminthosporium tiliae L171 – KY984343 KY984343 KY984404 KY984456
Helminthosporium tiliae L88 ET, CBS 136907 KY984431 KY984345 KY984345 KY984406 KY984457
Helminthosporium tiliae L89 – KY984346 KY984346 KY984407 –
Helminthosporium velutinum H 4626, MAFF 243854 AB797240 AB807530 LC014556 – AB808505
Helminthosporium velutinum H 4739, MAFF 243855 AB797235 AB807525 LC014557 – AB808501
Helminthosporium velutinum L115, CBS 136924 – KY984347 KY984347 KY984408 KY984458
Helminthosporium velutinum L116 – KY984348 KY984348 KY984409 KY984459
Helminthosporium velutinum L117 – KY984349 KY984349 KY984410 KY984460
Helminthosporium velutinum L126 – KY984350 KY984350 KY984411 KY984461
Helminthosporium velutinum L127 – KY984351 KY984351 KY984412 KY984462
Helminthosporium velutinum L131 ET, CBS 139923 KY984432 KY984352 KY984352 KY984413 KY984463
Helminthosporium velutinum L98 KY984433 KY984359 KY984359 KY984417 KY984466
Helminthosporium velutinum yone 96, MAFF 243859 AB797239 AB807529 LC014558 – AB808504
Helminthosporium yunnanensis HJAUP C2071ET OP555392 OP555396 OP555395 OP961934 OP961933

Massarina cisti CBS 266.62, JCM 14140 HT AB797249 AB807539 LC014568 FJ795464 AB808514
Massarina eburnea CBS 473.64 AF164367 GU301840 AF383959 GU371732 GU349040
Massarina eburnea H 3953, CBS 139697 AB521718 AB521735 LC014569 – AB808517
Periconia byssoides H 4600, MAFF 243872 AB797280 AB807570 LC014581 – AB808546
Periconia digitata CBS 510.77 AB797271 AB807561 LC014584 – AB808537
Periconia pseudodigitata KT 1395, CBS 139699, MAFF 

239676 HT

NG_064850 NG_059396 NR_153490 – AB808540

Pseudosplanchnonema phorcioides L16, CBS 122935 KY984434 KY984360 KY984360 KY984418 KY984467
Stagonospora paludosa CBS 135088, S601NT – KF251760 KF251257 KF252262 KF253207
Stagonospora perfecta KT 1726A, MAFF 239609 AB797289 AB807579 AB809642 – AB808555
Stagonospora pseudoperfecta KT 889, CBS 120236, MAFF 

239607 HT

AB797287 AB807577 AB809641 – AB808553

Stagonospora tainanensis KT 1866, MAFF 243860 AB797290 AB807580 AB809643 – AB808556

1“–”, sequence is unavailable.
2Strain with ET (epitype), HT (holotype), NT (neotype), and PT (paratype).
3Abbreviations: CBS: Central Bureau voor Schimmel cultures, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture 
Collection Center; CPC: Collection of Pedro Crous housed at CBS; HJAUP: Herbarium of Jiangxi Agricultural University, Plant Pathology; 
MAFF: the National Institute of Agrobiological Sciences, Japan; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; 
UESTCC: The University of Electronic Science and Technology Culture Collection, Chengdu, China; ITS: Internal Transcribed Spacer; SSU: 
Small Subunit Ribosomal; LSU: Large Subunit Ribosomal; TEF1: Transcriptional Enhancer Factor 1-alpha; RPB2: The Second Largest Subunit 
of RNA Polymerase II; others are not registered abbreviations.
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Figure 1. Phylogram of Massarinaceae based on combined ITS, SSU, LSU, RPB2 and TEF1 sequences. 
The ML and BI bootstrap support values above 90% and 0.90 are shown at the first and second position, 
respectively. The tree is rooted to Cyclothyriella rubronotata (TR) and C. rubronotata (TR9). Strains from 
the current study are in red. Some branches were shortened according to the indicated multipliers.

strong statistical support (ML/BI = 95/1.00); H. sinensis forms a high-support clade 
(ML/BI = 92/0.99) with the lineage consisting of H. nabanhensis and H. chlorophorae; 
H. yunnanensis is a sister to three different strains of H. austriacum with strong statisti-
cal support (ML/BI = 100/1.00).
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Taxonomy

Helminthosporium nabanhensis Jing W. Liu & Jian Ma, sp. nov.
IndexFungorum No: 559980
Fig. 2

Etymology. Referring to the collecting site of Nabanhe Nature Reserve in Yunnan 
Province, China.

Holotypus. HJAUP M2054.
Description. Saprobic on dead branches. Sexual morph: Undetermined. 

Asexual morph: Hyphomycetous. Colonies on natural substrate effuse, scattered, 
hairy, brown to black. Mycelium partly superficial, partly immersed in the sub-
stratum, composed of branched, septate, pale brown to brown, smooth hyphae. 
Conidiophores macronematous, mononematous, solitary or in groups of 2–4, sim-
ple, occasionally branched, erect, straight or flexuous, cylindrical, smooth, 8–21-sep-
tate, brown to dark brown, paler towards the apex, with well-defined small pores at 
the apex and rarely laterally beneath the upper 1–3 septa, 365–557 × 6.5–13.5 µm. 
Conidiogenous cells polytretic, integrated, terminal and intercalary, cylindrical, 
brown, smooth, with noncicatrized, distinct pores. Conidial secession schizolytic. 
Conidia acropleurogenous, solitary, dry, obclavate, pale brown to brown, 3–6-dis-
toseptate, smooth, straight or curved, wider below than apex, truncate and dark at 
base, apically rostrate and pale, guttulate when young, non-guttulate at maturity, 
26.5–46.5 µm long, 6.5–10 µm wide, tapering to 3–3.5 µm wide near the apex, 
3–6 µm wide at the basal scar.

Cultural characteristics. Colony on PDA reaching 50–55 mm diam. after 2 weeks 
in an incubator under dark conditions at 25 °C, irregular circular, surface velvety, with 
white and denser mycelium at the center, becoming olivaceous and sparser towards the 
edge; reverse pale brown at the center, dark brown at the periphery.

Material examined. China, Yunnan Province: Xishuangbanna Dai Autonomous 
Prefecture, Nabanhe National Nature Reserve, on dead branches of an unidentified 
broadleaf tree, 12 July 2021, J.W. Liu, HJAUP M2054 (Holotype), ex-type living 
culture HJAUP C2054.

Notes. The phylogenetic tree shows that the strain of H. nabanhensis (HJAUP 
C2054) clusters with the ex-type strain of H. chlorophorae (BRIP 14521). The 
BLASTn analysis of ITS of our ex-type strain HJAUP C2054 showed 90% identity 
(425/471 bp, 10/471 gaps) with ex-type strain BRIP 14521 of H. chlorophorae. More-
over, H. nabanhensis morphologically differs from H. chlorophorae in bigger conidi-
ophores (365–557 × 6.5–13.5 µm vs. 120–270 × 7–10 µm) occasionally branched, 
and smaller conidia (26.5–46.5 × 6.5–10 µm vs. 52–102 × 8–11 µm) with fewer 
septa (3–6 vs. 6–9), and from H. sichuanense (Zhang et al. 2004) in narrower conidi-
ophores (6.5–13.5 µm vs. 14–25 µm) and smaller conidia (26.5–46.5 × 6.5–10 µm vs. 
41–86 × 10–14 µm) with fewer septa (3–6 vs. 5–11).
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Helminthosporium sinensis Jing W. Liu & Jian Ma, sp. nov.
IndexFungorum No: 559981
Fig. 3

Etymology. Referring to the country in which the fungus was collected.
Holotypus. HJAUP M2121.
Description. Saprobic on dead branches. Sexual morph: Undetermined. 

Asexual morph: Hyphomycetous. Colonies on natural substrate effuse, scattered, 
hairy, brown to black. Mycelium partly superficial, partly immersed in the sub-
stratum, composed of branched, septate, pale brown to brown, smooth hyphae. 

Figure 2. Helminthosporium nabanhensis (HJAUPM2054, holotype) A, B culture on PDA from above 
and reverse C conidia D conidiophores with conidia E–G conidiophores with conidiogenous cells.
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Conidiophores macronematous, mononematous, solitary or in groups of 2–4, sim-
ple, straight or flexuous, thick-walled, cylindrical, smooth, brown to dark brown, 
paler towards the apex, with well-defined small pores at the apex and rarely laterally 
beneath the upper 1–4 septa, 220–370 × 6–8.5 µm. Conidiogenous cells polytretic, 
integrated, terminal and intercalary, cylindrical, brown, smooth, with noncicatrized, 
distinct pores. Conidial secession schizolytic. Conidia acropleurogenous, solitary, 
rarely catenate, dry, obclavate, pale brown, 2–7-distoseptate, smooth, straight or 
curved, wider below than apex, truncate and dark at base, apically rostrate and pale, 
37–60 µm long, 5.5–8.5 µm wide, tapering to 3–3.5 µm wide near the apex, 3–6 µm 
wide at the basal scar.

