RESEARCH ARTICLE

The insights into the evolutionary history of *Translucidithyrium*: based on a newly-discovered species

Xinhao Li¹, Hai-Xia Wu¹, Jinchen Li¹, Hang Chen¹, Wei Wang¹

I International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China

Corresponding author: Hai-Xia Wu (aileen2008haixia@gmail.com, haixiawu@caf.ac.cn)

Academiceditor:N.Wijayawardene|Received15September2020|Accepted25November2020|Published17December2020

Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of *Translucidithyrium*: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628

Abstract

During the field studies, a *Translucidithyrium*-like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morphological observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus *Translucidithyrium* and it is distinct from other species. Therefore, *Translucidithyrium chinense* **sp. nov.** is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of *Translucidithyrium* and related species indicated the divergence time of existing and new species of *Translucidithyrium* was crown age at 16 (4–33) Mya. Combining the estimated divergence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of *T. chinense* was earlier than *T. thailandicum*. Our findings provided new insights into the species of *Translucidithyrium* about ecological adaptation and speciation in two separate areas.

Keywords

Divergence time, morphological characteristics, new species, Phaeothecoidiellaceae, phylogeny, speciation, taxonomy

Introduction

The sooty blotch and flyspeck fungi are widespread species and commonly occur on the surface of leaves, stems and fruits in tropical and subtropical zones (Yang et al. 2010; Gleason et al. 2011; Hongsanan et al. 2017; Zeng et al. 2018). Although these

fungi do not directly harm host plants, they may affect the economic value of fruit sales ability and reduce photosynthesis in plants (Gleason et al. 2011). Sooty blotch fungi can form dark mycelial mats, whereas flyspeck fungi lack mycelial mats, form shiny and small, black spots (Batzer et al. 2005; Yang et al. 2010; Gleason et al. 2011; Zhang et al. 2015; Singtripop et al. 2016; Hongsanan et al. 2017). However, these fungi are poorly known, because of the difficulty in obtaining the strain which grows slowly (Yang et al. 2010; Hongsanan et al. 2017; Zeng et al. 2018).

Phaeothecoidiellaceae K.D. Hyde & Hongsanan was introduced by Hongsanan et al. (2017) and accommodated three genera *Chaetothyrina*, *Houjia* and *Phaeothecoidiella* in the order Capnodiales. Currently, it includes eight genera: *Chaetothyrina*, *Exopassalora*, *Houjia*, *Nowamyces*, *Phaeothecoidiella*, *Rivilata*, *Sporidesmajora* and *Translucidithyrium* (Hongsanan et al. 2020). Members of Phaeothecoidiellaceae are related to sooty blotch and flyspeck fungi and characterised by thyriothecia with setae, bitunicate asci and 1-septate ascospores (Singtripop et al. 2016; Hongsanan et al. 2017; Zeng et al. 2019; Hongsanan et al. 2020). *Chaetothyrina* is morphologically similar to the family Micropeltidaceae (Reynolds and Gilbert 2005), but is distinguishable by its brown upper wall of ascomata (Wu et al. 2019; Zeng et al. 2019). The genus *Rivilata* is placed in this family on the basis of morphological characters by Doilom et al. (2018). The *Nowamyces* was introduced as a new genus in the new family Nowamycetaceae by Crous et al. (2019) and Hongsanan et al. (2020) placed this genus into Phaeothecoidiellaceae by phylogenetic analysis. Hongsanan et al. (2020) listed *Houjia, Exopassalora, Sporidesmajora* and *Phaeothecoidiella* as asexual genera in Phaeothecoidiellaceae.

Translucidithyrium X.Y. Zeng & K.D. Hyde (2018) was introduced as a monotypic genus in Phaeothecoidiellaceae, which is represented by *T. thailandicum* X.Y. Zeng & K.D. Hyde (2018). It was characterised by epiphytes on the reverse of living leaves, semi-transparent ascomata, globose to subglobose asci and fusiform ascospores with verrucose and appendages. Ascospores germinated on MEA (Malt Extract Agar Medium) within 24 h. The colonies slowly grow on media, white to grey, circular and villiform (Zeng et al. 2018).

Liu et al. (2017) used the molecular clock approach to estimate the divergence time of the order Capnodiales crown age at 151–283 Mya (million years ago). Zeng et al. (2019) estimated the divergence time of the family Phaeothecoidiellaceae crown age at 40–60 Mya. The molecular clock approach for estimating divergence time might be used to predict speciation, historical climate change or other environmental events (Hélène and Arne 2014; Louca and Pennell 2020).

In this study, we collected an extraordinary new species of *Translucidithyrium* in Xishuangbanna, Yunnan Province, China. We described the morphological characteristics and built a phylogenetic tree to determine the classification of the new taxon. We compared and analysed the estimated divergence time of *Translucidithyrium* with the environmental changes around the corresponding time range to propose the evolutional history hypothesis of *Translucidithyrium* distributed in two different regions (China and Thailand).

Methods

Morphological

Fresh living leaves with olivaceous dots were collected at Xishuangbanna, China 21°55'51"N, 101°15'08"E, 540 m alt.) and delivered to the laboratory for observation. According to Wu et al. (2014), the collected samples were processed and examined by microscopes: the photos of ascomata were taken by using a compound stereomicroscope (KEYENCE CORPORATION V.1.10 with camera VH-Z20R). Hand sections were made under a stereomicroscope (OLYMPUS SZ61) and mounted in water and blue cotton and photomicrographs of fungal structures were taken with a compound microscope (Nikon ECLIPSE 80i). The single spore isolation was implemented by the methods of Choi et al. (1999) and Chomnunti et al. (2014). Germinated spores were individually transferred to PDA (Potato Dextrose Agar Medium) and incubated at 26 °C for 48 h. Colony characteristics were observed and measured after 4 weeks at 26 °C. Images used for figures were processed with Adobe Photoshop CC v. 2015.5.0 software (Adobe Systems, USA). The holotype was deposited at the herbarium of IFRD (International Fungal Research & Development Centre; Research Institute of Resource Insects, Kunming), reference number IFRD 9208. The ex-type strain was deposited at IFRDCC, reference number IFRDCC 3000.

DNA isolation, amplification and sequencing

According to the manufacturer's instructions, genomic DNA was extracted from mycelium growing on PDA at room temperature by using the Forensic DNA Kit (OMEGA, USA). The primer pair LR0R and LR5 was used to amplify the large subunit (LSU) rDNA (Vilgalys and Hester 1990). The primer pair ITS5 and ITS4 was used to amplify the internal transcribed spacer (ITS) rDNA (White et al. 1990). The primer pair NS1 and NS4 was used to amplify the partial small subunit (SSU) rDNA (White et al. 1990). The PCR reactions were in accordance with instructions from Golden Mix, Beijing TsingKe Biotech Co. Ltd, Beijing, China: initial denaturation at 98 °C for 2 min, then 30 cycles of 98 °C denaturation for 10 s, 56 °C annealing for 10 s and 72 °C extension for 10 s (ITS and SSU) or 20 s (LSU) and a final extension at 72 °C for 1 min. All PCR products were sequenced by Biomed (Beijing, China).

Sequences alignments and phylogenetic analysis

BioEdit version 7.0.5.3 (Hall 1999) was used to re-assemble sequences generated from forward and reverse primers for obtaining the integrated sequences. Sequences were downloaded from GenBank using data from the publications of Zeng et al.

(2018), Crous et al. (2019), Hongsanan et al. (2020) and Renard et al. (2020) and aligned using BioEdit version 7.0.5.3 (Hall 1999): in addition, sequences were adjusted manually.

Maximum Likelihood (ML) analysis was conducted by using RAxMLGUI v.1.0 (Silvestro and Michalak 2012). Aligned sequences were input into the software and *Dothidea sambuci* was selected as the outgroup taxon. One thousand non-parametric bootstrap iterations were employed with the "ML + rapid bootstrap" tools and "GTR-GAMMA" arithmetic.

For Bayesian analysis, MrModeltest 2.3 (Nylander 2004) was used to estimate the best-fitting model for the combined LSU and ITS genes. Posterior probabilities (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo (MCMC) sampling in MrBayes v.3.2 (Ronquist and Huelsenbeck 2003). Six simultaneous Markov chains were run for 2,000,000 generations; trees were printed every 1,000 generations; trees were sampled every 100 generations. The first 5,000 trees submitted to the burn-in phase and were discarded; the remaining trees were used for calculating posterior probabilities in the majority rule consensus tree (Cai et al. 2006, 2008; Liu et al. 2012).

Fossil calibrations and divergence time estimations

The fossil *Protographum luttrellii* (Renard et al. 2020) was used to calibrate the divergence time of Asterotexiales and Aulographaceae (normal distribution, mean = 119.0, SD = 3.7). The secondary calibration from the family Phaeothecoidiellaceae with a crown age of 58 Mya (normal distribution, mean = 50.0, SD = 6.1) was used (Zeng et al. 2019). The additional secondary calibration of Capnodiales was used, based on the result from Liu et al. (2017) (normal distribution, mean = 217.0, SD = 40.0).

Divergence time analysis was carried out using BEAST v1.8.4 (Drummond et al. 2012). Aligned LSU sequence data were loaded into the BEAUti v1.10.4 for generating an XML file. An uncorrelated relaxed clock model (Drummond et al. 2006) with a lognormal distribution of rates was used for the analysis. We used a Yule Process tree prior (Yule 1925; Gernhard 2008), which assumes a constant speciation rate per lineage and a randomly-generated starting tree. The length of chain was set as 50 million generations and sampling parameters were set at every 5,000 generations in MCMC. Subsequent divergence time analysis was carried out using BEAST v.1.10.4 (Drummond et al. 2012). Tracer v.1.7.1 was used to check the effective sample sizes (ESS) and acceptable values were higher than 200. The .log files and .tree files generated by BEAST were combined in LogCombiner v1.10.4 after removing a proportion of states as burn-in. The Maximum Clade Credibility (MCC) tree was given by obtained data and was estimated in TreeAnnotator v.1.10.4 (Liu et al. 2017; Zeng et al. 2019, 2020; Renard et al. 2020).

The phylogenetic tree and MCC tree were visualized in FigTree v.1.4.3 (Rambaut 2012) and Adobe Illustrator CS6 v. 16.0.0 (Adobe Systems, USA).

No.	Species	Vouncher /strain no.	LSU	ITS
1	Acidomyces acidophilus	MH1085	JQ172741	JQ172741
2	Asterina phenacis	TH 589	GU586217	_
3	Asterotexiaceae sp.	VUL.535	MG844162	-
4	Aulographum sp.	VUL.457	MG844158	_
5	Batcheloromyces proteae	CBS 110696	JF746163	JF746163
6	Baudoinia compniacensis	CBS 123031	GQ852580	_
7	Brunneosphaerella protearum	CPC 16338	GU214397	GU214626
8	Buelliella minimula	Lendemer 42237(NY)	KX244961	-
9	Camarosporula persooniae	CBS 116258	JF770461	JF770449
10	Capnobotryella renispora	CBS 214.90	GU214398	AY220612
11	Capnodium coffeae	CBS 147.52	GU214400	DQ491515
12	Catenulostroma protearum	CPC 15368	GU214402	GU214628
13	Chaetothyrina guttulata	MFLUCC15-1080	KU358917	KX372277
14	Chaetothyrina guttulata	MFLUCC15-1081	KU358914	KX372276
15	Chaetothyrina musarum	MFLUCC 15-0383	KU710171	_
16	Cladosporium herbarum	CBS 121621	KJ564331	EF679363
17	Cladosporium hillianum	CBS 125988	KJ564334	HM148097
18	Cladosporium ramotenellum	CBS 170.54	DQ678057	AY213640
19	Colletogloeum sp.	NY1_3.2F1c	FJ031986	FJ425193
20	Conidiocarpus(Phragmocapnias) betle	MFLUCC 10-0050	JN832605	_
21	Devriesia staurophora	ATCC 200934	KF901963	AF393723
22	Dissoconium aciculare	CBS 204.89	GU214419	AY725520
23	Dothidea sambuci	AFTOL-ID 274	AY544681	DQ491505
24	Dothistroma pini	CBS 121011	JX901821	JX901734
25	Elasticomyces elasticus	CCFEE 5547	KF309991	-
26	Exopassalora zambiae	YHJN13	GQ433631	GQ433628
27	Extremus adstrictus	TRN96	KF310022	_
28	Friedmanniomyces endolithicus	CCFEE 5199	KF310007	JN885547
29	Hispidoconidioma alpinum	L2-1/2	FJ997286	FJ997285
30	Hortaea werneckii	CBS 100496	GU301817	AY128703
31	Houjia yanglingensis	YHJN13	GQ433631	GQ433628
32	Lecanosticta pini	CBS 871.95	GQ852598	-
33	Lembosia albersii	MFLUCC 13-0377	KM386982	_
34	Lembosina sp.	VUL.644	MG844165	-
35	Leptoxyphium cacuminum	MFLUCC 10-0049	JN832602	_
36	Melanodothis caricis	CBS 860.72	GU214431	GU214638
37	Microcyclosporella mali	CPC 16171	GU570545	GU570528
38	Microxyphium citri	CBS 451.66	KF902094	-
39	Morenoina calamicola	MFLUCC 14-1162	NG059779	NR154210
40	Mycosphaerella pneumatophorae	AFTOL-ID 762	KJ176856	-
41	Neodevriesia coryneliae	CPC 23534	KJ869211	KJ869154
42	Neodevriesia hilliana	CPC 15382	GU214414	GU214633
43	Neodevriesia xanthorrhoeae	CBS 128219	HQ599606	HQ599605
44	Neopseudocercosporella capsellae	CBS 127.29	KF251830	KF251326
45	Nowamyces globulus	CBS 144598	MN162196	MN161935
46	Nowamyces piperitae	CBS 143490	MN162200	MN161944
47	Parapenidiella tasmaniensis	CBS 124991	KF901844	KF901522
48	Passalora eucalypti	CBS 111318	KF901938	KF901613
49	Penidiella columbiana	CBS 486.80	EU019274	KF901630
50	Periconiella velutina	CBS 101950	EU041840	EU041783
51	Petrophila incerta	TRN 77	GU323963	-
52	Phaeophleospora eugeniae	CPC 15159	KF902095	KF901742

Table 1. Selected taxa in this study with their corresponding GenBank accession numbers. The newly-generated sequences are shown in bold.

No.	Species	Vouncher /strain no.	LSU	ITS
53	Phaeothecoidea eucalypti	CBS 120831	KF901848	KF901526
54	Phaeothecoidiella illinoisensis	CBS 125223	GU117901	GU117897
55	Phaeothecoidiella missouriensis	CBS 125222	AY598917	AY598878
56	Phloeospora maculans	CBS 115123	GU214670	GU214670
57	Piedraia hortae	CBS 480.64	GU214466	GU214647
58	Piedraia quintanilhae	CBS 327.63	GU214468	_
59	Pseudocercospora vitis	CPC 11595	GU214483	GU269829
60	Pseudoramichloridium henryi	CBS 124775	KF442561	KF442521
61	Pseudotaeniolina globosa	CCFEE 5734	KF310010	KF309976
62	Pseudoveronaea obclavata	CBS 132086	JQ622102	-
63	Racodium rupestre	L346	EU048583	GU067666
64	Racodium rupestre	L424	EU048582	GU067669
65	Ramichloridium apiculatum	CBS 156.59	EU041848	EU041791
66	Ramularia endophylla	CBS 113265	AY490776	AY490763
67	Ramularia pusilla	CBS 124973	KP894141	KP894248
68	Ramulispora sorghi	CBS 110578	GQ852653	-
69	Readeriella mirabilis	CBS 125000	KF251836	KF251332
70	Recurvomyces mirabilis	CBS 119434	GU250372	FJ415477
71	Repetophragma zygopetali	VIC42946	KT732418	
72	Schizothyrium pomi	CBS 486.50	EF134948	EF134948
73	Scolecostigmina mangiferae	CBS 125467	GU253877	GU269870
74	Scorias spongiosa	CBS 325.33	GU214696	GU214696
75	Septoria cytisi	USO 378994	JF700954	JF700932
76	Septoria lysimachiae	CBS 123794	KF251972	KF251468
77	Sonderhenia eucalyptorum	CBS 120220	KF901822	KF901505
78	Sphaerulina myriadea	CBS 124646	JF770468	JF770455
79	Sporidesmajira pennsylvaniensis	CBS 125229	MH874965	MF951287
80	Stenella araguata	CBS 105.75	EU019250	EU019250
81	Teratoramularia kirschneriana	CBS 113093	GU214669	GU214669
82	Teratosphaeria fibrillosa	CBS 1217.07	GU323213	KF901728
83	Toxicocladosporium irritans	CBS 185.58	EU040243	EU040243
84	Toxicocladosporium rubrigenum	CBS 124158	FJ790305	FJ790287
85	Translucidithyrium chinense	IFRDCC 3000	MT659404	MT659671
86	Translucidithyrium thailandicum	MFLUCC 16-0362	MG993048	MG993045
87	Tripospermum myrti	CBS 437.68	GU323216	-
88	Trochophora simplex	CBS 124744	GU253880	GU269872
89	Uwebraunia communis	CBS 114238	EU019267	AY725541
90	Vermiconia foris	CCFEE 5459	GU250390	KF309981
91	Xenoconiothyrium catenatum	CMW 22113	JN712570	JN712502
92	Zasmidium cellare	CBS 146.36	EU041878	EU041821
93	Zygophiala cryptogama	OH4_1A1a	FJ147157	FJ425208
94	Zygophiala tardicrescens	MWA1a	EF164901	AY598856
95	Zygophiala wisconsinensis	OH4_9A1c	FJ147158	FJ425209

Results

Phylogenetic study

The dataset of combined LSU and ITS sequences comprised 1350 characters after alignment. Bayesian Inference, in total, generated 20,001 trees and the average standard deviation of split frequencies reached 0.0096. A total of 15,001 trees were finally used to calculate posterior probabilities. Phylogenetic analysis showed that the new collection clusters with *T. thailandicum* with 100% Maximum Likelihood bootstrap support and 1.00 posterior probabilities (Fig. 1).

Figure 1. The topology shows family relationships of Capnodiales, based on combined LSU and ITS dataset analysis. Bootstrap values of Maximum Likelihood higher than 60% are shown on the left, while values of Bayesian posterior probabilities above 80% are shown on the right. New species is given in bold. Clades of the key species or family are given in bold. The tree is rooted with *Dothidea sambuci* (Dothideaceae, Dothideales).

Taxonomy

Translucidithyrium chinense H. X. Wu & X. H. Li, sp. nov. Index Fungorum number: IF 557843 Facesoffungi number: FoF 09429 Figures 2, 3

Etymology. Refer to the location of species, China.

Holotype. IFRD9208

Description. *Epiphytic* on living leaves, ascomata with papillate. Superficial hyphae absent. **Sexual morph:** *Ascomata* solitary or scattered, 480–870 µm diam. ($\bar{x} = 741$ µm, n = 6), 65–82 µm high ($\bar{x} = 72$ µm, n = 8), olivaceous to brown, slightly semi-transparent under highlighted background, circular to suborbicular, with slightly prominent papilla, membranous, without ostiole (Fig. 2A–C). *Peridium* 8.3–10 µm thick, ($\bar{x} = 9$ µm, n = 11), composed of irregular, meandering, interwoven arranged cells, two layers: from brown to hyaline, outer layer composed of closely-arranged cells, brown; inner layer composed of hyaline, oblong, subdense arranged cells, poorly developed at the base (Fig. 2D–F). *Asci* evenly distributed and parallel arranged in hamathecium (Fig. 2D–F), 65–90 × 51–81 µm ($\bar{x} = 77 \times 60$ µm, n = 10), 8-spored, bitunicate, hyaline, with an ocular chamber, ovoid at immature state, globose to subglobose at mature

Figure 2. *Translucidithyrium chinense* (IFRD 9208, holotype) **A** plant leaves **B** acscoma on leaves surface **C** squash of ascoma at 20 times amplification **D** cross section of ascoma in blue cotton at 20 times amplification **E**, **F** cross section of ascoma in blue cotton at 40 times amplification **G** asci at 100 times amplification **H–K** asci in blue cotton at 100 times amplification **L** ascospore at 100 times amplification **M–P** ascospore in blue cotton at 100 times amplification. Scale bars: 200 μ m (**B**); 100 μ m (**C**, **D**); 50 μ m (**E**, **F**); 20 μ m (**G–K**); 10 μ m (**L–P**). We slightly adjusted the contrast, saturation and hue of images and removed the contaminants around main object in images in PS software without obscuration, erasure or distortion of any information existing in the original document.

Figure 3. Culture of *Translucidithyrium chinense* (IFRDCC3000) **A, B** culture growing on the medium **C, D** the bottom of the medium with culture growing **E, F** the mycelium of culture at 100 times amplification. Scale bars: 10 µm (**E, F**).

state, lacking pedicel, paraphyses absent (Fig. 2G–K). Ascospores 41–65 × 10–13 μ m ($\bar{x} = 50 \times 11 \mu$ m, n = 20), irregularly overlapping, hyaline, ovoid at young state, fusiform with both ends tapered at mature state, 1-septate, constricted at the septum, upper cell a little larger than lower, with guttules at both ends, verrucose (Fig. 2L–P). Asexual morph: Undetermined.

Culture characteristics. Ascospores germinating on MEA at 36 h after sporeisolation, germinating on PDA at 48 h after spore-isolation. Colonies slow growing on MEA and PDA, irregular, villiform, convex, white on surface, yellow to brown at base. After a long period of growth, the pigments produced by culture discolour the medium, roots generate at the bottom (Fig. 3A–D). Culture hyphae hyaline, branched, constricted at the septum, 3 μ m wide (Fig. 3E, F).

Material examined. CHINA, Yunnan Province, Xishuangbanna Dai Autonomous Prefecture, Xishuangbanna Botanical Garden; 21°55'51"N, 101°15'08"E, 540 m alt.; 21 Apr 2019; Haixia Wu and Xinhao Li leg; collected on living leaves of *Alpinia blepharocalyx* (IFRD 9208, holotype), ex-type living culture (IFRDCC 3000).

Notes. This new species is morphologically similar to *Translucidithyrium thailandicum* in having semi-transparent and largish ascomata, globose asci and hyaline ascospores with 1-septate. However, *Translucidithyrium chinense* has a slightly papilla thyriothecium with weaker transmittance and ascospores with guttules at both ends, while *T. thailandicum* has a flattened thyriothecium with higher transmittance and ascospores with appendages at both ends; besides, the size of ascomata and asci of *T. chinense* are slightly larger than those of *T. thailandicum* (795 µm vs. 621 µm; 77 µm vs. 64 µm). The culture characteristics of both species are different: the culture of *T. chinense* grows more slowly, has roots inserting into medium and turn the bottom brown. Phylogenetically, *T. chinense* clusters with *T. thailandicum* as a distinct clade with high support (100% ML / 1.00 PP, Fig. 1).

Divergence times estimates. The Maximum Clade Credibility (MCC) tree was similar to the major lineages in the Bayesian and ML trees. The crown age of

Figure 4. The MCC tree with divergence times estimates of Phaeothecoidiellaceae obtained from a Bayesian approach (BEAST). Numbers at nodes indicate posterior probabilities (pp) for node support; bars correspond to the 95% highest posterior density (HPD) intervals. The key species are given in blue.

Translucidithyrium showed 16 Mya (4–33), which was earlier than the divergence time of most genera in Phaeothecoidiellaceae. The estimated divergence time of Phaeothecoidiellaceae from Zeng et al. (2019) is 58 Mya, which corresponds to our results.

Discussion

Translucidithyrium thailandicum was found in the north of Thailand (Zeng et al. 2018). *Translucidithyrium chinense* was found in the Xishuangbanna Region, southwest of China, which lies on the northern border of a rainforest with rich microfungal resources. The new species is characterised by brown to olivaceous ascomata and slightly semitransparent, subglobose asci without pedicel and fusiform ascospores with verrucose and guttules (Fig. 2). *T. chinense* is introduced as a new species in *Translucidithyrium* by morphological and phylogenetic studies (Figs 1–3).

The ascomata of Translucidithyrium are different from related genera of Phaeothecoidiellaceae: Nowamyces has immersed ascomata, Chaetothyrina has ascomata with setae and *Rivilata* has subcuticular ascomata (Singtripop et al. 2016; Doilom et al. 2018; Zeng et al. 2018; Crous et al. 2019; Hongsanan et al. 2020). Translucidithyrium is similar to the family Schizothyriaceae in having semi-transparent ascomata, globose to subglobose asci and hyaline ascospores with guttules. Schizothyriaceae includes Schizothyrium, Plochmopeltis, Hexagonella, Lecideopsella, Mycerema, Kerniomyces, Metathyriella, Myriangiella, Amazonotheca and Vonarxella (Phookamsak et al. 2016; Wijayawardene et al. 2020). The morphology of T. chinense is most similar to Lecideopsella by having globose asci and 1-septate ascospores, but Lecideopsella has a short pedicel at the bottom of the asci (Phookamsak et al. 2016; Zeng et al. 2018). Phylogenetically, Translucidithyrium formed a long clade and clustered within the family Phaeothecoidiellaceae. It indicated the existing certain genetic distance amongst Translucidithyrium, Phaeothecoidiellaceae and Schizothyriaceae. Phaeothecoidiellaceae and Schizothyriaceae are poorly studied families (Batzer et al. 2008; Phookamsak et al. 2016; Singtripop et al. 2016; Hongsanan et al. 2017; Zeng et al. 2018). Therefore, more fresh specimens with molecular data are needed to confirm the classification of Translucidithyrium, Phaeothecoidiellaceae and Schizothyriaceae.

Zuckerkandl and Pauling (1962) suggested that the number of differences amongst amino acids was proportional to species divergence time. We estimated the divergence time using BEAST analysis. The divergence time of *Translucidithyrium* crown age was estimated at 16 Mya (4–33), which was earlier than the crown ages of *Chaetothyrina* at 2 Mya (0–5), the crown ages of *Repetophragma* at 9 Mya (2–20), the crown ages of *Nowamyces* at 7 Mya (1–20) and the crown ages of *Phaeothecoidiella* at 4 Mya (0–14) within Phaeothecoidiellaceae (Fig. 4). The divergence time of *Translucidithyrium* is earlier than other genera in Phaeothecoidiellaceae. We estimate that the long divergence time should affect the genetic variation (Pauling 1964; Hall and Hallgrímsson 2008). Additionally, the evolutionary molecular clock approach confirmed the long clades of *Translucidithyrium* in the phylogenetic tree (Fig. 1).

Historical events amongst different biological groups could then be compared with the dates of plate tectonic movements and paleoecology, according to the corresponding geological time scale (Lomolino et al. 2006; Berbee and Taylor 2010). Through relevant studies on the Qinghai-Tibet Plateau, it was found that the time of intense tectonic uplift and denudation is concentrated in 60–35 Mya, 25–17 Mya, 12–8 Mya and 5 Mya. Global cooling might have an impact on climate change in East Asia, especially at 15 Mya and 8 Mya (Lu et al. 2010). Rising plateaus and global cooling were drying up Asia (Liu 2000; Garzione et al. 2015). The time of the Qinghai-Tibet Plateau uplift and global cooling corresponded to the interval of the species in *Translucidithyrium* divergence time. We predict that the speciation of *T. chinense* was earlier than the speciation of T. thailandicum, as the divergence of Translucidithyrium was related to the Qinghai-Tibet Plateau uplift and global cooling. According to the evolution history of Translucidithyrium, it could be speculated that the speciation of T. chinense was earlier than *T. thailandicum*. With the climate becoming colder and with increased drought, T. chinense migrated from China to Thailand gradually to find a suitable area, then T. thailandicum formed. Due to the end of global cooling, the distribution pattern of Translucidithyrium in two different countries formed. Increasing fresh collections and application of new methodologies may result in modified conclusions.

Acknowledgements

Funds for research were provided by the Grant for Essential Scientific Research of National Nonprofit Institute (no. CAFYBB2019QB005), the Yunnan Province Ten Thousand Plan of Youth Top Talent Project (no. YNWR-QNBJ-2018-267) and the Yunnan Fundamental Research Projects (grant NO. 202001AT070014). The authors are deeply grateful to Prof. K.D. Hyde (Mae Fah Luang University, Thailand, MFU) for editing the English language of the manuscript, to Dr. Xiang-Yu Zeng and Dr. Nawaz Haider for revising this manuscript and to Dr. Rungtiwa Phookamsak for guiding experiment operation.

References

- Batzer JC, Gleason ML, Harrington TC, Tiffany LH (2005) Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97(6): 1268–1286. https://doi.org/10.1080/15572536.2006.11832735
- Batzer JC, Arias MMD, Harrington TC, Gleason ML, Groenewald JZ, Crous PW (2008) Four species of *Zygophiala* (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia 100: 246–258. https://doi.org/10.1080/1557 2536.2008.11832480
- Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi how close are we? Fungal Biology Reviews 24: 1–16. https://doi.org/10.1016/j.fbr.2010.03.001

- Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycological Research 110: 137–150. https://doi. org/10.1016/j.mycres.2005.09.014
- Cai L, Guo XY, Hyde KD (2008) Morphological and molecular characterisation of a new anamorphic genus Cheirosporium, from freshwater in China. Persoonia 20: 53–58. https:// doi.org/10.3767/003158508X314732
- Choi Y, Hyde KD, Ho W (1999) Single spore isolation of fungi. Fungal Diversity 3: 29–38.
- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Alias AS (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5
- Crous PW, Wingfield MJ, Cheewangkoon R, Carnegie AJ, Burgess TI, Summerell BA, Edwards J, Taylor PWJ, Groenewald JZ (2019) Foliar pathogens of eucalypts. Studies in Mycology 94, 125–298. https://doi.org/10.1016/j.simyco.2019.08.001
- Doilom M, Hyde KD, Phookamsak R, Dai DQ, Tang LZ, Hongsanan S, Chomnunti P, Boonmee S, Dayarathne MC, Li WJ, Thambugala KM, Perera RH, Daranagama DA, Norphanphoun C, Konta S, Dong W, Ertz D, Phillips AJL, McKenzie EHC, Vinit K, Ariyawansa HA, Jones EBG, Mortimer PE, Xu JC, Promputtha I (2018) Mycosphere Notes 225–274: types and other specimens of some genera of *Ascomycota*. Mycosphere 9(4): 647–754.
- Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. https://doi.org/10.1371/journal.pbio.0040088
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8): 1969–1973. https://doi. org/10.1093/molbev/mss075
- Garzione CN, Quade J, Decelles PG, English NB (2015) Predicting paleo-elevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth & Planetary Ence Letters 183: 215–229. https://doi.org/10.1016/S0012-821X(00)00252-1
- Gernhard T (2008) The conditioned reconstructed process. Journal of Theoretical Biology 253: 769–778. https://doi.org/10.1016/j.jtbi.2008.04.005
- Gleason ML, Batzer JC, Sun GY, Zhang R, Arias MMD, Sutton TB, Crous PW, Ivanović M, McManus PS, Cooley DR, Mayr U, Weber RWS, Yoder KS, Ponte EMD, Biggs AR, Oertel B (2011) A new view of sooty blotch and flyspeck. Plant Disease 95(4): 368–383. https://doi.org/10.1094/PDIS-08-10-0590
- Hall BK, Hallgrímsson B (2008) Strickberger's evolution. Sudbury, Jones and Bartlett.
- Hall TA (1999) BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Hélène M, Arne M (2014) Phylogenetic approaches for studying diversification. Ecology Letters 17: 508–525. https://doi.org/10.1111/ele.12251
- Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana KWT, Samarakoon MC, Ertz D, Bao DF, Doilom M, Liu JK, PérezOrtega S, Suija A, Senwanna

C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, Norphanphoun C, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-González R, Aptroot A, Kashiwadani H, Harishchandra D, Sérusiaux E, Aluthmuhandiram JVS, Abeywickrama PD, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Suetrong S, Chaiwan N Dayarathne MC, Yang J, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11(1): 1553–2107. https://doi.org/10.5943/mycosphere/11/1/13

- Hongsanan S, Zhao RL, Hyde KD (2017) A new species of *Chaetothyrina* on branches of mango, and introducing Phaeothecoidiellaceae fam. nov. Mycosphere 8: 137–146.
- Liu JK, Hyde KD, Jeewon R, Phillips AJL, Maharachchikumbura SSN, Ryber, M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity 84(1): 75–99. https://doi.org/10.1007/s13225-017-0385-1
- Liu JK, Phookamsak R, Doilom M, Wikee S, Li YM, Ariyawansha H, Boonmee S, Chomnunti P, Dai DQ, Bhat JD, Romero AI, Zhuang WY, Monkai J, Jones EBG, Chukeatirote E, Ko TWK, Zhao YC, Wang Y, Hyde KD (2012) Towards a natural classification of Botryosphaeriales. Fungal Diversity 57: 149–210. https://doi.org/10.1007/s13225-012-0207-4
- Liu X (2000) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography Palaeoclimatology Palaeoecology 183: 223–245. https://doi.org/10.1016/ S0031-0182(01)00488-6
- Lomolino MV, Riddle BR, Whittaker RH, Brown JH (2006) Biogeography. Inc. Publishers, Sunderland.
- Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature 580: 502–505. https://doi.org/10.1038/s41586-020-2176-1
- Lu H, Wang X, Li L (2010) Aeolian sediment evidence that global cooling has driven late cenozoic stepwise aridification in central Asia. Geological Society London Special Publications 342: 29–44. https://doi.org/10.1144/SP342.4
- Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Pauling L (1964) Molecular disease and evolution. Bulletin of the New York Academy of Medicine 40(5): 334–342. https://doi.org/10.1159/000405851
- Phookamsak R, Boonmee S, Norphanphoun C, Wanasinghe D, de Silva N, Dayarathne M, Hongsanan S, Bhat DJ, Hyde KD (2016) Schizothyriaceae. Mycosphere 7: 154–189. https://doi.org/10.5943/mycosphere/7/2/7
- Rambaut A (2012) FigTree version 1.4.0. Computer program and documentation distributed by the author. http://treebioedacuk/software/figtree
- Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https:// doi.org/10.1007/BF02338839
- Renard LL, Stockey RA, Upchurch G, Berbee ML (2020) A new epiphyllous fly-speck fungus from the Early Cretaceous Potomac group of Virginia (125–112 Ma): Protographum luttrellii, gen. et sp. nov. Mycologia 112: 504–518. https://doi.org/10.1080/00275514.202 0.1718441

- Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Australian Systematic Botany 18(3): 265–289. https://doi.org/10.1071/SB04030
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337. https://doi.org/10.1007/s13127-011-0056-0
- Singtripop C, Hongsanun S, Li J, De Silva NI, Phillips AJL, Jones GEB, Bahkali AH, Hyde KD (2016) *Chaetothyrina mangiferae* sp. nov., a new species of *Chaetothyrina*. Phytotaxa 255(1): 21–33. https://doi.org/10.11646/phytotaxa.255.1.2
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990
- von Höhnel FXR (1909) Fragmente zur Mykologie: VIII. Mitteilung (Nr. 354 bis 406). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I. 118: 1157–1246.
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALC, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungi-like taxa. Mycosphere 11(1): 1060-1456. https://doi.org/10.5943/mycosphere/11/1/8

- Wu HX, Chen H, Rong K, Yi CS (2019) Type studies in Micropeltidaceae and suggested transfer of three excluded genera. Nova Hedwigia 108: 517–526. https://doi.org/10.1127/ nova_hedwigia/2019/0517
- Wu HX, Li Y, Ariyawansa HA, Li W, Yang H, Hyde KD (2014) A new species of *Microthy-rium* from Yunnan, China. Phytotaxa 176(1): 213–218. https://doi.org/10.11646/phyto-taxa.176.1.21
- Yang HL, Sun GY, Batzer JC, Crous PW, Groenewald JZ, Gleason ML (2010) Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA. Persoonia 24: 29–37. https://doi.org/10.3767/003158510X492101
- Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis. Philosophical Transactions of the Royal Society B – Biological Sciences 213: 21–87. https://doi.org/10.1098/rstb.1925.0002
- Zeng XY, Hongsanan S, Hyde KD, Putarak C, Wen TC (2018) Translucidithyrium thailandicum gen. et sp. nov.: a new genus in Phaeothecoidiellaceae. Mycological Progress 17: 1087–1096. https://doi.org/10.1007/s11557-018-1419-0
- Zeng XY, Jeewon R, Hongsanan S, Hyde KD, Wen TC (2020) Unravelling evolutionary relationships between epifoliar Meliolaceae and angiosperms. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.12643
- Zeng XY, Wu HX, Hongsanan S, Jeewon R, Wen TC, Maharachchikumbura SSN, Chomnunti P, Hyde KD (2019) Taxonomy and the evolutionary history of Micropeltidaceae. Fungal Diversity 97: 393–436. https://doi.org/10.1007/s13225-019-00431-8
- Zhang M, Gao L, Shang S, Han X, Zhang R, Latinović J, Latinović N, Batzer JC, Gleason ML, Sun GY (2015) New species and record of *Zygophiala* (Capnodiales, Mycosphaerellaceae) on apple from Montenegro. Phytotaxa 195: 227–235. https://doi.org/10.11646/ phytotaxa.195.3.2
- Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: e4. https://doi.org/10.1186/1471-2164-3-4
- Zuckerkandl E, Pauling LB (1962) Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B (Eds) Horizons in Biochemistry. Academic Press, New York, 189–225.

