A first checklist of macrofungi for South Africa

Tonjock Rosemary Kinge ${ }^{1,2}$, Gary Goldman ${ }^{3}$, Adriaana Jacobs ${ }^{4}$, George Gatere Ndiritu ${ }^{5}$, Marieka Gryzenhout ${ }^{\text {' }}$
I Department of Genetics, University of the Free State, Bloemfontein, PO Box 339, Bloemfontein 9300, Republic of South Africa 2 Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, Cameroon $\mathbf{3}$ MushroomFundi, Cape Town, South Africa 4 National Collection of Fungi, Mycology Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa 5 School of Natural Resources and Environmental Studies, Karatina University, P.O. Box 1957, Karatina 10101, Kenya

Corresponding author: Marieka Gryzenhout (gryzenhoutm@ufs.ac.za)

[^0]
Abstract

Macrofungi are considered as organisms that form large fruiting bodies above or below the ground that are visible without the aid of a microscope. These fungi include most basidiomycetes and a small number of ascomycetes. Macrofungi have different ecological roles and uses, where some are edible, medicinal, poisonous, decomposers, saprotrophs, predators and pathogens, and they are often used for innovative biotechnological, medicinal and ecological applications. However, comprehensive checklists, and compilations on the diversity and distribution of mushrooms are lacking for South Africa, which makes regulation, conservation and inclusion in national biodiversity initiatives difficult. In this review, we compiled a checklist of macrofungi for the first time (excluding lichens). Data were compiled based on available literature in journals, books and fungorium records from the National Collection of Fungi. Even if the list is not complete due to numerous unreported species present in South Africa, it still represents an overview of the current knowledge of the macromycetes of South Africa. The list of names enables the assessment of gaps in collections and knowledge on the fungal biodiversity of South Africa, and downstream applications such as defining residency status of species. It provides a foundation for new names to be added in future towards developing a list that will be as complete as possible, and that can be used by a wide audience including scientists, authorities and the public.

Keywords

biodiversity, conservation, macrofungi, Myxomycetes, slimemolds, South Africa, species lists

Introduction

Macrofungi are fungi that form large fructifications visible without the aid of the microscope and include representatives from the Basidiomycota and Ascomycota (Roda 2010; Servi et al. 2010). Common names used to refer to these fungi include mushrooms, toadstools, cup fungi, gilled fungi, jelly fungi, coral fungi, stink fungi, bracket fungi, polypores, puffballs, earth starts, truffles, and birds nest fungi (Egbe et al. 2013) and illustrates the visibility of these fungi to the public. Ecologically, macrofungi can be grouped as saprobes, parasites and symbiotic species (for instance mycorrhiza). Most terrestrial macrofungi are saprobes or mycorrhizal symbionts, but some are pathogens of plants or fungi, while those fruiting on woody substrates are usually either saprobes or plant pathogens (Mueller et al. 2007; Maria and Tzenka 2014).

Many macrofungi are edible and rich sources of carbohydrates, proteins, vitamins, and minerals for humans (Ananbeh 2003; Gençcelep et al. 2009). They can be naturally harvested or cultivated commercially. For rural communities they serve as a source of protein and income, especially for women. Macrofungi have great bioexploitation potential in medicine or industry such as in the production of penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential (Hyde et al. 2019). Mushrooms and other types of macrofungi can grow on decayed organic matters rich in lignin, cellulose, and other complicated carbohydrates, breaking them down for other uses or for bioremediation purposes (Kulshrestha et al. 2014). Modern pharmacological research confirms that large parts of traditional knowledge regarding the medicinal effects of macrofungi are due to proven antifungal, antibacterial, antioxidant, antiviral or other medicinal properties, besides being used as functional foods (Wani et al. 2010). For instance, some of the best known substances present in fungi showing pharmacological properties (especially anticancer and immunological) are polysaccharides (Wasser 2002; Mordali et al. 2007; Zhang et al. 2007; Hyde et al. 2019). Polysaccharides or polysaccharide-protein complexes present in fungi have gained the attention of researchers because it is believed that they can inhibit tumor growth and boost the immune system of the organism. They can enhance host defensive potential or represent biological response modifiers (Leung et al. 2006; Mordali et al. 2007). However, regulation of fungal bio-exploration and research in South Africa is hampered by the absence of biodiversity knowledge.