Cultural characteristics. Colony on PDA reaching 30–37 mm diam. after 
2 weeks in an incubator under dark conditions at 25 °C, pale brown, irregular 

Figure 3. Helminthosporium sinensis (HJAUPM2121, holotype) A, B culture on PDA from above and 
reverse C conidia D, E conidiophores, conidiogenous cells and conidia F conidiophores.
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circular, surface velvety, outermost layer gray; reverse dark brown, produces pale 
green pigment.

Material examined. China, Yunnan Province: Xishuangbanna Dai Autonomous 
Prefecture, Menghai County, Mengsong Township, on dead branches of an unidenti-
fied broadleaf tree, 13 July 2021, J.W. Liu, HJAUP M2121 (Holotype), ex-type living 
culture HJAUP C2121.

Notes. Phylogenetic analysis shows that the strain of H. sinensis (HJAUP C2121) 
forms an independent clade, and clusters with the strains of H. nabanhensis (HJAUP 
C2054) and H. chlorophorae (BRIP 14521). The BLASTn analysis of ITS of our ex-
type strain HJAUP C2121 showed 89% identity (536/602 bp, 17/602 gaps) with ex-
type strain HJAUP C2054 of H. nabanhensis, and showed 91% identity (430/471 bp, 
13/471 gaps) with ex-type strain BRIP 14521 of H. chlorophorae. Moreover, H. sinensis 
differs from H. nabanhensis by its longer and narrower conidia (37–60 × 5.5–8.5 µm 
vs. 26.5–46.5 × 6.5–10 µm), and smaller conidiophores (220–370 × 6–8.5 µm vs. 
365–557  ×  6.5–13.5 µm), and from H. chlorophorae by its smaller conidia (37–
60 × 5.5–8.5 µm vs. 52–102 × 8–11 µm) and longer and narrower conidiophores (220–
370 × 6–8.5 µm vs. 120–270 × 7–10 µm), and from H. guangxiense (Zhang and Zhang 
2009) in smaller conidiophores (220–370 × 6–8.5 µm vs. 330–850 × 14–25 µm) and 
smaller conidia (37–60 × 5.5–8.5 µm vs. 76–110 × 16–22 µm) with fewer septa (2–7 
vs. 9–17). In addition, the conidia of H. sinensis are solitary or rarely catenate, whereas 
those of H. guangxiense, H. nabanhensis and H. chlorophorae are solitary.

Helminthosporium yunnanensis Jing W. Liu & Jian Ma, sp. nov.
IndexFungorum No: 559982
Fig. 4

Etymology. Referring to Yunnan province, where the type specimen was collected.
Holotypus. HJAUP M2071.
Description. Saprobic on dead branches. Sexual morph: Undetermined. 

Asexual morph: Hyphomycetous. Colonies on natural substrate effuse, scattered, 
hairy, brown to dark brown. Mycelium partly superficial, partly immersed in the 
substratum, composed of branched, septate, pale brown to brown, smooth hyphae. 
Conidiophores macronematous, mononematous, solitary or in groups of 2–4, sim-
ple, straight or flexuous, thick-walled, cylindrical, smooth, brown to dark brown, 
paler towards the apex, with one cylindrical, enteroblastic percurrent extension, and 
with well-defined small pores at the apex and rarely laterally beneath the upper 1–5 
septa, 560–680 × 12.5–15.5 µm. Conidiogenous cells polytretic, integrated, termi-
nal and intercalary, cylindrical, pale brown to brown, smooth, with noncicatrized, 
distinct pores. Conidial secession schizolytic. Conidia acropleurogenous, solitary, 
dry, obclavate, sigmoid, lunate or uncinate, pale brown, 4–7-distoseptate, smooth, 
straight or flexuous, wider below than apex, truncate and dark at base, apically ros-
trate and pale, 30.5–55.5 µm long, 9–11 µm wide, tapering to 2.5–3 µm near the 
apex, 3–7.5 µm wide at the basal scar.
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Cultural characteristics. Colony on PDA reaching 75–82 mm diam. after 2 weeks 
in an incubator under dark conditions at 25 °C, irregular circular, surface velvety, with 
brown and denser mycelium at the center, becoming white and sparser towards the 
edge; reverse pale brown at the center, with little black dots.

Material examined. China, Yunnan Province: Xishuangbanna Dai Autonomous 
Prefecture, Nabanhe National Nature Reserve, on dead branches of an unidentified 
broadleaf tree, 12 July 2021, J.W. Liu, HJAUP M2071 (Holotype), ex-type living 
culture HJAUP C2071.

Notes. Phylogenetic analysis shows that the strain of H. yunnanensis (HJAUP 
C2071) clustered together and formed a sister clade with three different strains of 
H. austriacum (L132, L137, L169) (Voglmayr and Jaklitsch 2017). The BLASTn analy-
sis of H. yunnanensis (HJAUP C2071) and H. austriacum (L132HT) shows 97% identity 

Figure 4. Helminthosporium yunnanensis (HJAUPM2071, holotype) A, B culture on PDA from above 
and reverse C conidiophores with conidia D conidiogenous cells and conidia E conidia.
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(524/541, 4 gaps) using ITS, 99% identity (550/553, 2 gaps) using LSU, 99% identity 
(872/873, 1 gap) using SSU, 98% identity (738/752, no gap) using TEF1, and 98% 
identity (1077/1095, no gap) using RPB2. Helminthosporium yunnanensis morpho-
logically differs from H. austriacum in wider conidiophores (560–680 × 12.5–15.5 µm 
vs. 275–700 × 7–11 µm) with one cylindrical, enteroblastic percurrent extension, 
and narrower conidia (30.5–55.5 × 9–11 µm vs. 35–48 × 13.7–16.5 µm), and from 
H. obpyriforme (Zhang and Zhang 2009) in bigger conidiophores (560–680 × 12.5–
15.5 µm vs. 225–460 × 9.5–13 µm) and smaller conidia (30.5–55.5 × 9–11 µm vs. 
47–74 × 14–19 µm) with fewer septa (4–7 vs. 5–9).

Discussion

The taxonomic history of the genus Helminthosporium is complex. To date, about 
770 epithets for Helminthosporium are listed in Index Fungorum (2022), but most 
of these were not congeneric with the generic type. Konta et al. (2021) listed 216 
Helminthosporium species based on records from Species Fungorum, but most species 
are identified based on morphological studies, and so far only 27 species are repre-
sented by a DNA sequence in GenBank (Voglmayr and Jaklitsch 2017; Boonmee et al. 
2021; Chen et al. 2022). Morphological comparison is important for fungal identifica-
tion, but species identification only based on morphological studies is not comprehen-
sive. With the availability of supplementary sequence data for Helminthosporium spe-
cies, the molecular phylogenetic analysis is being used to evaluate previously described 
Helminthosporium-like species by molecular methods. The introduction of a phyloge-
netic analysis of Helminthosporium led to a better improvement of the heterogeneity of 
the genus and further clarified the taxonomic status of Helminthosporium. Voglmayr 
and Jaklitsch (2017) revisited Corynespora, Exosporium and Helminthosporium, with 
phylogenetic and morphological analyses. Zhang et al. (2020b) transferred H. bigenum 
into a new genus Mirohelminthosporium K. Zhang, D.W. Li & R.F. Castañeda and 
replaced the illegitimate H. cylindrosporum Matsush. with H. matsushimae. Chen et 
al. (2022) suggested four Helminthosporium species, H. anomalum, H. asterinum, 
H. decacuminatum and H. gibberosporum to Bipolaris, Kirschsteiniothelia or Curvularia 
by performing blastn analysis.  Furthermore, seven new species were described under 
the genus Helminthosporium by molecular methods (Crous et al. 2018, 2019; Zhao et 
al. 2018; Boonmee et al. 2021; Chen et al. 2022). Based on previous studies, we pro-
posed three new species by morphological and molecular phylogenetic analysis.