RESEARCH ARTICLE

Phialolunulospora vermispora (Chaetosphaeriaceae, Sordariomycetes), a novel asexual genus and species from freshwater in southern China

Hua Zheng^{1*}, Yake Wan^{1*}, Jie Li¹, Rafael F. Castañeda-Ruiz², Zefen Yu¹

 Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
 Instituto de Investigaciones Fundamentales en Agricultura Tropical "Alejandro de Humboldi" (INIFAT), 17200, La Habana, Cuba

Corresponding author: Zefen Yu (zfyuqm@hotmail.com)

Academic editor: H. Raja | Received 9 August 2020 | Accepted 6 December 2020 | Published 22 December 2020

Citation: Zheng H, Wan Y, Li J, Castañeda-Ruiz RF, Yu Z (2020) *Phialolunulospora vermispora* (Chaetosphaeriaceae, Sordariomycetes), a novel asexual genus and species from freshwater in southern China. MycoKeys 76: 17–30. https://doi.org/10.3897/mycokeys.76.57410

Abstract

The asexual taxon *Phialolunulospora vermispora* gen. et sp. nov., collected from submerged dicotyledonous leaves in Hainan, China, is described and illustrated herein. *Phialolunulospora* gen. nov. is characterized by macronematous, semimacronematous, septate and pigmented conidiophores and acrogenous, long lunate, vermiform to sigmoid, hyaline conidia with an eccentric basal appendage. Complete sequences of internal transcribed spacer (ITS) and partial sequences of nuclear large subunits ribosomal DNA (LSU) genes are provided. Phylogenetic analyses of combined ITS and LSU sequences revealed its placement in the Chaetosphaeriaceae. The new fungus is compared with morphologically similar genera.

Keywords

Biodiversity, Chaetosphaeriales, phylogeny, taxonomy

Introduction

China is considered an important Asian reservoir of biodiversity. The southern area of China ranks 34th in biodiversity hotspots (Myers et al. 2000; Williams et al. 2001).

^{*} These authors contributed equally to this work.

Copyright Hua Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Hainan Island, located in the south of China, harbors an incredibly high diversity of fungi. Its humid, subtropical climate, with an average annual temperature of 22 to 27 °C and an average annual precipitation of 1000–2600 mm, favors development of fungi. Our group has conducted investigations of freshwater fungi to increase knowledge of this important ecological group in China (Qiao et al. 2017a, b, 2018a, b, 2019a, b, 2020).

During our present investigation of freshwater fungi in Hainan Island, South China, an interesting species was collected on dead leaves of an unidentified dicotyledonous tree. This species is characterized by unbranched and septate conidiophores, phialidic conidiogenous cells and vermiform to sigmoid and aseptate conidia with an eccentric basal appendage. Based on preliminary analysis of morphological data, we place this unknown fungus in Chaetosphaeriaceae, but a literature search found that it did not belong to any known genus. To further confirm the position of the species, phylogenetic analyses with related taxa within Chaetosphaeriaceae were carried out based on complete sequences of internal transcribed spacer (ITS) and partial sequences of nuclear large subunits ribosomal DNA (LSU) genes.

Materials and methods

Isolation and morphological study

Submerged dicotyledonous leaves were collected from Limu Mountain Nature Reserve in Hainan Province. Samples were preserved in zip-lock plastic bags, labelled, and transported to the laboratory. The decomposed leaves were cut into several 2–4 × 2–4 cm sized fragments and then spread on to the surface of corn meal agar (CMA, 20 g cornmeal, 18 g agar, 40 mg streptomycin, 30 mg ampicillin, 1000 ml distilled water) medium for 10 days; single conidium was isolated with a sterilized needle and transferred to CMA plates while viewing with an Olympus BX51 microscope. The pure strain was further transferred to potato dextrose agar (PDA, 200 g potato, 20 g dextrose, 18 g agar, 40 mg streptomycin, 30 mg ampicillin, 1000 ml distilled water) medium. Colony morphology and microscopic characteristics were examined, and photographs were taken with an Olympus BX51 microscope connected to a DP controller digital camera. Measurement data were based on 30 random conidia and 10 conidiophores.

Pure cultures were deposited in the Herbarium of the Laboratory for Conservation and Utilization of Bio resources, Yunnan University, Kunming, Yunnan, China (**YMF**, formerly Key Laboratory of Industrial Microbiology and Fermentation Technology of Yunnan) and at the China General Microbiological Culture Collection Center (**CGMCC**).

DNA extraction, PCR amplification, and sequencing

Pure cultures were grown on PDA medium for 5 days at 25 °C. Actively growing mycelium was scraped off from the surface of the culture and transferred to 2 ml Eppendorf micro-centrifuge tubes. Total genomic DNA was extracted according to the procedures in Turner et al. (1997). Primers used for PCR amplification and sequencing of the nuclear large subunits ribosomal DNA (LSU) and the internal transcribed spacer (ITS) were LROR-LR7 and ITS1-ITS4, respectively (Vilgalys and Hester 1990; White et al. 1990). PCR products were purified and stored at -20 °C until sequencing. The same pairs of primers were used to obtain sequences, which was performed by Macrogen Europe (Macrogen Inc. Amsterdam, The Netherlands). Finally, the sequences were assembled and edited using SeqMan v. 7.0.0 (DNAStar Lasergene, Madison, WI, USA) to obtain the consensus sequences. The newly obtained sequences were submitted to GenBank nucleotide database (Table 1).

Sequence alignment and phylogenetic analysis

Preliminary BLAST searches with the ITS and LSU sequences of our strain against the GenBank nucleotide database determined the closely related species (Altschul et al. 1990). BLAST search showed that our strain has homology to species in Chaetosphaeriaceae. Based on this information, related sequences of the two marker loci, which include 72 representatives belonging to Chaetosphaeriaceae, 4 representatives of Helminthosphaeriaceae, 2 representatives of Linocarpaceae and 2 representatives of Leptosporellaceae, were downloaded according to recent studies (Yang et al. 2016, 2018; Wei et al. 2018; Lin et al. 2019). Sordaria fimicola (Roberge ex Desm.) Ces. & De Not, Gelasinospora tetrasperma Dowding and Lasiosphaeria ovina (Pers.) Ces. & De Not were used as the outgroup. These, together with the newly generated sequences, were aligned with ClustalX 1.83 (Thompson et al. 1997) with default parameters, and the consensus sequences were manually adjusted and linked through BioEdit v.7.0 (Hall 1999). Manual gap adjustments were done to improve the alignment and ambiguously aligned regions were excluded. Then, the combined alignment was converted to a NEXUS file using the program MEGA6 (Tamura et al. 2013) and a PHY files using the program ClustalX 1.83. The resulting combined sequence matrix included 1475 nucleotide positions (with alignment gaps) from two regions (607 from ITS, 868 from LSU). GenBank accession numbers of downloaded sequences are given in Table 1.

Maximum-likelihood (ML) analysis was computed with RAxML (Stamatakis 2006) with the PHY files generated with CLUSTAL_X version 1.83, using the GTR-GAMMA model. ML bootstrap proportions (MLBPs) were computed with 1000 replicates. Bayesian inference (BI) analysis was conducted with MrBayes version 3.2.2 (Ronquist and Huelsenbeck 2003). The Akaike information criterion (AIC) implemented in jModelTest version 2.0 was used to select the best fit models after likelihood score calculations were done (Posada 2008). The base tree for likelihood calculations was ML-optimized. HKY+I+G was estimated as the best-fit model under the output strategy of the AIC. Metropolis-coupled Markov chain Monte Carlo (MCM-CMC) searches were run for 5 000 000 generations, sampling every 500th generation.

Table I. List of strains analyzed in this study, with GenBank accession numbers.

Adautomilanezia caesalpiniaeLAMIC 010212NR_153560NG_058594Anacacumisporium appendiculatumHMAS 245593 ^T KT001555KT001553Anacacumisporium appendiculatumHMAS 245602KT001555KT001554Bahusurabeeja dwayaCBS 261.77 ^T MH861059MH872829Brunneodinemasporium basilienseCBS 112007 ^T JQ889272JQ889288Brunneodinemasporium jonesiiGZCC 16-0050 ^T KY026058KY026055Cacumisporium capitulatumFMR 11339HF677176HF677190Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131 ^T MH863180MH874226Chaetosphaeria ciliataICMP 18253-GU180637Choridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale bamulataMFLUCC 180098-MG386756Cryptophialoidea fasciculataMFLUCC 180098-MG386756Derdyophoma cytisporialeCBS 23.95 ^T JQ889280JQ889289Dictyochaeta alignicalMFLUCC 180098-MG386756CryptophialoideaMFLUCC 18098-MG386756Derdyophoma cytisporialesCBS 23.95 ^T JQ889273JQ889289Dictyochaeta asamicaCBS 23.95 ^T JQ889273JQ889280Dictyochaeta asamica<	Species	Strain	ITS	LSU
Anacacumisporium appendiculatum HMAS 245593^{T} KT001555 KT001554 Anacacumisporium appendiculatum HMAS 245602 KT001556 KT001554 Bahuurnabecja dwaya CBS 261.77^{T} MH861059 MH872829 Brunneodinemasporium basiliense CBS 112007^{T} JQ889272 JQ889288 Brunneodinemasporium jonesii GZCC $16-0050^{T}$ KY026058 KY026055 Cacumisporium capitulatum FMR 11339 HF677176 HF677190 Caumisporium capitulatum SMH 3766 - AY017374 Calvolachnella guaviyunis CBS 12405^{T} MH863180 MH874726 Chaetosphaeria ciliata ICMP 18253 - GU180637 Chloridium sp. FMR 11940 KY853435 KY853495 Chloridium sp. GBS 143419^{T} NR_15389 NG_058902 Conicomyces puedotransvaalensis HHUF 29956 ^T NR_138015 LC001708 Cryptophiale hamulata MFLUCC 180028 - MG386756 Cryptophialoidea faicculata MFLUCC 18022 MH758195 MH758208 Dictryochaeta	Adautomilanezia caesalpiniae	LAMIC 010212	NR_153560	NG_058594
Anacacumisporium appendiculatumHMAS 245602KT001556KT001554Bahusutrabeeja dwayaCBS 261.77 ^T MH861059MH872829Brunneodinemasporium basilienseCBS 11200 ^{TT} JQ889272JQ88928Brunneodinemasporium jonesiiGZCC 16-0050 ^T KY026058KY026055Cacumisporium capitulatumFMR 11339HF677176HF6771700Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131 ^T MH863180MH874726Chaetosphaeria ciliataICMP 18253-GU180637Chloridium cholorooniumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_05902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_137943NG_058902Corjotophiale damulataMFLUCC 180098-MG386756Cryptophiale bamulataMFLUCC 181574 ^T MK828628MK835828Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835830Dictyochaeta ellipsoideaDLUCC 0899 ^T MK828630MK835830Dictyochaeta ellipsoideaCBS 122.66 ^T JQ89226JQ89296Dinemasporium norbidumCBS 129.66 ^T JQ89280JQ89296Dictyochaeta ellipsoideaSMH 4791-AY436403Licadyptostroma eucalyptoCBS 142074 ^T NR_15027NG_059109Echinosphaeria cancee	Anacacumisporium appendiculatum	HMAS 245593 ^T	KT001555	KT001553
BabusurberiaCBS 261.77^{T} MH861059MH872829Brunneodinemasporium brasilienseCBS 112007^{T} JQ889272JQ889288Brunneodinemasporium jonesiiGZCC $16-0050^{T}$ KY026058KY026055Cacumisporium capitulatumFMR 11339 HF677176HF677190Cacumisporium capitulatumSMH 3766 -AY017374Calvolachnella guaviyunisCBS 134695 NR_ 153892 NG_058879Chaetosphaeria ciliataCBS 122131^{T} MH863180MH874726Chaetosphaeria ciliataICMP 18253 -GU180637Chloridium chloroconiumFMR 11940 KY853435KY853495Chloridium sp.HGUP 1806 MK372070MK372068Codinaea lambertiaeCBS 134619^{T} NR_ 153898 NG_059002Conicomyce: pseudotransvaalensisHHUCC 180028 -MG386756Cryptophiale hamulataMFLUCC 180422 MH758118MH758211Cryptophiale dagawaeMFLUCC 180422 MH758195MH758211Cryptophiale indiguaveCBS 223.95^{T} JQ889273JQ889289Dictyochaeta ellipsioideaMFLUCC 181574^{T} MK828630MK835828Dictyochaeta ellipsioideaCBS 142.95^{T} JQ889280JQ889296Dictyochaeta ellipsioideaCBS 142.95^{T} JQ889280JQ889296Dictyochaeta ellipsioideaCBS 142.074^{T} NR_ 137786 NG_059109Echinosphaeria cancerensSMH 4791-AY436403Euchyptostroma eucalyptiCBS 142074^{T} NR_ 159834	Anacacumisporium appendiculatum	HMAS 245602	KT001556	KT001554
Brunneodinemasporium brasilienseCBS 112007 ^T JQ889272JQ889288Brunneodinemasporium jonesiiGZCC 16-0050 ^T KY026058KY026055Cacumisporium capitulatumFMR 11339HF677176HF677190Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria cilitatCBS 12131 ^T MH861800MH874726Chaetosphaeria cilitatICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 134819 ^T NR_156389NG_059053Codinaea liniCBS 138867 ^T NR_137943NG_058020Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophiale udagawaeMFLUCC 180422MH758195MH758218Dictyochaeta ellipsicideaMFLUCC 180422MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsicideaMFLUCC 0899 ^T MK828630MK835828Dictyochaeta ellipsicideaCBS 516.95 ^T NR_137786AF178556Dinemasporium morbidumCBS 129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 1420.74 ^T NR_157834MH327838Exerticidawa usiformisCMH 450-AY35846	Bahusutrabeeja dwaya	CBS 261.77 ^T	MH861059	MH872829
Brunneodinemasporium jonesiiGZCC 16-0050TKV026058KY026055Cacumisporium capitulatumFMR 11339HF677176HF677190Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131TMH863180MH874726Cheotosphaeria ciliataICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419TNR_156389NG_059023Codinaea lambertiaeCBS 138866TNR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956TNR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale udagavaeMFLUCC 172119MH758195MH758211Cryptophiale udagavaeCBS 223.95TJQ89273JQ89289Dictyochaeta ellipsioideaDLUCC 0899TMK828630MK835828Dictyochaeta alignicolaDLUCC 0899TMK828630MK835830Dictyochaeta asamicaCBS 593.93AF178556AF178556Dinemasporium norbidumCBS 129.66TJQ889280JQ889296Dinemasporium norbidumCBS 129.66TJQ889280JQ889296Dieneasporium norbidumCBS 142074TNR_154027NG_059257Eucalyptostroma eucalyptiCBS 142074TNR_154027NG_059257Eucalyptostroma eucalyptiCBS 142074TNR_159	Brunneodinemasporium brasiliense	CBS 112007 ^T	JQ889272	JQ889288
Cacumisporium capitulatumFMR 11339HF677176HF677190Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131TMH863180MH874726Chaetosphaeria ciliataICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419TNR_156389NG_059053Codinaea lambertiaeCBS 138866TNR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956TNR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophiale idagawaeMFLUCC 180422MH758198MH758208Dendrophoma cytisporoidesCBS 223.95TJQ889273JQ889289Dictyochaeta lignicolaDLUCC 0899TMK828630MK835830Dictyochaeta lagnicolaCBS 129.66TJQ889280JQ889296Dictyochaeta asamicaCBS 516.95TNR_137786NG_059109Echinosphaeria morbidumCBS 516.95TNR_137786NG_059109Echinosphaeria morbidumCBS 1420.64TNR_13786NG_059277Eucalyptostroma eucalyptiCBS 142074TNR_154027NG_059277Eucalyptostroma eucalyptiCBS 142074TNR_154027NG_059277Eucalyptostroma eucalyptorumCPG 11800T<	Brunneodinemasporium jonesii	GZCC 16-0050T	KY026058	KY026055
Cacumisporium capitulatumSMH 3766-AY017374Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131 ^T MH863180MH874726Chaetosphaeria ciliataICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059023Codinaea lambertiaeCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180422MH758198MH758211Cryptophiale idagawaeMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta samicaCBS 516.95 ^T JQ889280JQ889296Dinemasporium morbidumCBS 129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 129.66 ^T NR_154027NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptorumCPG 15180 ^T NR_154027NG_059257Eucalyptostroma eucalyptorumCPG 31400 ^T NR_154027NG_059257Eucalyptostroma eucalyptorumCPG 31800 ^T NR_154027NG_059257Eucalyptostroma eucalyptor	Cacumisporium capitulatum	FMR 11339	HF677176	HF677190
Calvolachnella guaviyunisCBS 134695NR_153892NG_058879Chaetosphaeria ciliataCBS 122131 ^T MH863180MH874726Chaetosphaeria ciliataICMP 18253–GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Codinaea lambertiaeCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098–MG386756Cryptophiale idagawaeMFLUCC 180422MH758198MH758211Cryptophiale idagawaeMFLUCC 181574 ^T MK828628MK835828Dictyochaeta ellipsoideaDLUCC 0899 ^T MK828630MK835830Dictyochaeta signicalaCBS 242.66MH858788MH870426Dictyochaeta signicalaCBS 512.9.6 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canseensSMH 4791–AY436403Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCBS 14207 ^T NR_159834MH327838Exserticlava vasifformisTAMA 450–AB753846	Cacumisporium capitulatum	SMH 3766	-	AY017374
Chaetosphaeria ciliataCBS 122131TMH863180MH874726Chaetosphaeria ciliataICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419TNR_156389NG_059053Codinaea piniCBS 138866TNR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956TNR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale dagauaeMFLUCC 180422MH758198MH758211Cryptophiale dagauaeMFLUCC 180422MH758195MH758208Dendrophoma cytisporoidesCBS 223.95TJQ889273JQ889289Dictyochaeta ligisoideaDLUCC 0899TMK828630MK835830Dictyochaeta ligisoideaCBS 512.9.66TJQ889280JQ889296Dictyochaeta of signytrichoidesCBS 5193.93AF178556AF178556Dinemasporium morbidumCBS 516.95TNR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 142074TNR_154027NG_059257Eucalyptostroma eucalyptiCPC 31800TNR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Calvolachnella guaviyunis	CBS 134695	NR_153892	NG_058879
Chaetosphaeria ciliataICMP 18253-GU180637Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Codinaea piniCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale dagavaeMFLUCC 180422MH758198MH758211Cryptophiale dagavaeMFLUCC 180422MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaDLUCC 0899 ^T MK828630MK835830Dictyochaeta signicalaCBS 5242.66MH858788MH870426Dictyochaeta ossamicaCBS 5193.93AF178556AF178556Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCBS 142074 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Chaetosphaeria ciliata	CBS 122131 ^T	MH863180	MH874726
Chloridium chloroconiumFMR 11940KY853435KY853495Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Codinaea piniCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale dagawaeMFLUCC 180422MH758198MH758211Cryptophiale idagawaeMFLUCC 180422MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaDLUCC 0899 ^T MK828630MK835830Dictyochaeta ignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta of gonytrichoidesCBS 512.9.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Chaetosphaeria ciliata	ICMP 18253	-	GU180637
Chloridium sp.HGUP 1806MK372070MK372068Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Codinaea piniCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale dagawaeMFLUCC 180422MH758198MH758211Cryptophiale idagawaeMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaDLUCC 0899 ^T MK828630MK835830Dictyochaeta ignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta ogenytrichoidesCBS 5129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echnosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Chloridium chloroconium	FMR 11940	KY853435	KY853495
Codinaea lambertiaeCBS 143419 ^T NR_156389NG_059053Codinaea piniCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta saamicaCBS 242.66MH858788MH870426Dictyochaeta polygonumCBS 516.95 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echnosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 112074 ^T NR_154027NG_059257Eucalyptostroma eucalyptiCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Chloridium sp.	HGUP 1806	MK372070	MK372068
Codinaea piniCBS 138866 ^T NR_137943NG_058902Conicomyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta sasamicaCBS 242.66MH858788MH870426Dinemasporium morbidumCBS 129.66 ^T JQ889280JQ889296Dinemasporium polygonumCBS 516.95 ^T NR_137786NG_059109Echnosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Codinaea lambertiae	CBS 143419 ^T	NR_156389	NG_059053
Coniconyces pseudotransvaalensisHHUF 29956 ^T NR_138015LC001708Cryptophiale hamulataMFLUCC 180098-MG386756Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta ilgnicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta sasamicaCBS 242.66MH858788MH870426Dictyochaeta polygonumCBS 5129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptiCBS 142074 ^T NR_154027NG_059257Eucalyptostroma eucalyptorumCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Codinaea pini	CBS 138866 ^T	NR_137943	NG_058902
Cryptophiale hamulataMFLUCC 180098–MG386756Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta assamicaCBS 242.66MH858788MH870426Dictyochaeta sasamicaCBS 129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791–AY436403Eucalyptostroma eucalyptorumCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450–AB753846	Conicomyces pseudotransvaalensis	HHUF 29956 ^T	NR_138015	LC001708
Cryptophiale udagawaeMFLUCC 180422MH758198MH758211Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta assamicaCBS 242.66MH858788MH870426Dictyochaeta sasamicaCBS 129.66 ^T JQ889280JQ889296Dinemasporium morbidumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptorumCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Cryptophiale hamulata	MFLUCC 180098	_	MG386756
Cryptophialoidea fasciculataMFLUCC 172119MH758195MH758208Dendrophoma cytisporoidesCBS 223.95 ^T JQ889273JQ889289Dictyochaeta ellipsoideaMFLUCC 181574 ^T MK828628MK835828Dictyochaeta lignicolaDLUCC 0899 ^T MK828630MK835830Dictyochaeta assamicaCBS 242.66MH858788MH870426Dictyochaetopsis gonytrichoidesCBS 593.93AF178556AF178556Dinemasporium morbidumCBS 129.66 ^T JQ889280JQ889296Dinemasporium polygonumCBS 516.95 ^T NR_137786NG_059109Echinosphaeria canescensSMH 4791-AY436403Eucalyptostroma eucalyptorumCPC 31800 ^T NR_159834MH327838Exserticlava vasiformisTAMA 450-AB753846	Cryptophiale udagawae	MFLUCC 180422	MH758198	MH758211
Dendrophoma cytisporoides CBS 223.95 ^T JQ889273 JQ889289 Dictyochaeta ellipsoidea MFLUCC 181574 ^T MK828628 MK835828 Dictyochaeta ellipsoidea DLUCC 0899 ^T MK828628 MK835830 Dictyochaeta lignicola DLUCC 0899 ^T MK828630 MK835830 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaetopsis gonytrichoides CBS 593.93 AF178556 AF178556 Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalyptoi CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Cryptophialoidea fasciculata	MFLUCC 172119	MH758195	MH758208
Dictyochaeta ellipsoidea MFLUCC 181574 ^T MK828628 MK835828 Dictyochaeta ellipsoidea DLUCC 0899 ^T MK828628 MK835830 Dictyochaeta lignicola DLUCC 0899 ^T MK828630 MK835830 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaetopsis gonytrichoides CBS 593.93 AF178556 AF178556 Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalyptor CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Dendrophoma cytisporoides	CBS 223.95 ^T	JQ889273	JQ889289
Dictyochaeta lignicola DLUCC 0899 ^T MK828630 MK835830 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaetopsis gonytrichoides CBS 593.93 AF178556 AF178556 Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalyptorum CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Dictyochaeta ellipsoidea	MFLUCC 181574 ^T	MK828628	MK835828
Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaeta assamica CBS 242.66 MH858788 MH870426 Dictyochaetopsis gonytrichoides CBS 593.93 AF178556 AF178556 Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 - AY436403 Eucalyptostroma eucalypto CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 - AB753846	Dictyochaeta lignicola	DLUCC 0899 ^T	MK828630	MK835830
Dictyochaetopsis gonytrichoides CBS 593.93 AF178556 AF178556 Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalypto CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Dictyochaeta assamica	CBS 242.66	MH858788	MH870426
Dinemasporium morbidum CBS 129.66 ^T JQ889280 JQ889296 Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 - AY436403 Eucalyptostroma eucalypti CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 - AB753846	Dictyochaetopsis gonytrichoides	CBS 593.93	AF178556	AF178556
Dinemasporium polygonum CBS 516.95 ^T NR_137786 NG_059109 Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalypti CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Dinemasporium morbidum	CBS 129.66 ^T	JQ889280	JQ889296
Echinosphaeria canescens SMH 4791 – AY436403 Eucalyptostroma eucalypti CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 – AB753846	Dinemasporium polygonum	CBS 516.95 ^T	NR 137786	NG 059109
Eucalyptostroma eucalypti CBS 142074 ^T NR_154027 NG_059257 Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 - AB753846	Echinosphaeria canescens	SMH 4791	_	AY436403
Eucalyptostroma eucalyptorum CPC 31800 ^T NR_159834 MH327838 Exserticlava vasiformis TAMA 450 - AB753846	Eucalyptostroma eucalypti	CBS 142074 ^T	NR_154027	NG_059257
Exserticlava vasiformis TAMA 450 – AB753846	Eucalyptostroma eucalyptorum	CPC 31800 ^T	NR_159834	MH327838
	Exserticlava vasiformis	TAMA 450	_	AB753846
Gelasinospora tetrasperma CBS 178.33 NR_077163 DQ470980	Gelasinospora tetrasperma	CBS 178.33	NR_077163	DQ470980
Helminthosphaeria clavariarum SMH 4609 ^T – AY346283	Helminthosphaeria clavariarum	SMH 4609 ^T	_	AY346283
Infundibulomyces cupulata BCC 11929 ^T EF113976 EF113979	Infundibulomyces cupulata	BCC 11929 ^T	EF113976	EF113979
Infundibulomyces oblongisporus BCC 13400 ^T EF113977 EF113980	Infundibulomyces oblongisporus	BCC 13400 ^T	EF113977	EF113980
Kionochaeta castaneae GZCC 18–0025 ^T MN104610 MN104621	Kionochaeta castaneae	GZCC 18-0025 ^T	MN104610	MN104621
Kionochaeta microspora GZCC 18–0036 ^T MN104607 MN104618	Kionochaeta microspora	GZCC 18-0036 ^T	MN104607	MN104618
Lasiosphaeria ovina SMH 4605 AY587923 AY436413	Lasiosphaeria ovina	SMH 4605	AY587923	AY436413
Lecythothecium duriligni CBS 101317 – AF261071	Lecythothecium duriligni	CBS 101317	_	AF261071
<i>Leptosporella arengae</i> MFLUCC 150330 ^T MG272255 MG272246	Leptosporella arengae	MFLUCC 150330 ^T	MG272255	MG272246
Leptosporella gregaria SMH 4290 ^T – AY346290	Leptosporella gregaria	SMH 4290 ^T	_	AY346290
Linocarpon arengae MFLUCC 150331 ^T – MG272247	Linocarpon arengae	MFLUCC 150331 ^T	_	MG272247
<i>Linocarpon cocois</i> MFLUCC 150812 ^T MG272257 MG272248	Linocarpon cocois	MFLUCC 150812 ^T	MG272257	MG272248
Menispora glauca FMR 12089 HF678528 HF678538	Menispora glauca	FMR 12089	HF678528	HF678538
Menispora tortuosa DAOM 231154 KT225527 AY544682	Menispora tortuosa	DAOM 231154	KT225527	AY544682
Menispora tortuosa CBS 214.56 AF178558 AF178558	Menispora tortuosa	CBS 214.56	AF178558	AF178558
Menisporopsis breviseta GZCC 18–0071 ^T MN104612 MN104623	Menisporopsis breviseta	GZCC 18-0071 ^T	MN104612	MN104623
Menisporpsis dushanensis GZCC 18–0084 ^T MN104615 MN104626	Menisporopsis dushanensis	GZCC 18-0084 ^T	MN104615	MN104626
Morisiella indica HKUCC 10827 – DQ408578	Morrisiella indica	HKUCC 10827	_	DQ408578
Multiguttulispora sympodialis MFLUCC 180153 ^T MN104606 MN104617	Multiguttulispora sympodialis	MFLUCC 180153 ^T	MN104606	MN104617
Nawawia filformis MFLUCC 160853 – MH758206	Nawawia filiformis	MFLUCC 160853	_	MH758206
Nawawia filiformis MFLUCC 172394 MH758196 MH758209	Nawawia filiformis	MFLUCC 172394	MH758196	MH758209
Neonawawia malaysiana CBS 125544 ^T GU229886 GU229887	Neonawawia malaysiana	CBS 125544 ^T	GU229886	GU229887
Paliphora intermedia CBS 896.97 ^T NR_160203 NG 057766	Paliphora intermedia	CBS 896.97 ^T	NR_160203	NG_057766
Paliphora intermedia CBS 199.95 – EF204500	Paliphora intermedia	CBS 199.95	_	EF204500
Phaeostalagmus cyclosporus CBS 663.70 MH859892 MH871680	Phaeostalagmus cyclosporus	CBS 663.70	MH859892	MH871680

Species	Strain	ITS	LSU
Phaeostalagmus cyclosporus	CBS 312.75	-	MH872661
Phialolunulospora vermispora	YMF 1.04260 ^T	MK165444	MK165442
Phialosporostilbe scutiformis	MFLUCC 170227 ^T	MH758194	MH758207
Phialosporostilbe scutiformis	MFLUCC 181288	MH758199	MH758212
Pseudodinemasporium fabiforme	MAFF 244361 ^T	AB934068	AB934044
Pseudolachnea fraxini	CBS 113701 ^T	JQ889287	JQ889301
Pseudolachnea hispidula	MAFF 244364	AB934071	AB934047
Pseudolachnella longiciliata	HHUF 29962	AB934081	AB934057
Pseudolachnella yakushimensis	HHUF 29683 [™]	AB934087	AB934063
Pseudolachnella pachyderma	HHUF 29955	AB934085	AB934061
Pyrigemmula aurantiaca	CBS 126743 ^T	HM241692	HM241692
Pyrigemmula aurantiaca	CBS 126744	HM241693	HM241693
Rattania setulifera	GUFCC 15501	GU191794	HM171322
Ruzenia spermoides	SMH 4606	-	AY436422
Sordaria fimicola	CBS 508.50	MH856730	MH868251
Sporoschisma hemipsilum	SMH 2125	-	AF466083
Sporoschisma hemipsilum	SMH 3251	-	AF466084
Stanjehughesia vermiculata	HKUCC 10840	-	DQ408570
Striatosphaeria codinaeaphora	MR 1230	AF178546	AF178546
Striatosphaeria codinaeaphora	SMH 1524	-	AF466088
Synaptospora plumbea	SMH 3962	-	KF765621
Tainosphaeria jonesii	GZCC 16-0053	KY026059	KY026056
Tainosphaeria jonesii	GZCC 16-0065	KY026060	KY026057
Tainosphaeria monophialidica	MFLUCC 180146 ^T	-	MN104616
Thozetella pandanicola	MFLUCC 160253 ^T	MH388366	MH376740
Thozetella tocklaiensis	CBS 378.58 ^T	MH857817	MH869349
Verhulstia trisororum	CBS 143234 ^T	MG022181	MG022160
Zanclospora iberica	CBS 130426 ^T	KY853480	KY853544
Zanclospora iberica	FMR 12186	KY853481	KY853545

*Sequences generated in this study are emphasized in bold face. ^Tex-type cultures.