The fruiting bodies of slime molds or myxomycetes are occasionally observed together with those of macrofungi. The first species was described in 1654 by naturalist Thomas Panckow, who thought it was a species of fungi because of its resemblance to puffballs (Martin and Alexopoulos 1969). Slime molds have two major stages in their lifecycles: a mobile trophic (feeding) and a static fruiting body (reproductive) stage. Modern classifications place them in the Mycetozoan group of Amoebozoa (Baudalf 2008; Fiore-Donno et al. 2010). As bacterivores, slime molds are major components of decomposition and nutrient cycles where they enhance release of nutrients tied up in the microbial biomass (Stephenson and Feest 2015). It is estimated that myxomycete
amoebas alone represent more than 50% of the total amoebae for some agricultural soils (Feest and Campbell 1986). Recent studies suggest that more attention should be placed on the use of slime molds as indicators of soil quality.

A small percentage of the 2.2 to 3.8 million species of fungi estimated in the world are currently described and these are mostly in temperate regions (Hawksworth and Lücking 2017). The tropical regions with the highest fungal diversity have not been fully explored (Hawksworth 2001). The reasons for this disparity, even in First World countries, are taxonomic obstacles that are worsened by a paucity of trained mycologists and especially systematists. The low number of published, rigorous, long-term studies on fungal biodiversity also prevents conclusive answers (Mueller et al. 2007). Not even basic questions, such as those related to the number of macrofungal or slime mold species at a specific location, or whether such diversity is greater in one type of forest than in another, can often be answered.

Despite the importance of macrofungi, information on their diversity is scanty, especially in Africa (Osarenkhoe et al. 2014). Thus, due to the lack of human capacities, national monographs of biodiversity in many African countries rarely encompass fungi. This leads to an unfortunate bias in the complete assessment of biodiversity, the unawareness by the public and decision makers of fungi as important components of ecosystem functioning, and frustration from end users at the lack of information (Gryzenhout et al. 2012). Regulation of fungal natural resources and quarantine is thus severely impeded by the lack of lists and information readily available. Not surprisingly, the fungal biodiversity in southern Africa has been relatively poorly studied to date, and no host has been thoroughly treated (Crous et al. 2006; Gryzenhout et al. 2010, 2012). A working checklist will be greatly beneficial to illustrate strengths and gaps in our fungal biodiversity knowledge in South Africa, and will be useful for regulatory authorities.

To address the lack of basic information for macrofungi in South Africa, the aim of this review was to compile a macrofungal and slime mold names list based on current knowledge and resources. We defined macrofungi as having spore-bearing structures visible to the naked eye (mushrooms, brackets, puffballs, false-truffles, cup fungi, etc.). Since slime molds are also readily observed by the public and perceived as fungi (although they do not reside in the kingdom of Fungi), known slime molds from South Africa were also included. Lichens (structures formed by fungi living in close association with algae and cyanobacteria) were excluded from this review because they represent another ill-studied group without solid supportive capacity, but lichen species should be added in future.

Materials and methods

The species list was compiled from journal and book publications, and national fungorium records. It is not based on field observations. It is hosted on the website www. themycologyblog.com, which is live and can continuously be refined, expanded and
updated. The species list is incorporated by the online resource Cybertruffle's Robigalia (http://www.cybertruffle.org.uk/) and the database of the National Collection of Fungi of South Africa (http://www.arc.agric.za/arc-ppri/Pages/Biosystematics/Mycol-ogy\ Unit\ (Fungi)/Mycology-National-Collection-of-Fungi.aspx).

Results

The macrofungal checklist compiled in this review (Table 1) presents the first national list for macrofungi and slime molds in South Africa. It includes macrofungal and slime mold species names from previous field guides, other publications, as well as names obtained from the National Collection of Fungi's PREM fungorium (based on 3597 records), hosted by the Plant Health and Protection (http://www.arc.agric.za/arc-ppri/ Pages/ARC-PPRI-Homepage), Agricultural Research Council, South Africa (Table 1). Myxomycete records include 107 species. In total, the South African checklist presented here includes 1160 species, 307 genera and 95 families.

The Basidiomycota consisted of 1008 species, 251 genera and 72 families. At the class level, the Agaricomycetes had the highest number (Fig. 1) of species (992), genera (242), and families (68) hosting 86% of the total number of species of macrofungi. The largest order was represented by the Agaricales (504 species) followed by the Polyporales (251 species), Boletales (50 species), Russulales (49 species) and Geastrales (33 species). The smallest orders were the Gloeophyllales and Gomphales with only two species. The largest family was the Agaricaceae (180 species) followed by the Polyporaceae (172 species). Orders with only two species were the Gloeophyllale and Gomphales, while the Thelephorales had four, and the Tremmelales 6 species.