Chen et al. (2022) described two new species, H. chengduense and H. chinense, 
based on combined ITS, LSU, SSU, TEF1 and RPB2 sequence data and morphologi-
cal characters. Accordingly, we also used ITS, LSU, SSU, TEF1 and RPB2 for phy-
logenetic analysis and obtained high phylogenetic support, although our two species, 
H. nabanhensis and H. sinensis, lack the RPB2 sequences. They are considerably distinct 
from all other described Helminthosporium species by morphological characters and 
multi-locus phylogenetic analysis, so we are convinced that the newly introduced spe-
cies are new to science.
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Abstract
Ophiocordyceps contains the largest number of Cordyceps sensu lato, various species of which are of great 
medicinal value. In this study, a new entomopathogenic fungus, Ophiocordyceps nujiangensis, from Yunnan 
in southwestern China, was described using morphological, phylogenetic, and mitogenomic evidence, 
and its fungal community composition was identified. It was morphologically characterized by a solitary, 
woody, and dark brown stromata, smooth-walled and septate hyphae, solitary and gradually tapering co-
nidiogenous cells with plenty of warty protrusions, and oval or fusiform conidia (6.4–11.2 × 3.7–6.4 µm) 
with mucinous sheath. The phylogenetic location of O. nujiangensis was determined based on the Bayesian 
inference (BI) and the maximum likelihood (ML) analyses by concatenating nrSSU, nrLSU, tef-1a, rpb1, 
and rpb2 datasets, and ten mitochondrial protein-coding genes (PCGs) datasets (atp6, atp9, cob, cox2, 
nad1, nad2, nad3, nad4, nad4L, and nad5). Phylogenetic analyses revealed that O. nujiangensis belonged 
to the Hirsutella sinensis subclade within the Hirsutella clade of Ophiocordyceps. And O. nujiangensis was 
phylogenetically clustered with O. karstii, O. liangshanensis, and O. sinensis. Simultaneously, five fungal 
phyla and 151 fungal genera were recognized in the analysis of the fungal community of O. nujiangensis. 
The fungal community composition differed from that of O. sinensis, and differences in the microbial 
community composition of closely related species might be appropriate as further evidence for taxonomy.
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Introduction

The genus Ophiocordyceps was introduced by Petch (1931), with O. blattae Petch as the 
type. This genus accommodated species with features of head-cover asci, septate and 
non-disarticulating ascospores (Petch 1931). Then, the genus was regarded as a subge-
nus of Cordyceps (Kobayasi 1941, 1982; Mains 1958). Until 2007, Sung et al. (2007) 
erected a new family Ophiocordycipitaceae based on phylogenetic analysis and the 
characteristics of darkly pigmented stromata, which were pliant to wiry or fibrous to 
tough in texture. And they revised the classification of Ophiocordyceps, treating it as the 
type genus of Ophiocordycipitaceae. Ophiocordyceps has the largest number of species 
in Ophiocordycipitaceae, with 307 species named in Ophiocordyceps to date. (http://
www.indexfungorum.org/, retrieval on November 3, 2022).

The methods of morphology and phylogeny were utilized for species identification, 
and the phylogenetic analyses based on concatenating nrSSU, nrLSU, tef-1α, rpb1, and 
rpb2 datasets became the popular means (Sung et al. 2007; Quandt et al. 2014; San-
juan et al. 2015; Wang et al. 2020a). Moreover, the mitochondrial genome had been an 
effective instrument for studying species’ origin, classification, and evolution due to its 
advantages of high copy number, low mutation rate, and fast evolution rate (Alexeyev 
et al. 2013; Aguileta et al. 2014; Williams et al. 2014). The significant difference in the 
mitochondrial genome of fungi could be distinguished (Nie et al. 2019). The bioge-
netic analyses of the fungal mitochondrial genome could verify the genetically related 
species. NCBI has published the mitochondrial genomes of more than 680 fungi, in-
cluding approximately 60 species of Hypocreales (Chen et al. 2021; Zhao et al. 2021).

Some species in Ophiocordyceps have enormous medicinal and commercial value, 
such as O. sinensis, traditional in Chinese medicine. Owing to their extraordinary ef-
ficacy, wild sources were widely sold as commodities and gradually became scarce. (Han 
et al. 2019; Dai et al. 2020). Therefore, seeking additional new resources would defuse 
the tense situation. For example, O. lanpingensis and O. xuefengensis had been authenti-
cated as possessing ingredients that were beneficial for health and considered to be de-
sirable alternatives for O. sinensis (Zou et al. 2017; Zhang et al. 2017). Ophiocordyceps is 
widely distributed in China, and of particular note are some recent reports of new spe-
cies from southwestern China (Wang et al. 2018; Wang et al. 2020b; Chen et al. 2021).

The companion fungi were essential for the growth and development of the host. 
For example, Tuber-associated microbial communities played a potentially important 
role in mycelial growth, ascocarp development, and mycorrhizal synthesis of Tuber (Li 
et al. 2018). And adding Grifola sp. in the cultivation process of G. umbellate could 
promote sclerotia formation (Guo et al. 2002). Thus, the composition and diversity 
of companion fungi should be analyzed to gain insight into new species and their mi-
crobial resources.
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In this study, a new species of Ophiocordyceps, which parasitized on the larvae of 
Hepialidae, was collected from Yunnan in southwestern China. The phylogenetic loca-
tion was elucidated based on the Bayesian inference (BI) and the maximum likelihood 
(ML) analyses by concatenating nrSSU, nrLSU, tef-1a, rpb1, and rpb2 datasets, and 
mitochondrial protein-coding genes (PCGs) datasets. Morphological characteristics 
were observed and recorded. The composition and diversity of the fungal communities 
hosting the new species were identified.

Methods

Sample collection and isolation

Samples were collected on Hepialidae larvae in the soil in Yajiaoluo (27°07'48"N, 
98°52'12"E), Fugong County, Nujiang Prefecture, Yunnan Province, China. Speci-
mens were photographed in the fields with a Canon 750D digital camera. The fresh 
specimens were placed into the sterile culture dish, then transferred to the laboratory 
and deposited in the Yunnan Herbal Herbarium (YHH), Yunnan University.

Specimens were isolated and cultured using the tissue isolating method (Yin and 
Zhang 2015; Wang et al. 2020b) as follows. Specimens were dipped into 75% alcohol for 2 
min to sterilize the surface and then washed with sterile water. The 2–3 mm sclerotium was 
ripped by tweezers and put on the culture medium (200 g potato, 20 g dextrose 20, 15–20 
g agar, 10 g yeast extract, 5 g peptone in 1 L sterile water) (Xu et al. 2019), with three 
replications. Then they were transferred to the room at 25 °C for culturing. The cultures 
were deposited in the Yunnan Fungal Culture Collection (YFCC), at Yunnan University.

Morphological observations

A moderate quantity of pure cultures was picked by an inoculating needle onto the 
center of the culture medium and maintained at 25 °C. After 6–10 weeks, shape, size, 
texture, and color were photographed with a Canon 750D camera. The superficial pure 
cultures were lightly stuck on transparent adhesive tapes, then the tapes were patched 
on slides, and the slides were placed on the Olympus BX53 microscope for micro-mor-
phological observations and measurements (Wang et al. 2020a; Wang et al. 2020b).

DNA extraction, PCR amplification, and sequencing of nuclear genes

The genomic DNA of the samples (containing specimens and pure cultures) was iso-
lated using the ZR Fungal DNA kit (Zymo, California, USA), then the DNA extract 
was checked on 1% agarose gel, and DNA concentration and purity were determined 
with NanoDrop ND-2000 spectrophotometer (Thermo Scientific, Wilmington, USA). 
The nrSSU and nrLSU (nuclear ribosomal small and large subunits), rpb1 and rpb2 (the 
largest and second-largest subunit sequences of RNA polymerase II), and tef-1α (the 
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translation elongation factor 1α) regions were amplified with the primer pairs used by 
Wang et al. (2020b). The PCR mixtures contained 2 × Taq PCR Master Mix (Tiangen, 
Beijing, China) 25 µL, forward primer (10 µM) 0.5 µL, reverse primer (10 µM) 0.5 µL, 
template DNA (1 ng/µL) 1 µL, and finally added sterile ddH2O up to 50 µL. Finally, the 
PCR amplification and sequencing were performed as described by Wang et al. (2015).

Sequencing, assembly, and annotation of mitogenome

The genomic DNA of the pure cultures was isolated through the above-mentioned 
method, the extracted DNA was transported to BGI genomics Co., Ltd (Wuhan, 
China) for sequencing. The sequencing library was built by the IlluminaTruseq DNA 
Sample Preparation Kit (BGI, Shenzhen, China), and the Illumina HiSeq 4000 Plat-
form was applied to the PE2 × 150 bp sequencing. After data quality control, the 
unpaired, short, and low-quality reads were removed, and the clean reads were ob-
tained (Zhao et al. 2021). Next, the reads of the mitogenome were collected from the 
clean data employing GetOrganelle v.1.6.2e, and the mitogenome was assembled us-
ing BLAST 2.2.30 and SPAdes. V.3.13.0. The mitogenome was initially annotated by 
MFannot (https://megasun.bch.umontreal.ca/RNAweasel/, accessed on 10 December 
2020) and MITOS (http://mitos2.bioinf.uni-leipzig.de/index.py, accessed on 10 De-
cember 2020) (Valach et al. 2014; Jin et al. 2020; Chen et al. 2021).