Two independent analyses with four chains each (one cold and three heated) were run until the average standard deviation of the split frequencies dropped below

0.01. The initial 25% of the generations of MCMC sampling were discarded as burn-in. The refinement of the phylogenetic tree was used for estimating BI posterior probability (BIPP) values. The tree was viewed in FigTree version 1.4 (Rambaut 2012).

Results

Phylogenetic analyses

The combined dataset comprised 71 taxa (including our strain) representing 52 genera, which include 60 species in the family Chaetosphaeriaceae, 4 species in Helminthosphaeriaceae, 2 species in Linocarpaceae and 2 species in Leptosporellaceae, with *Gelasinospora tetrasperma* CBS 178.33, *Sordaria fimicola* CBS 508.50 and *Lasiosphaeria ovina* SMH 4605 as the outgroup. The final alignment comprised a total of 1475 base pairs, containing the ITS and LSU sequences, and were analyzed by BI and ML method. The topology of the tree is shown in Fig. 1, with the Bayesian posterior probabilities above 95% and ML bootstrap support greater than 70% indicated for respective clades. In this tree, our strain occurred

Figure 1. Phylogenetic tree derived from Bayesian analysis based on ITS and LSU sequences, depicting the relationships of the new taxon *Phialolunulospora vermispora* with closely related taxa. The numbers above branches represent BIPP (left) and MLBPs (right). BIPP over 95% and MLBPs greater than 70% are shown on the respective branches, and the bar represents the substitutions per nucleotide position. *Gelasinospora tetrasperma* CBS 178.33, *Sordaria fimicola* CBS 508.50 and *Lasiosphaeria ovina* SMH 4605 were used as outgroup.

on an isolated clade within Chaetosphaeriaceae, and clustered together with *Dictyochae-topsis* Aramb. & Cabello, *Bahusutrabeeja* Subram. & Bhat and *Dictyochaeta* Speg. with good Bayesian posterior probabilities (100%) and ML bootstrap proportions (100%). Considering distinct morphological characters with these three genera, we propose to describe our unknown isolate as a new genus and species, *Phialolunulospora vermispora*.

Taxonomy

Phialolunulospora Z. F. Yu & R. F. Castaneda, gen. nov. MycoBank No: 828716

Type species. Phialolunulospora vermispora Z. F, Yu & R. F. Castañeda

Etymology. *Phialo*-Prefix, *Phia. lis* N.L fem. S. Phialide referring to the phialidic conidiogenous cells, and *lunulospora*, (*lu.nu.la.tus* N.L. adj. mean crescent-shaped + *spo.ra* N.L. fem. S. spora, referred to the conidia), referring to the genus *Lunulospora*.

Description. Asexual fungus. *Conidiophores* macronematous, semimacronematous, mononematous, septate, prostrate or erect, straight or flexuous, pigmented. *Conidiogenous cells* integrated, terminal, cylindrical to subulate, pale brown to brown, monophialidic or polyphialidic, enteroblastic. Conidial secession schizolytic. *Conidia* solitary, acrogenous, long lunate, vermiform to sigmoid, unicellular, hyaline, truncate at the conspicuous or inconspicuous basal frill, with a cellular, unbranched, eccentric basal appendage.

Phialolunulospora vermispora Z. F. Yu & R. F. Castaneda, sp. nov.

MycoBank No: 828717 Figures 2–4

Type. China, Hainan province, Limu Mountain, 19°29'40"N, 107°80'45"E, ca. 350 m alt., from leaves of an unidentified dicotyledonous plant submerged in a stream, Apr 2015, Zefen Yu, YMF 1.04260 – *holotype*; CGMCC 3.19632 – culture ex-type.

Etymology. *ver.mi-* (from *vermiformis*), NL fem. adj mean worm-shaped + *spo.ra* N.L. fem. S. spora, referred to worm-shaped conidia.

Description. Mycelium partly superficial and partly immersed, composed of septate, branched, smooth, hyaline, 1–2 μ m wide hyphae. *Conidiophores* solitary, macronematous, semimacronematous, erect or prostrate, straight or flexuous, unbranched, up to 4-septate, cylindrical, up to 150 μ m long, 3–4 μ m wide, pale brown to brown, smooth, sometimes reduced to conidiogenous cells. *Conidiogenous cells* integrated, terminal, cylindrical to subulate, sometimes lageniform, determinate, smooth, pale brown to brown, mostly darker than conidiophores, phialidic, after secession leaving an inconspicuous basal frill, 12–47 × 2.6–3 μ m. *Conidia* solitary, acrogenous, long lunate, vermiform to sigmoid, unicellular, guttulate, hyaline, smooth-walled, 31–55 × 2.5–3.5 μ m, acute at the apex and narrow truncate at the base bearing minute marginal frills and a cellular, single, unbranched, somewhat attenuated or acuminate, eccentric basal appendage, 1.5–4.6 μ m long.

Culture characteristics. Colonies attain 2.4 cm diameter on PDA and 2.8 cm diameter on CMA after 10 days at 25 °C. On PDA, colonies flat to slightly raised, aerial mycelium abundant, margin entire to undulate, surface white initially, then become buff and grey with age, reverse same color. Colonies on CMA, center with aerial my-

Figure 2. *Phialolunulospora vermispora* (YMF 1.04260) **A** colony on PDA at day 10 **B** conidia **C–F** conidiophores, conidiogenous cells and conidia **G** conidiogenous cells **H**, **I** conidiophores and conidiogenous cells. Scale bars: 10 mm (**A**); 10 μm (**B–I**).

celium cottony, periphery with scarce aerial mycelium, olivaceous grey, dark green exudate and soluble pigment produced, reverse same color.

Distribution and ecology. The species occurs on submerged leaves in stream. This species is currently known only from the type locality.

Figure 3. Phialolunulospora vermispora conidiogenous cells and conidia.

Figure 4. Phialolunulospora vermispora conidiogenous cells.

Discussion

The family Chaetosphaeriaceae was firstly introduced by Réblová et al. (1999) to accommodate *Chaetosphaeria* and its allies. Réblová et al. (1999) also suggested that Chaetosphaeriaceae should be placed in the Sordariales. However, based on the nuclear large subunit ribosomal RNA gene (LSU) sequence, Huhndorf et al. (2004) placed Chaetosphaeriaceae in order Chaetosphaeriales. In a recent review of the family Chaetosphaeriaceae based on morphology and phylogenetic analysis, Lin et al. (2019) accepted 49 genera (including three uncertain genera) within the family, among which 44 were asexual genera.

The asexual morph of the Chaetosphaeriaceae is hyphomycetous taxa. It is characterized by septate, branched or unbranched conidiophores with the conidiogenous cell monophialidic or polyphialidic, holoblastic or enteroblastic, smoothwalled (Réblová et al. 1999, 2011). Our new fungus, Phialolunulospora vermispora, fits the general description of asexual hyphomycetous Chaetosphaeriaceae well. Phialolunulospora is mainly distinguished from other species in the Chaetosphaeriaceae in having vermiform to sigmoid conidia. Conidia of typical members of the family, including Dictyochaeta and Codinaea Maire (Réblová 2000; Whitton et al. 2000; Cruz et al. 2008; Crous et al. 2014), are aseptate or 1-septate; they may be setulose or not. In this study, the phylogenetic analyses combining ITS and LSU sequences showed that P. vermispora is close to three asexual genera in Chaetosphaeriaceae (Fig. 1), Dictyochaetopsis, Bahusutrabeeja and Dictyochaeta. Morphologically, Bahusutrabeeja and Dictyochaeta are superficially similar to P. vermispora in septate and cylindrical conidiophores, but can be distinguished from the new genus in having globose conidia without appendages and long fusiform conidia with long appendage (Subramanian and Bhat 1977; Li et al. 2014; Liu et al. 2016; Lin et al. 2019), respectively. P. vermispora is clearly different from Dictyochaetopsis species in morphology, such as smooth and pale brown or brown conidiophores and long lunate, vermiform to sigmoid conidia (Arambarri and Cabello 1990; Whitton et al. 2000; Castañeda-Ruíz et al. 2008).

Phialolunulospora is morphologically similar to some other genera species of Chaetosphaeriaceae in hyaline conidia with basal eccentric cellular appendages, including *Neopseudolachnella* A. Hashim. & Kaz. Tanaka, *Pseudolachnea* Ranoj., *Pseudolachnella* Teng and *Rattania* Prabhug. & Bhat. Of these, species of *Neopseudolachnella*, *Pseudolachnea* and *Pseudolachnella* are different from *Phialolunulospora* in acervular, setose and stromatic conidiomata (Ranojevic 1910; Teng and Ling 1936; Hashimoto et al. 2015). The genus *Rattania* is distinguished from *Phialolunulospora* in having seta and smaller septate conidia (Prabhugaonkar and Bhat 2009). In addition, the type species of *Lunulospora* Ingold, *L. curvula* Ingold (Sordariomycetes, Sordariales incertae sedis), also has resemblance to *Phialolunulospora* in conidial shape (Ingold 1942; Seifert et al. 2011), but it has obviously bigger size of conidia, 70–90 × $4-5 \mu m$ vs. $12-47 \times 2.6-3 \mu m$, in *Lunulospora*.

Many freshwater species occur in the family Chaetosphaeriaceae. So far, approximately 16 genera in this family have been reported from fresh water, such as *Codinaea* (Luo et al. 2019). In this study, *Phialolunulospora vermispora* was also collected from freshwater habitats.

Acknowledgements

This work was financed by the National Natural Science Foundation Program of PR China (31770026, 31970013). We are grateful to two reviewers for critically reviewing the manuscript and for providing helpful suggestions to improve this paper.

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Arambarri AM, Cabello MN (1990) Considerations about *Dictyochaeta*, *Codinaeopsis* and a new genus *Dictyochaetopsis*. Mycotaxon 38: 11–14. https://doi.org/10.1007/BF02277306
- Castañeda-Ruíz RF, Gusmão LFP, Guarro J, Stchigel AM, Stadler M, Saikawa M, Leão-Ferreira SM (2008) Two new anamorphic fungi from Brazil: *Dictyochaetopsis polysetosa* and *Myrothecium compactum*. Mycotaxon 103: 1–8. https://doi.org/10.1007/BF02277306
- Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Garethjones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MPA, Damm U, Decock CA, Denbreeÿen A, Devries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadehfazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJC, Swart WJ, Tan YP, Vanderbank M, Wood AR, Zhang Y, Groenewald JZ (2014) Fungal Planet description sheets: 281–319. Persoonia 33: 212–289. https://doi.org/10.3767/003158514X685680
- Cruz ACR, Leáo-ferreira SM, Barbosa FR, Gusmão LFP (2008) Conidial fungi from semi-arid Caatinga biome of Brazil. New and interesting *Dictyochaeta* species. Mycotaxon 106: 15–27.
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi. org/10.1021/bk-1999-0734.ch008
- Hashimoto A, Sato G, Matsuda T, Matsumura M, Hatakeyama S, Harada Y, Ikeda H, Tanaka K (2015) Taxonomic revision of *Pseudolachnea* and *Pseudolachnella* and establishment of *Neopseudolachnella* and *Pseudodinemasporium* gen. nov. Mycologia 107(2): 383–408. https://doi.org/10.3852/14-171
- Huhndorf SM, Miller AN, Fernandez FA (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96: 368–387. https://doi.org/10.2307/3762068
- Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Transactions of the British Mycological Society 25(4): 339–417. [IN1–IN6] https://doi.org/10.1016/S0007-1536(42)80001-7
- Li XX, Xia JW, Ma LG, Castaneda-Ruiz RF, Zhang XG (2014) A new species of *Bahusutrabeeja* from Guangxi, China. Mycotaxon 126: 227–230. https://doi.org/10.5248/126.227
- Lin CG, McKenzie EHC, Liu JK, Jones EBG, Hyde KD (2019) Hyaline-spored chaetosphaeriaceous hyphomycetes from Thailand and China, with a review of the family Chaetosphaeriaceae. Mycosphere 10(1): 655–700. https://doi.org/10.5943/mycosphere/10/1/14
- Liu J, Yang J, Maharachchikumbura SS, Mckenzie EH, Jones EB, Hyde KD, Liu ZY (2016) Novel chaetosphaeriaceous hyphomycetes from aquatic habitats. Mycological Progress 15(10–11): 1157–1167. https://doi.org/10.1007/s11557-016-1237-1
- Luo Z, Hyde KD, Liu J, Maharachchikumbura SSN, Jeewon R, Bao D-F, Bhat DJ, Lin C-G, Li W-L, Yang J, Liu N-G, Lu Y-Z, Jayawardena RS, Li J-F, Su H-Y (2019) Freshwater

Sordariomycetes. Fungal Diversity 99: 451–660. https://doi.org/10.1007/s13225-019-00438-1

- Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501
- Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. https://doi.org/10.1093/molbev/msn083
- Prabhugaonkar A, Bhat DJ (2009) Rattania setulifera, an undescribed endophytic hyphomycete on rattans from Western Ghats, India. Mycotaxon 108: 217–222. https://doi. org/10.5248/108.217
- Qiao M, Du X, Bian ZH, Peng J, Yu ZF (2017a) *Ellisembia pseudokaradkensis* sp. nov. from Hainan, China. Mycotaxon 132: 813–817. https://doi.org/10.5248/132.813
- Qiao M, Huang Y, Deng C, Yu ZF (2017b) *Tripospermum sinense* sp. nov. from China. Mycotaxon 132(3): 513–517. https://doi.org/10.5248/132.513
- Qiao M, Guo JS, Tian WG, Yu ZF (2018a) *Ellisembia hainanensis* sp. nov. from Hainan, China. Mycotaxon 133: 97–101. https://doi.org/10.5248/133.97
- Qiao M, Li WJ, Huang Y, Xu JP, Zhang L, Yu ZF (2018b) *Classiculasinensis*, a new species of basidiomycetous aquatic hyphomycetes from southwest China. MycoKeys 40: 1–12. https://doi.org/10.3897/mycokeys.40.23828
- Qiao M, Tian WG, Castañeda-Ruiz RF, Xu JP, Yu ZF (2019a) Two new species of *Verruconis* from Hainan, China. MycoKeys 48: 41–53. https://doi.org/10.3897/mycokeys.48.32147
- Qiao M, Zheng H, Zhang Z, Yu ZF (2019b) *Seychellomyces sinensis* sp. nov. from China. Mycotaxon 134(2): 391–398. https://doi.org/10.5248/134.161
- Qiao M, Zheng H, Lv RL, Yu ZF (2020) Neodactylariales, Neodactylariaceae (Dothideomycetes, Ascomycota): new order and family, with a new species from China. MycoKeys 73: 69–85. https://doi.org/10.3897/mycokeys.73.54054
- Rambaut A (2012) FigTree v1.4.2. http://tree.bio.ed.ac.uk/software/figtree/
- Ranojevic N (1910) Zweiter Beitrag zur Pilzflora Serbiens. Annales Mycologici 8: 347-402.
- Réblová M (2000) The genus *Chaetosphaeria* and its anamorphs. Studies in Mycology 143: 149–168. https://doi.org/10.1007/s005720050286
- Réblová M, Barr ME, Samuels GJ (1999) Chaetosphaeriaceae, a new family for *Chaetosphaeria* and its relatives. Sydowia 51: 49–70.
- Réblová M, Gams W, Seifert K (2011) *Monilochaetes* and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Studies in Mycology 68: 163–191. https://doi.org/10.3114/sim.2011.68.07
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS Biodiversity Series 9, CBSKNAW Fungal Biodiversity Centre, Utrecht.
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi. org/10.1093/bioinformatics/btl446
- Subramanian CV, Bhat DJ (1977) *Bahusutrabeeja*, a new genus of the hyphomycetes. Botany 55(16): 2202–2206. https://doi.org/10.1139/b77-249

- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https:// doi.org/10.1093/molbev/mst197
- Teng SC, Ling L (1936) Additional fungi from China IV. Sinensia 7: 752-823.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. https://doi.org/10.1093/nar/25.24.4876
- Turner D, Kovacs W, Kuhls K, Lieckfeldt E, Peter B, Arisan-Atac I, Strauss J, Samuels GJ, Börner T, Kubicek CP (1997) Biogeography and phenotypic variation in *Trichoderma* sect. *Longibrachiatum* and associated *Hypocrea* species. Mycological Research 101(4): 449–459. https://doi.org/10.1017/S0953756296002845
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172: 4238– 4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990
- Wei M, Zhang H, Dong W, Boonmee S, Zhang D (2018) Introducing *Dictyochaeta aquatica* sp. nov. and two new species of *Chloridium* (Chaetosphaeriaceae, Sordariomycetes) from aquatic habitats. Phytotaxa 362(2): 187–199. https://doi.org/10.11646/phytotaxa.362.2.5
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications 18(1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Whitton SR, Mckenzie EHC, Hyde KD (2000) *Dictyochaeta* and *Dictyochaetopsis* species from the Pandanaceae. Fungal Diversity 4: 133–158.
- Williams J, Read C, Norton A, Dovers S, Burgman M, Proctor W, Anderson H (2001) Biodiversity, Australia State of the Environment Report 2001 (Theme Report). CSIRO Publishing on behalf of the Department of the Environment and Heritage, Canberra, 217 pp.
- Yang J, Liu JK, Hyde KD, Bhat DJ, Jones EBG, Liu Z-Y (2016) New species of *Sporoschisma* (Chaetosphaeriaceae) from aquatic habitats in Thailand. Phytotaxa 289(2): 147–157. https://doi.org/10.11646/phytotaxa.289.2.4
- Yang J, Liu NG, Liu J, Hyde KD, Jones EB, Liu ZY (2018) Phylogenetic placement of *Cryptophiale, Cryptophialoidea, Nawawia, Neonawawia* gen. nov. and *Phialosporostilbe*. Mycosphere 9(6): 1132–1150. https://doi.org/10.5943/mycosphere/9/6/5

RESEARCH ARTICLE

New Cantharellus species from South Korea

Bart Buyck¹, Valérie Hofstetter², Rhim Ryoo³, Kang-Hyeon Ka³, Vladimír Antonín⁴

I Institut de Systématique, Écologie, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 39, F-75005, Paris, France 2 Département fédéral de l'économie, de la formation et de la recherche DEFR, Agroscope Domaine de recherche Protection des végétaux, Route de Duillier 60, CP 1012, 1260, Nyon 1, Switzerland 3 Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, South Korea 4 Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37, Brno, Czech Republic

Corresponding author: Vladimír Antonín (vantonin@mzm.cz)

Academic editor: B-K Cui | Received 31 August 2020 | Accepted 24 November 2020 | Published 22 December 2020

Citation: Buyck B, Hofstetter V, Ryoo R, Ka K-H, Antonín V (2020) New *Cantharellus* species from South Korea. MycoKeys 76: 31–47. https://doi.org/10.3897/mycokeys.76.58179

Abstract

In this third contribution involving new *Cantharellus* species from South Korea, two new species are introduced. In addition, we document a first report of the recently described Japanese *Cantharellus anzutake* outside of Japan based on identical ITS sequence data. *Cantharellus citrinus* **sp. nov.** is introduced as a new member of subg. *Cinnabarini*, to which the closely related Korean *C. albovenosus* and Chinese *C. phloginus* also belong. *Cantharellus curvatus* **sp. nov.** is introduced as a new member of subg. *Parvocantharellus*, in which the Korean *C. koreanus* was recently placed. The respective placements of the new taxa are significantly supported by a phylogenetic analysis of sequences from the transcription elongation factor (*tef*-1).

Keywords

ITS, morphology, new species, phylogeny, tef-1

Introduction

In our previous contributions reporting the biodiversity of *Cantharellus* Adans.:Fr. in Korea (Antonín et al. 2017; Buyck et al. 2018), we have reviewed the still limited taxonomic knowledge on *Cantharellus* species in Asia. During the past two years two more new chanterelles have been described from Asia: *C. anzutake* W. Ogawa, N. Endo, M. Fukuda and A. Yamada from Japan (Ogawa et al. 2018) and *C. hainanensis* N.K. Zeng, Zhi Q. Liang & S. Jiang from China (An et al. 2017). In the present paper, we

Copyright Bart Buyck et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

describe two more new species from South Korea supported by morphological features and in particular by sequence data obtained for the transcription elongation factor (*tef*-1) gene. In addition, identical ITS sequence data also document the presence, in South Korea, of the recently described *C. anzutake* from Japan, a species belonging to subg. *Cantharellus* and based on a 100 base pair deletion in the internal transcribed spacer 1 (ITS1) of the rDNA (Ogawa et al. 2018). Obtained *tef*-1 sequence data from all of our recent collections of chanterelles in South Korea could not confirm the presence of any of the European or North American *Cantharellus* previously reported from South Korea (Park and Lee 1991; Kim 2004; Kim et al. 2006; Lee 2011) nor any of the chanterelles already described from India (Das et al. 2015; Kumari et al. 2011, 2013), neighbouring China (Shao et al. 2011, 2014, 2016a, b; Tian et al. 2012; An et al. 2017), Japan (Suhara and Kurogi 2015; Ogawa et al. 2018) or Malaysia (Corner 1966; Eyssartier et al. 2009)

Materials and methods

Field work

Collections for this work were made during field trips of the last author in collaboration with colleagues from the National Institute of Forest Science (former Korea Forest Research Institute) in the margin of two larger inventory projects: "Diversity and molecular taxonomy of marasmielloid and gymnopoid fungi (Basidiomycota, Omphalotaceae) in South Korea" and "Phylogeny of litter decomposing fungi in South Korea". The various localities in which *Cantharellus* specimens were collected are shown below (Fig. 1).

Morphology

Macroscopic descriptions of collected specimens were based on fresh basidiomata. Colour abbreviations follow Kornerup and Wanscher (1983). Microscopic features were studied using dried material mounted in H_2O , approximately 5% KOH, Melzer's reagent and Congo Red, using an Olympus BX-50 light microscope (Tokyo, Japan) at 1000× magnification. For the hymenophore, "L" refers to the number of whole gill folds, while "l" refers to the number of shorter gill folds between each pair of entire gill folds. For basidiospores, the factor E indicates the quotient of the length and width in any one basidiospore and Q is the mean of the E-values; the basidiospore values are based on 20 measurements in each collection. Specimens are preserved in the herbarium of the Moravian Museum, Brno, Czech Republic (**BRNM**) and duplicates deposited in the fungarium of the Natural History Museum in Paris, France (**PC**).

Taxon sampling, sequence data and phylogenetic analyses

Translation elongation factor 1-alpha (*tef*-1) sequence data were produced following Buyck et al. (2014) for the newly described species from dried materials: four

Figure 1. Map of localities of the *Cantharellus* species 1 Hongneung Arboretum, Seoul 2 Suta-sa, Dong-myeon, Hongcheon 3 Experimental Forest, Dong-myeon, Hongcheon 4 Mts. Chiaksan, Haggok-ri, Wonju 5 Guin-sa, Mts. Sobaek, Danyang 6 Yonghyeon National Natural Recreation Forest, Unsan-myeon, Seosan 7 Mts.Gaya, Deoksan-myeon, Yesan 8 Sudeok-sa, Deoksan-myeon, Yesan 9 Mt. Gunjusan, Chilseon-myeon, Goeisan 10 Cheoncheon-myeon, Geoisan 11 Songnisan National Park, Boeun 12 Mulan Valley, Sangcheon-myeon, Yeongdong 13 Minjoojisan Recreational Forest, Yonghwa-myeon, Yeongdong 14 Unjangsan Recreational Forest, Jeongcheon-myeon, Jinan 15 Pyunbaeg Recreational Forest, Samdong-myeon, Namhae.

sequences for four collections of *Cantharellus citrinus* sp. nov and one sequence from a collection of *C. curvatus* sp. nov. Additional *tef*-1 sequences were obtained for two previously described species: for two collections of *C. koreanus* Buyck, Antonín & V. Hofst. and for one collection of *C. albovenosus* Buyck, Antonín & V. Hofst. We

introduced these newly produced *tef*-1 sequences in the alignment obtained by Antonín et al. (2017). Species of subg. *Pseudocantharellus* Eyssart. & Buyck were used as outgroup sequences. GenBank submissions numbers are given in Fig. 2. Alignment of sequence data was performed manually in MacClade (Maddison and Maddison 2003). Three independent searches for the most likely tree were conducted in PhyML v. 3.0 (Guindon and Gascuel 2003) to check for convergence toward the same likelihood value. These searches used the GTR evolutionary model (Abadi et al. 2019) with the proportion of invariable sites, the gamma shape parameter and the number of substitution categories estimated during the search. Branches were considered as significantly supported when maximum likelihood bootstrap support (ML-bs) was \geq 70%.

----- 0.01 substitutions per site

Figure 2. Most likely tree (-ln = 3254.82124) obtained by phylogenetic analyses of 48 *tef*-1 *Cantharellus* sequences. Supported branches are in bold with bootstrap values, when significant (\geq 70%), indicated along the branches. Sequences newly obtained for this study are in bold and highlighted in blue for the new species described in the present study. Extraction numbers and GenBank accession numbers for *tef*-1 sequences are reported before taxon names. Delimitation of *Cantharellus* subgenera *Cinnabarini* and *Parvocantharellus* (sensu lato) are indicated and *C. goossensiae* Heinem. and *C. rubrosalmoneus* (Buyck & V. Hofst.) Buyck & V. Hofst. (both in *C. subg. Pseudocantharellus*) are used as outgroup.

Results

Phylogeny

The final alignment of *tef*-1sequences included 837 characters. After the removal of three spliceosomal introns, the alignment used for phylogenetic analyses included 629 characters. The most likely tree (Fig. 2) suggests that *C. citrinus* sp. nov. is part of subgenus *Cinnabarini* Buyck & V. Hofst. This species has a sister relationship (ML-bs = 98%) with the subclade (ML-bs =100%) including *C. albovenosus* and *C. phloginus* S.C. Shao & P.G. Liu. Our phylogeny further suggests that *C. curvatus* sp. nov. nests in the significantly supported subgenus *Parvocantharellus* Eyssart. & Buyck (ML-bs = 88%). The new species occupies a basal position in a subclade (ML-bs = 87%) composed of *C. romagnesianus* Eyssart. & Buyck, *C. minor* Peck, *C. appalachiensis* R.H. Petersen, *C. tabernensis* Feibelman & Cibula and *C. koreanus* and is clearly separated (ML-bs = 100%) from these other species. The only other subclade (ML-bs 100%) in the subgenus is composed of the blackening *Cantharellus* from tropical Africa, *C. nigrescens* Buyck & V. Hofst. and *C. congolensis* Beeli.

Taxonomy

Cantharellus citrinus Buyck, R. Ryoo & Antonín, sp. nov.

MycoBank No: 837726 Figs 3, 4

Diagnosis. Differs from its closest Asian and North American relatives in the variously coloured but often bright lemon yellow pileus, similarly tinted stipe and smaller size, as well as in differences in sequence data produced for the transcription elongation factor (*tef*-1).

Holotype. SOUTH KOREA. Geoi-san, Cheong-cheon-myeon, alt. 330 m, 36°37'02.99"N, 127°49'36.56"E, 14 Aug 2013, V. Antonín, R. Ryoo & K.-H. Ka, 1691 / VA 13.156 (holotype: BRNM 825748; isotype: PC 0142457).

Description. Basidiomata dispersed in small groups or fascicles. Pileus 4–20 mm broad, convex, with involute margin when young, then plane or infundibuliform with depressed centre and inflexed to straight, smooth margin, irregularly undulate when old, hygrophanous, finely tomentose when very young, soon glabrescent and smooth or slightly rugulose, uniformly coloured, light yellow, orange yellow to light orange (3–4A6, 4–5A5–7), sometimes with greyish yellow tinge when old. Hymenophore composed of thick vein-like folds, sometimes strongly decurrent in a reticulate pattern on upper stipe, often not reaching the pileus margin, forking or with rare lamellulae, transversely anastomosed in between, white to whitish (3A2); edges concolorous. Stipe $4-22 \times 1-3(-4)$ mm, slightly tapering towards base when young, then cylindrical, sometimes curved, finely pubescent when young, later glabrescent, smooth, concolorous with pileus or slightly paler. Context thin, yellowish, fibrillose-hollow and yellow-

Figure 3. *Cantharellus citrinus* (holotype) **a** spores **b** basidia and basidiola **c** hyphal extremities of the pileipellis near mid-radius. Scale bar: 10 μ m, but only 5 μ m for spores. Drawings B. Buyck.
ish whitish in stipe when old, with a spicy apricot smell and mild taste. Spore print not obtained.

Basidiospores ellipsoid, (7.3–)7.6–**8.24**–8.4(–8.8) × (5.1–)5.4–**5.67**–5.9(–6.1) µm, Q = (1.32–)1.34–**1.42**–1.50(–1.56), smooth, thin-walled. Basidia mostly (42–)66– 80 × 8 µm, 4–5(–6)-spored, narrowly clavate; basidiola subcylindrical and slender when young, undulate-wavy in outline, later becoming narrowly clavate, subfusoid, sometimes irregular, rarely submoniliform, thin-walled. Cystidia not observed. Subhymenium composed of narrow, filamentous and cylindrical cells. Pileipellis a cutis composed of cylindrical, ± thin-walled, smooth or minutely incrusted, sparsely septate, (4–)8–12 µm wide hyphae; terminal cells (36–)50–110 × 4.0–15 µm, appressed to suberect, mostly slightly clavate, some with a subapical weak constriction, obtuse, thinwalled. Stipitipellis a cutis of cylindrical, slightly thick-walled, 2.5–6.0(–7.0) µm wide hyphae with isolated terminal cells distinct only in a narrow zone at very top, otherwise rare to absent, 20–51 × 4.0–11 µm, (narrowly) clavate, cylindrical or subfusoid, thinwalled. Clamp connections everywhere and distinct.

Habitat. On soil near *Quercus mongolica* Fisch. ex Ledeb., *Q. acutissima* Carruth., *Quercus* sp., *Castanea crenata* Siebold & Zucc., *Carpinus laxiflora* (Siebold & Zucc.) Blume and *Abies koreana* E.H. Wilson.

Etymology. The name refers to the frequent bright lemon yellow colour of pileus and stipe surface of the most common form.

Other specimens examined. Jinan, Jeongcheon-myeon, Unjangsan Recreational Forest, alt. 390 m, 35°54'01.13"N, 127°24'59.41"E, 7 Sep 2016, V. Antonín, R. Ryoo, K.-H. Wang & Y.-S. Jang, 1710 / VA 16.169 (BRNM 825753, PC 0142467). Ibid., 1711 / VA 16.170 (BRNM 825754, PC 0142468). Yeongdong, Yonghwa-myeon, Minjoojisan Recreational Forest, alt. 540 m, 36°03'14.57"N, 127°49'43.15"E, 26 Aug 2015, V. Antonín, K.-H. Ka, K.S. Kim & J.A. Kang, 1715 / VA 15.93 (PC 0142472).

Remarks. The description is based on the type specimen, but examination of the other specimens shows that variation of morphological features includes a rather wide amplitude of the overall colour, which seems – based on identical *tef1* sequences – to extend from entirely and predominantly pale lemon yellow to an overall deep orange. Collection from Jinan (VA 16.169, BRNM 825753, PC 0142467) differs from other collections of this species by an orange (5–6A7) pileus, light yellow to light orange (4–5A5) lamellae and a stipe more or less concolorous with the pileus.

This new species is here placed in *Cantharellus* subg. *Cinnabarini* (Fig. 2), a subgenus that comprises several species exhibiting a similarly wide colour range, e.g. the Malagasy *C. variabilicolor* Buyck & V. Hofst. (in Ariyawansa et al. 2015) or the North American *C. cinnabarinus* (Schwein.) Schwein. *Cantharellus citrinus* is here shown to be part of a well-supported clade composed of two other Asian species, the Chinese *C. phloginus* and Korean *C. albovenosus*. The latter two species are very different in general aspect, but, except for a single mutation in the coding part, the *tef*-1 sequences of both species are identical, even including the introns. Yet, their

Figure 4. a–c *Cantharellus citrinus*, yellow, more common form **a** (VA 13.170) **b** *C. citrinus*, reddish orange form (VA 16.169) **c** (VA 13.156, holotype). Photos V. Antonín.

very different general habitus justifies us in our view that we should accept them as a separate species. The clade comprising these Asian species is sister to a clade composed of North American species.

Because of its very small overall size and comparable overall colour, *C. citrinus* could also easily be mistaken for some species in *Cantharellus* subg. *Parvocantharellus* Eyssart. & Buyck, in particular the European *C. romagnesianus* (= *C. pseudominimus* Eyssart. & Buyck, see Olariaga et al. 2015). Under the microscope, *C. citrinus* differs hardly from its Asian relatives and identification relies principally on field characters or sequence data.

Cantharellus curvatus Buyck, R. Ryoo & Antonín, sp. nov.

MycoBank No: 837727 Figs 5, 6

Diagnosis. Differs from the European *C. romagnesianus* in the distinctly smaller spores and shorter basidia (see Olariaga et al. 2016), the strongly veined hymenophore and sequence data obtained from the transcription elongation factor one alpha (*tef-1*).

Holotype. SOUTH KOREA. Yesan, Deoksan-myeon, Sudeok-sa, alt. 220 m, 36°39'57.40"N, 126°37'20.91"E, 8 Jul 2014, V. Antonín & K.-H. Ka, 1695 / VA 14.57 (holotype: BRNM 825749; isotype: PC0142461)

Description. Basidiomata in groups. Pileus 20–30 mm broad, low convex with a low broad central umbo and involute margin, then irregularly applanate or shallowly infundibuliform with an undulate, often uplifted margin, hygrophanous, not translucently striate, smooth, glabrous, watery dull yellow when moist, drying out to orangish yellow (\pm slightly more yellow than 4A5). Hymenophore composed of distant gill folds [L = 37–40], shortly decurrent, thick, sometimes furcate when young, furcate-anastomosed in upper half when old, pale yellow (\pm 3A3), \pm dirty (greyish) yellow at the end; edge concolorous. Stipe 25–30 × 3.5–4 mm, cylindrical and tapering towards base, longitudinally fibrillose, yellow (\pm concolorous with pileus). Context pale whitish-yellowish, with cantharelloid smell.