The Ascomycota was represented by 44 species distributed among 20 genera and 10 families. The Pezizomycetes had 34 species, Sordariomycetes 9 species and the Leotiomycetes one species (Table 1). However, the total number of species in these groups are biased in this study to include only those that can be considered as a macrofungus. One member of the Mucorales (Pilobolus crystallinus, Mucoromycota) was also included (Table 1).

More than hundred slime molds have been recorded from South Africa based on the list (Table 1, Fig. 1), with the Physarales (Myxomycota) having the most species (57 species). The 107 names of slime molds contributed originated from published and unpublished sources (Duthie 1917a, b; Doidge 1950; Ndiritu et. al. 2009; Ndiritu and De Haan 2017; Winset KE unpubl. data). Only accepted taxonomic names following the nomenclatural criteria proposed by Lado (2005-2018), which is recognized by the Encyclopedia of Life under Species 2000 and ITIS Catalogue of Life (http://eol.org/), were used. All of the five orders of myxomycetes are present in South Africa, and include the Echinosteliales (represented by one family and one genus), Liceales (four families and six genera), Physarales (two families and three genera), Stemonitales (one family and seven genera) and Trichiales (two families and seven genera). The Protosteliales (Protostelids), a sixth order though not generally regarded
Table I. Checklist of macrofungi and myxomycetes from South Africa.

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Ascomycota	Leotiomycetes	Helotiales	Chlorociboriaceae	Chlorociboria	aeruginosa	(Nyl.) Kanouse ex C.S. Ramamurthi, Korf \& L.R. Batra		Yes	
		Pezizomycetes	Pezizales	Helvellaceae	$\begin{array}{\|l} \hline \text { Paxina } \\ \hline \text { Helvella } \end{array}$	leucomelas	(Pers.) Kuntze		Yes	
						crispa	(Scop.) Fr.		Yes	
						lacunosa	Afzel.		Yes	
				Morchellaceae	Morchella	conica	Krombh.	PREM	Yes	
						elata	Fr.		Yes	
						hybrida	Pers.	PREM		
				Pezizaceae	Kalaharituber	pfeilii	(Henn.) Trappe \& Kagan-Zur		Yes	
					Peziza	ammophila	Saut.		Yes	
						dehnii	Rabenh.	PREM		
						hortensis	P. Crouan \& H. Crouan	PREM		
						macropus	Schumach.	PREM		
						nilgherrensis	Cooke	PREM		
						ostracoderma	Korf	PREM		
						repanda	Pers.	PREM		
						silvestris	(Boud.) Sacc. \& Traverso	PREM		
						spissa	Berk.	PREM		
						subrepanda	Cooke \& W. Phillips	PREM		
						vesiculosa	Bull.	PREM		
					Pseudohelotium	pineti	(Batsch) Fuckel	PREM		
					Terfezia	austroafricana	Marasas \& Trappe			Marasas and Trappe 1973
						bourdieri	Chatin		Yes	
						claveryi	Chatin		Yes	
				Pyrenomataceae	Anthracobia	melaloma	(Alb. \& Schwein.) Arnould		Yes	
					Isaria	psychidae	Pole-Evans	PREM		
						sinclairii	(Berk.) Lloyd		Yes	
					Scutellinia	badio-berbis	(Berk. ex Cooke) Kuntze.	PREM		
						margaritacea	(Berk. ex Cooke) Kuntze.	PREM		
						phlyctispora	(Lepr. and Mont.)	PREM		
						scutellata	(L.) Lamb.	PREM	Yes	
				Rhizinaceae	Rhizina	undulata	Fr.		Yes	
				Sarcoscyphaceae	Phillipsia	kermesina	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1880
				Tuberaceae	Tuber	aestivum	(Wulfen) Spreng	PREM		
						melanosporum	Vittad.		Yes	
					Choiromyces	echinulatus	Trappe \& Marasas			Trappe and Marasas 1973
		Sordariomycetes	Hypocreales	Cordycipitaceae	Cordyceps	velutipes	Massee			Massee 1895