Phylogenetic analyses

For determining the phylogenetic location of the species, phylogenetic analyses were 
conducted with the combined sequence data of nrSSU, nrLSU, rpb1, rpb2, and tef-1α 
(Wang et al. 2015; Wang et al. 2020a; Wang et al. 2020b), and ten protein-coding genes 
(PCGs, atp6, atp9, cob, cox2, nad1, nad2, nad3, nad4, nad4L, nad5) of mitogenomes, 
respectively (Chen et al. 2021; Zhao et al. 2021). The Bayesian inference (BI) and the 
maximum likelihood (ML) methods were performed for the phylogenetic analyses by 
MrBayes v3.1.2 (Ronquist and Huelsenbeck 2003) and RaxML 7.0.3 (Stamatakis et al. 
2008). The GTR + G + I model was determined by jModelTest version 2.1.4 (Darriba 
et al. 2012) with 10 million generations for the BI analysis. And the ML analysis was 
run with the GTR + I model on 10,000 rapid bootstrap replicates. Tolypocladium infla-
tum W. Gams and T. ophioglossoides (J.F. Gmel.) C.A. Quandt, Kepler & Spatafora were 
designated as the outgroup taxa for the analysis of nrSSU, nrLSU, rpb1, rpb2, and tef-
1α datasets. And Penicillium citrinum Thom and Neurospora crassa Shear & B.O. Dodge 
were designated as the outgroup taxa for the analysis of 10 PCGs. The GenBank acces-
sion numbers of the 10 PCGs (atp6, atp9, cob, cox2, nad1, nad2, nad3, nad4, nad4L, 
and nad5) annotated from the specimen YFCC8894 were ON868828–ON868837.

Isolation of total DNA, PCR amplification, and high-throughput sequencing

The microbial genomic DNA of the fruiting body from four different specimens (S1–
S4) was isolated through the method mentioned above. The ITS (internal transcribed 
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spacer) regions were amplified with primer pairs ITS5 (5’-GGAAGTAAAAGTCG-
TAACAAGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) (White et al. 
1990), by an ABI GeneAmp 9700 PCR thermocycler (ABI, CA, USA). The PCR 
amplifications were performed as follows: initial denaturation at 95 °C for 3 min, fol-
lowed by 27 cycles of denaturing at 95 °C for 30 s, annealing at 55 °C for 30 s and ex-
tension at 72 °C for 45 s, and single extension at 72 °C for 10 min. The PCR mixtures 
contained 5 × Fast Pfu buffer 4 µL, 0.4 µL Fast Pfu polymerase, forward primer (5 µM) 
0.8 µL, reverse primer (5 µM) 0.8 µL, template DNA (1ng/µL) 10 µL, and finally 
added sterile ddH2O up to 20 µL. The PCR products were extracted from 2% agarose 
gel and purified by the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, USA) and quantified by Quantus Fluorometer (Promega, Madison, USA).

Purified amplicons were pooled in equimolar amounts and paired-end sequenced 
on an Illumina MiSeq PE300 platform (Illumina, San Diego, USA), following the 
standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, Chi-
na). The raw reads were deposited into the NCBI Sequence Read Archive (SRA) 
database (Sequence Read Archive (SRA) Accession Number: SAMN28950406–
SAMN28950409).

Raw FASTQ files were de-multiplexed using an in-house Perl script, and then 
quality-filtered by fastp version 0.19.6 (Chen et al. 2018) and merged by FLASH ver-
sion 1.2.7 (Magoč and Salzberg 2011). Then the optimized sequences were clustered 
into operational taxonomic units (OTUs) employing UPARSE 7.1 (Edgar 2013) with 
the 97% sequence similarity level. Chimeric sequences, chloroplast sequences, mito-
chondrial sequences, and the OTUs identified as Plantae, Rhizaria, Chromista, and 
those with no rank and unclassified kingdom were removed from samples.

Composition and phylogenetic analysis of microbial communities

Bioinformatic analysis was carried out by the Majorbio Cloud platform (https://cloud.
majorbio.com). The taxonomy of each OTU representative sequence was analyzed by 
RDP Classifier version 2.2 (Wang et al. 2007) against the ITS gene database (Unite V7.2) 
through a confidence threshold of 0.7. A phylogenetic tree was constructed to illustrate 
the relationships between the fungi at the family level, employing FastTree version 2.1.3 
(http://www.microbesonline.org/fasttree/) and the ML algorithm (Zhang et al. 2015).

Results

Phylogenetic analyses of nuclear genes

The phylogenetic tree was built with the 72 taxa by the Bayesian inference (BI) and 
the maximum likelihood (ML) methods. Tolypocladium inflatum OSC 71235 and 
Tolypocladium ophioglossoides CBS 100239 were designated as the outgroup taxa (Fig. 1; 
Suppl. material 1). The five-gene phylogenetic trees based on the BI and the ML anal-
yses had similar topologies. The reconstructed phylogenetic tree of Ophiocordyceps 
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Figure 1. Phylogenetic placement of Ophiocordyceps nujiangensis inferred from the Bayesian inference 
(BI) and the maximum likelihood (ML) analyses by concatenating nrSSU, nrLSU, tef-1a, rpb1, and rpb2 
datasets. The BI posterior probabilities (≥ 0.5) and the ML bootstrap values (≥ 50%) were indicated at the 
nodes. The specimens analyzed in this study were shown in bold type.
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contained four statistically well-supported clades. And the Hirsutella clade had six 
statistically well-supported subclades. It was similar to the analyses by Sanjuan et 
al. (2015), Simmons et al. (2015), and Wang et al. (2018). The three specimens of 
Ophiocordyceps nujiangensis (Wild sample YHH20041, pure cultures YFCC 8880, and 
YFCC 8894) were clustered together and formed a separate clade (the BI posterior 
probabilities = 1, the ML bootstrap = 98%). O. nujiangensis was closely related to O. 
karstii, O. liangshanensis and O. sinensis with strong support (Fig. 1). The similarities 
between the YFCC 8880 strain of O. nujiangensis and the most relevant were 99.66% 
(nrSSU), 99.87% (nrLSU), 98.53% (tef-1α), 98.53% (rpb1) and 98.80% (rpb2) in the 
BALST (The basic local alignment search tool) results of NCBI database. The BALST 
results of the YFCC 8894 strain were 99.87% (nrLSU), 98.52% (tef-1α), and 98.69% 
(rpb1). And the BALST results of sample YHH20041 were 100% (nrSSU), 99.87% 
(nrLSU), 98.64% (tef-1α), 98.36% (rpb1) and 98.66% (rpb2).

Phylogenetic analyses of mitochondrial genes

The mitogenome of O. nujiangensis was assembled and annotated. And 10 PCGs (pro-
tein-coding genes) were chosen for the phylogenetic analyses, including 2 subunits of 
ATP synthase (atp6 and atp9), 1 cytochrome b gene (cob), 1 subunit of cytochrome c oxi-
dase (cox2), and 6 subunits of NADH dehydrogenase complex (nad1, nad2, nad3, nad4, 
nad4L, and nad5). The BI and the ML trees were estimated for phylogenetic analyses of 
Hypocreales based on the mitochondrial PCG dataset of 55 species from GenBank. Peni-
cillium citrinum and Neurospora crassa were designated as the outgroup taxa (Suppl. mate-
rial 2). As shown in Figure 2, six well-supported clades were recognized in Hypocreales, 
namely Bionectriaceae, Clavicipitaceae, Cordycipitaceae, Hypocreaceae, Nectriaceae, and 
Ophiocordycipitaceae. And Ophiocordyceps nujiangensis was clustered collectively with O. 
sinensis, H. rhossiliensis, H. vermicola, O. pingbianensis, H. minnesotensis, and H. thompso-
nii in Ophiocordyceps. O. nujiangensis formed a separate clade (the BI posterior probabili-
ties = 1, the ML bootstrap = 100%), and was also closely grouped with O. sinensis (Fig. 2).

Taxonomy

Ophiocordyceps nujiangensis H. Yu, T. Sun & W.Q. Zou, sp. nov.
MycoBank No: MB 844428
Fig. 3

Etymology. Nujiangensis, referring to the collection site of this species, Nujiang.
Holotype. Yajiaoluo, Fugong County, Nujiang Prefecture, Yunnan Province, Chi-

na. 98°52.20'N, 27°07.80'E, alt 1980 m, on the larvae of Hepialidae in soil, 6 June 
2021, Hong Yu (YHH 20039, holotype; YFCC 8880, ex-holotype culture).