Basidiospores (7.25–)7.5–**8.05**–9.0 × 5.0–**5.25**–6.0(–6.25) μ m, Q =1.40–**1.52**– 1.66, ellipsoid, rarely broadly ellipsoid, ventrical applanate or suballantoid, thin-walled, smooth. Basidia 42–55 × 9.5–12 μ m, (4–)6-spored, narrowly clavate, clamped. Basidiola 15–42 × 3.0–11 μ m, clavate, cylindrical, subfusoid, irregularly curved or undulate. Trama hyphae of cylindrical to fusoid, clamped, \pm thin-walled, 4.0–20 μ m wide cells. Pileipellis a cutis composed of cylindrical, clamped, mostly thin-walled, 4.0–10 μ m wide hyphae; terminal cells appressed to suberect, mostly cylindrical, slightly thickwalled, up to 80 μ m long and 5.0–10(–15) μ m wide. Stipitipellis a cutis of cylindrical, parallel, slightly thick-walled, clamped, 3.0–6.0 μ m wide hyphae. Terminal cells appressed to suberect, clavate or cylindrical.

Habitat. On soil under Pinus densiflora Siebold & Zucc. and Castanea crenata.

Figure 5. Cantharellus curvatus (VA 14.57, holotype). Scale bar: 15 mm. Photos V. Antonín.

Etymology. Referring to the curved-undulate hymenial cells, viz. basidia and particularly basidiola.

Remarks. This Asian species differs from the European *C. romagnesianus*, presently the most similar chanterelle, in the distinctly smaller spores and shorter basidia (see Olariaga et al. 2016), further also in the strongly anastomosing hymenophore and in sequence data obtained from the transcription elongation factor one alpha (*tef-1*).

Cantharellus anzutake W. Ogawa, N. Endo, M. Fukada & A. Yamada, Mycoscience 59(2): 158 (2018) Figs 7–9

Description. Pileus 10–40 mm broad, convex-conical when young, soon plane to broadly funnel-shaped, sometimes with a low obtuse umbo at centre, margin involute then inflexed to straight and undulate, pruinose when young then \pm glabrous, greasy when moist, smooth or slightly uneven, not translucently striate, yellow (4A7–8), sometimes with darker ("dirty") centre. Lamellae moderately close, L = c. 25–30, decurrent, often furcate, rarely branched, whitish to pale cream from \pm half radius toward the stipe attachment, then yellow towards pileus margin. Stipe 20–40 × 3.5–6 mm, cylindrical, not broadened towards base, finely pruinose when young, then glabrous, white, not hollowing. Context yellow beneath pileipellis, white otherwise. Smell slight, cantharelloid. Taste mild with slightly sharp aftertaste. Spore print not obtained.

Figure 6. *Cantharellus curvatus* (holotype) **a** spores **b** basidia and basidiola **c** hyphal extremities of the pileipellis near mid-radius. Scale bar: 10 μ m, but only 5 μ m for spores. Drawings B. Buyck.

Basidiospores ellipsoid to ovoid, $(6.9-)7.2-7.56-8.0(-8.3) \times (4.6-)4.8-5.10-5.4(-5.6) \mu m$, Q = (1.31-)1.39-1.49-1.58(-1.68), smooth, with a small apiculus. Basidia clavate-pedicellate, $(60-)70-80 \times 7-8 \mu m$, long and slender, mostly 6(-5)-spored

Figure 7. *Cantharellus anzutake*, microscopic features. Hyphal extremities at the pileus surface, on the left near the pileus center, on the right closer to the pileus margin. Scale bar: 10 µm. Drawings B. Buyck.

Figure 8. *Cantharellus anzutake.* Microscopic features. Basidia, basidiola and spores. Scale bar: $10 \mu m$, but only 5 μm for spores. Drawings B. Buyck.

Figure 9. *Cantharellus anzutake* **a, b** Ka & Ryoo 3_Korea_1-2 [22/08/2012, Pyeongchang, Jungwangsan, 37°27'27.48"N, 128°29'04.35"E, 771 m asl, under *Pinus koraiensis* Siebold & Zucc.] **c** Antonín 16.140 (PC0142465). Note the very pale hymenophore in young specimens, remaining for a long time paler closer to the stipe when maturing. Scale bar: 20 mm.

with stout sterigmata. Subhymenium filamentous, composed of long and slender, cylindrical cells of similar diam. as the basidium base. Cystidia none. Pileipellis a loose tissue of intricately intertwining, sparsely septate, long and slender hyphal ends, near the pileus margin often aggregated in long tufts; hyphal ends composed of long, cylindrical, 5-8(-12) µm diam. cells, with refringent, thin- to slightly thickened walls, but in the pileus centre more frequently thick-walled; the terminal cell slender, toward the pileus margin (40–)60–130 µm long, obtuse rounded at the tip, cylindrical, hardly differentiated from subapical ones; in the pileus centre often somewhat irregularly constricted near the tip, but never very strongly so, and usually shorter, 30–100 µm, and on average somewhat narrower.

Habitat. On soil under Pinus densiflora, Carpinus laxiflora and Quercus mongolica.

Specimens examined. Jinan, Jeongcheon-myeon, Unjangsan Recreational Forest, 35°54'05.55"N, 127°24'53.89"E, alt. 400 m, 31 Aug 2016, V. Antonín, K.-H. Ka & S.-H. Kim, 1708 / VA 16.140 (BRNM 825751, PC 0142465). Ibid., VA 16.142 (BRNM 825752, PC 0142466).

Remarks. This species is a typical member of *Cantharellus* subg. *Cantharellus*, and belongs to a group that is often referred to as the 'golden chanterelles' or the *C. cibarius* Fr. complex, representing the commercially most important chanterelles on the international market. This species complex is reputedly very difficult to identify, in particular because of the very variable field aspect of the various species involved (Olariaga et al. 2015, 2016). Hence, positive identification frequently requires molecular sequence data. Our identification is here based on the high quality ITS sequence we obtained for VA 16.142 and which is identical to the one deposited for the *C. anzutake* holotype (GenBank LC085359, similarity 100% for 100% coverage); both these ITS differ from other yellow species of chanterelles described from Asia by a ca 100 bp deletion in the ITS1 region (Ogawa et al. 2018).

Because of the whitish hymenophore when young and the sometimes deep orange-yellow to cinnamon buff pileus surface, this species may be somewhat reminiscent of *C. albovenosus*. The latter species, however, has always a much brighter orange pileus and a more veined hymenophore that remains white, even with age, and it belongs in subgenus *Cinnabarini* (see Antonín et al. 2017). It is interesting to note that both Japanese and Korean specimens were collected near *Pinus densiflora* among possible host trees.

Acknowledgements

V. Antonín is collaborating with South-Korean mycologists on various taxonomic projects since 2007. His collection trips to South Korea were supported by project FP 0801-2010-01 and FP0801-2018-01 of the National Institute of Forest Science in South Korea, and his laboratory studies were funded through the institutional support of long-term conceptual development of research institutions provided by the Ministry of Culture (ref. MK000094862).

References

- Abadi S, Azouri D, Pupko T, Mayrose I (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications 10: e934. https://doi.org/10.1038/ s41467-019-08822-w
- An DY, Liang ZQ, Jiang S, Su MS, Zeng NK (2017) Cantharellus hainanensis, a new species with a smooth hymenophore from tropical China. Mycoscience 58(6): 438–444. https:// doi.org/10.1016/j.myc.2017.06.004
- Antonín V, Hofstetter V, Ryoo R, Ka K-H, Buyck B (2017) New Cantharellus species from the Republic of Korea. Mycological Progress 16(8): 753–759. https://doi.org/10.1007/ s11557-017-1312-2
- Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana, KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho HM, Hofstetter V, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, Santiago A, Sommai S, Song Y, Souza CAF, Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei SF, Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Eberhardt U, Simonini G, Wen HA, Chen XH (2015) Fungal diversity notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27-274. https://doi.org/10.1007/s13225-015-0346-5
- Buyck B, Antonín V, Chakraborty D, Baghela A, Das K, Hofstetter V (2018) Cantharellus sect. Amethystini in Asia. Mycological Progress 17: 917–924. https://doi.org/10.1007/s11557-018-1403-8
- Buyck B, Kauff F, Eyssartier G, Couloux A, Hofstetter V (2014) A multilocus phylogeny for worldwide *Cantharellus* (Cantharellales, Agaricomycetidae). Fungal Diversity 64: 101–121. https://doi.org/10.1007/s13225-013-0272-3
- Corner EJH (1966) A monograph of cantharelloid fungi. Annals of Botany Memoirs 2: 1–255.
- Das K, Hofstetter V, Chakraborty D, Baghela A, Singh SK, Buyck B (2015) Cantharellus sikkimensis sp. nov. (Cantharellales, Agaricomycetes) from the Indian Himalayas. Phytotaxa 222(4): 267–275. https://doi.org/10.11646/phytotaxa.222.4.4
- Eyssartier G, Stubbe D, Walleyn R, Verbeken A (2009) New records of *Cantharellus* species (Basidiomycota, Cantharellaceae) from Malaysian dipterocarp rainforest. Fungal Diversity 36: 57–67.
- Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704. https://doi.org/10.1080/10635150390235520

- Kim Y-S (2004) The mushrooms of Korea. National Institute of Agricultural Science and Technology, Suwon, 467 pp.
- Kim YP, Seok S-J, Kim WK, Won HY, Lee KH (2006) The mushrooms of Halla Mountain. Jeju Special Self-Governing Province Agricultural Research and Extension Service, 317 pp.
- Kornerup A, Wanscher JH (1983) Methuen handbook of colour (3rd edn.). Eyre Methuen, London, 252 pp.
- Kumari D, Upadhyay RC, Reddy MS (2011) Cantharellus pseudoformosus, a new species associated with Cedrus deodara from India. Mycoscience 52: 147–151. https://doi.org/10.1007/ S10267-010-0080-5
- Kumari D, Upadhyay RC, Reddy MS (2013) New records of *Cantharellus* species from the northwestern Himalayas of India. Mycology 4(4): 205–220. https://doi.org/10.1080/21 501203.2013.872205
- Lee T-S (2011) Rearrangement list of Korean recorded mushrooms. Josoop Publishing Co., Seoul, 87 pp.
- Ogawa W, Endo N, Fukuda M, Yamada A (2018) Phylogenetic analyses of Japanese golden chanterelles and a new species description, *Cantharellus anzutake* sp. nov. Mycoscience 59(2): 153–165. https://doi.org/10.1016/j.myc.2017.08.014
- Olariaga I, Buyck B, Esteve-Raventos F, Hofstetter V, Manjon JL, Moreno G, Salcedo I (2015) Assessing the taxonomic identity of white and orange specimens of *Cantharellus*: occasional colour variants or independent species? Cryptogamie Mycologie 36(3): 287–300. https:// doi.org/10.7872/crym/v36.iss3.2015.287
- Olariaga I, Moreno G, Manjoni J-L, Salcedo I, Rodriguez D, Hofstetter V, Buyck B (2016) *Cantharellus* (Cantharellales, Basidiomycota) revisited in Europe through a multigene phylogeny. Fungal Diversity 83(1): 263–292. https://doi.org/10.1007/s13225-016-0376-7
- Park WH, Lee HD (1991) Wild fungi of Korea. Kyo-Hak Publishing Co., Seoul, 508 pp.
- Shao SC, Buyck B, Hofstetter V, Tian XF, Geng YH, Yu FQ, Liu PG (2014) Cantharellus hygrophorus, a new species in subgenus Afrocantharellus from tropical southwestern China. Cryptogamie Mycologie 35(3): 281–289. https://doi.org/10.7872/crym.v35. iss3.2014.283
- Shao SC, Buyck B, Tian XF, Liu PG, Geng YH (2016a) Cantharellus phloginus, a new pink-colored species from southwestern China. Mycoscience 57: 144–149. https://doi. org/10.1016/j.myc.2015.12.004
- Shao SC, Liu PG, Tian XF, Buyck B, Geng YH (2016b) A new species of *Cantharellus* (Cantharellales) from subalpine forest in Shangri-la, Yunnan, China. Phytotaxa 252(4): 273–279. https://doi.org/10.11646/phytotaxa.252.4.3
- Shao SC, Tian XF, Liu PG (2011) *Cantharellus* in southwestern China: a new species and a new record. Mycotaxon 116: 437–446. https://doi.org/10.5248/116.437
- Suhara H, Kurogi S (2015) Cantharellus cyphelloides sp. nov., an unusual Cantharellus species from the evergreen broad-leaved forest of Japan. Mycological Progress 14: 1–7. https://doi. org/10.1007/s11557-015-1079-2
- Tian XF, Buyck B, Shao SC, Liu PG, Fang Y (2012) *Cantharellus zanghii*, a new subalpine basidiomycete from southwestern China. Mycotaxon 120: 99–103. https://doi. org/10.5248/120.99

RESEARCH ARTICLE

Cryphonectriaceae associated with rust-infected Syzygium jambos in Hawaii

Jolanda Roux¹, Gilbert Kamgan Nkuekam¹, Seonju Marincowitz², Nicolaas A. van der Merwe², Janice Uchida³, Michael J. Wingfield², ShuaiFei Chen^{2,4}

I Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa 2 Department of Biochemistry, Genetics and Microbiology, FABI, University of Pretoria, Pretoria 0028, South Africa 3 Department of Plant and Environmental Protection Sciences, Tropical Plant Pathology Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 4 China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China

Corresponding author: ShuaiFei Chen (shuaifei.chen@gmail.com)

Academic editor: D. Haelewaters | Received 6 September 2020 | Accepted 8 December 2020 | Published 31 December 2020

Citation: Roux J, Kamgan Nkuekam G, Marincowitz S, van der Merwe NA, Uchida J, Wingfield MJ, Chen SF (2020) Cryphonectriaceae associated with rust-infected *Syzygium jambos* in Hawaii. MycoKeys 76: 49–79. https://doi.org/10.3897/mycokeys.76.58406

Abstract

Syzygium jambos (Myrtales, Myrtaceae) trees in Hawaii are severely affected by a rust disease caused by Austropuccinia psidii (Pucciniales, Sphaerophragmiaceae), but they are commonly co-infected with species of Cryphonectriaceae (Diaporthales). In this study, *S. jambos* and other trees in the Myrtales were examined on three Hawaiian Islands for the presence of Cryphonectriaceae. Bark samples with fruiting bodies were collected from infected trees and fungi were isolated directly from these structures. Pure cultures were produced and the fungi were identified using DNA sequence data for the internal transcribed spacer (ITS) region, part of the β -tubulin (*BT1*) gene and the transcription elongation factor-1 α (*TEF1*) gene. Five species in three genera of Cryphonectriaceae were identified from Myrtaceae tree samples. These included *Chrysoporthe deuterocubensis, Microthia havanensis* and three previously-unknown taxa described here as *Celoporthe hauoliensis* sp. nov., *Cel. hawaiiensis* sp. nov. and *Cel. paradisiaca* sp. nov. Representative isolates of *Cel. hauoliensis, Cel. paradisiaca, Chr. deuterocubensis* and *Mic. havanensis* were used in artificial inoculation studies to consider their pathogenicity on *S. jambos*. *Celoporthe hawaiiensis, Cel. paradisiaca* and *Chr. deuterocubensis* produced lesions on young *S. jambos* trees in inoculation trials, suggesting that, together with *A. psidii*, they may contribute to the death of trees. Microsatellite markers were subsequently used to consider the diversity of *Chr. deuterocubensis* on the Islands and thus to gain

Copyright Jolanda Roux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

insights into its possible origin in Hawaii. Isolates of this important Myrtaceae and particularly *Eucalyptus* pathogen were found to be clonal. This provides evidence that *Chr. deuterocubensis* was introduced to the Hawaiian Islands as a single introduction, from a currently unknown source.

Keywords

Austropuccinia psidii, fungi, genetic diversity, Myrtales, pathogen introductions

Introduction

Fungi in the Cryphonectriaceae (Diaporthales) include at least twenty-three genera of bark-, wood- and leaf-infecting fungi (Gryzenhout et al. 2009, 2010; Begoude et al. 2010; Vermeulen et al. 2011, 2013; Crous et al. 2012; Chen et al. 2013a, b, 2016, 2018; Crane and Burgess 2013; Beier et al. 2015; Ali et al. 2018; Ferreira et al. 2019; Jiang et al. 2020; Wang et al. 2020). They occur on trees and shrubs in various parts of the world and include saprophytes, facultative parasites and important pathogens of woody plants (Gryzenhout et al. 2009). Pathogens in the family reside mainly in the genera *Cryphonectria* and *Chrysoporthe* and include important agents of tree disease, both in natural forest ecosystems, as well as in intensively-managed plantations (Wingfield 2003; Gryzenhout et al. 2009; Wang et al. 2020). These fungi generally have yellow to orange or brown stromata and these structures turn purple in 3% potassium hydroxide (KOH) or yellow in lactic acid (Gryzenhout et al. 2006c, 2009; Jiang et al. 2020).

The Cryphonectriaceae infect trees and shrubs residing in more than 100 species in at least 26 families and 16 orders of plants worldwide (Gryzenhout et al. 2009; Jiang et al. 2020; Wang et al. 2020). The chestnut blight pathogen, Cryphonectria parasitica (Murrill) M.E. Barr is the best-known tree-killing pathogen in the family. It is native to Asia and outbreaks of the disease in North America and Europe have caused the virtual extinction of endemic populations of chestnut trees on these two continents (Anagnostakis 1987; Heiniger and Rigling 1994; Gryzenhout et al. 2009). Other important pathogens in the Cryphonectriaceae include: Chrysoporthe cubensis (Bruner) Gryzenh. & M.J. Wingf., which is native to South and Central America and causes a canker disease of *Eucalyptus* species in West Africa and South America (Alfenas et al. 1983; Gryzenhout et al. 2004, 2009; Roux and Apetorgbor 2010); Chrysoporthe deuterocubensis Gryzenh. & M.J. Wingf., native to Southeast Asia and causal agent of a canker disease of *Eucalyptus* species in Africa, Australia, China and Hawaii (Davison and Coates 1991; Roux et al. 2005; Nakabonge et al. 2006; Zhou et al. 2008; Chen et al. 2010; Van der Merwe et al. 2010; Wang et al. 2020); and Chrysoporthe austroafricana Gryzenh. & M.J. Wingf., endemic to Africa and causal agent of a canker disease of Eucalyptus, Syzygium and Tibouchina species in southern and eastern Africa (Wingfield et al. 1989; Myburg et al. 2002a; Gryzenhout et al. 2004; Roux et al. 2005; Nakabonge et al. 2006).

Hawaii, in the central Pacific Ocean, is comprised entirely of islands and is the northernmost island group in Polynesia (Little and Skolmen 1989). The vegetation

is multivariate including many forest types that cover more than 41% of the State's total land area (Anonymous 2003). Hawaii's forests broadly comprise native forest and plantations of non-native trees, interspersed with stands of non-native, invasive tree species. Native forests are dominated by *Metrosideros polymorpha* Gaudich. (Myrtaceae, Myrtales) and *Acacia koa* A. Gray (Fabaceae, Fabales) trees, whereas plantations of non-native trees include various conifers and many tree species (mostly *Eucalyptus*) that reside in the Myrtaceae (Anonymous 2003). Eight species of indigenous Myrtaceae and more than 200 non-native Myrtaceae have been recorded from the Islands (Loope 2010).

In April 2005, a rust disease caused by *Austropuccinia psidii* G. Winter (syn. *Puccinia psidii*, Sphaerophragmiaceae, Pucciniales), was detected on the Island of O'ahu (Uchida et al. 2006; Loope 2010). The pathogen spread rapidly and, consistent with its broad host range in the Myrtaceae (Coutinho et al. 1998; Glen et al. 2007; Carnegie et al. 2016), has been reported to cause disease on at least five native and fifteen non-native Hawaiian species. Of these, the non-native and invasive *Syzygium jambos* (rose apple) has been especially severely affected by the disease (Loope 2010). Instances of crown death of *S. jambos* are common and, in some cases, large areas of trees have died (Loope 2010).

During a casual inspection of rust-infected *S. jambos* in Hawaii by M.J. Wingfield during August 2011 (unpublished data), fruiting bodies of fungi resembling species in the Cryphonectriaceae were observed on the stems and branches of dying trees. This raised interest as very little was known regarding the diversity and distribution of the Cryphonectriaceae infecting Myrtaceae on the Hawaiian Islands. Two species are known to occur and these include, *Chr. deuterocubensis*, collected from cankers on *Eucalyptus* species on the Islands of Kauai and Hawaii (Gryzenhout et al. 2006a, 2009; Van der Merwe et al. 2010) and *Microthia havanensis* (Bruner) Gryzenh. & M.J. Wingf., first found on *Eucalyptus* species grown on the same Islands (Gryzenhout et al. 2006a).

The dramatic death of *S. jambos* in Hawaii could be caused solely by *A. psidii*, but the extent of the rapid die-back of branches and stems raised the question as to whether other pathogens, such as the Cryphonectriaceae, might be involved. The aim of this study was, thus, to identify species of Cryphonectriaceae on rust-infected *S. jambos*, as well as on some other species of Myrtaceae. Furthermore, pathogenicity tests were used to consider the possibility that species in the Cryphonectriaceae might contribute to the death of trees that had become infected and were consequently stressed by *A. psidii*. The genetic diversity of a collection of the most commonly isolated Cryphonectriaceae species was also characterised to gain insight into its possible origin in Hawaii.

Materials and methods

Collection of samples and fungal isolation

Surveys for Cryphonectriaceae were conducted in Hawaii during July 2012. Samples were collected mainly from non-native *S. jambos* trees infected by *A. psidii*, but also from various native and non-native Myrtaceae, on the Islands of Maui, O'ahu and

Hawaii. Samples were collected using an unstructured approach where the areas sampled were determined by the time available for collections to be made on the three selected Islands. On each of the Islands, two to three sites, where rust-infected trees had previously been found, were selected and surveyed during the course of a single day. As much as possible of each Island was also covered by driving along main roads and sampling at regular intervals where *S. jambos* plants were observed.

The presence on samples of fruiting structures (ascostromata, conidiomata), typical of the Cryphonectriaceae, was ascertained using a 10× magnification hand lens. Pieces of bark bearing these fruiting structures were excised from infected stems and branches and placed in separate brown paper bags for each tree sampled. Samples from each Island were labelled and placed in plastic bags to prevent desiccation and to promote sporulation of the fungi. Isolations and purification of the Cryphonectriaceae from the wood samples followed the technique described by Chen et al. (2011). All isolates used in this study were deposited in the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI, www.fabinet.up.ac.za), University of Pretoria, Pretoria, South Africa. Representative isolates, including ex-type cultures, were deposited in the culture collection (CBS) of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. Dried specimens of cultures were deposited in the National Collection of Fungi (PREM), Roodeplaat, Pretoria, South Africa.

DNA extraction, PCR amplification and sequencing

DNA was extracted from all isolates using PrepMan Ultra Sample Preparation Reagent kits (Applied Biosystems, California, USA) following the manufacturer's instructions. An Eppendorf Mastercycler (Merck, Germany) was used for PCR amplification of the nuclear rDNA region encompassing the internal transcribed spacer regions (ITS1, ITS2) and 5.8S gene of the ribosomal RNA (ITS) operon, part of the β -tubulin gene (*BT1*) and the transcription elongation factor-1 α gene (*TEF1*). The ITS was amplified using primers ITS1 and ITS4 (White et al. 1990), the *BT1* using primers β t1a and β t1b (Glass and Donaldson 1995) and *TEF1* using primers EF728F and EF986R (Carbone and Kohn 1999). The PCR reaction mixtures and thermal cycling conditions were the same as described previously for the ITS, *BT1* (Chen et al. 2011, 2013a) and *TEF1* gene regions (Vermeulen et al. 2013).

A 5 µl aliquot of the PCR products was pre-stained with GelRedTM Nucleic Acid Gel stain (Biotium, Hayward, USA), separated on 1% agarose gels and visualised under UV light. PCR products were purified using Sephadex G-50 Gel (Sigma-Aldrich), following the manufacturer's instructions. The concentrations of the purified PCR products were determined using a Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies, Rockland, USA). Sequencing reactions were performed using the Big Dye cycle sequencing kit with Amplitaq DNA polymerase FS (Perkin-Elmer, Warrington, UK), following the manufacturer's protocols, on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). Protocols for sequencing PCR amplicons were the same as those described by Chen et al. (2011) and both DNA strands were sequenced for each gene region. Sequences of both DNA strands for each isolate were examined visually and combined using the programme Sequence Navigator v. 1.01 (ABI PRISM, Perkin Elmer). The ITS and *BT1* gene regions were sequenced for all isolates used in this study. The *TEF1* gene region was sequenced for selected isolates in genera for which this region was required for species-level identification.

Phylogenetic analyses

A preliminary identification of the isolates was obtained by performing a similarity search (standard nucleotide BLAST) against the GenBank database (http://www.ncbi. nlm.nih.gov) using the ITS and *BT1* sequences. The BLAST results showed that the isolates obtained in the current study grouped in the genera *Celoporthe*, *Chrysoporthe* and *Microthia*.

For analyses of the ITS and *BT1* sequences of isolates from Hawaii, the datasets of Wang et al. (2020) were used as templates. Sequences of the ITS and *BT1* gene regions were analysed separately and in combination. A partition homogeneity test (PHT), as implemented in PAUP (Phylogenetic Analysis Using Parsimony) v. 4.0b10 (Swofford 2003), was used to determine whether there was conflict between the datasets, prior to performing combined analyses in PAUP (Farris et al. 1995; Huelsenbeck et al. 1996). Two isolates of *Diaporthe ambigua* (CMW5288 and CMW5587), residing in the Diaporthaceae (Diaporthales), were used as outgroups.

For isolates that grouped in *Celoporthe*, based on ITS and *BT1* gene sequences, *TEF1* sequences were required to obtain accurate species-level identifications (Chen et al. 2011; Vermeulen et al. 2013). The ITS, *BT1* and *TEF1* gene regions were analysed separately and in combination. This made it possible to determine the phylogenetic relationships amongst the isolates from Hawaii and all 10 previously described *Celoporthe* species (Nakabonge et al. 2006; Chen et al. 2011; Vermeulen et al. 2013; Ali et al. 2018; Wang et al. 2018). A PHT was used to determine if conflict existed amongst the ITS, *BT1* and *TEF1* datasets (Farris et al. 1995; Huelsenbeck et al. 1996). Two isolates of *Holocryphia capensis* (CMW37329 and CMW37887) were used as outgroups.

The sequences for each of the single gene datasets, as well as for a combined dataset consisting of two or three gene regions, were aligned using MAFFT online v. 7 (http://mafft.cbrc.jp/alignment/server/) (Katoh and Standley 2013) and applying the iterative refinement method (FFT-NS-i setting). The alignments were edited manually with MEGA4 (Tamura et al. 2007). For each dataset, Maximum Parsimony (MP) and Maximum Likelihood (ML) analyses were performed.

PAUP v. 4.0 b10 (Swofford 2003) was used for MP analyses, with gaps treated as the fifth character. Uninformative characters were excluded and informative characters were unordered and of equal weight with 1000 random addition replicates. The most parsimonious trees were obtained using the heuristic search function with stepwise addition, tree bisection and reconstruction branch swapping. Maxtrees were set to 5000 and zero-length branches were collapsed. A bootstrap analysis (50% majority rule, 1000 replicates) was undertaken to determine statistical support for the internal nodes in the trees. Tree length (TL), consistency index (CI), retention index (RI) and homoplasy index (HI) were used to assess the trees (Hillis and Huelsenbeck 1992).

PhyML v. 3.1 was used for the ML analyses for each dataset (Guindon and Gascuel 2003). The best nucleotide substitution model for each dataset was determined using the software package jModeltest v. 1.2.5 (Posada 2008). In PhyML, the maximum number of retained trees was set to 1000 and nodal support was determined by non-parametric bootstrapping with 1000 replicates. The phylogenetic trees for both MP and ML analyses were viewed in MEGA4 and edited in Microsoft Office PowerPoint version 2013.

Morphology

Isolates of the Cryphonectriaceae were grown at 25 °C on 2% malt extract agar (MEA: 20 g/l malt extract and 15 g/l agar, Biolab, Midrand, South Africa and 1000 ml sterile deionised water) containing 0.05 g/l of the antibiotic streptomycin sulphate (Sigma-Aldrich, Steinheim, Germany). Where no sporulation was obtained on agar media, six isolates, representing the putative new species, were inoculated on water agar medium on to which ~ 5 cm long sterilised Eucalyptus stem sections had been placed. These were kept at room temperature (~ 25 °C) in the dark until fruiting structures were observed. For each new taxon, micro-morphological structures were studied using Nikon microscopes (Eclipse Ni, SMZ18, Tokyo, Japan) and a mounted Nikon DS-Ri2 camera. The structures were initially mounted in water, later being replaced with 85% lactic acid on glass microscope slides. In order to study the morphology of fruiting structures and stromatic tissues, pieces of bark, bearing fungal fruiting structures, were mounted on discs in Leica Tissue Freezing Medium and dissected to 12-16 µm thickness using a Leica CM1520 cryostat (Wetzler, Germany). The cut sections were mounted in 85% lactic acid for observation. Whenever available, up to 50 measurements of characteristic features were made for isolates chosen to represent the types of putative new species. Measurements were recorded as minimum-maximum, except for spore dimensions for which supplementary information (mean \pm standard deviation) was added.

Growth in culture was examined for two isolates of each putative new species identified. The protocols used to assess growth in culture were the same as those described by Chen et al. (2011). The growth rate at optimum temperature was repeated twice for ex-holotype isolates and the average was presented.

Pathogenicity tests

Syzygium jambos seeds were collected from a garden in Pretoria, South Africa and germinated to produce seedlings for artificial inoculation studies under quarantine greenhouse conditions. These seedlings were grown for one year, until their stem diameters had reached at least 0.5 cm. Ten seedlings (~ 0.5-1 cm diam. × 30 cm high), were inoculated with each test strain and ten seedlings of the same size were inoculated with a sterile agar disc to serve as controls. Inoculations were made using the same technique as that described by Chen et al. (2011). Four weeks (28 days) after inoculation, the lengths of the lesions in the cambium on each plant were measured. The JMP version 5.0 of SAS software (SAS Institute Inc. 2002) was used for statistical analysis of the lesion length data. One way ANOVA was used to test statistical differences between the means of the lesion lengths. Re-isolations were made from the lesions to confirm that they had resulted from the effects of the inoculated fungi.

Genetic diversity of Chr. deuterocubensis isolates

The genetic diversity of the most commonly encountered and globally important species in the Cryphonectriaceae from Myrtales on the Hawaiian Islands was analysed using microsatellite markers. DNA was extracted from all isolates of freshly-prepared cultures using PrepMan Ultra Sample Preparation Reagent (Applied Biosystems, California, USA), following the manufacturer's instructions. A set of ten microsatellite markers (Suppl. material 1: Table S1), that had been developed and used in previous studies (Van der Merwe et al. 2003, 2010), was tested on ten randomly-selected isolates. The PCR reaction mixes and thermal cycling were the same as those described by Van der Merwe et al. (2003, 2010). PCR aliquots of 5 μ l were pre-stained with GelRed Nucleic Acid Gel stain (Biotium, Hayward, USA) and amplicons were separated on 1% (w/v) agarose gels and visualised under UV light to confirm successful amplification. Primer pairs that did not amplify the target loci successfully after several repetitions were discarded. Those that were successful were used to amplify target loci from all the isolates of the available population.

PCR products for each isolate were multiplexed for GeneScan analysis. The composition of each sample mix was the same as that described by Kamgan Nkuekam et al. (2009). Sample mixes were separated on a 36-cm capillary column with POPTM4 polymer on an ABI Prism 3500 sequencer (Perkin-Elmer, Warrington, UK). Allele sizes were determined by comparing the mobility of the PCR products with that of a LIZ 500 size standard (Applied Biosystems, Foster City, California). Microsatellite size data were analysed using the software GeneMapper version 3.0 (Applied Biosystems, Foster City, California).

The allele size for each of the seven loci was scored for each isolate from the collection. These data were used to generate a multilocus haplotype profile for each isolate. Isolates that had identical alleles for each of the seven loci were treated as clones. The frequency of each allele within the collection was calculated by taking the number of times the allele was present in the population and dividing it by the population sample size. This was then used to calculate gene diversity using the formula $H = 1 - \sum_{k} x_k^2$ (Nei 1973), where x_k is the frequency of the k^{th} allele.

Results

Collection of samples and fungal isolation

A total of 139 Cryphonectriaceae isolates were obtained from 106 trees sampled on three Hawaiian Islands (Table 1). Trees, from which the fungi were obtained, included

Species	Island	Hosts	Number of Trees	Number of Strains
Chrysoporthe deuterocubensis	O'ahu	Syzygium jambos	18	19
"	"	Syzygium cumini	3	3
"	"	Syzygium sp.	11	11
"	"	Psidium cattleianum	9	12
"	Hawaii	S. jambos	28	38
"	"	Syzygium sp.	1	1
"	"	Metrosideros polymorpha	1	1
"	Maui	S. jambos	7	8
Microthia havanensis	O'ahu	P. cattleianum	5	7
"	"	S. cumini	1	1
н	Hawaii	P. cattleianum	1	1
"	"	S. jambos	1	1
Celoporthe hauoliensis	Maui	S. jambos	4	8
"	Hawaii	S. jambos	2	4
"	"	P. cattleianum	1	2
Cel. hawaiiensis	O'ahu	P. cattleianum	4	6
н	"	S. jambos	3	4
"	"	Syzygium sp.	1	1
Cel. paradisiaca	O'ahu	P. cattleianum	1	4
т И	"	S. jambos	2	3
н	"	Syzygium sp.	1	3
"	Hawaii	S. jambos	1	1

Table 1. List of Cryphonectriaceae isolates collected during surveys in Hawaii and sequenced in the study.

a single specimen of the native species, Ohia (*Metrosideros polymorpha*) and multiple specimens of four non-native Myrtaceae hosts, including an unknown *Metrosideros* sp., *Psidium cattleianum, S. cumini* and *S. jambos*. The majority of trees sampled were those of *S. jambos* (66 trees), since this was the main tree of focus in the study and it also displayed the most evident examples of rust infection and death at the time of the survey. Samples were obtained from dead sapling trees (~ 0.5 cm or more diameter) or from older dying/dead trees and cankers on living trees. In the case of *M. polymorpha*, a species of Cryphonectriaceae was obtained from the surface of a single cut stump. On older trees, signs and symptoms of the Cryphonectriaceae could be found on dead branches and stem cankers, including on trees with no obvious infection by the myrtle rust pathogen.