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Ascomycota	Sordariomycetes	Xylariales	Xylariaceae	Daldinia	concentrica	(Bolton) Ces. \& De Not.		Yes	
					Poronia	oedipus	(Mont.) Mont.		Yes	
					Xylaria	longipes	Nitschke		Yes	
						hypoxylon	L. (Grev.)		Yes	
						polymorpha	(Pers.) Grev.		Yes	
						schreuderiana	Van der Byl			Van der Byl 1932
						stilboidea	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1880
					Penzigia	verrucosa	Mill			Miller 1942
	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Agaricus	actiniceps	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1881
						abruptibulbus	Peck	PREM		Van der Westhuizen and Eicker 1988
						alboargillascens	(A. Pearson) Bon			
						alveolatus	Kalchbr.			Kalchbrenner 1881
						arvensis	Schaeff.	PREM	Yes	
						augustus	Fr.	PREM	Yes	
						aures	(Massee) F.M. Bailey	PREM		
						bisporus	(J.E. Lange) Imbach	PREM	Yes	
						bitorquis	(Quél.) Sacc.	PREM	Yes	
						caliginosus	Jungh.	PREM		
						campestris	L.	PREM	Yes	
						chortophilus	Berk.			Berkeley 1843
						comtulus	Ces. ex Mussat	PREM	Yes	
						crocopeplus	Berk. \& Broome		Yes	
						diminutivus	Peck		Yes	
						episphaeria	Berk.			Berkeley 1846
						griseovinaceus	A. Pearson ex Pegler			Pearson 1996
						inandae	Cooke			Cooke 1890
						montagnei	Kalchbr.	PREM	Yes	
						nobilis	(A. Pearson) Heinem.	PREM	Yes	
						papilionaceus	Bull.	PREM		
						paurophyllus	Berk.			Berkeley 1876
						peroxydatus	Berk.			Berkeley 1843
						placomyces	Peck	PREM	Yes	
						pleropus	Kalchbr. \& MacOwan	PREM		
						pogonatus	Kalchbr.			Kalchbrenner 1881
						purpurellus	(F.H. Møller) F.H. Møller	PREM		Van der Westhuizen and Eicker 1988
						sagittiformis	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1881
						semotus	Fr.	PREM	Yes	
						separatus	L.	PREM		
						silvaticus	Schaeff.	PREM	Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	$\begin{array}{\|c\|} \hline \text { Fun- } \\ \text { garium } \end{array}$	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Agaricus	silvicola	(Vittad.) Peck		Yes	
						sulphurellus	Kalchbr. \& Cooke	PREM		
						trisulphuratus	Berk.	PREM	Yes	
						umbellifer var. cinnabarinus	Berk.			Berkeley 1843
						xanthodermus	Genev.	PREM	Yes	
						xanthodermus var. griseus	(A. Pearson) Bon \& Cappelli	PREM		
						xanthodermus var. lepiotoides	Maire		Yes	
						xanthodermus var. meleagrioides	(A. Pearson) Bon \& Cappelli		Yes	
					Arachnion	alborosella	Verwoerd	PREM		
						album	Schwein.	PREM		
						firmoderma	Verwoerd	PREM		
						scleroderma	C.G. Loyd	PREM		
					Battarrea	levispora	Massee	PREM		
						lycoperdon	(Dicks.) Pers.	PREM		
						phalloides	(Dicks.) Pers.	PREM	Yes	As Battarrea stevenii
						tepperiana	F. Ludw.	PREM		
					Battarreoides	diguetii	(Pat. \& Har.) R. Heim \& T. Herrera	PREM		
					Bovista	acocksii	De Villiers, Eicker \& Van der Westh.			De Villiers et al. 1989
						capensis	(Fr.) J.C. Coetzee \& A.E. van Wyk			Coetzee \& Van Wyk 2005
						juglandiformis	Berk. ex Massee			Massee 1888
						lilacina	Mont. \& Berk.	PREM		
						promontorii	Kreisel			Kreisel 1967
						umbrina	Bottomley			Bottomley 1948
					Calvatia	caelata	(Bull.) Morgan	PREM		
						candida	(Rostk.) Hollós	PREM		
						capensis	(Lloyd) J.C. Coetzee, Eicker \& A.E. van Wyk	PREM		