Sexual stage. Stromata grew from the head of Hepialidae larva, solitary, certain 
branches at middle, gradually tapering from base to tip, woody, hard, dark brown 
(1545C, the number of PANTONE color, https://www.pantone.com), 14.8–18.2 cm 
long. Microscopic morphology to be determined.
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Asexual stage. Hirsutella. The colonies grew slowly on PDA, adding peptone (5 g/L) 
and yeast extract powder (10g/L) to PDA could accelerate the growth. Culturing at 
room temperature (16–20 °C) after 14 weeks, the colonies increased to 20–21 mm, 
hard, slight protuberance in the middle, pale gray (Cool gray 1 C), reverse black brown 
(Black 4 XGC). Hyphae hyaline, septate, smooth-walled. Conidiogenous cells hyaline, 
solitary, 54.9–76.5 (AVE = 50.50 ± 0.24) µm long, gradually tapering, base width 
3.6–4.9 (AVE = 4.32 ± 0.11) µm, tip width 1.0–1.5 (AVE = 1.30 ± 0.11) µm, with 
warty protrusions from the middle to the top and more on the top, smooth-walled. 

Figure 2. Phylogenetic tree of Hypocreales based on the Bayesian inference (BI) and the maximum like-
lihood (ML) analyses of 10 PCGs. The 10 PCG genes included atp6, atp9, cob, cox2, nad1, nad2, nad3, 
nad4, nad4L and nad5. The values at the nodes were the BI posterior probabilities and the ML bootstrap 
proportions, respectively. The specimen analyzed in this study was given in bold type.
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Conidia hyaline, oval or fusiform, with smooth walls and mucinous sheath, 6.4–11.2 
(AVE = 7.95 ± 0.15) × 3.7–6.4 (AVE = 4.73 ± 0.16) µm.

Host. Larvae of Hepialidae.
Habitat. Parasitized on Hepialidae larvae in the soil.
Distribution. Yajiaoluo, Fugong County, Nujiang Prefecture, Yunnan Province, 

China.
Other material examined. Yajiaoluo, Fugong County, Nujiang Prefecture, Yun-

nan Province, China. 98°52.20'N, 27°07.80'E, alt 1980 m, on the larvae of Hepialidae 
in soil, 6 June 2021, Hong Yu (YHH20040, YFCC 8894; YHH 20041).

Notes. Ophiocordyceps nujiangensis was closely phylogenetically related to 
O. karstii and O. liangshanensis. The formation of stromata on the head of the 
host was a feature common to all three species. However, the length of the stro-
mata varies between the three species. O. nujiangensis had a stromata length longer 
than O. karstii, but shorter than O. liangshanensis (Table 1). O. nujiangensis, on 
the other hand, had slightly longer conidiophores and slightly smaller conidia than 
O. liangshanensis (Table 1).

Figure 3. Ophiocordyceps nujiangensis A intact wild material B colony obverse on PDA with peptone 
and yeast extract powder C colony reverse on PDA with peptone and yeast extract powder D conidiog-
enous cells E–G conidiogenous cells and conidia H–L conidia. Scale bars: 3 cm (A); 2 cm (B, C); 20 µm 
(D–G);  5 µm (H–L).
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Fungal community composition

In total, 135,048 effective sequences were obtained. Based on the minimum num-
ber of reads in the sample, 33,762 reads were randomly selected for each sample to 
avoid bias in the sequencing depth. The rarefaction curve (the Shannon-Wiener curve) 
showed that the sequencing depth was very reasonable for representing the diversity of 
the fungal community (Suppl. material 3).

At the phylum level, a total of five phyla were identified, including Ascomy-
cota, Basidiomycota, Mortierellomycota, Rozellomycota, and Glomeromycota. Of 
these, Ascomycota was dominant, with an average of 99.66%. The rest averaged 
no more than 1 percent. And the unclassified was dominant in the 151 identified 
genera, the average proportion was 29.56%, followed by Trichothecium (27.16%) 
and Microdochium (26.81%) (Fig. 4). Namely, numerous companion fungi were 
verified in the fruiting body of O. nujiangensis. The results also indirectly sug-
gested that O. nujiangensis might be a new species as its ITS sequence could not be 
aligned in the database.

Phylogenetic analyses of the fungi at the family level

The top 50 families were classified into four phyla (Suppl. material 4), comprising 
Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota; however, none 
in Glomeromycota. There were 41 families subordinated to Ascomycota, including the 
three families (Clavicipitaceae, Ophiocordycipitaceae, and Cordycipitaceae), which 
distributed Cordyceps sensu lato. And the phylogenetic locations of the three families 

Table 1. A morphological comparison of Ophiocordyceps nujiangensis and its allies.

Species Host Stromata Ascomata Asci Ascospores Phialides Conidia Reference
O. nujiangensis Hepialidae 

larvae
Solitary, 

148–
182 mm 

long

– – – 54.9–76.5 µm 
long, base 

width 3.6–4.9 
µm, tip width 
1.0–1.5 µm

Oval or 
fusiform, 

6.4–11.2 × 
3.7–6.4 µm

This study

O. karstii On dead 
larva of 
Hepialus 

jianchuanensis

Mostly 
single, 

140–145 × 
2–4 mm

Superficial, 
flask-shaped, 
600–765 × 

247–323 µm

Narrow 
cylindrical, 
186–228 × 
8–12 µm

Fusiform, 173–202 
× 3–5 µm, not 
breaking into 

secondly spores

– – Li et al. 
(2016)

O. liangshanensis Hepialidae 
larvae

Single or 
occasionally, 

200–300 
× 1.5–2.5 

mm

Superficial, 
long ovoid, 
450–740 × 

300–450 µm

Cylindrical, 
260–480 × 
8–12 µm

Fasciculate, thread-
like, slender, and 
long, 170–240 × 

2.5–4.1 µm

Monophialidic, 
46.9–75.6 µm 

long, 
subcylindrical, 
3.8–4.7 µm 
basal wide

Ellipsoid, 
citriform 

or shape of 
an orange 
segment, 

8.0–12.6 × 
3.6–5.0 µm

Wang et 
al. (2021)

O. sinensis Hepialidae 
larva

Single, 
occasionally 

2–3, 40–
110 mm 

long

Nearly 
superficial, 
ellipsoidal 
to ovate, 

380–550 × 
140–240 µm

Slender, 
long, 

240–485 × 
12–16 µm

Usually 2–4 
mature ascospores, 

multiseptate, 
not breaking 

into secondary 
ascospores, 160–
470 × 5–6 µm

– – Liang et 
al. (2007)
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were essentially the same as previously reported in the study by Sung et al. (2007) and 
Wang et al. (2020a). The results implied that O. nujiangensis might have many com-
panion fungi, which belongs to Cordyceps sensu lato.

Discussion

Ophiocordyceps nujiangensis was morphologically characterized by solitary, woody, 
and dark brown stromata, smooth-walled and septate hyphae, solitary and gradually 

Figure 4. Composition of fungal community inhabiting Ophiocordyceps nujiangensis. A Composition of 
fungal community on phylum level. B Composition of fungal community on genus level. C Community 
heatmap analysis of the four specimens on genus level.
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tapering conidiogenous cells with plenty of warty protrusions, and oval or fusiform co-
nidia with mucinous sheath. In this research, the five-gene phylogenetic tree was rebuilt 
with four clades of Ophiocordyceps (the clade of Hirsutella, the clade of O. ravenelii, the 
clade of O. sobolifera, and the clade of O. sphecocephala,) and six subclades of Hirsutella 
clade (the subclade of H. citriformis, the subclade of H. guyana, the subclade of H. 
nodulosa, the subclade of H. sinensis, the subclade of H. thompsonii, and the subclade of 
Hirsutella ant pathogen), and the results were similar to the analyses by Sanjuan et al. 
(2015), Simmons et al. (2015), and Wang et al. (2018). O. nujiangensis was grouped 
phylogenetically with O. karstii, O. liangshanensis, and O. sinensis. Nevertheless, there 
was an obvious distinction between them in their morphological characteristics, espe-
cially in the length of the stromata. However, further comparisons were difficult due to 
the lack of anamorph observation of O. karstii. In the phylogenetic analyses of nuclear 
genes, the three specimens of O. nujiangensis united to form a single clade, and the 
result of phylogenetic analysis was consistent with that based on mitochondrial genes. 
Not only that, metagenomic data of O. karstii and O. liangshanensis had not been re-
ported, and the differences between the allied species could not be discriminated.