Phylogenetic analyses

For the isolates selected for sequencing, the PCR fragments were approximately 550, 450 and 260 bp for the ITS, *BT1* and *TEF1* regions, respectively. All sequences obtained in this study were deposited in GenBank (Table 2). The alignments of each of the datasets were deposited in TreeBASE (http://treebase.org, study ID: S19035). The number of taxa and characters in each of the datasets and a summary of the most important parameters applied in the Maximum Parsimony (MP) and Maximum Likelihood (ML) analyses are presented in Suppl. material 2: Table S2.

For the ITS and *BT1* datasets, the PHT generated a value of P = 0.001, indicating that the accuracy of the combined data had not suffered relative to the individual partitions (Cunningham 1997). Sequences of the two regions were combined for analyses. For each of the ITS, *BT1* and ITS+*BT1* datasets, the ML and MP analyses generated

;		;	,	=	6	·		6
Identity	Isolate No.14	Host	Location	Collector	Gent	ank accession	1 no.	Keterence
					ITS	BTI	TEFI	
Amphilogia gyrosa	CMW10469T	Elaeocarpus dentatus	New Zealand	G.J. Samuels	AF452111	AF525707	N/A^3	Gryzenhout et al. (2005a, 2006c)
	CMW10470	Ela. dentatus	New Zealand	G.J. Samuels	AF452112	AF525708	N/A	Gryzenhout et al. (2005a, 2006c)
Aurantioporthe corni	CMW10526	Cornus alternifolia	NSA	S. Redlin	DQ120762	DQ120769	N/A	Gryzenhout et al. (2006c)
	MES1001	N/A	NSA	W. Cullina	KF495039	KF495069	N/A	Beier et al. (2015)
	CTS1001	N/A	NSA	K. Kitka	KF495033	KF495063	N/A	Beier et al. (2015)
Aurantiosacculus acutatus	CBS132181T	Eucalyptus viminalis	Australia	B.A. Summerell & P. Summerell	JQ685514	N/A	N/A	Crous et al. (2012)
Aurantiosacculus eucalyptorum	CBS130826T	Euc. globulus	Australia	C. Mohammed & M. Glen	JQ685515	N/A	N/A	Crous et al. (2012)
Aurapex penicillata	CMW10030T	Miconia theaezans	Colombia	C.A. Rodas	AY214311	AY214239	N/A	Gryzenhout et al. (2006b, 2009)
	CMW10035	Mic. theaezans	Colombia	C.A. Rodas	AY214313	AY214241	N/A	Gryzenhout et al. (2006b, 2009)
Aurifilum marmelostoma	CMW28285T	Terminalia mantaly	Cameroon	D. Begoude & J. Roux	FJ882855	FJ900585	N/A	Begoude et al. (2010), Vermeulen et al. (2011)
	CMW28288	Ter. ivorensis	Cameroon	D. Begoude & J. Roux	FJ882856	FJ900586	N/A	Begoude et al. (2010), Vermeulen et al. (2011)
Aurifilum terminali	CSF10757T	Ter. neotaliala	China	S.F. Chen & W. Wang	MN199837	MN258775	MN258780	Wang et al. (2020)
	CSF10762	Ter. neotaliala	China	S.F. Chen & W. Wang	MN199838	MN258776	MN258781	Wang et al. (2020)
Capillaureum caryovora	CBL02T	Caryocar brasiliense	Brazil	M.E. Soares de Oliveira &M.A. Ferreira	MG192094	MG211827	N/A	Ferreira et al. (2019)
	CBL06	Car. brasiliense	Brazil	M.E. Soares de Oliveira &M.A. Ferreira	MG192096	MG211829	N/A	Ferreira et al. (2019)
Celoporthe borbonica	CMW44128T	Tibouchina grandiflora	La Réunion	M.J. Wingfield	MG585741	MG585725	N/A	Ali et al. (2018)
	CMW44139	Tib. grandiflora	La Réunion	M.J. Wingfield	MG585742	MG585726	N/A	Ali et al. (2018)
Celoporthe cerciana	CERC9128T	Eucalyptus hybrid tree 4	China, GuangDong	S.F. Chen	MH084352	MH084382	MH084442	Wang et al. (2018)
	CERC9125	Eucalyptus hybrid tree 1	China, GuangDong	S.F. Chen	MH084349	MH084379	MH084439	Wang et al. (2018)
Celoporthe dispersa	CMW9976T	S. cordatum	South Africa	M. Gryzenhout	DQ267130	DQ267136	HQ730840	Nakabonge et al. (2006), Chen et al. (2011)
	CMW9978	S. cordatum	South Africa	M. Gryzenhout	AY214316	DQ267135	HQ730841	Nakabonge et al. (2006), Chen et al. (2011)
Celoporthe eucalypti	CMW26900	Eucalyptus cloneEC48	China	X.D. Zhou & S.F. Chen	HQ730836	HQ730816	HQ730849	Chen et al. (2011)
	CMW26908T	Eucalyptus cloneEC48	China	X.D. Zhou & S.F. Chen	HQ730837	HQ730817	HQ730850	Chen et al. (2011)
Celoporthe fontana	CMW29375	S. guineense	Zambia	M. Vermeulen & J. Roux	GU726940	GU726952	JQ824073	Vermeulen et al. (2013)
	CMW29376T	S. guineense	Zambia	M. Vermeulen & J Roux	GU726941	GU726953	JQ824074	Vermeulen et al. (2013)
Celoporthe guangdongensis	CMW12750T	Eucalyptus sp.	China	T.I. Burgess	HQ730830	HQ730810	HQ730843	Chen et al. (2011)
Celoporthe hauoliensis	CMW383735	S. jambos	Hawaii	J. Roux	KJ027503	KJ027479	KJ027488	This study
	CMW38389T ⁵	P. cattleianum	Hawaii	J. Roux	KJ027502	KJ027478	KJ027487	This study
	CMW38546	Syzygium sp.	Hawaii	J. Roux	KJ027504	KJ027480	KJ027489	This study
Celoporthe hawaiiensis	CMW385535	S. jambos	Hawaii	J. Roux	KJ027500	KJ027476	KJ027485	This study
	CMW38582	S. jambos	Hawaii	J. Roux	KJ027501	KJ027477	KJ027486	This study
	CMW38610T5	S. jambos	Hawaii	J. Roux	KJ027499	KJ027475	KJ027484	This study
Celoporthe indonesiensis	CMW10781T	S. aromaticum	Indonesia	M.J. Wingfield	AY084009	AY084033	HQ730842	Myburg et al. (2003), Chen et al. (2011)
Celoporthe paradisiaca	CWM38360T45	Psidium cattleianum	Hawaii	J. Roux	KJ027498	KJ027474	KJ027483	This study
	CMW38368	Syzygium jambos	Hawaii	J. Roux	KJ027496	KJ027472	KJ027481	This study
	CMW38384	S. jambos	Hawaii	J. Roux	KJ027497	KJ027473	KJ027482	This study

Table 2. List of isolates and their GenBank accession numbers used for DNA sequence comparisons.

Identity	Isolate No. ^{1,2}	Host	Location	Collector	Genl	3ank accession	1 no.	Reference
					STI	BTI	TEFI	
Celoporthe syzygii	CMW34023T	S. cumini	China	S.F. Chen	HQ730831	HQ730811	HQ730844	Chen et al. (2011)
	CMW24912	S. cumini	China	M.J. Wingfield & X.D. Zhou	HQ730833	HQ730813	HQ730846	Chen et al. (2011)
Celoporthe tibouchineae	CMW44126T	Tib. grandiflora	La Réunion	M.J. Wingfield	MG585747	MG585731	N/A	Ali et al. (2018)
4	CMW44127	Tib. grandiflora	La Réunion	M.J. Wingfield	MG585748	MG585732	N/A	Ali et al. (2018)
Celoporthe woodiana	CMW13936T	Tib. granulosa	South Africa	M. Gryzenhout	DQ267131	DQ267137	JQ824071	Vermeulen et al. (2013)
	CMW13937	Tib. granulosa	South Africa	M. Gryzenhout	DQ267132	DQ267138	JQ824072	Vermeulen et al. (2013)
Chrysomorbus lagerstroemiae	CERC8780	Lagerstroemia speciosa	China	J. Roux & S.F. Chen	KY929330	KY929350	N/A	Chen et al. (2018)
	CERC8810T	L. speciosa	China	S.F. Chen	KY929338	KY929358	N/A	Chen et al. (2018)
Chrysoporthe austroafricana	CMW62	Euc. grandis	South Africa	M.J. Wingfield	AF292041	AF273063	N/A	Myburg et al. (2002b), Gryzenhout et al. (2006c)
	CMW9327	Tib. granulosa	South Africa	J. Roux	AF273473	AF273060	N/A	Myburg et al. (2002a)
	CMW2113T	Euc. grandis	South Africa	M.J. Wingfield	AF046892	AF273067	N/A	Myburg et al. (1999, 2002b)
Chrysoporthe cubensis	CMW10453	Euc. saligna	Democratic	N/A	AY063476	AY063478	N/A	Castlebury et al. (2002),
			Republic of the Congo					Gryzenhout et al. (2004)
	CMW8758	Eucalyptus sp.	Venezuela	M.J. Wingfield	AF046898	AF273068	N/A	Myburg et al. (2002b), Gryzenhout et al. (2006c)
	CMW10669	Eucalyptus sp.	Republic of the Congo	J. Roux	AF535122	AF535124	N/A	Gryzenhout et al. (2004)
	CMW10639	Euc. grandis	Colombia	C.A. Rodas	AY263421	AY263419	N/A	Gryzenhout et al. (2004)
Chrysoporthe deuterocubensis	CMW11290	Eucalyptus sp.	Indonesia	M.J. Wingfield	AY214304	AY214232	N/A	Gryzenhout et al. (2004)
	CMW8651	S. aromaticum	Indonesia	M.J. Wingfield	AY084002	AY084026	N/A	Myburg et al. (2003)
	CMW383755	P. cattleianum	Hawaii	J. Roux	KJ027490	KJ027466	N/A	This study
	CMW385495	S. jambos	Hawaii	J. Roux	KJ027491	KJ027467	N/A	This study
	CMW38565	Metrosideros polymorpha	Hawaii	J. Roux	KJ027492	KJ027468	N/A	This study
Chrysoporthe doradensis	CMW11287T	Euc. grandis	Ecuador	M.J. Wingfield	AY214289	AY214217	N/A	Gryzenhout et al. (2005b)
	CMW11286	Euc. grandis	Ecuador	M.J. Wingfield	AY214290	AY214218	N/A	Gryzenhout et al. (2005b)
Chrysoporthe hodgesiana	CMW10625	Mic. theaezans	Colombia	C.A. Rodas	AY956970	AY956979	N/A	Rodas et al. (2005)
	CMW9995	Tib. semidecandra	Colombia	R. Arbelaez	AY956969	AY956977	N/A	Rodas et al. (2005)
	CMW10641T= CBS115854	Tib. semidecandra	Colombia	R. Arbelaez	AY692322	AY692326	N/A	Gryzenhout et al. (2004)
Chrvsanarthe inonina	CMW12727T	Tih. levidota	Colombia	R. Athelaez	DO368777	DO368806	N/A	Grvzenhout et al. (2006d)
1 1 1	CMW12729	Tib. lepidota	Colombia	R. Arbelaez	DQ368778	DQ368808	N/A	Gryzenhout et al. (2006d)
Chrysoporthe syzygiicola	CMW29940T= CBS124488	S. guineense	Zambia	D. Chungu & J. Roux	FJ655005	FJ805230	N/A	Chungu et al. (2010)
	CMW/29942= CBS1 24490	S. guineense	Zambia	D. Chungu & J. Roux	FJ655007	FJ805232	N/A	Chungu et al. (2010)

Identity	Isolate No. ^{1,2}	Host	Location	Collector	GenF	sank accession	no.	Reference
					STI	BTI	TEFI	
Chrysoporthe zambiensis	CMW29928T= CBS124503	Euc. grandis	Zambia	D. Chungu & J. Roux	FJ655002	FJ858709	N/A	Chungu et al. (2010)
	CMW29930= CBS124502	Euc. grandis	Zambia	D. Chungu & J. Roux	FJ655004	FJ858711	N/A	Chungu et al. (2010)
Corticimorbus sinomyrti	CERC3629T	Rhodomyrtus tomentosa	China	S.F. Chen & G.Q. Li	KT167169	KT167189	N/A	Chen et al. (2016)
	CERC3631	Rho. tomentosa	China	S.F. Chen & G.Q. Li	KT167170	KT167190	N/A	Chen et al. (2016)
Cryphonectria parasitica	CMW7048	Q. virginiana	USA	R.J. Stipes	AF368330	AF273076	N/A	Venter et al. (2002), Gryzenhout et al. (2006c)
	CMW13749	Cas. mollisima	Japan	N/A	AY697927	AY697943	N/A	Myburg et al. (2004)
Cryphonectria quercus	CFCC52138T	Q. aliena var.	China, ShaanXi	N. Jiang	MG866024	MG896115	N/A	Jiang et al. (2018)
	CFCC52139	u uucsenuu Q. aliena var.	China, ShaanXi	N. Jiang	MG866025	MG896116	N/A	Jiang et al. (2018)
- - - -		acuteserrata						- (
Cryphonectria radicalis	CMW10455	Q. suber	Italy	A. Biraghi	AF452113	AF525705	N/A	Gryzenhout et al. (2006c)
	CMW10477	Q. suber	Italy	A. Biraghi	AF368328	AF368347	N/A	Venter et al. (2002), Gryzenhout et al. (2006c)
Cryptometrion aestuescens	CMW18790	Euc. grandis	Indonesia	M.J. Wingfield	GQ369458	GQ369455	N/A	Gryzenhout et al. (2010), Vermeulen et al. (2011)
	CMW18793	Euc. grandis	Indonesia	M.J. Wingfield	GQ369459	GQ369456	N/A	Gryzenhout et al. (2010), Vermeulen et al. (2011)
	CMW28535T= CBS124009	Euc. grandis	North Sumatra, Indonesia	M.J. Wingfield	GQ369457	GQ369454	N/A	Gryzenhout et al. (2010)
Diversimorbus metrosiderotis	CMW37321	Metrosideros angustifolia	South Africa	J. Roux	JQ862870	JQ862911	N/A	Chen et al. (2013b)
	CMW37322T	Met. angustifolia	South Africa	J. Roux	JQ862871	JQ862912	N/A	Chen et al. (2013b)
Endothia gyrosa	CMW2091	Q. palustris	NSA	R.J. Stipes	AF368325	AF368337	N/A	Venter et al. (2002), Gryzenhout et al. (2006c)
	CMW10442	Q. palustris	NSA	R.J. Stipes	AF368326	AF368339	N/A	Venter et al. (2002), Gryzenhout et al. (2006c)
Holocryphia capensis	CMW/37887T	Met. angustifolia	South Africa	J. Roux, S.F. Chen & F. Roets	JQ862854	JQ862895	JQ863051	Chen et al. (2013b)
	CMW37329	Met. angustifolia	South Africa	J. Roux & S.F. Chen	JQ862859	JQ862900	JQ863056	Chen et al. (2013b)
Holocryphia eucalypti	CMW/7033T	Euc. grandis	South Africa	M. Venter	JQ862837	JQ862878	JQ863034	Chen et al. (2013b)
	CMW7035	Euc. saligna	South Africa	M. Venter	JQ862838	JQ862879	JQ863035	Chen et al. (2013b)
Holocryphia gleniana	CMW37334T	Met. angustifolia	South Africa	J. Roux & S.F. Chen	JQ862834	JQ862875	JQ863031	Chen et al. (2013b)
	CMW37335	Met. angustifolia	South Africa	J. Roux & S.F. Chen	JQ862835	JQ862876	JQ863032	Chen et al. (2013b)
Holocryphia mzansi	CMW37337T	Met. angustifolia	South Africa	J. Roux & S.F. Chen	JQ862841	JQ862882	JQ863038	Chen et al. (2013b)
	CMW37338	Met. angustifolia	South Africa	J. Roux & S.F. Chen	JQ862842	JQ862883	JQ863039	Chen et al. (2013b)
Holocryphia sp.	CMW6246	Tib. granulosa	Australia	M.J. Wingfield	JQ862845	JQ862886	JQ863042	Chen et al. (2013b)
	CMW10015	Euc. fastigata	New Zealand	R.J. van Boven	JQ862849	JQ862890	JQ863046	Chen et al. (2013b)
Immersiporthe knoxdaviesiana	CMW37314T	Rapanea melanophloeos	South Africa	M.J. Wingfield & J. Roux	JQ862765	JQ862785	N/A	Chen et al. (2013a)
	CMW37315	Rap. melanophloeos	South Africa	M.J. Wingfield & J. Roux	JQ862766	JQ862786	N/A	Chen et al. (2013a)
Latruncella aurorae	CMW28274	Galpinia transvaalica	Swaziland	J. Roux	GU726946	GU726958	N/A	Vermeulen et al. (2011)
	CMW/28276T	G. transvaalica	Swaziland	J. Roux	GU726947	GU726959	N/A	Vermeulen et al. (2011), Chen et al. (2011)
	CMW28275	G. transvaalica	Swaziland	J. Roux	HQ171209	HQ171207	N/A	Vermeulen et al. (2011)

Cryphonectriaceae in Hawaii

Identity	Icolate No. 1,2	Hoet	Location	Collector	GenB	ank accession	00	Reference
TUCHTUC	TODIGIC TAO	16011	TOCALOI	CONCENT		ally accession	-	
					STI	BTI	TEFI	
Luteocirrhus shearii	CBS130775	Banksia baxteri	Australia	C. Crane	KC197024	KC197015	N/A	Crane and Burgess (2013)
	CBS130776T	B. baxteri	Australia	C. Crane	KC197021	KC197012	N/A	Crane and Burgess (2013)
Microthia havanensis	CMW11301	Myr. faya	Azores	C.S. Hodges & D.E. Gardner	AY214323	AY214251	N/A	Gryzenhout et al. (2006a)
Microthia havanensis	CMW14550	E. saligna	Mexico	C.S. Hodges	DQ368735	DQ368741	N/A	Gryzenhout et al. (2006a)
	CMW38563°	S. jambos	Hawaii	J. Roux	KJ027493	KJ027469	N/A	This study
	CMW38367	P. cattleianum	Hawaii	J. Roux	KJ027495	KJ027471	N/A	This study
	CMW38585°	S. jambos	Hawaii	J. Roux	KJ027494	KJ027470	N/A	This study
Myrtonectria myrtacearum	CMW46433T	Heteropyxis natalensis	South Africa	D.B. Ali & J. Roux	MG585736	MG585720	N/A	Ali et al. (2018)
	CMW46435	S. cordatum	South Africa	D.B. Ali & J. Roux	MG585737	MG585721	N/A	Ali et al. (2018)
Parvosmorbus eucalypti	CSF2061T	E. urophylla × E. grandis hybrid clone	China	S.F. Chen & G.Q. Li	MN258788	MN258816	MN258830	Wang et al. (2020)
	CSF8777	<i>E. urphylla</i> hybrid done	China	J.Roux & S.F. Chen	MN258794	MN258822	MN258836	Wang et al. (2020)
Parvosmorbus guangdongensis	CSF10460T	<i>E. umphylla</i> hybrid done	China	S.F. Chen & W. Wang	MN258799	MN258827	MN258841	Wang et al. (2020)
	CSF10738	E. grandis hybrid clone	China	S.F. Chen & W. Wang	MN258800	MN258828	MN258842	Wang et al. (2020)
Rostraureum tropicale	CMW9972	Terminalia ivorensis	Ecuador	M.J. Wingfield	AY167436	AY167426	N/A	Gryzenhout et al. (2005c, 2006c)
	CMW10796T	Ter. ivorensis	Ecuador	M.J. Wingfield	AY167438	AY167428	N/A	Gryzenhout et al. (2005c)
	CMW9971	Ter. ivorensis	Ecuador	M.J. Wingfield	AY167435	AY167425	N/A	Gryzenhout et al. (2005c)
Ursicollum fallax	CMW18119T	Coccoloba uvifera	NSA	C.S. Hodges	DQ368755	DQ368758	N/A	Gryzenhout et al. (2006a, 2009)
	CMW18115	Coc. uvifera	USA	C.S. Hodges	DQ368756	DQ368760	N/A	Gryzenhout et al. (2006a)
Diaporthe ambigua	CMW5587	Malus domestica	South Africa	W.A. Smit	AF543818	AF543820	N/A	Gryzenhout et al. (2006a)
	CMW5288	M. domestica	South Africa	W.A. Smit	AF543817	AF543819	N/A	Gryzenhout et al. (2006a)
¹ Designation of isolates and cul	lture collections: A	TCC = American Type Cult	ture Collection, Man	assas, USA; CBL represent isolates in	Ferreira et al. (20	19); CBS = W	esterdijk Fungal	Biodiversity Institute, Utrecht, Netherlands;

CERČ = China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, GuangDong, China; CFCC = China Forestry Culture Collection Center, Beijing, China; CMW = Tree Protection Co-operative Program, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; CSF = Culture Collection from Southern Forests (CSF), China Eucalypt Research Centre, Chinese Academy of Forestry ZhanJiang, GuangDong, China; MES, CTS represent isolates in Beier et al. (2015).

2 'T' following isolate number means isolates are ex-type or from samples that have been linked morphologically to type material of the species.

 3 N/A = not available.

⁴ Isolates identified in this study are in bold font type.

⁵ Isolates used for inoculations.

trees with generally consistent topologies and phylogenetic relationships amongst taxa. Based on the phylogenetic analyses of the ITS, *BT1* and combined datasets, the isolates obtained in this study were grouped in three Clusters, referred to as Clusters A–C (Fig. 1; ITS and *BT1* trees not presented). Isolates in Cluster A grouped in the genus *Chrysoporthe* and they all resided in the same phylogenetic clade as *Chrysoporthe deuterocubensis*. Isolates in Cluster B grouped in the genus *Microthia* and were phylogenetically closely related to *Microthia havanensis*. Isolates in Cluster C grouped with species of *Celoporthe*. They formed three distinct Clades (Clades a–c) within *Celoporthe* based on the ITS+*BT1* tree (Fig. 1).

In the ITS, *BT1* and *TEF1* datasets for *Celoporthe* isolates, the PHT generated a value of P = 0.001, showing that the accuracy of the combined data were unaffected relative to the individual partitions (Cunningham 1997) and the three gene regions were thus combined in the analyses. Other than the ITS tree (Fig. 2A), Hawaiian isolates formed distinct lineages (Clades a–c) that differentiated them from other *Celoporthe* species (Fig. 2B–D). In the combined analyses of ITS, *BT1* and *TEF1* gene sequences, isolates in each of Clades a, b and c formed independent lineages, supported by high bootstrap values (Clade a: ML/MP = 98%/98%; Clade b: ML/MP = 88%/79%; Clade c: ML/MP = 99%/100%) (Fig. 2D). These three clades were consequently recognised as representing three undescribed species. Isolates in Clades a and b were most closely related to *Celoporthe guangdongensis* and those in Clade c were all most closely related to *Cel. eucalypti* and *Cel. cerciana* (Fig. 2D).

Morphology

Fruiting bodies developed for all six isolates grown on *Eucalyptus* stem sections on water agar after two months of incubation at room temperature. Other than some minor differences, all fungal isolates, obtained in this study, were morphologically similar. This was consistent with the fact that fungi in the Cryphonectriaceae are mostly indistinguishable on artificial media (Gryzenhout et al. 2009).

Colonies on 2% MEA were fluffy and white when young, turning yellow or greenish-grey to greenish when old. The optimal growth temperatures for novel species was 30 °C, at which colonies reached 59–80 mm within 4 days.

Taxonomy

Based on phylogenetic analyses of sequence data for the three gene regions, three previously unknown Cryphonectriaceae species are recognised from non-native Myrtaceae on the Hawaiian Islands. The three fungi reside in the genus *Celoporthe* and are distinct from described *Celoporthe* species, based on sequence data. Since limited numbers of fruiting bodies were available from the originally-collected plant material for these three species and mostly conidia were obtained under laboratory conditions, they are defined primarily based on multiple gene DNA sequence data. Morphological descriptions are provided for colonies on MEA and fruiting structures produced on *Eucalyptus* stem sections.

Figure 1. Phylogenetic trees based on Maximum Likelihood (ML) analyses of a combined DNA sequence dataset of ITS and *BT1* regions for various genera in the Diaporthales. Bootstrap values \geq 70% for ML and MP (maximum parsimony) analyses are presented at branches as follows: ML/MP. Bootstrap values lower than 70% are marked with * and absent analysis values are marked with –. Isolates collected in this study are in boldface and blue. *Diaporthe ambigua* (CMW5287 and CMW5588) (Diaporthaceae) was used as the outgroup taxon.

Figure 2. Phylogenetic trees, based on Maximum Likelihood (ML) analyses for species in *Celoporthe* **A** ITS region **B** *BT1* gene region **C** *TEF1* gene region **D** combined ITS, *BT1* and *TEF1* regions. Bootstrap values \geq 70% for ML and MP (maximum parsimony) analyses are presented at branches as follows: ML/MP. Bootstrap values lower than 70% are marked with * and absent analysis values are marked with –. Isolates collected in this study are in boldface and blue. *Holocryphia capensis* (CMW37329 and CMW37887) was used as the outgroup taxon.

Celoporthe hauoliensis Kamgan, Jol. Roux & Marinc., sp. nov.

MycoBank No: 808579 Fig. 3

Etymology. The species name refers to the Hawaiian word for happy, "Hau'oli", describing the collector's joy in visiting and discovering Cryphonectriaceae on the Islands.

Types. *Holotype*: USA, Hawaii, O'ahu Island, Pu'u PiaManoa, isolated from bark of *Psidium cattleianum*, 23 July 2012, *J. Roux* (PREM 61309; Ex-type culture CMW38389 = CBS 140640); GenBank accession numbers KJ027502 (ITS), KJ027478 (*BT1*), KJ027487 (*TEF1*). *Paratypes*: Hawaii, O'ahu Island, Waimea Valley Botanical Gardens, isolated from bark of *Syzygium* sp., 23 July 2012, *J. Roux* (PREM 61310; living culture CMW38546 = CBS 140641). Hawaii, O'ahu Island, Waimea Valley Botanical Garden, isolated from bark of *Syzygium jambos*, July 2012, *J. Roux* (CMW38373).

Sexual morph. Not observed.

Asexual morph. Formed after two months on *Eucalyptus* stem sections placed on water agar. *Conidiomata* superficial or with base embedded, pulvinate or conical with or without necks, often covered with pigmented hyphae, uni- or multilocular, convoluted, 287–722 µm long, 332–808 µm wide. *Conidiomatal walls* outer- and inter-locular

Figure 3. Micrographs of *Celoporthe hauoliensis* sp. nov. (holotype: PREM 61309; ex-holotype CBS 140640 = CMW38389) **A** culture morphology on 2% MEA at 25 °C and 30 °C at 9 and 27 days **B** conidiomata produced on *Eucalyptus* stem sections on water agar **C**, **D** vertical section of conidioma **E** inner fertile wall of conidioma **F** conidiomatal wall **G** conidiogenous cells **H** conidia. Scale bars: 1 mm (**B**); 100 µm (**C**, **D**); 10 µm (**E**–**H**).

stratum prosenchymatous; inner fertile stratum pseudoparenchymatous, composed of a few layers of brown, flattened, thick-walled cells, 8–26 µm thick. *Paraphyses* present, scarcely observed, 14–26 µm long. *Conidiophores* formed along inner layer of locule, simple or branched, often reduced to conidiogenous cells, 5–21 µm long. *Conidiogenous cells* enteroblastic, lageniform, tapering towards apex, $3-9 \times 1-2.5$ µm. *Conidia* hyaline, oblong, straight, occasionally curved, aseptate, $3-4 \times 1-1.5$ ($3.09 \pm 0.30 \times 1.31 \pm 0.08$) µm.

Culture characteristics. Colonies on 2% MEA, when young showing circular growth with smooth margins, above white with tint of yellow (30 °C) or orange (25 °C) towards the edge of Petri dish, reverse yellow, except for at 30 °C becoming brown towards the edge; with age above becoming brown, except for 30 °C at which each colony showing variable yellow with white mycelial clumps, reverse dark brown at all temperatures; optimal growth at 30 °C (9.4 mm/d), followed by 25 °C (7.9 mm/d) and 20 °C (4.8 mm/d), minimal growth at 35 °C (0.2 mm/d), no growth at 5 °C; mycelia fluffy, density sparce in centre becoming thicker towards the edge.

Habitat. On/in bark of Psidium cattleianum and Syzygium jambos

Distribution. Hawaii, USA

Notes. *Celoporthe hauoliensis* is morphologically similar to its phylogenetically closest relatives *Cel. eucalypti* and *Cel. cerciana*, but can be differentiated by DNA sequences. In the ITS, *BT1* and *TEF1* datasets, *Cel. hauoliensis* differs from *Cel. eucalypti* by 8, 4 and 4 base pairs and from *Cel. cerciana* by 11, 9 and 6 base pairs, respectively (Tables 3–5).

Table 3. Nucleotide differences observed in the ITS region between *Celoporthe hauoliensis, Cel. eucalypti* and *Cel. cerciana*.

Species/Isolate No.							ITS ¹						
	8 ²	61	75	76	80	112	161	162	186	187	193	194	467
Cel. hauoliensis CMW383735	T^3	А	G	С	С	-	-	С	Т	А	-	С	-
Cel. hauoliensis CMW383894	Т	А	G	С	С	-	-	С	Т	А	-	С	-
Cel. hauoliensis CMW38546	Т	Α	G	С	С	-	-	С	Т	А	-	С	-
Cel. eucalypti CMW26900	-	А	-	Т	G	G	Α	А	Т	А	-	А	-
Cel. eucalypti CMW26908	-	А	-	Т	G	G	Α	А	Т	А	-	А	-
Cel. cerciana CERC9125	Т	G	-	Т	G	G	-	А	Α	С	Α	А	Т
Cel. cerciana CERC9128	Т	G	-	Т	G	G	-	А	Α	С	Α	А	Т

¹ Polymorphic nucleotides occurring only in all isolates are shown, not alleles that partially occur in individuals per phylogenetic group. ² Numerical positions of the nucleotides in the DNA sequence alignments are indicated. ³ Fixed polymorphisms for each group are in bold. ⁴ Ex-type isolates are indicated in italic.

Table 4. Nucleotide differences observed in the *BT1* gene region between *Celoporthe hauoliensis*, *Cel. eucalypti* and *Cel. cerciana*.

Species/Isolate No.					B	T1 ¹				
	105 ²	127	130	131	132	182	183	188	191	201
Cel. hauoliensis CMW383735	G ³	С	-	-	-	_	-	-	Т	С
Cel. hauoliensis CMW383894	G	С	-	-	-	-	-	-	Т	С
Cel. hauoliensis CMW38546	G	С	-	-	-	_	-	-	Т	С
Cel. eucalypti CMW26900	Α	С	С	Т	С	_	_	_	Т	С
Cel. eucalypti CMW26908	Α	С	С	Т	С	-	-	-	Т	С
Cel. cerciana CERC9125	G	Т	С	Т	С	С	С	С	С	Α
Cel. cerciana CERC9128	G	Т	С	Т	С	С	С	С	С	Α

¹ Polymorphic nucleotides occurring only in all isolates are shown, not alleles that partially occur in individuals per phylogenetic group. ² Numerical positions of the nucleotides in the DNA sequence alignments are indicated. ³ Fixed polymorphisms for each group are in bold. ⁴ Ex-type isolates are indicated in italic.

Species/Isolate No.				TEF1			
	232	43	44	112	113	114	127
Cel. hauoliensis CMW383735	C ³	G	С	-	-	_	Т
Cel. hauoliensis CMW383894	С	G	С	-	-	-	Т
Cel. hauoliensis CMW38546	С	G	С	-	-	-	Т
Cel. eucalypti CMW26900	Т	G	С	Т	Т	Т	Т
Cel. eucalypti CMW26908	Т	G	С	Т	Т	Т	Т
Cel. cerciana CERC9125	С	Т	Т	Т	Т	Т	С
Cel. cerciana CERC9128	С	Т	Т	Т	Т	Т	С

Table 5. Nucleotide differences observed in the *TEF1* gene region between *Celoporthe hauoliensis*, *Cel. eucalypti* and *Cel. cerciana*.

¹ Polymorphic nucleotides occurring only in all isolates are shown, not alleles that partially occur in individuals per phylogenetic group. ² Numerical positions of the nucleotides in the DNA sequence alignments are indicated. ³ Fixed polymorphisms for each group are in bold. ⁴ Ex-type isolates are indicated in italic.

Celoporthe hawaiiensis Kamgan, Jol. Roux & Marinc., sp. nov.

MycoBank No: 808578 Fig. 4

Etymology. The species name refers to the Hawaiian Islands where the holotype was collected.