						cyathiformis	(Bosc) Morgan	PREM		
						flava	(Massee) Kreisel	PREM		
						gigantea	(Batsch) Lloyd	PREM		
						incerta	Bottomley			Bottomley 1948
						lepidophora	(Ellis \& Everh.) Coker \& Couch	PREM		
						lilacina	(Mont. \& Berk.) Henn.	PREM	Yes	
						rubroflava	(Cragin) Lloyd	PREM		
					Chlamydopus	meyenianus	(Klotzsch) Lloyd	PREM		
					Chlorophyllum	molybdites	(G. Mey.) Massee	PREM	Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Chlorophyllum	africanum	Z.W. Ge \& A. Jacobs	PREM		Ge et al. 2018
						palaeotropicum	Z.W. Ge \& A. Jacobs	PREM		Ge et al. 2018
					Coniolepiota	spongodes	(Berk. \& Broome) Vellinga		Yes	
					Coprinellus	curtus	(Kalchbr.) Vilgalys, Hopple \& Jacq. Johnson	PREM		
						disseminatus	(Pers.) J.E. Lange		Yes	
						domesticus	(Bolton) Vilgalys, Hopple \& Jacq. Johnson		Yes	
						ephemerus	(Bull.) Redhead, Vilgalys \& Moncalvo	PREM		
						heptemerus	(M. Lange \& A.H. Sm.) Vilgalys, Hopple \& Jacq. Johnson		Yes	
						micaceus	(Bull.) Vilgalys, Hopple \& Jacq. Johnson	PREM	Yes	
						truncorum	(Scop.) Redhead, Vilgalys \& Moncalvo	PREM		
					Coprinopsis	atramentaria	(Bull.) Redhead, Vilgalys \& Moncalvo	PREM	Yes	
						cinerea	(Schaeff.) Redhead, Vilgalys \& Moncalvo	PREM		
						lagopus	(Fr.) Redhead, Vilgalys \& Moncalvo		Yes	
						nivea	(Pers.) Redhead, Vilgalys \& Moncalvo	PREM	Yes	
						picacea	(Bull.) Redhead, Vilgalys \& Moncalvo	PREM		Wood 2017
						stercorea	(Fr.) Redhead, Vilgalys \& Moncalvo	PREM		
					Coprinus	agricola	A. Pearson			Pearson 1950
						comatus	(O.F. Müll.) Pers.	PREM	Yes	
						digitalis	(Batsch) Fr.	PREM		
						papillatus	(Batsch) Fr.	PREM		
						punctatus	Kalchbr.	PREM		
					Crucibulum	vulgare	Tul. \& C. Tul.	PREM		
					Disciseda	candida	(Schwein.) Lloyd	PREM		
						castanea	(Lév.) Bottomley	PREM		
						cervina	(Berk.) G.H. Cunningham	PREM		
						hypogaea	(Cooke \& Massee) G. Cunn.	PREM		
						verrucosa	G. Cunn.	PREM		
					Gyrophragmium	delilei	Mont	PREM		
					Langermannia	wahlbergii	(Fr.) Dring	PREM		
					Lepiota	acutesquamosa	(Weinm.) P. Kumm.	PREM		Van der Westhuizen and Eicker 1988
						canescens	A. Pearson	PREM		
						citrinella	Beeli	PREM		
					Lepiota	cristata	(Bolton) P. Kumm.	PREM	Yes	
						cristatocystidiata	A. Pearson	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Lepiota	cutifracta	A. Pearson	PREM		
						flava	Beeli	PREM		Van der Westhuizen and Eicker 1988
						fustiformis	A. Pearson	PREM		
						goossensiae	Beeli	PREM		Van der Westhuizen and Eicker 1988
						helveola	Bres.		Yes	
						hispida	Gillet	PREM		Van der Westhuizen and Eicker 1988
						ianthina	Sacc.	PREM		Van der Westhuizen and Eicker 1988
						lutea	Matt.	PREM		
						morganii	(Peck) Sacc.	PREM		
						naucina var. leucothites	(Vittad.) Sacc.	PREM		
						nympharum	(Kalchbr.) Kalchbr.	PREM		Van der Westhuizen and Eicker 1988
						praeclara	A. Pearson			Pearson 1950
						parvannulata	(Lasch) Gillet	PREM		Van der Westhuizen and Eicker 1988
						rhizobola	(Berk.) Sacc.	PREM		
						roseolescens	A. Pearson	PREM		
						roseosquamosa	Beeli	PREM		Van der Westhuizen and Eicker 1988
						truncata	A. Pearson	PREM		
						umbrinozonata	A. Pearson	PREM		
						varians	(Kalchbr. \& MacOwan) Sacc.	PREM		
						virescens	Pat.	PREM		
					Leucoagaricus	bisporus	Heinem.	PREM	Yes	