A total of five fungal phyla and 151 fungal genera were identified in this study. 
Among them, Ascomycota and the unclassified were the dominant phylum and genus. 
Except for the dominant, Trichothecium and Microdochium also had high proportions at 
the genus level. The genus, Trichothecium, was a heterogonous group of filamentous fun-
gi; some species were pathogenic fungi (Summerbell et al. 2011; Han et al. 2021). Mi-
crodochium was a common cereal pathogen fungus that adapted nicely to the cool (Parry 
et al. 1995; Gagkaeva et al. 2020). Some companion fungi had been confirmed that had 
vital functions (Guo et al. 2002; Li et al. 2018). The growth and development of the host 
were mostly due to the combined effect of the microbial adding peptone and yeast com-
munity (Han et al. 2019; Xie et al. 2021). Thus, the genera might have had an essential 
influence on the growth and development of O. nujiangensis. Furthermore, a comparison 
of the fungal communities of O. sinensis and O. nujiangensis showed that they had differ-
ent community compositions. However, Trichothecium and Microdochium could not be 
found among the top 19 genera in fungal communities of O. sinensis reported (Xia et al. 
2016). Consequently, the differences in the microbial community composition of closely 
related species might be suitable as further evidence for identifying species.

The phylogenetic analysis of mitochondrial genes became an adequate means to 
delimit fungal species, except for morphological observation and the five-gene phylo-
genetic tree (Nie et al. 2019; Meng et al. 2020). Similar topologies were obtained by 
utilizing 14 PCGs, PCGs + rRNA, or mitochondrial whole genomes (Hu et al. 2021). 
It was illustrated that the stable phylogenetic trees could be reconstructed using the 
phylogenetic analysis of mitochondrial genes. In the present research, the phylogenetic 
tree of Hypocreales was rebuilt, which was similar to the report by Chen et al. (2021). 
It had been shown that the phylogenetic trees with mitochondrial genes were reliable.

The characteristic differences between the new species and other species could be dis-
tinguished through the morphology data, and the phylogenetic location of the new species 
could be determined by the phylogeny and mitogenomics data. It was attempted to further 
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study the companion fungi of the new species, but the available data on the species and 
their phylogenetic relationship were considerably lacking. Metagenomics provided more 
comprehensive genetic information about microorganisms and the microorganisms with 
which they associated (Venter et al. 2004; Truong et al. 2017; Huang and Wang 2020). 
Therefore, the method might be an efficient avenue for reconstructing the “Tree of Life”.
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Abstract
During a survey of soil fungi collected from Yunnan Province, China, two new species of Exophiala, 
E. yunnanensis and E. yuxiensis, were isolated from the soil of karst rocky desertification (KRD). The DNA 
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genetically closely related E. nagquensis and E. brunnea by its smaller aseptate conidia. Exophiala yuxiensis 
is phylogenetically related to E. lecanii-corni, E. lavatrina and E. mali, but can be distinguished from 
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Introduction

Exophiala J.W. Carmich. (Chaetothyriales, Herpotrichiellaceae) was established with 
E. salmonis J.W. Carmich. as type species (Carmichael 1966) in Alberta, Canada. Due 
to their yeast-like melanised colonies, these fungi are often also referred to as “black 
yeasts” (Matsumoto et al. 1987). The genus is characterised by annellidic conidiog-
enous cells producing slimy heads of conidia, conidiophores upright or bent, not or 
irregularly branched, smooth, light olive to brown. However, there are several synana-
morphs recorded in this genus (Thitla et al. 2022). Nearly all species are recognisable 
within the order by the way they produce cells by budding (De Hoog et al. 2011).

Exophiala spp. are widely distributed and can be isolated from bulk soil, biologi-
cal crusts, rock surfaces, air, natural water masses, rhizosphere, plant tissues, and in-
fected animals and human tissue (Addy et al. 2005; Bates et al. 2006; Neubert et 
al. 2006; Bukovská et al. 2010; Julou et al. 2010; De Hoog et al. 2011). Most stud-
ies on Exophiala species focused on their importance as etiologic agents of disease in 
animals and humans (Zeng and De Hoog 2008; Najafzadeh et al. 2013; Wen et al. 
2016). Several Exophiala species are opportunistic pathogens of immunocompetent 
humans (Woo et al. 2013; Yong et al. 2015), in rare occasions causing nervous sys-
tem phaeohyphomycosis (Chang et al. 2000) or causing cutaneous and subcutaneous 
skin infections, including E. spinifera (H.S. Nielsen & Conant) Mcginnis, which has 
the strongest pathogenicity to human skin (Vitale and De Hoog 2002). Furthermore, 
some Exophiala species, such as E. salmonis, E. aquamarina de Hoog et al. and E. equina 
(Pollacci) de Hoog et al. may cause cutaneous or disseminated infections of cold-blood-
ed animals (De Hoog et al. 2011). Therefore, the classification and identification of 
this genus are significantly important for clinical diagnosis, treatment and prevention.

In the past, taxonomic and diagnostic schemes for Exophiala were morphological 
characteristics, but the anamorphic states of some species are highly pleomorphic (De 
Hoog et al. 1995; Haase et al. 1995; Thitla et al. 2022), which make them difficult to 
be recognised and circumscribed (Naveau 1999; Zeng and De Hoog 2008), so only a 
small number of Exophiala species are, in fact, recognisable using morphology. With 
the development of molecular systematics, more and more species were redefined, re-
designated or described mainly depending on genetic, morphological, physiological 
and ecological features (Haase et al. 1999; De Hoog et al. 2003; Vitale et al. 2003; De 
Hoog et al. 2006). At present, 80 names in Exophiala were recorded in Index Fungo-
rum, amongst them E. nigra (Issatsch.) Haase & de Hoog, E. placitae Crous & Sum-
merell, E. prototropha (Bulanov & Malama) Haase et al. and E. werneckii (Horta) Arx, 
have been moved to Nadsoniella Issatsch., Neophaeococcomyces Crous & M.J. Wingf., 
Pullularia Berkhout and Hortaea Nishim. & Miyaji, respectively. Currently, 68 species 
have been accepted into this genus after a brief review of Thitla et al. (2022) and Crous 
et al. (2022), who described new species from Thailand and Australia.

During a survey of fungi from rocky desertification area, two unknown fungi were 
found. Based on morphology and phylogenetic analysis combined ITS, SSU, LSU and 
tub2, we proposed two new species, E. yunnanensis and E. yuxiensis.
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Materials and methods

Isolation and morphological characterisation of strains

Soil samples were collected from Yiliang and Yuxi in Yunnan Province, southwest Chi-
na. Samples were placed in plastic bags, labelled and transported to the laboratory. All 
the samples were stored at 4 °C before further processing. Fungal strains were obtained 
by serial dilutions (1,000 to 1,000,000 fold) and spread on to the surface of Rose Ben-
gal agar with antibiotics (40 mg streptomycin, 30 mg ampicillin per litre) added in a 
9 cm diam. Petri dish, followed by incubation at 25 °C for 5 days (Zheng et al. 2021a). 
Representative colonies were picked up with a sterilised needle and transferred to potato 
dextrose agar (PDA, 200 g potato, 20 g dextrose, 18 g agar, 1000 ml distilled water). 
After 7 days, colonies were transferred to cornmeal agar (CMA, 20 g cornmeal, 18 g 
agar, 1000 ml distilled water). Characteristics of colonies, growth rate and other mor-
phological aspects from PDA were observed after 10 days. Microscopic characteristics 
including mycelium, 10 conidiophores and 30 conidia were examined and measured af-
ter 7 days on CMA using an Olympus BX51 microscope. Pure cultures were deposited 
in the Herbarium of the Laboratory for Conservation and Utilization of Bio-Resources, 
Yunnan University, Kunming, Yunnan, P.R. China (YMF, formerly Key Laboratory 
of Industrial Microbiology and Fermentation Technology of Yunnan), China General 
Microbiological Culture Collection Center (CGMCC), the Guangdong Microbial Cul-
ture Collection Center (GDMCC) and Japan Collection of Microorganisms (JCM).

DNA extraction, PCR amplification and sequencing

Total DNA was extracted following the protocol of Zheng et al. (2021b). The internal 
transcribed spacer (ITS), the large subunit nuclear ribosomal RNA (LSU rRNA), the par-
tial small subunit (SSU) and the β-tubulin (tub2) were amplified using the primer pairs 
ITS1/ITS4 (White 1990), LR0R/LR5 (Vilgalys and Hester 1990), NSSU131/NS24 
(Kauff and Lutzoni 2002) and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The 
PCR amplifications were conducted in 25 µl final volumes which consisted of 1.0 µl 
DNA template, 1.0 µl of each forward and reverse primers, 12.5 µl 2 × Master Mix and 
9.5 µl ddH2O. The PCR reaction cycles were as follows: initial denaturation at 94 °C for 
5 min; followed by 35 cycles of denaturation at 94 °C for 40 s; the annealing extension 
dependent on the amplified loci (48 °C for LSU, 54 °C for ITS, 51 °C for SSU and 58 °C 
for tub2) for 1 min and extension at 72 °C for 2 min; a final extension at 72 °C for 10 min. 
PCR products were sequenced by TSINGKE Biological Technology in Kunming, China.