Types. *Holotype*: USA, Hawaii, Maui Island, Hana Road, 20 miles from Kahului, isolated from bark of *Syzygium jambos*, 30 July 2012, *J. Roux* (PREM61307; Ex-type culture CMW38610 = CBS140642); GenBank accession numbers KJ027499 (ITS), KJ027475 (*BT1*), KJ027484 (*TEF1*). *Paratypes*: Hawaii, Maui Island, Hana Road, 20 miles from Kahului, isolated from bark of *Syzygium jambos*, 30 July 2012, *J. Roux* (PREM 61308; living culture CMW38582 = CBS140643). Hawaii, Big Island, Rainbow Falls, Hilo, isolated from bark of *Syzygium jambos*, 26 July 2012, *J. Roux* (CMW38553).

Sexual morph. Not observed.

Asexual morph. Formed after two months on *Eucalyptus* stem sections placed on water agar. *Conidiomata* superficial or with base embedded, single or gregarious, uni- or multilocular, convoluted, base often covered with brown hyphal mass, dark brown to black, pulvinate to conical with or without necks, $450-1814 \mu m \log$, $329-1069 \mu m$ wide; necks attenuating towards apex, tip of neck paler than body. *Conidiomatal wall* outer-and inter-locular stratum prosenchymatous; inner fertile stratum pseudoparen-chymatous, $5-19 \mu m$ thick. *Paraphyses* present, cylindrical, tapering towards apex, scarce, $16-29 \mu m \log$. *Conidiophores* formed along inner layer of locule, simple or branched, occasionally reduced to conidiogenous cell, $10-26 \mu m \log$. *Conidiogenous cells* enteroblastic, lageniform, tapering towards apex, $4-12 \times 1-2 \mu m$. *Conidia* hyaline, oblong, aseptate, exuding in yellow droplets or tendril, $2.5-4 \times 1-1.5 (3.17 \pm 0.27 \times 1.27 \pm 0.08) \mu m$.

Culture characteristics. Colonies on 2% MEA, when young showing circular growth with smooth margins, above white with yellow tint towards edge (25 °C), reverse pale brown, becoming darker in centre at 25 °C and 30 °C; with age above

Figure 4. Micrographs of *Celoporthe hawaiiensis* sp. nov. (holotype: PREM 61307, ex-holotype CBS 140642 = CMW38610) **A** culture morphology on 2% MEA at 25 °C and 30 °C at 9 and 27 days **B**, **C** conidiomata produced on *Eucalyptus* stem sections on water agar **D**, **E** vertical section of conidioma **F** conidiomatal wall **G**, **H** conidiogenous cells **I** conidia. Scale bars: 1 mm (**B**, **C**); 100 μm (**D**, **E**); 10 μm (**F**, **G**); 5 μm (**H**, **I**).

becoming darker yellow to brown, reverse dark brown, except at 20 °C, 25 °C having yellow with dark brown patches; optimal growth at 30 °C (6.6 mm/d), followed by 25 °C (6.0 mm/d) and 20 °C (4.1 mm/d), minimal growth at 35 °C (0.1 mm/d), growth at 5 °C restricted to mycelial plug; mycelia fluffy, density sparse in centre becoming thicker towards the edge.

Habitat. On/in bark of *Psidium cattleianum, Syzygium jambos* and *Syzygium* sp. indet. Distribution. Hawaii, USA

Notes. *Celoporthe hawaiiensis* is morphologically similar to *Cel. guangdongensis* and *Cel. paradisiaca*, its phylogenetic closest relatives, but can be differentiated by DNA sequences. In the ITS, *BT1* and *TEF1* datasets, *Cel. hawaiiensis* differs from *Cel. guang-dongensis* by 3, 3 and 1 base pairs and from *Cel. paradisiaca* by 6, 3 and 3 base pairs, respectively (Tables 6, 7).

Species/Isolate No.				Ľ	ΓS ¹			
	56 ²	57	59	98	160	161	193	467
Cel. paradisiaca CWM38360 ³	\mathbf{A}^4	G	Α	_	-	А	Α	-
Cel. paradisiaca CMW38368	Α	G	Α	-	-	А	Α	-
Cel. paradisiaca CWM38384	Α	G	Α	-	-	А	Α	-
Cel. hawaiiensis CMW38553	-	-	G	-	-	-	-	Т
Cel. hawaiiensis CMW38582	-	-	G	-	-	-	-	Т
Cel. hawaiiensis CMW38610 ³	-	-	G	-	-	-	-	Т
Cel. guangdongensis CMW12750 ³	-	-	G	С	Α	А	-	Т

Table 6. Nucleotide differences observed in the ITS region between *Celoporthe hawaiiensis, Cel. guangdongensis* and *Cel. paradisiaca.*

¹ Polymorphic nucleotides occurring only in all isolates are shown, not alleles that partially occur in individuals per phylogenetic group. ² Numerical positions of the nucleotides in the DNA sequence alignments are indicated. ³ Ex-type isolates are indicated in italic. ⁴ Fixed polymorphisms for each group are in bold.

Table 7. Nucleotide differences observed in the *BT1* and *TEF1* gene regions between *Celoporthe hawaiiensis*, *Cel. guangdongensis* and *Cel. paradisiaca*.

Species/Isolate No.			BT1 ¹				TEF ¹	
	57 ²	131	139	175	272	77	220	222
Cel. paradisiaca CWM38360 ³	C^d	Т	Α	С	С	С	-	Α
Cel. paradisiaca CMW38368	С	Т	Α	С	С	С	-	Α
Cel. paradisiaca CWM38384	С	Т	Α	С	С	С	-	Α
Cel. hawaiiensis CMW38553	С	G	G	С	G	Α	А	С
Cel. hawaiiensis CMW38582	С	G	G	С	G	Α	А	С
Cel. hawaiiensis CMW38610 ³	С	G	G	С	G	Α	А	С
Cel. guangdongensis CMW12750 ³	Т	Т	G	-	G	С	А	С

¹ Polymorphic nucleotides occurring only in all isolates are shown, not alleles that partially occur in individuals per phylogenetic group. ² Numerical positions of the nucleotides in the DNA sequence alignments are indicated. ³ Ex-type isolates are indicated in italic. ⁴ Fixed polymorphisms for each group are in bold.

Celoporthe paradisiaca S.F. Chen & Marinc., sp. nov.

MycoBank No: 836918 Fig. 5

Etymology. The species name refers to the fact that Hawaii, where the holotype of this fungus was collected, is regarded as a paradise by travellers.

Types. *Holotype*: USA, Hawaii, O'ahu Island, Ho'omaluhia, isolated from bark of *Psidium cattleianum*, 24 July 2012, *J. Roux* (PREM 63205; Ex-type culture CMW38360 = CBS 147169); GenBank accession numbers KJ027498 (ITS), KJ027474 (*BT1*), KJ027483 (*TEF1*). *Paratype*: Hawaii, O'ahu Island, Waimea Valley Botanical Gardens, isolated from bark of *Syzygium jambos*, 23 July 2012, *J. Roux* (PREM 63206; living culture CMW38368 = CBS 147170).

Sexual morph. Not observed.

Asexual morph. Produced after two months on *Eucalyptus* stem sections placed on water agar. *Conidiomata* superficial or with base embedded, singular or gregarious, pulvinate or conical with or without necks, often covered with mycelia, unilocular or multilocular, convoluted, 354–841 µm long, 185–654 µm wide. *Conidiomatal wall* outer or inter-locular stratum prosenchymatous; inner fertile layers pseudoparenchymatous, composed of several layers of flattened, thick-walled, pigmented cells, 8–19 µm

Figure 5. Micrographs of *Celoporthe paradisiaca* sp. nov. (holotype: PREM 63205, ex-holotype CBS 147169 = CMW38360) **A** culture morphology on 2% MEA at 25 °C and 30 °C at 8 and 34 days **B** conidiomata produced on *Eucalytpus* stem sections on water agar **C**, **D** vertical section of conidioma **E** inner wall of conidiomatal walls (ps, pseudoparenchymatous inner wall; pr, prosenchymatous outer or interlocular wall) **G** conidiogenous cells **H** conidia. Scale bars: 1 mm (**B**); 100 μm (**C**, **D**); 10 μm (**E–H**).

thick. *Paraphyses* present, rarely observed. *Conidiophores* produced along inner layer of locule, simple or scarcely branched from basal cell, 8–11 μ m long. *Conidiogenous cells* enteroblastic, lageniform, tapering towards apex, 5–11 × 1–2 μ m. *Conidia* hyaline, oblong, straight or occasionally curved, 3–4 × 1–1.5 (3.2 ± 0.3 × 1.2 ± 0.07) μ m.

Culture characteristics. Colonies on 2% MEA, when young, showing circular growth with smooth edges, above white, reverse pale to dark brown (30 °C) and yellow (25 °C); with age, above becoming brown and reverse dark yellow; optimal growth at 30 °C (7.7 mm/d), followed by 25 °C (7.0 mm/d) and 20 °C (4.6 mm/d), minimal growth at 35 °C (0.1 mm/d), no growth at 5 °C; mycelia fluffy, density-sparse in centre, becoming thicker towards the edge, aerial hyphae more abundant at 25 °C than at 30 °C when young.

Habitat. On/in bark of *Psidium cattleianum* and *Syzygium jambos* Distribution. Hawaii, USA

Notes. Celoporthe paradisiaca is morphologically similar to its phylogenetically closest relatives, *Cel. hawaiiensis* and *Cel. guangdongensis*, but can be differentiated from them by DNA sequences. In the ITS, *BT1* and *TEF1* datasets, *Cel. paradisiaca* differs from *Cel. hawaiiensis* by 6, 3 and 3 base pairs and from *Cel. guangdongensis* by 7, 4 and 2 base pairs, respectively (Tables 6, 7).

Pathogenicity tests

Inoculation with two isolates each of *Chr. deuterocubensis* (CMW38375, CMW38549), *Mic. havanensis* (CMW38563, CMW38585), *Cel. hawaiiensis* (CMW38553, CMW38610), *Cel. hauoliensis* (CMW38373, CMW38389) and *Cel. paradisiaca* (CMW38360, CMW38384) resulted in lesions on the cambium of one-year-old *S. jambos* trees. There were no significant differences between the means for *Cel. hauoliensis* and *Mic. havanensis* when compared to the negative control (Fig. 6). There were significant differences in the means for *Chr. deuterocubensis* and *Cel. hawaiiensis* when compared with one another, as well as with the negative control. A strain (CMW38610) of *Cel. hawaiiensis* was the most pathogenic (Mean = 23.4 mm) of all the fungi tested and it resulted in a mean lesion length that was statistically different when compared to the means for other test strains and the negative control (Fig. 6). The inoculated fungi were re-isolated from the treated plants and not from the controls, thus fulfilling the requirements of Koch's Postulates.

Genetic Diversity of Chr. deuterocubensis isolates

Chrysoporthe deuterocubensis was the most commonly isolated fungus from Myrtales in this study (Table 1). Due to its known importance as a plantation tree pathogen, isolates obtained were subjected to a genetic diversity test using previously-developed microsatellite markers for this fungus. Seven of the 10 microsatellite primers amplified the desired target loci in 93 isolates obtained from four tree species on three Islands of Hawaii

Treatments

Figure 6. Vertical bar chart showing results of inoculation trial (xylem lesion) with Cryphonectriaceae isolates from Hawaii on *S. jambos* trees. Means with similar letters are not statistically significant, while those with different letters are statistically significant (significance level = 0.05).

(Table 1). Allele sizes at each locus were estimated and these were within the size ranges for each marker (Van der Merwe et al. 2003). A total of seven alleles (one allele at each locus) and one haplotype were identified in the collection. The gene diversity was zero and the *Chr. deuterocubensis* collection from Hawaii was determined as 100% clonal.

Discussion

Five species of Cryphonectriaceae, residing in the genera *Celoporthe*, *Chrysoporthe* and *Microthia*, were identified from native and non-native Myrtaceae from three of the Hawaiian Islands (USA). Of these, only *Chr. deuterocubensis* and *Mic. havanensis* have previously been found in Hawaii (Gryzenhout et al. 2006a, 2009; Van der Merwe et al. 2010). In addition, three new species of *Celoporthe* were discovered and described.

Chrysoporthe deuterocubensis is known to occur in Hawaii where it has been previously recorded as a pathogen of *Eucalyptus* trees from the Islands of Kauai and Hawaii (Hodges et al. 1979; Gryzenhout et al. 2009; M.J. Wingfield, unpubl.). This fungus, originally known as *Chr. cubensis* and later recognised as distinct from that species (Van der Merwe et al. 2010), is well-known from many south-eastern Asian countries where it is believed to have originated (Zhou et al. 2008; Gryzenhout et al. 2009; Chen et al. 2010; Van der Merwe et al. 2010; Wang et al. 2020). It exclusively infects trees in the Myrtaceae and is an important pathogen of *Eucalyptus* outside the native range of this tree (Gryzenhout et al. 2009; Van der Merwe et al. 2010).

The occurrence of *Chr. deuterocubensis* on native Ohia (*M. polymorpha*) in Hawaii could be of concern given its importance as a tree pathogen. This prompted us to investigate the population diversity of the fungus in Hawaii and, thus, to gain insights into its possible origin and movement in the region. The seven microsatellite markers, used to study the population diversity of *Chr. Deuterocubensis*, amplified target loci in ninety-three isolates of the fungus. The trees from which isolates were obtained represented three genera and four different species. The single isolate of the fungus from native *M. polymorpha* was also included. All isolates, irrespective of the host or island on which they were collected, represented a single genotype of *Chr. deuterocubensis* and further comparisons were not justified. Overall, the results of this study provide convincing evidence that *Chr. deuterocubensis* has been introduced into Hawaii.

The occurrence of a single clone of *Chr. deuterocubensis* in Hawaii is consistent with that of an introduced pathogen that would be expected to have low gene diversity. This is in contrast to native pathogens that are typically genetically diverse in their areas of origin (Gordon et al. 1996; McDonald 1997). The area of origin of *Chr. deuterocubensis* in Hawaii is unknown, but it is most likely some part of Asia where the pathogen is found on native, as well as non-native, Myrtales (Van der Merwe et al. 2010). The discovery of only a single genotype of *Chr. deuterocubensis* in Hawaii was surprising and unexpected. This is especially because the isolates were collected from a wide range of different trees spanning three genera and four species and occurring on three different Islands.

Chrysoporthe deuterocubensis has been known on *Eucalyptus* in Kauai (as *Cryphonectria cubensis*) for many years (Hodges et al. 1979; Gryzenhout et al. 2004) and this could be the area where it was first introduced. The pathogen also occurs on highly sought-after ornamental trees/shrubs, such as *Tibouchina* species (Myrtales: Melastomataceae) (Myburg et al. 2003; Gryzenhout et al. 2009) and it is believed to have been moved on cuttings of this tree (Myburg et al. 2003; Gryzenhout et al. 2009). *Tibouchina* is commonly grown in Hawaii and these trees could also represent a source of a first introduction. This would be in contrast to other Myrtales, such as *Eucalyptus* spp., that are more commonly moved as seed.

Chrysoporthe deuterocubensis is an aggressive and important pathogen of trees in the Myrtales. It is clearly widespread in Hawaii and it has most likely been present in the state for many years. It appears that the population of the pathogen has increased substantially where it infects *S. jambos*, apparently being pre-disposed to the development of the canker pathogen by rust caused by *A. psidii*. Once large populations of a pathogen, such as *Chr. Deuterocubensis*, develop in an area, the chance of their moving to new environments is heightened by what has been termed a "bridgehead effect" and for which there are numerous examples in *Eucalyptus* forestry (Wingfield et al. 2013, 2015).

Microthia havanens, found in this study on *P. cattleianum*, *S. jambos* and *S. cumini*, was first described as a saprobe on *Eucalyptus* trees and other trees such as Mango [*Mangifera indica* L. (Anacardiacae, Sapindales)], avocado [*Persea americana* Mill. (Lauraceae, Laurales)] and Jobo trees [*Spondias mombin* L. (Anacardiaceae, Sapindales)] in Cuba (Bruner 1916). Other hosts and areas of occurrence for this fungus include *Eucalyptus* in Mexico and Hawaii, *Myrica faya* Ait (Myricaceae, Fagales) trees in Madeira and the Azores (Gryzenhout et al. 2006a) and *Eucalyptus grandis* Hill: Maiden trees in Florida (USA) (Barnard et al. 1987). *Microthia havanensis* is considered a weakly pathogenic bark-infecting fungus. This was also confirmed in our pathogenicity studies on *S. jambos*, where the two isolates tested produced lesions that did not differ significantly from the controls.

Three new species of *Celoporthe* were found in this study, with thirteen species now recognised in the genus. These include ten species, *Cel. borbonica, Cel. cerciana, Cel. eucalypti, Cel. guangdongensis, Cel. hauoliensis, Cel. hawaiiensis, Cel. indonesiensis, Cel. paradisiaca, Cel. syzygii* and *Cel. tibouchinae* in the Asian clade (Chen et al. 2011; Ali et al. 2018; Wang et al. 2018) and three species, *Cel. dispersa, Cel. fontana* and *Cel. woodiana* in the African clade of this genus (Nakabonge et al. 2006; Vermeulen et al. 2013). The present study expands the species diversity and geographic range of *Celoporthe*.

Preliminary pathogenicity trials on *S. jambos* showed that some of the isolates of *Chrysoporthe* and *Celoporthe*, tested under greenhouse conditions, can result in significant lesions on inoculated plants within a short period of time. Both isolates of *Cel. paradisiaca* caused distinct lesions, while one isolate each of *Cel. hawaiiensis* and *Chr. deuterocubensis* resulted in lesions that were significantly larger than those of the controls. One of the *Cel. hawaiiensis* isolates was the most aggressive fungus tested and surprisingly more so than the well-recognised pathogen *Chr. deuterocubensis*. This fungus clearly deserves further study.
Austropuccinia psidii infects mostly young, actively growing leaves and shoots, as well as fruits and sepals (Coutinho et al. 1998; Alfenas et al. 2004; Glen et al. 2017). Infections of leaves and meristems are severe on susceptible seedlings, cuttings, young trees and coppice, causing plants to be stunted and multibranched, inhibiting normal growth and development and sometimes causing death to young seedlings (Booth et al. 2000; Rayachhetry et al. 2001). This is in contrast to species of the Cryphonectriaceae that infect the bark of trees and shrubs (Gryzenthout et al. 2009). *Chrysoporthe* species, for example, infect the bark and cambium of trees, giving rise to rapidly-expanding cankers on the stems (Gryzenhout et al. 2009). These cankers often girdle the stems, killing the cambium and leading to rapid tree death (Hodges et al. 1976; Wingfield et al. 1989; Gryzenhout et al. 2009).

In the surveys conducted in this study, samples with symptoms of the Cryphonectriaceae were obtained from various parts of trees, including dead branches, stem cankers and also on trees with no obvious infection by the myrtle rust pathogen, *A. psidii*. We believe that the rapid die-back of *S. jambos* trees and other nonnative myrtles in Hawaii is, at least in part, due to infection by one or more Cryphonectriaceae species that apparently proliferate in tissue stressed by the Myrtle rust fungus.

Acknowledgements

We thank the National Research Foundation of South Africa (NRF), The Centre of Excellence in Tree Health Biotechnology (CoE-CTHB), the National Key R&D Program of China (China–South Africa Forestry Joint Research Centre Project; project No. 2018YFE0120900) for providing funding and the facility to conduct this study. We are also most grateful to Chris Kadooka and JB Friday, University of Hawaii and Lloyd Loope of the US Geological Survey, Makawao, Hawaii for invaluable advice and local support of the survey carried out in Hawaii. This work is based on the research supported by the National Research Foundation of South Africa, Grant specific unique reference number (UID83924). The grant holders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by NRF supported research are that of the authors and that the NRF accepts no liability whatsoever in this regard.

References

- Alfenas AC, Jeng R, Hubbes M (1983) Virulence of Cryphonectria cubensis on Eucalyptus species differing in resistance. European Journal of Forest Pathology 13: 197–205. https://doi. org/10.1111/j.1439-0329.1983.tb00118.x
- Alfenas AC, Zauza EAV, Mafia RG, Assis TF (2004) Clonagem e DoencasdoEucalipto. Editora UFV: Universidade Federal doViçosa, Brazil.

- Ali DB, Marincowitz S, Wingfield MJ, Roux J, Crous PW, McTaggart AR (2018) Novel Cryphonectriaceae from La Réunion and South Africa, and their pathogenicity on *Eucalyptus*. Mycological Progress 17: 953–966. https://doi.org/10.1007/s11557-018-1408-3
- Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79: 23–37. https://doi.org/10.1080/00275514.1987.12025367
- Anonymous (2003) Annual report to the twenty-second legislature regular session of 2003 relating to the forest stewardship program. The State of Hawaii, Department of Land and Natural Resources, Division of Forestry and Wildlife. Honolulu, Hawaii, 31 pp.
- Barnard EL, Geary T, English JT, Gilly SP (1987) Basal cankers and coppice failure of *Eucalyptus grandis* in Florida. Plant Disease 71: 358–361. https://doi.org/10.1094/PD-71-0358
- Begoude BAD, Gryzenhout M, Wingfield MJ, Roux J (2010) *Aurifilum*, a new fungal genus in the Cryphonectriaceae from *Terminalias*pecies in Cameroon. Antonie van Leeuwenhoek 98: 263–278. https://doi.org/10.1007/s10482-010-9467-8
- Beier GL, Hokanson SC, Bates ST, Blanchette RA (2015) Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 107: 66–79. https:// doi.org/10.3852/14-004
- Booth TH, Old KM, Jovanovic T (2000) A preliminary assessment of high risk areas for *Puccinia psidii* (Eucalyptus rust) in the Neotropics and Australia. Agriculture Ecosystems & Environment 82: 295–301. https://doi.org/10.1016/S0167-8809(00)00233-4
- Bruner SC (1916) A new species of *Endothia*. Mycologia 8: 239–242. https://doi.org/10.1080 /00275514.1916.12018888
- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1 999.12061051
- Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust *Puccinia psidii* (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions 18: 127–144. https://doi.org/10.1007/s10530-015-0996-y
- Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94: 1017–1031. https://doi.org/10.1080/15572536.2003.11833157
- Chen SF, Gryzenhout M, Roux J, Xie YJ, Wingfield MJ, Zhou XD (2010) Identification and pathogenicity of *Chrysoporthe cubensis* on *Eucalyptus* and *Syzygium* spp. in South China. Plant Disease 94: 1143–1150. https://doi.org/10.1094/PDIS-94-9-1143
- Chen SF, Gryzenhout M, Roux J, Xie YJ, Wingfield MJ, Zhou XD (2011) Novel species of *Celoporthe* from *Eucalyptus* and *Syzygium* trees in China and Indonesia. Mycologia 103: 1384–1410. https://doi.org/10.3852/11-006
- Chen SF, Wingfield MJ, Roets F, Roux J (2013a) A serious canker caused by *Immersiporthe knox-daviesiana* gen. et sp. nov. (Cryphonectriaceae) on native *Rapanea melanophloeos* in South Africa. Plant Pathology 62: 667–678. https://doi.org/10.1111/j.1365-3059.2012.02671.x
- Chen SF, Wingfield MJ, Roux J (2013b) *Diversimorbus metrosiderotis* gen. et sp. nov. and three new species of *Holocryphia* (Cryphonectriaceae) associated with cankers on native *Metrosideros angustifolia* trees in South Africa. Fungal Biology 117: 289–310. https://doi.org/10.1016/j.funbio.2013.02.005

- Chen SF, Wingfield MJ, Li GQ, Liu FF (2016) *Corticimorbus sinomyrti* gen. et sp. nov. (Cryphonectriaceae) pathogenic to native *Rhodomyrtus tomentosa* (Myrtaceae) in South China. Plant Pathology 65: 1254–1266. https://doi.org/10.1111/ppa.12507
- Chen SF, Liu QL, Li GQ, Wingfield MJ, Roux J (2018) A new genus of Cryphonectriaceae causes stem canker on *Lagerstroemia speciosa* in South China. Plant Pathology 67: 107–123. https://doi.org/10.1111/ppa.12723
- Chungu D, Gryzenhout M, Muimba-Kankolongo A, Wingfield MJ, Roux J (2010) Taxonomy and pathogenicity of two novel *Chrysoporthe* species from *Eucalyptus grandis* and *Syzygium guineense* in Zambia. Mycological Progress 9: 379–393. https://doi.org/10.1007/s11557-009-0646-9
- Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) *Eucalyptus* rust: a disease with the potential for serious international implications. Plant Disease 82: 819–825. https://doi.org/10.1094/PDIS.1998.82.7.819
- Crane C, Burgess TI (2013) *Luteocirrhus shearii* gen. sp. nov. (Diaporthales, Cryphonectriaceae) pathogenic to Proteaceae in the South Western Australian Floristic Region. IMA Fungus 4: 111–122. https://doi.org/10.5598/imafungus.2013.04.01.11
- Crous PW, Summerell BA, Alfenas AC, Edwards J, Pascoe IG, Porter IJ, Groenewald JZ (2012) Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts. Persoonia 28: 66–75. https://doi.org/10.3767/003158512X642030
- Cunningham CW (1997) Can three incongruence tests predict when data should be combined. Molecular Biology and Evolution 14: 733–740. https://doi.org/10.1093/oxfordjournals.molbev.a025813
- Davison EM, Coates DJ (1991) Identification of *Cryphonectria cubensis* and *Endothia gyrosa* from eucalypts in Western Australia using isozyme analysis. Australasian Plant Pathology 20: 157–160. https://doi.org/10.1071/APP9910157
- Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10: 315–319. https://doi.org/10.1111/j.1096-0031.1994.tb00181.x
- Ferreira MA, Soares de Oliveira ME, Silva GA, Mathioni SM, Mafia RG (2019) Capillaureum caryovora gen. sp. nov. (Cryphonectriaceae) pathogenic to pequi (Caryocar brasiliense) in Brazil. Mycological Progress 18: 385–403. https://doi.org/10.1007/s11557-018-01461-3
- Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
- Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) *Puccinia psidii*: a threat to the Australian environment and economy a review. Australasian Plant Pathology 36: 1–16. https://doi.org/10.1071/AP06088
- Gordon TR, Storer AJ, Okamoto D (1996) Population structure of the pitch canker pathogen, *Fusarium subglutinans* f. sp. *pini*, in California. Mycological Research 100: 850–854. https://doi.org/10.1016/S0953-7562(96)80033-5
- Gryzenhout M, Myburg H, Van der Merwe NA, Wingfield BD, Wingfield MJ (2004) *Chrysoporthe*, a new genus to accommodate *Cryphonectria cubensis*. Studies in Mycology 50: 119–142.
- Gryzenhout M, Glen HF, Wingfield BD, Wingfield MJ (2005a) Amphilogia gen. nov. for Cryphonectria-like fungi from Elaeocarpus spp. in New Zealand and Sri Lanka. Taxon 54: 1009–1021. https://doi.org/10.2307/25065485

- Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ (2005b) *Chrysoporthe doradensis* sp. nov. pathogenic to *Eucalyptus* in Ecuador. Fungal Diversity 20: 39–57.
- Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ (2005c) Rostraureum tropicale gen. sp. nov. (Diaporthales) associated with dying Terminalia ivorensis in Ecuador. Mycological Research 109: 1029–1044. https://doi.org/10.1017/S0953756205003291
- Gryzenhout M, Myburg H, Hodges CS, Wingfield BD, Wingfield MJ (2006a) Microthia, Holocryphia and Ursicollum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria. Studies in Mycology 55: 35–52. https://doi.org/10.3114/sim.55.1.35
- Gryzenhout M, Myburg H, Rodas CA, Wingfield BD, Wingfield MJ (2006b) Aurapex penicillata gen. sp. nov. from native Miconia theaezans and Tibouchina spp. in Colombia. Mycologia 98: 105–115. https://doi.org/10.3852/mycologia.98.1.105
- Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2006c) Cryphonectriaceae (Diaporthales), a new family including *Cryphonectria*, *Chrysoporthe*, *Endothia* and allied genera. Mycologia 98: 239–249. https://doi.org/10.3852/mycologia.98.2.239
- Gryzenhout M, Rodas CA, Menas Portales J, Clegg P, Wingfield BD, Wingfield MJ (2006d) Novel hosts of the Eucalyptus canker pathogen *Chrysoporthe cubensis* and a new *Chrysoporthe* species from Colombia. Mycological Research 110: 833–845. https://doi.org/10.1016/j. mycres.2006.02.010
- Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of barkinhabiting and tree pathogenic fungi in the Cryphonectriaceae. St Paul, MN, USA: APS Press.
- Gryzenhout M, Tarigan M, Clegg PA, Wingfield MJ (2010) Cryptometrion aestuescens gen. sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australasian Plant Pathology 39: 161–169. https://doi.org/10.1071/AP09077
- Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704. https://doi.org/10.1080/10635150390235520
- Heiniger U, Rigling D (1994) Biological control of Chestnut blight in Europe. Annual Review of Phytopathology 32: 581–599. https://doi.org/10.1146/annurev.py.32.090194.003053
- Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity 83: 189–195. https://doi.org/10.1093/oxfordjournals.jhered.a111190
- Hodges CS, Reis MS, Ferreira FA, Henfling JDM (1976) O cancro do eucalipto causado por *Diaporthe cubensis*. Fitopatologia Brasileira 1: 129–167.
- Hodges CS, Geary TF, Cordell CE (1979) The occurrence of *Diaporthe cubensis* on *Eucalyptus* in Florida, Hawaii and Puerto Rico. Plant Disease Report 63: 216–220.
- Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends in Ecology & Evolution 11: 152–158. https://doi.org/10.1016/0169-5347(96)10006-9
- Jiang N, Fan XL, Yang Q, Du Z, Tian CM (2018) Two novel species of *Cryphonectria* from *Quercus* in China. Phytotaxa 347: 243–250. https://doi.org/10.11646/phytotaxa.347.3.5
- Jiang N, Fan XL, Tian CM, Crous PW (2020) Re-evaluating Cryphonectriaceae and allied families in Diaporthales. Mycologia 112(2): 267–292. https://doi.org/10.1080/0027551 4.2019.1698925
- Kamgan Nkuekam G, Barnes I, Wingfield MJ, Roux J (2009) Distribution and population diversity of *Ceratocystis pirilliformis* in South Africa. Mycologia 101: 17–25. https://doi. org/10.3852/07-171

- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Little Jr EL, Skolmen RG (1989) Common forest trees of Hawaii (Native and Introduced). Agricultural Handbook 679. USDA Forest Service, Washington.
- Loope L (2010) A summary of information on the rust *Puccinia psidii* Winter (guava rust) with emphasis on means to prevent introduction of additional strains to Hawaii: U.S. Geological Survey Open-File Report 2010–1082. https://doi.org/10.3133/ofr20101082
- McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87: 448–453. https://doi.org/10.1094/PHYTO.1997.87.4.448
- Myburg H, Wingfield BD, Wingfield MJ (1999) Phylogeny of *Cryphonectria cubensis* and allied species inferred from DNA analysis. Mycologia 91: 243–250. https://doi.org/10.1080/00 275514.1999.12061014
- Myburg H, Gryzenhout M, Heath R, Roux J, Wingfield BD, Wingfield MJ (2002a) Cryphonectria canker on *Tibouchina* in South Africa. Mycological Research 106: 1299–1306. https://doi.org/10.1017/S095375620200669X
- Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ (2002b) β-tubulin and histone H3 gene sequences distinguish *Cryphonectria cubensis* from South Africa, Asia and South America. Canadian Journal of Botany 80: 590–596. https://doi.org/10.1139/b02-039
- Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ (2003) Conspecificity of *Endothia eugeniae* and *Cryphonectria cubensis*: A re-evaluation based on morphology and DNA sequence data. Mycoscience 44: 187–196. https://doi.org/10.1007/S10267-003-0101-8
- Myburg H, Gryzenhout M, Wingfield BD, Milgroom MG, Shigeru K, Wingfield MJ (2004) DNA sequence data and morphology define *Cryphonectria* species in Europe, China, and Japan. Canadian Journal of Botany 82: 1730–1743. https://doi.org/10.1139/b04-135
- Nakabonge G, Gryzenhout M, Roux J, Wingfield BD, Wingfield MJ (2006) *Celoporthe dispersa* gen. et sp. nov. from native Myrtales in South Africa. Studies in Mycology 55: 255–267. https://doi.org/10.3114/sim.55.1.255
- Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321–3323. https://doi. org/10.1073/pnas.70.12.3321
- Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. https://doi.org/10.1093/molbev/msn083
- Rayachhetry MB, Van TK, Center TD, Elliott ML (2001) Host range of *Puccinia psidii*, a potential biological control agent of *Melaleuca quinquenervia* in Florida. Biological Control 22: 38–45. https://doi.org/10.1006/bcon.2001.0949
- Rodas CA, Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2005) Discovery of the Euclyptus canker pathogen *Chrysoporthe cubensis* on native *Miconia* (Melastomataceae) in Colombia. Plant Pathology 54: 460–470. https://doi.org/10.1111/j.1365-3059.2005.01223.x
- Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Heath RN, Wingfield MJ (2005) Diseases of plantation forestry tree species in eastern and southern Africa. South African Journal of Science 101: 409–413.
- Roux J, Apetorgbor MM (2010) First report of *Chrysoporthe cubensis* from *Eucalyptus* in Ghana. Plant Pathology 59(4): 806–806. https://doi.org/10.1111/j.1365-3059.2009.02252.x

SAS (2002) JMP Software Version 5. SAS Institute Inc., Cary.

- Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10. Sunderland, MA, USA: Sinauer Associates.
- Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biological and Evolution 24: 1596–1599. https://doi.org/10.1093/molbev/msm092
- Tommerup IC, Alfenas AC, Old KM (2003) Guava rust in Brazil a threat to *Eucalyptus* and other Myrtaceae. New Zealand Journal of Forestry Science 33: 420–428.
- Uchida J, Zhong S, Killgore E (2006) First report of a rust disease on Ohia caused by *Puccinia psidii* in Hawaii. Plant Disease 90(4): 524–524. https://doi.org/10.1094/PD-90-0524C
- Van der Merwe NA, Wingfield BD, Wingfield MJ (2003) Primers for the amplification of sequence-characterized loci in *Cryphonectria cubensis* populations. Molecular Ecology Notes 3: 494–497. https://doi.org/10.1046/j.1471-8286.2003.00508.x
- Van der Merwe NA, Gryzenhout M, Steenkamp ET, Wingfield BD, Wingfield MJ (2010) Multigene phylogenetic and population differentiation data confirm the existence of a cryptic species within *Chrysoporthe cubensis*. Fungal Biology 114: 966–979. https://doi. org/10.1016/j.funbio.2010.09.007
- Venter M, Myburg H, Wingfield BD, Coutinho TA, Wingfield MJ (2002) A new species of Cryphonectria from South Africa and Australia, pathogenic on Eucalyptus. Sydowia 54: 98–117.
- Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2011) New records of Cryphonectriaceae from southern Africa including *Latruncellus aurorae* gen. sp. nov. Mycologia 103: 554–569. https://doi.org/10.3852/10-283
- Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2013) Species delineation in the tree pathogen genus *Celoporthe* (Cryphonectriaceae) in southern Africa. Mycologia 105: 297–311. https://doi.org/10.3852/12-206
- Wang W, Liu QL, Li GQ, Chen SF (2018) Phylogeny and pathogenicity of *Celoporthe* species from plantation *Eucalyptus* in southern China. Plant Disease 102: 1915–1927. https://doi. org/10.1094/PDIS-12-17-2002-RE
- Wang W, Li GQ, Liu QL, Chen SF (2020) Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity. Persoonia 45: 101–131. https://doi.org/10.3767/ persoonia.2020.45.04
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: A sequencing guide to methods and applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wingfield MJ, Swart WJ, Abear BJ (1989) First record of Cryphonectria canker of *Eucalyptus* in South Africa. Phytophylactica 21: 311–313.
- Wingfield MJ (2003) Daniel McAlpine Memorial Lecture. Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australasian Plant Pathology 23: 133–139. https://doi.org/10.1071/AP03024
- Wingfield MJ, Roux J, Slippers B, Hurley BP, Garnas J, Myburg AA, Wingfield BD (2013) Established and new technologies reduce increasing pest and pathogen threats to eucalypt plantations. Forest Ecology and Management 301: 35–42. https://doi.org/10.1016/j. foreco.2012.09.002

Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: The need for a global strategy. Science 349: 832–836. https://doi.org/10.1126/science.aac6674

Zhou X, Xie Y, Chen SF, Wingfield MJ (2008) Diseases of eucalypt plantations in China: challenges and opportunities. Fungal Diversity 32: 1–7.

Supplementary material I

Table S1

Authors: Jolanda Roux, Gilbert Kamgan Nkuekam, Seonju Marincowitz, Nicolaas A. van der Merwe, Janice Uchida, Michael J. Wingfield, ShuaiFei Chen

Data type: PCR-based microsatellite markers

Explanation note: List of PCR-based microsatellite markers used in this study.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.76.58406.suppl1

Supplementary material 2

Table S2

Authors: Jolanda Roux, Gilbert Kamgan Nkuekam, Seonju Marincowitz, Nicolaas A. van der Merwe, Janice Uchida, Michael J. Wingfield, ShuaiFei Chen

Data type: datasets and statistics

Explanation note: Datasets used and the statistics resulting from the phylogenetic analyses.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.76.58406.suppl2

RESEARCH ARTICLE

Morpho-phylogenetic evidence reveals new species in Rhytismataceae (Rhytismatales, Leotiomycetes, Ascomycota) from Guizhou Province, China

Jin-Feng Zhang^{1,2,3}, Jian-Kui Liu^{2,4}, Kevin D. Hyde^{3,5,6}, Anusha H. Ekanayaka^{3,6}, Zuo-Yi Liu²

I Institute of Tea Research, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China 2 Guizhou Key Laboratory of Agriculture Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China 3 Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China 5 Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China 6 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Corresponding author: Zuo-Yi Liu (gzliuzuoyi@163.com)

Academic editor: R. Phookamsak | Received 8 September 2020 | Accepted 12 December 2020 | Published 31 December 2020

Citation: Zhang J-F, Liu J-K, Hyde KD, Ekanayaka AH, Liu Z-Y (2020) Morpho-phylogenetic evidence reveals new species in Rhytismataceae (Rhytismatales, Leotiomycetes, Ascomycota) from Guizhou Province, China. MycoKeys 76: 81–106. https://doi.org/10.3897/mycokeys.76.58465

Abstract

Karst formations represent a unique eco-environment. Research in the microfungi inhabiting this area is limited. During an ongoing survey of ascomycetous microfungi from karst terrains in Guizhou Province, China, we discovered four new species, which are introduced here as *Hypoderma paralinderae*, *Terriera karsti*, *T. meitanensis* and *T. sigmoideospora* placed in Rhytismataceae, based on phylogenetic analyses and morphological characters. Molecular analyses, based on concatenated LSU-ITS-mtSSU sequence data, were used to infer phylogenetic affinities. Detail descriptions and comprehensive illustrations of these new taxa are provided and relationships with the allied species are discussed, based on comparative morphology and molecular data.

Keywords

four new taxa, Hypoderma, karst formations, taxonomy, Terriera

Introduction

Rhytismataceae (Rhytismatales) was established by Chevallier (1826), typified by *Rhytisma* with *R. acerinum* (Pers.) Fr. as the type species and belongs in Rhytismatales, Leotiomycetes, Ascomycota (Wijayawardene et al. 2020). Members of this family produce variously shaped apothecia that may be sessile, circular, navicular or hysteriform and that typically open by a longitudinal split or radial fissures. Asci are cylindrical, saccate to clavate. Ascospores are one-celled or multi-septate and vary from bacilliform to fusiform or filiform, with or without a sheath (Darker 1967; Ekanayaka et al. 2019). Species of Rhytismataceae occur on a wide range of hosts with a worldwide distribution (Cannon and Minter 1986; Johnston 1986; Hou and Piepenbring 2009; Hernández et al. 2014; Li et al. 2014; Tanney and Seifert 2017; Cai et al. 2020).

Darker (1967) proposed the generic delimitation for Rhytismataceae, based on ascoma and ascospore shapes, although this has been challenged in later studies (Cannon and Minter 1986; Johnston 1990, 2001; Hou et al. 2005). However, Darker (1967) and Cannon and Minter (1986) were followed due to lack of an alternative scheme. Molecular studies (Gernandt et al. 2001; Johnston and Park 2007; Lantz et al. 2011; Tian et al. 2013; Zhang et al. 2015) had revealed the phylogenetic relationships amongst members of Rhytismatales, but the available sequence data for this group remains limited and a phylogenetic classification of some members is unresolved. There are around 50 genera with 1000 species presently accepted in Rhytismataceae (Lumbsch and Huhndorf 2007; Wijayawardene et al. 2018; Index Fungorum 2020); however, a systematic genus-level taxonomic revision is needed to provide a clear, natural generic delimitation within this family and the relationship between Rhytismataceae and allied families within Rhytismatales needs to be resolved (Johnston et al. 2019).

Karst formations are generally characterised by sinking streams, caves, enclosed depressions, fluted rock outcrops and large springs (Ford and Williams 2007). Guizhou, as the eastern portion of the Yunnan-Guizhou Plateau, has the largest proportion of rocky desertification and karst landforms in China (Huang and Cai 2006). The flora in this area, comprising of 264 families with 1667 genera and 7505 vascular plants species, were inventoried from Guizhou Province (Liu et al. 2018). Therefore, it would be interesting to study the fungi in this area because of its unique ecological environment and rich plant resources. A series of studies have already been carried out and yielded several new species (Zhang et al. 2016, 2017a, b, 2018, 2019). The objectives of this study are to introduce four novel species of Rhytismataceae, based on phylogenetic and morphological evidence and elucidate their affinities with related species.

Materials and methods

Collection, examination, isolation and specimen deposition

Specimens were collected from Guizhou Province from 2016 to 2017 and examined in the laboratory with a Motic SMZ 168 stereomicroscope. Vertical sections of fruiting

bodies were made by hand and mounted in water for microscopy. Macro-morphological characters were captured using a stereomicroscope (Nikon SMZ800N) with a Cannon EOS 70D digital camera. Micro-morphological characters were observed by differential interference contrast (DIC) using a Nikon ECLIPSE 80*i* compound microscope and captured by a Cannon EOS 600D digital camera. Measurements were processed in a Tarosoft (R) Image Frame Work version 0.9.7 programme and photographic plates were edited in Adobe Photoshop CS6 (Adobe Systems Inc., USA).

The single spore isolation technique described in Chomnunti et al. (2014) was followed to obtain the pure cultures of these specimens. Single germinated ascospore was picked up and transferred to potato dextrose agar (PDA; 39 g/l distilled water, Difco potato dextrose) for recording growth rates and culture characteristics.

The holotypes are deposited at the Herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand or Guizhou Academy of Agricultural Sciences (GZAAS), Guizhou, China. Ex-type living culture is deposited at Guizhou Culture Collection (GZCC), Guiyang, China. Index Fungorum and Facesoffungi numbers are provided according to Jayasiri et al. (2015) and Index Fungorum (2020). New species were established, based on the recommendations from Jeewon and Hyde (2016).

DNA extraction, PCR and phylogenetic analyses

Following the manufacturer's instructions, the total genomic DNA was extracted from cultures using a Biospin Fungus Genomic DNA Extraction Kit (BioFlux, Hangzhou, P. R. China) or extracted from the fruiting bodies using an E.Z.N.A. Forensic DNA kit (Omega Bio-Tek, Doraville, Georgia, USA).

Polymerase chain reactions (PCR) were performed in 25 µl reaction volumes, which contained 9.5 µl distilled-deionised-water, 12.5 µl of 2 × Power Taq PCR Master Mix (TIANGEN Co., China), 1 µl of DNA template and 1 µl of each forward and reverse primers. Three different loci were used in this study. The internal transcribed spacer (ITS) and 28S large subunit of the nuclear ribosomal DNA (LSU) regions were amplified by using the primers ITS4/ITS5 and LR0R/LR5, respectively (White et al. 1990; Gardes and Bruns 1993). The primers mrSSU1 and mrSSU3R were used for amplification of the mitochondrial small subunit (mtSSU) partial regions (Zoller et al. 1990), Gardes and Bruns (1993) and Zoller et al. (1999). Amplicon size and concentration were assessed by gel electrophoresis with 1.2% agarose stained with ethidium bromide. PCR products were purified and sequenced at Sangon Biotechnology Co. Ltd (Shanghai, P. R. China).

For phylogenetic reconstruction, newly-generated sequences were initially subjected to BLAST search (BLASTn) in NCBI (https://www.ncbi.nlm.nih.gov) and additional related sequences were selected and downloaded from GenBank (https://www. ncbi.nlm.nih.gov/genbank/), based on BLASTn results and recent publications (Tian et al. 2013; Wang et al. 2013; Zhang et al. 2015; Johnston et al. 2019; Cai et al. 2020). The sequences used in this study for phylogenetic analysis are listed in Table 1. All of these sequences were aligned and manually improved with BioEdit v. 7.2 (Hall 1999)

Taxa	Specimen/Strain No.	Ger	nBank accession num	bers
	=	LSU	ITS	mtSSU
Bifusella camelliae	HOU 1094	KF797447	KF797435	KF797458
	HOU 701B	KF797448	KF797436	KF797459
Coccomyces anhuiensis	BJTC 201610	MK371314	MK371313	MK371315
Coccomyces dentatus	AFTOL ID-147	AY544657	DQ491499	AY544736
Colpoma ledi	Lantz 379 (UPS)	HM140512	_	HM143788
Colpoma quercinum	Lantz 368 (UPS)	HM140513	-	HM143789
Cryptomyces maximus	Lantz and Minter 424 (UPS)	HM140514	_	HM143790
Discocainia nervalis	BITC 201405	KJ513473	KJ507206	_
Duplicariella phyllodoces	Lantz 389 (UPS)	HM140516	_	-
Hypoderma berberidis	HOU 892	JX232420	JX232414	KF813010
	HOU 942	JX232421	JX232415	KF813009
Hypoderma campanulatum	ICMP 17383	HM140517	_	HM143792
Hypoderma carinatum	ICMP 18322	HM140518	_	HM143793
Hypoderma cordylines	ICMP 17344	HM140521	JF683421	HM143796
	ICMP 17396	HM140520	_	HM143795
Hypoderma hederae	Lantz and Minter 421 (UPS)	HM140522	JF690770	HM143797
Hypoderma liliense	ICMP 18323	HM140523	MH921859	HM143798
	ICMP 18324	HM140524	_	HM143799
Hypoderma minteri	BJTC 201203	JX232418	JX232416	_
Hypoderma obtectum	ICMP 17365	HM140525	_	HM143800
Hypoderma paralinderae	GZAAS 19-1769	MN638878	MN638873	MN638868
Hypoderma rubi	Hanson 2006-451 (UPS)	HM140519	JF690769	HM143794
	ICMP 17339	HM140526	JF683419	HM143801
	ICMP 18325	HM140527	JF683418	HM143802
	Lantz 405 (UPS)	HM140530	JF690772	HM143805
Hypoderma sticheri	ICMP 17353	HM140529	MK039702	HM143804
Hypohelion anhuiense	BITC 201311	KF797443	KF797431	KF797455
Hypohelion scirpinum	Lantz 394 (UPS)	HM140531	_	HM143806
Lirula macrospora	Hou et al. 13 (BJTC)	HQ902159	HQ902152	_
Lirula yunnanensis	BJTC 2012	HQ902149	HQ902156	_
Lophodermium arundinaceum	Lantz 323 (UPS)	HM140535	_	HM143811
Lophodermium culmigenum	ICMP 18328	HM140538	_	HM143814
Marthamyces emarginatus	ICMP 22854	MK599203	MH921869	MK598751
Meloderma dracophylli	ICMP 17343	HM140561	MH921871	HM143833
Nematococcomyces oberwinkleri	BJTC 201205	KC312686	_	KC312689
Nematococcomyces rhododendri	HOU 469A	KC312687	KU213975	KC312691
Rhytisma huangshanense	HOU 564	FJ495192	GQ253101	_
Rhytisma salicinum	Lantz 370 (UPS)	HM140566	_	_
Sporomega degenerans	Lantz 367 (UPS)	HM140567	_	HM143839
Terriera camelliicola	AAUF 66555	KP878552	_	KP878553
Terriera cladophila	Lantz & Minter 423 (UPS)	HM140568	_	HM143840
Terriera elliptica	BJTC 201419	KP878550	KP878549	KP878551
Terriera guihzouensis	BITC 2020149	MT549890	MT534526	_
0	BITC 2020147	_	MT534519	MT549863
	BITC 2020148	_	MT534527	MT549874
	BITC 2020149	MT549872	MT534528	MT549865
	BITC 2020150	_	MT534591	MT549888
Terriera houjiazhuangensis	BITC 2020145	MT549889	MT549882	_
	BITC 2020146	MT549864	MT549879	MT549884
	BITC 2020192	MT549869	MT549883	_
Terriera ilicis	BJTC 2020141	MT549885	MT549875	MT549868
	BITC 2020193	MT549873	MT549861	MT549886
	BITC 2020142	MT549881	MT549877	MT549870
Terriera karsti	MFLU 18-2288	MN638881	MN638876	MN638871
Terriera meitanensis	MFLU 18-2299	MN638879	MN638874	MN638869
Terriera meitanensis	MFLU 18-2301	MN638880	MN638875	MN638870

Table 1. Taxa used in this study. Strains generated/sequenced in this study are given in bold.

Taxa	Specimen/Strain No.	Ger	Bank accession num	bers
		LSU	ITS	mtSSU
Terriera minor	ICMP 13973	HM140570	-	HM143842
Terriera pandanicola	MFLU 16-1931	MH260320	MH275086	MW334971
Terriera sigmoideospora	MFLU 18-2297	MN638882	MN638877	MN638872
Terriera thailandica	MFLUCC 14-0818	KX765301	-	-
Therrya abieticola	HOU 447A	KP322580	KP322574	KP322587
Tryblidiopsis pinastri	CBS 445.71	MH871979	JF793678	AF431963
Tryblidiopsis sichuanensis	BJTC 201211	KC312683	KC312676	KC312692
Tryblidiopsis sinensis	BJTC 201212	KC312681	KC312674	KC312694

and then assembled as a dataset of LSU-ITS-mtSSU to infer the phylogenetic placement of newly identified taxa.

Phylogenetic analyses were performed using the algorithm of Maximum-Parsimony (MP) and Bayesian Inference (BI). MP analyses were run using PAUP v. 4.0b10 (Swofford 2002) with 1000 replications and inferred using the heuristic search option with 1000 random taxa. All characters were unordered and of equal weight and gaps were treated as missing data. Maxtrees was set as 1000, zero-length branches were collapsed and all equally parsimonious trees were saved. Clade stability was accessed using a bootstrap (BT) analysis with 1000 replicates, each with ten replicates of random stepwise addition of taxa (Hillis and Bull 1993).

BI analyses were carried out by using MrBayes v. 3.2 (Ronquist et al. 2012). The best-fit model (GTR+I+G for LSU, ITS and mtSSU) of evolution was estimated in Mr-Modeltest 2.3 (Nylander 2008). Posterior Probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.2. Six simultaneous Markov chains were run for 10,000,000 generations and trees were sampled every 100th generation. The temperature values were lowered to 0.15, burn-in was set to 0.25 and the run was automatically stopped as soon as the average standard deviation of split frequencies reached below 0.01.

The phylogram was visualised in TreeView (Page 1996) and edited in Adobe Illustrator CS v. 5 (Adobe Systems Inc., USA). The finalised alignment and tree were deposited in TreeBASE, submission ID: 27401 (http://www.treebase.org).

Results

Phylogenetic analyses

The dataset for phylogenetic analysis comprised 64 strains, with *Marthamyces emarginatus* (Cooke & Massee) Minter selected as the outgroup taxon. This dataset consists of 2078 characters (including the gaps), of which 1205 are constant, 236 are variable parsimony-uninformative, while 637 characters are parsimony-informative. The most parsimonious tree showed with length of 2843 steps (CI = 0.480, RI = 0.759, RC = 0.364 and HI = 0.520). The best tree revealed by the MP analysis was selected to represent relationships amongst taxa (Fig. 1). The tree generated from Bayesian in-

Figure 1. Phylogram of Rhytismataceae is presented as the best tree revealed by MP analysis, based on the concatenated LSU-ITS-mtSSU sequence dataset. MP bootstrap support values (MPBP \geq 50%) and Bayesian inference posterior probabilities (BYPP \geq 0.95) are shown near the nodes. The tree is rooted to *Marthamyces emarginatus* (ICMP 22854), the scale bar showing 10 changes. Type strains are indicated in bold and new sequences, generated in this study, are given in red.

ference analyses had similar topology. The phylogram (Fig. 1) shows that *Hypoderma* is non-monophyletic (Clade A, B, C and D), with *H. paralinderae* clusters with three existing species viz. *H. cordylines* P.R. Johnst., *H. hederae* (T. Nees ex Mart.) De Not. and *H. rubi* (Pers.) DC. In contrast, all of the *Terriera* species with available sequences (including the newly generated sequences) form a monophyletic clade with strong statistical support (MPBP 100% and BYPP 1.00). This corresponds to the phylogeny in Zhang et al. (2015). *Terriera meitanensis* and *T. karsti* group together with three reported species viz. *T. camelliicola* (Minter) Y.R. Lin & C.L. Hou, *T. elliptica* T.T. Zhang & C.L. Hou and *T. thailandica* Jayasiri & K.D. Hyde, while *T. sigmoideospora* is placed within another clade that comprises *T. houjiazhuangensis* C.L. Hou & S.R. Cai and *T. pandanicola* Tibpromma & K.D. Hyde.

Taxonomy

Hypoderma De Not., G. bot. ital. 2(2): 13 (1847)

De Candolle (1805) introduced *Hypoderma* to accommodate taxa resembling *Hysterium* Pers., but with apothecia that are immersed in host-plant tissue and the hymenia are exposed via a longitudinal split in the substratum. Subsequently, the nomenclature of *Hypoderma* was challenged by various authors (Chevallier 1822, 1826; Fries 1823; Wallroth 1833). De Notaris (1847) recognised the distinction between *Hypoderma* and *Lophodermium* Chevall. and separated them, based on the ascospore shapes. So far, there are 214 epithets included in Index Fungorum (2020), but around half of these species are synonymized under other genera, such as *Lophodermium*, *Meloderma* Darker and *Terriera*.

Hypoderma paralinderae J.F. Zhang & Z.Y. Liu, sp. nov.

Index Fungorum number: IF556909 Facesoffungi Number No: FoF06797 Figure 2

Etymology. Referring to the morphological similarity with *Hypoderma linderae*. **Holotype.** GZAAS 19-1769.

Description. Apothecia developing on dead stems, scattered, dark brown to black, shiny, long elliptical to slightly fusiform, straight or somewhat curved, ends rounded or obtuse, rising above the surface of the substrate, opening by a single longitudinal split. *Lips* moderately developed, pale brown (Fig. 2a, b). In median vertical section (Fig. 2c), apothecia subcuticular, 200–280 µm deep. *Covering stroma* (Fig. 2e) up to 38–45 µm thick near the opening, becoming to 12–18 µm thick towards the edges,

Figure 2. *Hypoderma paralinderae* **a**, **b** apothecia observed under a dissecting microscope in face view **c** vertical section through an apothecium **d** lips adjacent to the top of covering stroma **e** section of covering stroma **f** section of basal stroma **g** paraphyses and asci in various states of maturity **h** immature ascus **i**, **j** ascospores. Note: **c**–**j** mounted in water. Scale bar: 1 mm (**a**), 500 μ m (**b**), 200 μ m (**c**), 20 μ m (**d**, **g**, **h**), 10 μ m (**e**, **i**, **j**), 5 μ m (**f**).

extending to the basal stroma, consisting of an outer layer of host cuticle and several layers of dark brown, thick-walled cells of *textura angularis*. *Lip cells* (Fig. 2d) clavate to cylindrical, $11-23 \times 2-3 \mu m$, thin-walled, hyaline to pale brown, 0-1-septate. *Basal stroma* (Fig. 2f) 10–16 μm thick, consisting of several layers of brown, thick-walled cells, arranged in *textura angularis*, becoming colourless, thin-walled cells of *textura*

prismatica towards the subhymenium. Subhymenium 19–27 µm thick, composed of several layers of hyaline, thin-walled cells of *textura angularis*. Paraphyses 1.5–2 µm, filiform, aseptate, unbranched, often curved, but not swollen at the apex, anastomosing at the base. Asci (81.5–)110–120(–129) × 10–14 µm ($\bar{x} = 108 \times 12 \mu$ m, n = 25), 8-spored, unitunicate, cylindrical-clavate, round to subtruncate at the apex, with a 38–49 µm long stalk, thin-walled, J-, apical ring, without circumapical thickening. Ascospores 26–32.5 × 2.5–4.5 µm ($\bar{x} = 30.5 \times 3.5 \mu$ m, n = 35, measured without the gelatinous sheath), multi-seriate and mostly arranged in the upper half of ascus, fusiform to slightly cylindrical, straight or lightly curved, apex rounded and tapering slightly to an acute base, aseptate, hyaline, guttulate, surrounded by a 0.5–1.5 µm thick gelatinous sheath (extending to 2.5 µm at the poles). Asexual morph: Not observed.

Material examined. CHINA, Guizhou Province, Leishan County, dead stems of unidentified herbaceous plants, 2 November 2017, J.F. Zhang, LS-21 (GZAAS 19-1769, *holotype*).

Notes. Our phylogenetic analysis shows that Hypoderma paralinderae is placed in Hypoderma D clade (Fig. 1) and clustered with H. cordylines, H. hederae and H. rubi. Both *H. paralinderae* and *H. codylines* have similar sized asci (110–122.5 × 5.5–7 μ m vs. $90-140 \times 11-16 \mu$ m); however, they can be distinguished by the different shape and size of ascospores (fusiform to slightly cylindrical, $26-32.5 \times 2.5-4.5 \mu m$ in *H. par*alinderae vs. elliptic, 14–21 × 4.5–6 µm in H. cordylines) (Johnston 1990). Hypoderma paralinderae shares similar-sized asci with H. hederae; however, it is differentiated from the latter by larger ascospores $(26-32.5 \times 2.5-4.5 \ \mu m \ vs. 18-22 \times 3.5-4 \ \mu m)$ (Powell 1974). Moreover, H. hederae was described with oblong-cylindrical ascospores that are bluntly round on both ends; however, the ascospores in *H. paralinderae* are fusiform to cylindrical, but rounded at the apex and tapering slightly to an acute base (Powell 1974), while *H. paralinderae* differs from *H. rubi* by having obviously larger asci (110–122.5 \times 5.5–7 μ m vs. 60–100 \times 10–12.5 μ m) and ascospores (26–32.5 \times $2.5-4.5 \,\mu\text{m}$ vs. $14-18 \times 3.5-4.5 \,\mu\text{m}$) (Hou et al. 2007). Besides, the recommendations of delineation taxa from Jeewon and Hyde (2016) are followed and comparisons of the ITS gene region between H. paralinderae and H. cordylines (ICMP 17344), as well as H. paralinderae and H. rubi (ICMP 17339) are processed. The results showed that there are 9/468 bp (1.9%) and 9/467 (1.9%) bp differences (including gaps) between them, respectively. According to the above evidence, H. paralinderae is introduced herein as new to science.

Terriera B. Erikss., Symb. bot. upsal. 19(no. 4): 58 (1970)

Terriera was segregated from *Lophodermium* by Eriksson (1970) with *T. cladophila* as its type species. Johnston (2001) elucidated some distinctive morphological features (described as oblong to sublinear ascomata with single longitudinal opening slit, narrow-cylindrical asci and 1-septate ascospores that taper slightly at both ends and often becoming gently sigmoid on release and lacking a gelatinous sheath) for this genus and justified its monophyletic classification. There are 38 species accepted in *Terriera* (In-

dex Fungorum 2020) and around half of these species were discovered recently from China (Chen et al. 2011, 2013; Yang et al. 2011; Zheng et al. 2011; Gao et al. 2012; Song et al. 2012; Zhou et al. 2012; Li et al. 2015a, b; Lu et al. 2015; Wu et al. 2015; Cai et al. 2020). Here, we introduce three novel species. These three species share morphological characters typical of *Terriera* and cluster together with existing *Terriera* species in LSU-ITS-mtSSU phylogenetic analyses. In addition, a synopsis for *Terriera* species is also provided and listed in Table 2.

Terriera karsti J.F. Zhang & J.K. Liu, sp. nov.

Index Fungorum number: IF556901 Facesoffungi Number No: FoF06799 Figure 3

Holotype. MFLU 18-2288.

Etymology. Refers to the karst landscape where the holotype was collected.

Description. Apothecia developing on dead branch, elliptical or oblong-elliptical in outline, ends slightly acute to obtuse. Apothecia surface black, matt or slightly glossy, moderately raising the substratum surface, opening by a single longitudinal split that extends to the ends of the apothecium (Fig. 3a, b). Lips absent. In median vertical section (Fig. 3d), apothecia deeply embedded in host tissue, with host cells becoming filled with fungal tissue as the apothecium develops. Covering stroma (Fig. 3c) 30-45 µm thick, composed of blackish-brown to black, thick-walled cells of textura angularis towards the exterior and several layers of pale to nearly hyaline, thin-walled cells towards the interior. Along the edge of the apothecial opening, there is a flattened, $12-20 \mu m$ thick extension adjacent to the covering stroma that is composed of strongly melanised tissue with no obvious cellular structure. Basal stroma 8-18 µm thick, dark brown or blackish-brown, composed of angular to globose, thick-walled cells, 2.5–4 µm diam. A triangular space between the covering stroma and basal stroma consists of thin-walled, nearly hyaline to grey-brown cells arranged in textura prismatica. Paraphyses 1-2 µm, filiform, hyaline, septate, gradually swollen or branching once at the apex, embedded in gelatinous sheaths. Asci (103–)110–122.5 \times 5.5–7 µm (\bar{x} = 113 \times 6 µm, n = 20), 8-spored, unitunicate, cylindrical, long stalk, thin-walled, apex truncate to somewhat round, J-, without circumapical thickening. Ascospores 55–66 × 1.5–2.0 μ m (\bar{x} = 61 × 1.8 μ m, n = 25), fascicle, but not coiled, filiform, gradually tapering toward the ends, hyaline, aseptate, smooth-walled, straight or slightly curved, lacking gelatinous sheath. Asexual morph: Not observed.

Culture characteristics. Colonies on PDA reaching 51 mm after 14 days at 25 °C, irregular in shape, cottony with moderately dense, fluffy aerial mycelium. At first, white, becoming slightly greyish in the centre, reverse side bronze in the centre and pale towards the edge.

Material examined. CHINA, Guizhou Province, Guiyang, Yunyan District, dead branch of unidentified ligneous plants, 6 May 2016, J.F. Zhang, SH-06 (MFLU 18-2288, *holotype*); *ibid.* (GZAAS 19-1720, *isotype*); ex-type living culture, GZCC 19-0047.

Figure 3. *Terriera karsti* **a**, **b** apothecia observed under the dissecting microscope **c** detail of covering stroma in vertical section **d** vertical section through an apothecium **e**, **f** asci in various states of maturity **g** apices of paraphyses **h**, **i** ascospores. Note: **c**-**i** mounted in water. Scale bar: 1 mm (**a**), 500 μ m (**b**), 20 μ m (**c**, **e**, **f**), 100 μ m (**d**), 10 μ m (**g**, **i**).