Sequence alignment and phylogenetic analysis

Preliminary BLAST searches with ITS, LSU, SSU and tub2 gene sequences of the new 
isolates against NCBI databases had identified species closely related to our two iso-
lates. Based on this information, ITS, LSU, SSU and tub2 sequences of 62 strains were 



Ruili Lv et al.  /  MycoKeys 94: 109–124 (2022)112

downloaded and used in the phylogenetic analysis with Cyphellophora oxyspora (CBS 
698.73) as outgroup. The GenBank accession numbers of sequences used in the phylo-
genetic analysis are shown in Table 1. DNA sequence data were aligned using ClustalX 
1.83 (Thompson et al. 1997) with default parameters. Aligned sequences of multiple 
loci were concatenated and manually adjusted through BioEdit version v. 7.0.4.1 (Hall 
1999) and ambiguously aligned regions were excluded. The combined sequence was 
converted to a NEXUS file using MEGA6 (Tamura et al. 2013) and it was uploaded 
to TreeBASE (www.treebase.org; accession number: S29757).

Phylogenetic analyses were conducted using both the Bayesian Inference (BI) and 
Maximum Likelihood (ML) methods. Bayesian Inference analysis was conducted using 
MrBayes v.3.2 (Ronquist et al. 2012) with the NEXUS file. The following parameters 
were used: ngen = 1,000,000; samplefr = 1,000; printfr = 1,000. The Akaike Informa-
tion Criterion (AIC) implemented in jModelTest version 2.0 (Posada 2008) was used to 
select the best fit models after likelihood score calculations were done. TPM1uf + I + G 
was estimated as the best-fit model under the output strategy of AIC. Two independent 
analyses with four chains each (one cold and three heated) were run until stationary 
distribution was achieved. The initial 25% of the generations of MCMC sampling 
were excluded as burn-in. The refinement of the phylogenetic tree was used for estimat-
ing Bayesian Inference posterior probability (BIPP) values. The ML trees, based on 
four gene loci, were constructed with the GTR+GAMMA model using RAxML ver-
sion 7.2.6 (Stamatakis 2006) and the robustness of branches was assessed by bootstrap 
analysis with 1000 replicates. The tree was viewed in TreeView 1.6.6 (Page 1996) with 
Maximum Likelihood bootstrap proportions (MLBP) greater than 50% and Bayesian 
Inference posterior probabilities (BIPP) greater than 70%, as shown at the nodes.

Results

Molecular phylogeny

The Bayesian tree, based on ITS sequence data, confirmed that two strains were distinct 
from known species of Exophiala (Fig. 1), Exophiala yunnanensis is phylogenetically 
close to E. nagquensis CGMCC 3.17284 and ITS similarity between E. yunnanensis 
and E. nagquensis is 92.21%. Exophiala yuxiensis is phylogenetically related to E. lecanii-
corni CBS 123.33, E. mali CBS 146791 and E. lavatrina NCPF 7893 and the similari-
ties between the holotype of E. yuxiensis and the representative strains of three species 
are 90.27%, 89.86% and 85.08%, respectively.

In the combined phylogenetic analyses (ITS, LSU, SSU and tub2), which con-
tained 2218 characters, a similar topological structure was observed between the two 
phylogenetic trees constructed by BI and ML. The support values with BI analy-
sis are relatively higher than the ML bootstrap support values (Fig. 2) In this tree, 
E. yunnanensis, E. nagquensis W. Sun et al., E. brunnea Papendorf and E. frigidotolerans 
Rodr.-Andr. et al. formed a clade with high statistical support (BIBP/MLBP = 100/97). 
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Table 1. Species, strains and their corresponding GenBank accession numbers of sequences used for 
phylogenetic analyses. Exophiala strains of the present study were marked in bold. Tex-type cultures; “-” 
The gene fragment representing this strain was not attainable.

Species Strain no. GenBank accession no.
ITS LSU SSU tub2

Exophiala abietophila CBS 145038T MK442581 NG066323 – –
Exophiala alcalophila CBS 520.82T JF747041 AF361051 JN856010 JN112423
Exophiala angulospora CBS 482.92T JF747046 KF155190 JN856011 JN112426
Exophiala aquamarina CBS 119918T JF747054 – JN856012 JN112434
Exophiala asiatica CBS 122847T EU910265 – – –
Exophiala attenuata F10685 KT013095 KT013094 – –
Exophiala bergeri CBS 353.52T EF551462 FJ358240 FJ358308 EF551497
Exophiala bonariae CBS 139957T JX681046 KR781083 – –
Exophiala brunnea CBS 587.66T JF747062 KX712342 JN856013 JN112442
Exophiala campbellii NCPF 2274 LT594703 LT594760 – –
Exophiala cancerae CBS 120420T JF747064 – – JN112444
Exophiala capensis CBS 128771T JF499841 MH876538 – –
Exophiala castellanii CBS 158.58T JF747070 KF928522 JN856014 KF928586
Exophiala cinerea CGMCC 3.18778T MG012695 MG197820 MG012724 MG012745
Exophiala clavispora CGMCC 3.17512 KP347940 MG197829 MG012733 KP347931
Exophiala crusticola CBS 119970T AM048755 KF155180 KF155199 –
Exophiala dermatitidis CBS 207.35T AF050269 KJ930160 – KF928572
Exophiala ellipsoidea CGMCC 3.17348T KP347955 KP347956 KP347965 KP347921
Exophiala embothrii CBS 146560 MW045819 MW045823 – –
Exophiala equina CBS 119.23T JF747094 – JN856017 JN112462
Exophiala eucalypti CBS 142069 KY173411 KY173502 – –
Exophiala eucalyptorum CBS 121638T NR132882 KC455258 KC455302 KC455228
Exophiala exophialae CBS 668.76T AY156973 KX822326 KX822287 EF551499
Exophiala frigidotolerans CBS 146539T LR699566 LR699567 – –
Exophiala halophila CBS 121512T JF747108 – JN856015 JN112473
Exophiala heteromorpha CBS 232.33T MH855419 MH866871 – –
Exophiala hongkongensis CBS 131511 JN625231 – – JN625236
Exophiala italica MFLUCC 16-0245T KY496744 KY496723 KY501114 –
Exophiala jeanselmei CBS 507.90T AY156963 FJ358242 FJ358310 EF551501
Exophiala lacus FMR 3995 KU705830 KU705847 – –
Exophiala lavatrina NCPF 7893 LT594696 LT594755 – –
Exophiala lecanii-corni CBS 123.33T AY857528 FJ358243 FJ358311 –
Exophiala lignicola CBS 144622T MK442582 MK442524 – –
Exophiala macquariensis CBS 144232T MF619956 – – MH297438
Exophiala mali CBS 146791T MW175341 MW175381 – –
Exophiala mansonii CBS 101.67T AF050247 AY004338 X79318 –
Exophiala mesophila CBS 402.95T JF747111 KX712349 JN856016 JN112476
Exophiala moniliae CBS 520.76T KF881967 KJ930162 – –
Exophiala nagquensis CGMCC 3.17284 KP347947 MG197838 MG012742 KP347922
Exophiala nidicola FMR 3889 MG701055 MG701056 – –
Exophiala nigra CBS 535.94T KY115191 KX712353 – –
Exophiala nishimurae CBS 101538T AY163560 KX822327 KX822288 JX482552
Exophiala oligosperma CBS 725.88T AY163551 KF928486 FJ358313 EF551508
Exophiala opportunistica CBS 109811T JF747123 KF928501 – JN112486
Exophiala palmae CMRP 1196T KY680434 KY570929 – KY689829
Exophiala phaeomuriformis CBS 131.88T AJ244259 – – –
Exophiala pisciphila CBS 537.73T NR121269 AF361052 JN856018 JN112493
Exophiala placitae CBS 121716T MH863143 MH874694 – –
Exophiala prostantherae CBS 146794T MW175344 MW175384 – –
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Exophiala yuxiensis is phylogenetically close to E. lecanii-corni (Benedek & G. Specht) 
Haase & de Hoog and the clade formed by these species and six additional ones also 
has high statistical support (BIBP/MLBP = 100/89).

Taxonomy

Exophiala yunnanensis Z.F. Yu & R.L. Lv, sp. nov.
MycoBank No: 842373
Fig. 3

Etymology. yunnanensis, pertaining to Yunnan, a province of southwest China from 
where the type was collected.

Description. Colonies on CMA medium after 7 days with hyphae olive green, 
smooth, septate, thin walled, branched, 1.6–3.0 µm wide. Conidiogenous cells slight-
ly differentiated from simple or branched vegetative hyphae, terminal or intercalary, 
flask-shaped, ovoid to elongate, pale brown, loci at tips and lateral; annellated zones 
inconspicuous or occasionally finely fimbriate, often inserted on intercalary cells. 
Conidia aseptate, ellipsoidal, cylindrical or allantoid, 1–2 guttulate, smooth, brown, 
2.9–4.8 × 1.8–3.3 µm, with a conspicuous scar of approx. 1 µm wide at the base, con-
taining no evident or few small oil drops.

Culture characteristics. Colonies on PDA medium, at 25 °C, were slow-growing, 
mycelium immersed and partly superficial, irregular, umbonate, surface olivaceous-
grey to black. Radial growth rates were 0.8–0.9 mm day-1on PDA. Colonies on CMA 
medium were restricted, mycelium immersed and partly superficial, effuse, cottony, 
reverse olivaceous-buff to olivaceous, reaching 12 mm diam. in 15 days at 25 °C.

Type. China. Yiliang County, Yunnan Province, isolated from soil of rocky deser-
tification area, 24°96'N, 102°66'E, ca. 1886 m elev., Oct 2020, Z.F.Yu, preserved by 
lyophilisation (a metabolically-inactive state) in State Key Laboratory for Conservation 
and Utilization of Bio-Resources in Yunnan (holotype YMFT 1.06739), ex-holotype 
live culture: YMF 1.06739; CGMCC 3.16095; GDMCC 3.725; JCM 39339.

Species Strain no. GenBank accession no.
ITS LSU SSU tub2

Exophiala polymorpha CBS 138920T KP070763 KP070764 – –
Exophiala pseudooligosperma YMF 1.6741 MW616557 MW616559 MW616558 MZ127830
Exophiala psychrophila CBS 191.87T JF747135 – JN856019 JN112497
Exophiala quercina CPC 33408 MT223797 MT223892 – –
Exophiala radicis P2772 KT099203 KT723447 KT723452 KT723462
Exophiala salmonis CBS 157.67T AF050274 AY213702 JN856020 JN112499
Exophiala sideris CBS 121818T HQ452311 – HQ441174 HQ535833
Exophiala spinifera CBS 899.68T AY156976 – – EF551516
Exophiala tremulae CBS 129355T FJ665274 – KT894147 KT894148
Exophiala xenobiotica CBS 128104 MH864829 MH876272 – –
Exophiala yunnanensis YMF1.06739 MZ779226 MZ779229 MZ781222 OM095379
Exephiala yuxiensis YMF1.07354 OL863155 OL863154 OM149370 OL944581
Cyphellophora oxyspora CBS 698.73T KC455249 KC455262 KC455305 KC455232
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Figure 1. Phylogenetic tree generated by Bayesian Inference, based on sequences of the ITS. Cyphellophora 
oxyspora CBS 698.73 serves as outgroup. Bayesian posterior probability over 75 is shown at the nodes. Two 
new species were shown in bold.
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Figure 2. Phylogenetic tree generated by Bayesian analyses combined sequences of ITS, LSU, SSU and 
tub2. Bayesian posterior probability values > 70 (left) and Bootstrap values > 50 (right) are indicated at 
nodes (BIBP/MLBP). Cyphellophora oxyspora CBS 698.73 serves as outgroup.
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Figure 3. Exophiala yunnanensis (YMFT 1.06739, holotype) A colony on PDA after 14 days B colony 
on CMA after 14 days C–G conidiogenous cells H conidia and budding cells. Scale bars: 3.2 cm (A, B); 
10 µm (C–H).
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Exophiala yuxiensis Z.F. Yu & R.L. Lv, sp. nov.
MycoBank No: MB842374
Fig. 4

Etymology. yuxiensis, pertaining to Yuxi, a city of Yunnan Province in China, from 
which the type was collected.

Description. Colonies on CMA medium after 7 days with hyphae pale olivaceous-
green, smooth, irregularly septate, thin-walled, branched, 1.5–3 µm wide, with lateral 
branches originating close to septa. Conidiogenous cells slightly differentiated from 
hyphae, arising from hyphal tips or lateral, terminal or intercalary, variable in shape, 
flask-shaped, ovoid to elongate, clavate, obtuse at the base, tapering towards incon-
spicuous annellate loci, 5.5–10.5 × 3–5 µm; annellated zones inconspicuous or occa-
sionally finely fimbriate, often inserted on intercalary cells of hyphae. Conidia aseptate, 
ellipsoidal to cylindrical, 1–2 (mostly 2) bi-guttulate, smooth, pale olivaceous-green, 
4.5–8 × 3.5–5 µm, without conspicuous scar.

Culture characteristics. Colonies on PDA medium, at 25 °C, were slow-grow-
ing, mycelium immersed and partly superficial, umbonate, dense, powdery or velvety, 
dry, margin irregular, surface olivaceous-grey, reverse olivaceous-black, attaining 1 cm 
diam. in 4 days. Colonies on CMA medium were restricted, mycelium immersed and 
partly superficial, cottony, surface olivaceous-green, some floccose aerial hyphae in the 
centre, front distinct, reverse pale olivaceous-black, reaching 3 cm diam. in 5–7 days.

Type. China. Yuxi City, Yunnan Province, isolated from soil of rocky desertifica-
tion area, 24°44'N, 102°55'E, 1660 m altitude, Jul 2021, Z.F. Yu, preserved by lyoph-
ilisation (a metabolically-inactive state) in State Key Laboratory for Conservation and 
Utilization of Bio-Resources in Yunnan (holotype YMFT 1.07354), ex-holotype live 
culture: YMF 1.07354; CGMCC 3.16094; GDMCC 3.726; JCM 39376).

Discussion

In this study, we propose two new species of Exophiala, based on combined morpho-
logical characteristics and phylogenetic analyses. Exophiala yunnanensis and E. yuxiensis 
are different from their phylogenetically closely-related species. Amongst them, 
E. nagquensis (Sun et al. 2020) and E. brunnea (Papendorf 1969) are distinguished 
from E. yunnanensis by their larger conidia (E. nagquensis: 4.8–10.4 × 2.6–5.0 µm; 
E. brunnea: 4.5–10 µm in length; E. yunnanensis 2.9–4.8 × 1.8–3.3 µm), while 
E. frigidotolerans differs from E. yunnanensis by ellipsoidal to reniform and larger co-
nidia (4.0–7.0 × 2.0–4 .0 µm) (Crous et al. 2020). Additionally, E. yunnanensis resem-
bles E. nagquensis and E. frigidotolerans in the shape of budding cells, but E. yunnanensis 
has smaller budding cells (Maciá-Vicente et al. 2016; Sun et al. 2020).

Exophiala yuxiensis is phylogenetically related to E. lecanii-corni, E. lavatrina Bor-
man et al. and E. mali Crous. Amongst these species, E. mali is the most similar to 
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Figure 4. Exophiala yuxiensis (YMFT 1.07354, holotype) A colony on PDA after 30 days B colony on 
CMA after 30 days C–E conidiogenous cells F conidia and budding cells. Scale bars: 3.2 cm (A, B), 
10 µm (C–F).
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E. yuxiensis by ellipsoidal to cylindrical conidia, but the conidia of E. mali are larger 
(8.0–10.0 × 3.0–5.0 µm vs. 4.5–8.0 × 3.5–5.0 µm) and the hyphae of E. mali are 
constricted at the septa in the terminal region, forming chains of disarticulating co-
nidia (Crous et al. 2020). Exophiala lavatrina can be distinguished from E. yuxiensis by 
smaller conidia (4.5–7 × 2.5–4 µm) (Borman et al. 2017).

The species of Exophiala have a wide distribution, with isolation from diverse sub-
strates, such as plants, fruit juices, shower rooms, seawater, sports drinks, arable soil, 
wood pulp, oil sludge and the decaying shell of babassu coconut (De Hoog et al. 
1994; De Hoog et al. 2006; De Hoog et al. 2011; Feng et al. 2014; Madrid et al. 
2016). Some species were reported as opportunistic pathogens on the superficial skin 
or internal organs in humans and animals. For example, the type species E. salmonis, 
was isolated from cerebral mycetoma of Salmo clarkii Richardson, 1836 (Carmichael 
1966), while isolates of E. equina (Pollacci) de Hoog et al. and E. pisciphila McGinnis 
& Ajello cause disease on cold-blooded animals such as fish, turtles, crabs, sea horses 
and frogs (De Hoog et al. 2011). In addition, some species were frequently isolated as 
endophytes (Addy et al. 2005), although they seldom represent important components 
of endophytic communities.

The present work increased the number of Exophiala species to 70 in the world 
(Crous et al. 2022; Thitla et al. 2022). In China, Yunnan Province has diverse climate 
and vegetation, which provides natural advantages for the study of environmental mi-
crobial diversity. However, further extensive samplings and investigation of fungi are 
necessary to generate a complete knowledge about the biodiversity, distribution, habi-
tats and adaptation mechanisms from Exophiala to environmental stresses.
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