Notes. In the present study (Fig. 1), *Terriera karsti* is phylogenetically close to *T. camelliicola* and *T. thailandica* with moderate support (MPBP 63% and BYPP 1.00). *Terriera karsti* is not significantly distinguished from *T. camelliicola*, based only on morphological characters as they share similar-sized asci ($110-122.5 \times 5.5-7 \mu m$ vs. $85-120 \times 5.5-6.5 \mu m$) and ascospores ($55-66 \times 1.5-2 \mu m$ vs. $50-70 \times 1 \mu m$) (Johnston 2001). However, the ascospores of *T. camelliicola* are covered by a 0.5 μm wide gelatinous sheath, while this is not observed in *T. karsti* (Sharma 1982). In order

-	old.
-	ŏ
	Ξ
	cated
÷	nai
•	are 1
-	cudy
•	this Si
	Ξ
-	Sea
-	descril
•	species
	new
F	Ine
•	pecies.
	erriera s
L J	1
	S
•	sisdo
r	NIX (
_	
5	
	aDIe

Species	Host	Appearance of apothecia	Asci	Ascospores	Origin	References
Terriera aequabilis	On dead leaves of Photinia villosa	Elliptical to sub-circular, straight or slightly curved to one side, ends rounded and opening by a single longitudinal split	75-105 × 4.5-5.5 μm	55-78 × 0.8-1 μm, filiform, aseptate, ends rounded, covered by a 0.3-0.5 μm wide gelatinous sheath	Jiangxi, China	Li et al. 2015b
T. angularis	On leaves of Illicium simonsii	Triangular to quadrangular, rately elliptical and opening by $3-4$ radial splits or a longitudinal split	105–130 × 5.5–6.5 μm	70-90 × 1-1.2 µm, filiform, aseptate, slightly tapering towards the round base, covered by a 0.8-1 µm wide gelatinous sheath	Hubei, China	Zhou et al. 2013
T. arundinacea	On decomposed leaves of <i>Bambusa</i> sp.	Oblong to sublinear and opening by a single longitudinal split	130–160 × 8–9 μm	$90-100 \times 2-2.5 \mu$ m, slightly tapering towards the base, lacking gelatinous sheath	Java, Indonesia	Johnston 2001
T. asteliae	On dead leaves of Asterlia sp.	Elliptical to oblong, ends rounded, opening by a single longitudinal slit	75-105 × 8-10.5 μm	45-70 × 2-2.5 µm, slightly tapering towards both ends and slightly constricted near the centre, aseptate or 1-septate, gently curved, lacking gelatinous sheath	Northland, New Zealand	Johnston 2001
T. breve	On dead leaves of <i>Carex, Unicinia</i> and <i>Gabnia</i> spp.	Oblong-elliptical, ends rounded, often sublinear, with a single longitudinal opening slit	110–135(–160) × 6–7 μm	(55–)60–75 × 1.5–2 µm, slightly tapering towards both ends, aseptate or 1-septate, gently curved or sigmoid, lacking gelatinous sheath	Campbell I, New Zealand	Johnston 2001
T. camelliae	On fallen leaves of <i>Camellia</i> sp.	Subcircular to irregular bleached spots, elliptical or occasionally 3-lobed and opening by a longitudinal split	85–120 × 5.5–6.5 μm	$52-80 \times 1-1.2 \mu m$, filiform, aseptate, covered by a ca. 0.5 μm wide gelatinous sheath.	Fuzhou, China	Chen et al. 2011
T. camelliicola	On twigs of <i>Camellia</i> sinensis	Elliptical, occasionally fusing to form elongated elliptical, opening by a single longitudinal split	$80-110 \times 5-7 \mu m$	$50-70 \times 1 \mu m$, filiform, aseptate, covered by a 0.5 μm wide gelatinous sheath.	Assam, India	Minter and Sharma 1982
T. cladophila	On dead twigs of Vaccinium myrtillus	Elliptical, rounded at the ends, with a longitudinal opening split	75–100 × 5.5–8 μm	$60-70 \times 1 \mu m$, filiform, a septate, lacking gelatinous sheath	Norway	Terrier 1942; Eriksson 1970
T. clithris	On dead leaves of unidentified monocotyledon	Cylindrical to linear, with longitudinal opening slit	110–120 × 6.5–7.0 μm	$60-80 \times 1-1.5 \ \mu\text{m}$, slightly tapering towards both ends, lacking gelatinous sheath	Rio Grande Do Sul, Brazil	Johnston 2001
T. co acervata	On leaves of Lithocarpus cleistocarpus	Elliptical, sometimes branching into lobed or polygonal shapes, opening by a longitudinal split or by more than 3 lobes	90-130 × 6.0-7.0 µm	60–110 × 1.5–1.8 µm, filiform, aseptate, covered by a 1.0–1.5 µm wide gelatinous sheath	Anhui, China	Zheng et al. 2012
T. dracaenae	On dead leaves or stems of <i>Dracaena</i> sp.	Oblong to oblong-elliptical, ends rounded, opening by a single longitudinal split	130–140 (–160) × 6–7 μm	$100 \times 2 \ \mu m$, 1-septate, lacking gelatinous sheath	California, USA	Johnston 2001
T. elliptica	On living twigs of Rhododendron sp.	Elliptical, ends rounded to subacute, opening by a longitudinal split	135–175 × 7–9 µm	60-85 × 1.5-2 μm, filiform, slightly tapering towards both ends, aseptate, covered by a 1-1.5 μm wide gelatinous sheath	Yunnan, China	Zhang et al. 2015
T. fici	On dead leaves of Ficus vasculosa	Rounded or subrounded, with conspicuous edge and opening by a single longitudinal split	90–115 × 4–5.5 μm	65-80 × 0.8-1 µm, filiform, aseptate, rounded to obtuse at the apex, slightly tapering towards the rounded or subscute base, covered by a 0.5 µm wide gelatinous sheath	Hainan, China	Wu et al. 2016
T. fuegiana	On dead leaves of <i>Rostkovia grandiflora</i>	Oblong elliptical to broad-elliptical, ends rounded, opening by a single, longitudinal slit	75–95 × 7–10 μm	$60-65 \times 1.5-2.5 \mu$ m, slightly tapering towards both ends, 1-septate, lacking gelatinous sheath	Tierra del Fuego, Argentina	Johnston 2001

Species	Host	Appearance of apothecia	Asci	Ascospores	Origin	References
T. fourcroyae	On dead leaves of <i>Furcraea</i> sp.	Oblong-elliptical, ends rounded, with a single longitudinal opening slit	95–110 × 5–6.5 μm	60-70 × 1.5-2.5 µm, slightly tapering towards both ends, gently coiled or sigmoid, 1-septate, lacking gelatinous sheath.	Sri Lanka	Johnston 2001
T. guizhouensis	On deadleaves of Eriobotrya japonica	Elliptical, occasionally curved, opening by a longitudinal split	88–107 × 4–6 μm	50-80 × 1-1.2 µm, filiform, slightly tapering towards both ends, aseptate, pluriguttulate, covered by a thin gelatinous sheath	Guizhou, China	Cai et al. 2020
T. houjiashanensis	On dead leaves of <i>Ilex</i> cornuta	Elliptical, often curved, occasionally confluent, opening by a longitudinal split	103–128 × 4–6 μm	73–82 × 0.6–0.9 µm, filiform, slightly tapering towards both ends, aseptate, plurigutrulate, covered by an inconspicuous gelatinous sheath	Anhui, China	Cai et al. 2020
T. huangshanensis	On leaves of <i>Eurya</i> muricata var. huiana	Elliptical, fusiform or subfusiform, straight or curved (lunate), sometimes 3-lobed or triangular, ends rounded to subacute, opening by a single longitudinal split	100–120 × 5–7 μm	58–90 × 1.5–2 μ m, filiform, slightly tapering towards the base, aseptate, covered by a 1–1.5 μ m thick gelatinous sheath	Anhui, China	Yang et al. 2011
T. ilicis	On dead leaves of <i>Ilex pernyi</i>	Elliptical, occasionally curved, triangular or confluent, opening by a longitudinal split	117–139 × 4–7 μm	52–84 × ca. 1 µm, filiform, slightly tapering towards both ends, aseptate, pluriguttulate, covered by a thin gelatinous sheath	Hubei, China	Cai et al. 2020
T. illiciicola	On dead leaves of Lithocarpus cleistocarpus	Subcircular to broad-elliptical, opening by a longitudinal split	90–135 × 4.0–5.0 μm	65–95 × 1 μm, filiform, aseptate, covered by an inconspicuous gelatinous sheath	Anhui, China	Zheng et al. 2011
T. intraepidermalis	On fallen leaves of Photinia prunifolia	Widely elliptical, sometimes elliptical or subcircular, occasionally triangular, straight or curved to one side slightly, ends round to obtuse, opening by a single longitudinal split or by three radial splits	90-135 × 5.5-7.5 µm	$70-105 \times 1-1.5 \mu m$, with upper end rounded to obtuse, slightly tapering towards the rounded base, covered by a 0.5 μm wide gelatinous sheath	Hunan, China	Lu et al. 2015
T. javanica	On dead leaves of Elettaria sp.	Oblong-elliptical to sublinear, ends acute, opening by a single longitudinal slit	85–95 × 5.5–7 μm	$50-60 \times 1.5 \mu$ m, but the detailed morphological characters were not seen	Java, Indonesia	Johnston 2001
T. karsti	On dead branch of unidentified host	Elliptical or oblong-elliptical, ends slightly acute to obtuse, with a single longitudinal opening split	(103–)110–122.5 × 5.5–7 µm	55–66 × 1.5–2.0 µm, filiform, gradually tapering towards both ends, aseptate, lacking gelatinous sheath	Guihzou, China	In this study
T. latiascus	On dead leaves of Euterpe and Heliconia spp.	Oblong-elliptical, with a single longitudinal opening slit	80-95 × 7-8.5 μm	40–50 × 2–2.5 μm, with 1(–3)-septate, slightly tapering to both ends	Amazonas, Brazil	Johnston 2001
T. longissima	On dead leaves of Bambusaceae sp.	Oblong to sublinear, ends rounded, opening by a single, longitudinal slit	175-210 × 6-6.5 μm	Approximately 120–130 µm long, but the detailed morphological characters were not seen	Potaro-Siparuni region VII, Guyana	Johnston 2001
T. mangiferae	On dead leaves of Aucuba japonica and Mangifem indica	Ellipsoidal, with a longitudinal opening split	80-90 × 5-6 μm	$70-80 \times 1$ µm, filiform, lacking gelatinous sheath	Java, Indonesia	Koorders 1907; Li et al. 2014
T. meitanensis	On dead culms of unidentified host	Elliptical to oblong-elliptical, ends slightly acute to obtuse, opening by a single longitudinal split	(98.5–)113–125.5(–131.5) × 6–7.5 μm	47–54,5 × 1.5–2.5 µm, filiform, gradually tapering towards both ends, aseptate, lacking gelatinous sheath	Guizhou, China	In this study

New species of Rhytismataceae from Guizhou Province, China

t Appearance of apothecia Asci as Asci Asci Asci Asci Asci Asci Asci Asc
aves or Euliptical to sublinear, writh a single longitudinal longer lon
es of Suborbicular or broadly elliptical, straight or slightly 95–150 × 1–1.2 μm 6 <i>υορsis</i> curved, opening by a single longitudinal split <i>blia</i>
aves of Oblong to oblong elliptical, ends rounded, opening by 100–120 × 5–6 μm s sp. a single longitudinal slit
aves of Elliptical, with rounded to subacute ends, opening by $50-66 \times 4-5 \mu m$ s sp. a longitudinal split
aves of Elongate-elliptical, strongly curved or triangular, often $85-110 \times 4-5 \mu m$ <i>creata</i> coalesced, opening by a longitudinal split
zaves of Elliptical, occasionally triangular, ends rounded, 90–120 × 4–5.5 μm sp. opening by a longitudinal split or occasionally by teeth
ves and Narrow-oblong to sublinear, with a single longitudinal 90–100 × 5–7 μm <i>accharum</i> opening split
ieaves Oblong to sublinear, ends rounded, opening by a 125–140 × 7–8 μm tified single longitudinal slit dedon
en leaves Elliptical, ends rounded to subacute, opening by a (93.5-)102–121 × 5–6 µm ied host single longitudinal split
 Elliptical to ovate, ends obtuse, rounded or slightly 72–95(–105) × 4.8–5.2 µm acute, opening by a single longitudinal split which is sometimes branched in the triangular accomata
aves of Oblong, ends rounded, opening by a single 100–125 × 5–6 µm <i>a</i> sp.
anch of Elliptical, ends rounded to subacute, opening by a 80–105 × 3.4–6.6 µm d host longitudinal split
aves of Elliptical or oblong-elliptical, ends slightly acute to $70-86 \times 5-6 \mu m$ s sp. obtuse, opening by a single longitudinal split

94

95

to clarify their affinity, the recommendations of species delineation from Jeewon and Hyde (2016) were followed and the comparison of each gene region between these two taxa is processed and showed that there are 9/840 bp (1%) and 10/694 bp (14.4%) differences in LSU and mtSSU regions, respectively, while *T. karsti* can be easily differentiated from *T. thailandica* by its larger asci (110–122.5 × 5.5–7 μ m vs. 80–105 × 3.4–6.6 μ m) and ascospores (55–66 × 1.5–2 μ m vs. 38–60 × 1–1.5 μ m) (Hyde et al. 2016). A comparison of the LSU gene region between these two taxa has also been processed and the result showed that there are 3/838 bp (base pair) differences. Based on phylogenetic analyses, coupled with morphological distinction, *Terriera karsti* is introduced herein as a new species.

Terriera meitanensis J.F. Zhang & Z.Y. Liu, sp. nov.

Index Fungorum number: IF556900 Facesoffungi Number No: FoF06798 Figure 4

Holotype. MFLU 18-2299.

Etymology. Referring to the locality of the holotype, Meitan County, Guizhou Province, China.

Description. Apothecia developing on dead stems (Fig. 4a), semi-immersed to superficial, elliptical or oblong-elliptical, ends slightly acute to obtuse, surface black, matt, raising the substratum surface, opening by a single longitudinal split that extends nearly the entire length (Fig. 4b, c). In median vertical section (Fig. 4d), apothecia deeply embedded in host tissue, with host cells becoming filled with fungal tissue as the apothecium develops. Covering stroma (Fig. 4e) 33-42 µm thick, composed of blackishbrown, thick-walled cells that are fused with host tissue in the outermost layers, becoming pale pigmented or nearly colourless towards the hymenium, thin-walled cells, arranged in textura angularis or textura globulosa. Along the upper edge of the apothecial opening, there is a flattened, 19–34 µm thick extension adjacent to the covering stroma that is composed of strongly melanised tissue with no obvious cellular structure. Basal stroma (Fig. 4g) 8–18 µm thick, dark-brown or blackish-brown, composed of angular to globose, thick-walled cells, 2.5-4 µm diam. Where the covering stroma meets the basal stroma, there is a triangular-shaped, 35-60 µm thick, tissue composed of thinwalled, hyaline to pale brown cells forming a *textura prismatica* (Fig. 4f). Subhymenium 12-16 µm thick, consisting of hyaline textura angularis to textura intricata. Paraphyses 1–2 µm, filiform, hyaline, septate, gradually swollen or branching once at the apex, embedded in gelatinous matrix, anastomosing at the base. Asci (98.5–)113–125.5(–131.5) \times 6–7.5 µm (\bar{x} = 117 \times 6.5 µm, n = 20), 8-spored, unitunicate, cylindrical, somewhat long-stalked, thin-walled, apex generally truncate, J-, without circumapical thickening. Ascospores $47-54.5 \times 1.5-2.5 \ \mu m \ (\bar{x} = 50.5 \times 2 \ \mu m, n = 35)$, fascicle, filiform, gradually tapering towards the ends, hyaline, aseptate, smooth-walled, straight or slightly curved, lacking a gelatinous sheath. Asexual morph: Not observed.

Figure 4. *Terriera meitanensis* **a** habit of apothecia on substrate **b**, **c** apothecia observed under the dissecting microscope in face view **d** vertical section through an apothecium **e** covering stroma **f** triangular space in section between the covering stroma and basal stroma **g** basal stroma **h** paraphyses with anastomoses amongst asci in various states of maturity **i**, **j** immature asci **k**, **l** ascospores. Note: **d–l** mounted in water. Scale bar: 1 cm (**a**), 1 mm (**b**), 500 μ m (**c**), 100 μ m (**d**), 10 μ m (**e**, **g**, **k**, **l**), 30 μ m (**f**), 20 μ m (**h–j**).

Material examined. CHINA, Guizhou Province, Zunyi, Meitan County, dead stems of unidentified host, 28 August 2017, J.F. Zhang, MT-1 (MFLU 18-2299, *holo-type*); *ibid*. (GZAAS 19-1731, *isotype*).

Notes. In our phylogenetic analysis (Fig. 1), *Terriera meitanensis* is placed in a robust clade with *T. camelliicola*, *T. elliptica*, *T. karsti* and *T. thailandica* by strong statistical support (MPBP 100% and BYPP 1.00). *Terriera meitanensis* has larger asci than *T. camelliicola* and *T. thailandica*, while the ascospores of *T. meitanensis* are smaller (Johnston 2001; Hyde et al. 2016). Both *T. meitanensis* and *T. karsti* share similar-sized asci, but *T. karsti* has larger ascospores $(47-54.5 \times 1.5-2.5 \ \mu m \ vs. 55-66 \times 1.5-2.0 \ \mu m)$. *Terriera meitanensis* differs from *T. elliptica* by its obviously smaller asci $(113-122.5 \times 6-7.5 \ \mu m \ vs. 135-175 \times 7-9 \ \mu m)$ and ascospores $(47-54.5 \times 1.5-2.5 \ \mu m \ vs. 60-85 \times 1.5-2 \ \mu m)$ (Zhang et al. 2015). Moreover, the ascospores of *T. camelliicola* and *T. elliptica* are enveloped by a gelatinous sheath, respectively, while this is not observed in *T. meitanensis* and its closest species *T. elliptica*, based on the recommendations from Jeewon and Hyde (2016) and the results showed that there are 15/489 bp (3%) differences. Therefore, we introduce *T. meitanensis* herein as a new species, based on morphological and molecular evidence.

Terriera sigmoideospora J.F. Zhang & K.D. Hyde, sp. nov.

Index Fungorum number: IF556902 Facesoffungi Number No: FoF06800 Figure 5

Holotype. MFLU 18-2297.

Etymology. Refers to its sigmoidal ascospores.

Description. Apothecia developing on fallen leaves, scattered, dark brown to black, matt, elliptical, sometimes 3-lobed or triangular, straight or slightly curved, ends rounded to subacute, strongly raising the surface of the substrate at maturity, opening by a single longitudinal split that extends almost the whole length of the apothecium (Fig. 5a, b). Immature apothecia appearing as a single dark brown protrusion, circular to slightly elongated. In median vertical section (Fig. 5d), apothecia 185-220 µm deep. Covering stroma (Fig. 5c) 20-25 µm thick near the centre of the apothecium, consisting of an outer layer of host cuticle, remains of epidermal and hypodermal cells filled with thick-walled, angular fungal cells and an inner layer of textura angularis to textura globulosa with 4-7 µm diam., dark brown, thick-walled cells, slightly thinner towards the edges, extending to the basal stroma, but conspicuously thicker towards the apothecial opening, with a $15-27 \mu m$ thick extension comprising highly melanised tissue with no obvious cellular structure. Excipulum moderately developed, closely adhering to the covering stroma and the extension, arising from the marginal paraphyses, becoming thinner towards the base. Basal stroma concave, 12-15 µm thick, composed of dark brown, thick-walled, angular cells. A triangular space between the covering stroma and basal stroma is composed of thin-walled, colourless cells that are vertically arranged in rows. Subhymenium 6–9 µm thick, flat, consisting of hyaline cells of textura intricata. Paraphyses filiform, hyaline, septate, gradually or suddenly swollen to

Figure 5. *Terriera sigmoideospora* **a**, **b** apothecia observed under the dissecting microscope **c** section of covering stroma **d** median vertical section through an apothecium **e** immature ascus **f** paraphyses and asci in various states of maturity **g**, **h** ascospores. Note: **c**–**h** mounted in water. Scale bar: 1 mm (**a**), 500 μ m (**b**), 100 μ m (**c**), 20 μ m (**d**–**h**).

2.5 µm near the apex, covered by a thin gelatinous sheath, forming a 4–8 µm thick epithecium. *Asci* (93.5–)102–121 × 5–6 µm (\bar{x} = 108.5 × 5.5 µm, n = 20), 8-spored, unitunicate, cylindrical, apex tapering to round, thin-walled, J-, without circumapical thickening. *Ascospores* 79–95 × 1.5–2 µm (\bar{x} = 89.5 × 1.9 µm, n = 30), fascicle, filiform, sigmoid, tapering slightly towards the ends, hyaline, aseptate, guttulate, gelatinous sheath not observed. *Asexual morph*: Not observed.

Material examined. CHINA, Guizhou Province, Guiyang, dead leaves of unidentified host, 5 October 2016, J.F. Zhang, GZ-28 (MFLU 18-2297, *holotype*); *ibid*. (GZAAS 19-1729, *isotype*).

Notes. In the present phylogenetic analysis (Fig. 1), *Terriera sigmoideospora* is placed within *Terriera* and is related to *T. houjiazhuangensis* C.L. Hou & S.R. Hou

by strong statistical support (MPBP 99% and BYPP 1.00). *Terriera sigmoideospora* shares similar-sized asci with *T. houjiazhuangensis* (102–121 × 5–6 μ m vs. 103–128 × 4–6 μ m), but has larger ascospores (79–95 × 1.5–2 μ m vs. 73–82 × 0.6–0.9 μ m) (Cai et al. 2020). Besides, the ascospores of *T. houjiazhuangensis* are enveloped by an inconspicuous gelatinous sheath, while this is not observed in *T. sigmoideospora*. In addition, the comparison of the ITS gene region between these two taxa has been processed and showed that there are 19/815 (2.3%) bp differences. *Terriera pandanicola* is sister to the above two taxa; however, it is significantly distinguished from *T. sigmoideospora* as its obviously smaller asci (50–66 × 4–5 μ m vs. 102–121 × 5–6 μ m) and ascospores (55–78 × 1–2 μ m vs. 79–95 × 1.5–2 μ m) (Tibpromma et al. 2018).

Discussion

The diversity of microfungi in many parts of the world is understudied. This is evident from the numerous new species being described from Asia and South America (Hyde et al. 2018, 2019a, 2020). With this in mind, we are studying the fungi of the Karst regions in China and Thailand, where we are also finding numerous new species (Zhang et al. 2016, 2017a, b, 2018, 2019). Our study is contributing to the knowledge of fungal diversity in the region, where species may also have biotechnological potential (Hyde et al. 2019b). Additionally, as Rhytismataceae is a relatively poorly studied group, we report on one new species from *Hypoderma* and three new *Terriera* species, thereby illustrating the diversity and potential for new discoveries of these fungi in Asia.

Hypoderma, a large genus in Rhytismataceae, is a complicated group. There are only a few species in this genus with sequence data, but these have shown the group to be polyphyletic (Lantieri et al. 2011; Wang et al. 2013). This is also true of the phylogenies in this study (Fig. 1). *Hypoderma* is morphologically similar to *Lophodermium* and they mainly differ on the basis of ascospore shape as the former have elliptical to cylindrical-fusiform ascospores, while the latter has filiform ascospores (Powell 1974). However, there are no molecular studies that provide a natural classification for these two genera, even though more than 35 species have been synonymized under *Lophodermium* (Index Fungorum 2020). Fresh collections and molecular sequences are required to move toward a revision of these genera.

Terriera is one of the few genera in Rhytismataceae that can be considered a monophyletic group, based on distinctive morphology and phylogenetic characterisation (Zhang et al. 2015). Our molecular analyses corroborate this. However, there are only nine taxa with available sequences in GenBank and most of *Terriera* species were established, based only on morphological features (Yang et al. 2011; Gao et al. 2012; Song et al. 2012; Zhou et al. 2012; Chen et al. 2013; Li et al. 2015b; Lu et al. 2015; Zhang et al. 2015; Cai et al. 2020). In the latest study (Cai et al. 2020), *T. pandanicola* was distant from *Terriera* in ITS analysis, but included in this group on the basis of concatenated LSU-mtSSU sequence data. Cai et al. (2020) indicated that this taxon should be revised in a future study. Based on their suggestion, we checked the sequence data of *T. pandanicola* and found that the ITS sequence of this species is misidentified as it is not a related *Terriera* or even a Rhytismataceae species in BLASTn results. However, the newly generated available sequences (ITS and mtSSU) of *T. pandanicola* have been uploaded in GenBank and included in our phylogenetic analysis and the results indicated that it is a unique species in *Terriera* in the present study (Fig. 1).

Acknowledgements

Kevin D. Hyde thanks the Thailand Research grants entitled "The future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, *Rhododendron* species and *Dracaena* species" (Grant No. DBG6080013) and "Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion" (Grant No. RDG6130001). Jason M. Karakehian is thanked for revising the manuscript. Dr. Shaun Pennycook (Manaaki Whenua Landcare Research, New Zealand) is gratefully thanked for advising on the fungal names. Dr. Saowaluck Tibpromma is thanked for updating the new sequences of *T. pandanicola.* Jin-Feng Zhang would like to thank Dr. Peter R. Johnston for providing literature and suggestions.

References

- Cai SR, Wang SJ, Lv T, Hou CL (2020) Three new species of Terriera (Rhytismatales, Ascomycota) from China. Mycological Progress 19: 825–835. https://doi.org/10.1007/s11557-020-01594-4
- Cannon PF, Minter DW (1986) The Rhytismataceae of the Indian subcontinent. Mycological Papers 155: 1–123.
- Chen JL, Lin YR, Hou CL, Wang SJ (2011) Species of Rhytismataceae on *Camellia* spp. from the Chinese mainland. Mycotaxon 118: 219–230. https://doi.org/10.5248/118.219
- Chen L, Minter DW, Wang SJ, Lin YR (2013) Two new species of Rhytismataceae on fagaceous trees from Anhui, China. Mycotaxon 126: 109–120. https://doi.org/10.5248/126.109
- Chevallier FF (1822) Essai sur les Hypoxylons lichenoides. Journ. Phys. Chim. Hist. Nat. 94: 28-61.
- Chevallier FF (1826) Flore Generale des Environs de Paris. 1: 439-440.
- Darker GD (1967) A revision of the genera of the Hypodermataceae. Botany 45: 1399–1444. https://doi.org/10.1139/b67-145
- De Candolle AP (1805) Flore Francaise, edn 3, vol. 2, Paris, 600 pp.
- De Notaris G (1847) Prime linee di una nuova disposizione dei Pirenomicete Isterni. Giornale Botanico Italiano 2: 5–52.
- Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E (2019) Preliminary classification of Leotiomycetes. Mycosphere 10: 310–489. https://doi. org/10.5943/mycosphere/10/1/7

- Eriksson B (1970) On Ascomycetes on Diapensiales abd Ericales in Fennoscandia. I. discomycetes. Symbolae Botanicae Upsalienses 19: 1–71.
- Ford DC, Williams P (2007) Karst Hydrogeology and Geomorphology. Wiley, Chichester 562 pp. https://doi.org/10.1002/9781118684986
- Fries EM (1823) Systema mycologicum, sistens fungorum ordines, genera et species. 2. Gryphiswaldiae: Sumtibus Ernesti Mauritti, 610 pp.
- Gao XM, Zheng CT, Lin YR (2012) *Terriera simplex*, a new species of Rhytismatales from China. Mycotaxon 120: 209–213. https://doi.org/10.5248/120.209
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https:// doi.org/10.1111/j.1365-294X.1993.tb00005.x
- Gernandt DS, Platt JL, Stone JK, Spatafora JW, Holst-Jensen A, Hamelin RC, Kohn LM (2001) Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. Mycologia 93: 915–933. https://doi.org/10.2307/3761757
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Hernández MC, Johnston PR, Minter DW (2014) Rhytismataceae (Ascomycota) in Cuba. Willdenowia 44: 65–75. https://doi.org/10.3372/wi.44.44110
- Hou CL, Lin YR, Piepenbring M (2005) Species of Rhytismataceae on needles of *Juniperus* spp. from China. Botany 83: 37–46. https://doi.org/10.1139/b04-149
- Hou CL, Liu L, Piepenbring M (2007) A new species of *Hypoderma* and description of *H. rubi* (Ascomycota) from China. Nova Hedwigia 84: 487–493. https://doi.org/10.1127/0029-5035/2007/0084-0487
- Hou CL, Piepenbring M (2009) New species and new records of Rhytismatales from Panama. Mycologia 101: 565–572. https://doi.org/10.3852/08-216
- Huang QH, Cai YL (2006) Assessment of karst rocky desertification using the radial basis function network model and GIS technique: a case study of Guizhou Province, China. Environmental Geology 49: 1173–1179. https://doi.org/10.1007/s00254-005-0162-4
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EMC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HM, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCMA, Drechsler-Santos ER, Senanayake IC (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270.
- Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phooksmsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Jones EBG, Lumyong S (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103: 219–271. https://doi.org/10.1007/ s13225-020-00458-2

- Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, Hongsanan S, Jayawardena RS, Jeewon R, Perera RH, Thongbai B, Wanasinghe DN, Wisitrassameewong K, Tibpromma S, Stadler M (2018) Thailand's amazing diversity up to 96% of fungi in northern Thailand are novel. Fungal Diversity 93: 215–239. https://doi.org/10.1007/s13225-018-0415-7
- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Cáceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, da Silva Soares AM, Plautz Jr. HL, Sotão HMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešic A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblova M, Fournier J, Nekvindová J, Barbosa RN, dos Santos JEF, de Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkalčec Z, Liang J, Li GS, Wen TC, Singh PN, Gafforov Y, Promputha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC (2019a) Fungal diversity notes 1036-1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1-242. https://doi.org/10.1007/s13225-019-00429-2
- Hyde KD, Xu JC, Rapior S, Jeewon R, Niego AGT, Abeywickrama PD, Alithmuhandiran JVS, Brahamanage RS, Brroks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doliom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu NG, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O'Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarch N, Suwunwong T, Thongbai B, Thongklang N, Wei DP, Wijesinghe SN, Winiski J, Yan JY, Yasanthika E, Stadler M (2019b) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97: 1–136. https://doi.org/10.1007/s13225-019-00430-9
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo J, Ghobad-Nejhad M, Nilsson H, Pang KL, Pereora OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selcuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva N, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang

JC, Promputtha I (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8

- Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669–1677. https://doi. org/10.5943/mycosphere/7/11/4
- Johnston PR (1986) Rhytismataceae in New Zealand 1. Some foliicolous species of *Coccomyces* de Notaris and *Propolis* (Fries) Corda. New Zealand Journal of Botany 24: 89–124. https://doi.org/10.1080/0028825X.1986.10409723
- Johnston PR (1990) Rhytismataceae in New Zealand 3. The genus *Hypoderma*. New Zealand Journal of Botany 28(2): 159–183. https://doi.org/10.1080/0028825X.1990.10412355
- Johnston PR (2001) Monograph of the monocotyledon-inhabiting species of *Lophodermium*. Mycological Papers 176: 1–239.
- Johnston PR, Park D (2007) Revision of the species of Rhytismataceae reported by Spegazzini from south America. Boletín de la Sociedad Argentina de Botánica 42: 87–105.
- Johnston PR, Quijada L, Smith CA, Baral H-O, Hosoya T, Baschien C, Pärtel K, Zhuang WY, Haelewaters D, Park D, Carl S, López-Giráldez F, Wang Z, Townsend JP (2019) A multigene phylogeny towards a new phylogenetic classification of Leotiomycetes. IMA Fungus 10: 1–22. https://doi.org/10.1186/s43008-019-0002-x
- Koorders SH (1907) Botanische Untersuchungen. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 13: 1–263.
- Lantieri A, Johnston PR, Park D, Lantz H, Medardi G (2011) *Hypoderma siculum* sp. nov. from Italy. Mycotaxon 118: 393–401. https://doi.org/10.5248/118.393
- Lantz H, Johnston PR, Park D, Minter DW (2011) Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia 103: 57–74. https://doi.org/10.3852/10-060
- Li Q, Wang SJ, Chen YX, Tang YP, Lin YR (2015a) *Terriera transversa* sp. nov. from Hainan, China. Mycotaxon 130: 893–898. https://doi.org/10.5248/130.893
- Li Q, Wu Y, Lu DD, Xu YF, Lin YR (2015b) A new species of *Terriera* (Rhytismatales, Ascomycota) on *Photinia villosa*. Mycotaxon 130: 27–31. https://doi.org/10.5248/130.27
- Li ZJ, Cao N, Chen HF, Taylor JE, Hou CL (2014) New species and new records of Rhytismataceae from Japan. Mycological Progress 13: 951–958. https://doi.org/10.1007/ s11557-014-0979-x
- Liu B, Zhang M, Bussmann WR, Liu HM, Liu YY, Peng YD, Zu KL, Zhao YM, Liu ZB, Yu SX (2018) Species richness and conservation gap analysis of karst areas: A case study of vascular plants from Guizhou, China. Global Ecology and Conservation 16: e00460. https://doi.org/10.1016/j.gecco.2018.e00460
- Lu DD, Yang MS, Wang SJ, Lin YR (2015) Terriera intraepidermalis sp. nov. on Photinia prunifolia from China. Mycosystema 34(6): 1025–1030. https://doi.org/10.13346/j.mycosystema.140169
- Lumbsch HT, Huhndorf SM (2007) Outline of Ascomycota-2007. Myconet 13: 1-58.
- Minter DW, Sharma MP (1982) Three Species of *Lophodermium* from the Himalayas. Mycologia 74: 702–711. https://doi.org/10.1080/00275514.1982.12021576
- Nylander J (2008) MrModeltest2 version 2.3 (program for selecting DNA substitution models using PAUP*). Evolutionary Biology Centre, Uppsala, Sweden

- Page RDM (1996) Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics 12: 357–358. https://doi.org/10.1093/bioinformatics/12.4.357
- Powell PE (1974) Taxonomic studies in the genus Hypoderma. Thesis (Ph.D.) Cornell University, Ithaca.
- Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https:// doi.org/10.1007/BF02338839
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
- Song JF, Liu L, Li YY, Hou CL (2012) Two new species of *Terriera* from Yunnan Province, China. Mycotaxon 119: 329–335. https://doi.org/10.5248/119.329
- Species Fungorum (2020) CABI Databases. http://www.speciesfungorum.org/ [Accessed December 2020]
- Swofford DL (2002) PAUP 4.0 b10: Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland.
- Tanney JB, Seifert KA (2017) *Lophiodermium resinosum* sp. nov. from red pine (*Pinus resinosa*) in Eastern Canada. Botany 95: 773–784. https://doi.org/10.1139/cjb-2017-0012
- Terrier CA (1942) Essai sur la systématíque des Phacidiaceae (Fr.) sensu Nannfeldt (1932). Matériaux Flore Crytogamique Suise 9: 1–99.
- Tian HZ, Yang Z, Wang S, Hou CL, Piepenbring M (2013) A new species and phylogenetic data for *Nematococcomyces*. Botany 91: 592–596. https://doi.org/10.1139/cjb-2012-0306
- Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu JC, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity 93: 1–160. https://doi.org/10.1007/s13225-018-0408-6
- Wallroth FG (1833) Flora Cryptogamica Germaniae. Pars posterior. Norimbergiae, 923 pp.
- Wang S, Taylor JE, Hou CL (2013) Species of Rhytismatales on *Berberis* from China. Mycological Progress 12: 629–635. https://doi.org/10.1007/s11557-012-0868-0
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza

PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, Mc-Kenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere 11: 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

- Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Diversity 88: 167–263. https://doi.org/10.1007/s13225-018-0394-8
- Wu Y, Wang SJ, Meng YQ, Tang YP, Lin YR (2015) *Terriera fici* sp. nov. on *Ficus vasculosa* from Hainan Province, China. Mycotaxon 130: 1111–1116. https://doi.org/10.5248/130.1111
- Yang ZZ, Lin YR, Hou CL (2011) A new species of *Terriera* (Rhytismatales, Ascomycota) from China. Mycotaxon 117: 367–371. https://doi.org/10.5248/117.367
- Zhang JF, Liu JK, Hyde KD, Chen YY, Liu YX, Liu ZY (2017a) Two new species of *Dyfrolomyces* (Dyfrolomycetaceae, Dothideomycetes) from karst landforms. Phytotaxa 313: 267–277. https://doi.org/10.11646/phytotaxa.313.3.4
- Zhang JF, Liu JK, Hyde KD, Liu YX, Bahkali AH, Liu ZY (2016) *Ligninsphaeria jonesii* gen. et. sp. nov., a remarkable bamboo inhabiting ascomycete. Phytotaxa 247: 109–117. https:// doi.org/10.11646/phytotaxa.247.2.2
- Zhang JF, Liu JK, Hyde KD, Yang W, Liu ZY (2017b) Fungi from Asian Karst formations II. Two new species of *Occultibambusa* (Occultibambusaceae, Dothideomycetes) from karst landforms of China. Mycosphere 8: 550–559. https://doi.org/10.5943/mycosphere/8/4/4
- Zhang JF, Liu JK, Jeewon R, Wanasinghe DN, Liu ZY (2019) Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. Mycosphere 10: 202–220. https://doi.org/10.5943/mycosphere/10/1/3
- Zhang JF, Liu JK, Ran HY, Khongphinitbunjong K, Liu ZY (2018) A new species and new record of *Lophiotrema* (Lophiotremataceae, Dothideomycetes) from karst landforms in southwest China. Phytotaxa 379: 169–179. https://doi.org/10.11646/phytotaxa.379.2.5
- Zhang TT, Tong X, Lin YR, Hou CL (2015) A new species and a new combination of *Terriera* based on morphological and molecular data. Mycological Progress 14: 1–6. https://doi. org/10.1007/s11557-015-1078-3
- Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: 1–4. https://doi.org/10.1186/1471-2164-3-4

- Zheng Q, Lin YR, Yu SM, Chen L (2011) Species of Rhytismataceae on *Lithocarpus* spp. from Mt Huangshan, China. Mycotaxon 118: 311–323. https://doi.org/10.5248/118.311
- Zhou F, Wang XY, Zhang L, Lin YR (2012) *Terriera angularis* sp. nov. on *Illicium simonsii* from China. Mycotaxon 122: 355–359. https://doi.org/10.5248/122.355
- Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of Lichen-forming Ascomycetes. The Lichenologist 31: 511–516. https://doi.org/10.1006/lich.1999.0220

Supplementary material I

Dataset for molecular analyses

Authors: Jin-Feng Zhang, Jian-Kui Liu, Kevin D. Hyde, Anusha H. Ekanayaka, Zuo-Yi Liu

Data type: phylogenetic

- Explanation note: The dataset of combined of LSU_ITS_mtSSU to build the phylogenetic tree.
- Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.76.58465.suppl1