						leucothites	(Vittad.) Wasser		Yes	
						naucina	(Vittad.) Wasser	PREM		Van der Westhuizen and Eicker 1988
						rubrotinctus	(Peck) Singer		Yes	
						bimbaumii	(Corda) Singer	PREM	Yes	
						brebissonii	(Godey) Locq.		Yes	
						cepistipes	(Sowerby) Pat.	PREM		
						fragilissimus	(Ravenel ex Berk. \& M.A. Curtis) Pat.		Yes	
						zeyheri	(Berk.) Singer	PREM		
					Lycoperdon	asperum	(Lév.) Speg.	PREM		
						caespitosum	Welw. \& Curr.	PREM		
						caffrorum	Kalchbr. \& Cooke	PREM		
						djurense	Henn.	PREM		
						duthiei	Bottomley	PREM		
						flavum	Massee	PREM		
						gunnii	Berk.	PREM		
						hiemale	Vent.	PREM		
						perlatum	Pers.	PREM	Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	$\begin{array}{c\|} \hline \text { Fun- } \\ \text { garium } \end{array}$	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Lycoperdon	polymorphum	Vittad.	PREM		
						pratense	Pers.		Yes	As Vascellum pratense
						pusillum	Batsch	PREM		
						qudenii	Bottomley	PREM		
						radicatum	Durieu \& Mont.	PREM		
						subincarnatum	Peck	PREM		
						umbrinum	Hornem.	PREM		
					Macrolepiota	excoriatus	(Schaeff.) Wasser	PREM		Van der Westhuizen and Eicker 1988
						procera	(Scop.) Singer	PREM	Yes	
						prominens	(Sacc.) M.M. Moser		Yes	
						rhacodes	(Vittad.) Singer		Yes	
						zeyheri	(Berk. \& Singer) Heinem.	PREM	Yes	
					Montagnea	aurenaria	(DC.) Zeller			Reid and Eicker 1991
						haussknechtii	Rabenh.			Reid and Eicker 1991
					Montagnites	candollei	Speg.	PREM		
					Mycenastrum	corium	(Guers.) Desv.	PREM		
					Parasola	hemerobia	(Fr.) Redhead, Vilgalys \& Hopple	PREM		
						plicatilis	(Curtis) Redhead, Vilgalys \& Hopple	PREM	Yes	
					Polyplocium	inquinans	Berk.	PREM		
					Psalliota	campestris	(L.) Quél.	PREM		
						alboargillascens	A. Pearson	PREM		
						arvensis	Schaeff.	PREM		
						arvensis var. hortensis	W.G. Sm.	PREM		
						comtula	(Fr.) Quél.	PREM		
						duriuscula	Velen.	PREM		
						mixta	A. Pearson	PREM		
						nobilis	A. Pearson			Pearson 1950
						placomyces	Peck	PREM		
						pratensis	(Schaeff.) Gillet	PREM		
						rodmanni	(Peck) Kauffman	PREM		
						volvata	A. Pearson			Pearson 1950
						xanthoderma var. meleagrioides	A. Pearson	PREM		
					Secotium	gueinzii	Kunze			Kunze 1840
						obtusum	C.G. Loyd	PREM		
					Tulostoma	albicans	V.S. White		Yes	
						bonianum	Pat.		Yes	
						cyclophorum	Lloyd		Yes	
						exasperatosporum	J.E. Wright	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Tulostoma	gracilipes	J.E. Wright	PREM		
						lesliei	Van der Byl	PREM		
						purpusii	Henn.		Yes	
						transvaalii	C.G. Loyd	PREM		
					Xanthagaricus	luteolosporus	(Heinem. \& Little Flower) Little Flower, Hosag. \& T.K. Abraham	PREM	Yes	
				Amanitaceae	Amanita	aureofloccosa	Bas		Yes	
						capensis	Walleyn \& Rammeloo		Yes	
						excelsa	(Fr.) Bertill.	PREM	Yes	
						foetidissima	D.A. Reid \& Eicker	PREM	Yes	
						mappa	(Batsch) Bertill.		Yes	
						muscaria	(L.) Lam.	PREM	Yes	
						pantherina	(DC.) Krombh.	PREM	Yes	
						phalloides	(Vaill. ex Fr.) Link	PREM	Yes	
						phalloides var. alba	Costantin \& L.M. Dufour		Yes	
						phalloides var. umbrina	(Ferry) Maire		Yes	
						reidii	Eicker \& Greuning		Yes	
						pleropus	(Kalchbr. \& MacOwan) D.A. Reid	PREM	Yes	
						rubescens	Pers.	PREM	Yes	
						solitaria	(Bull.) Fr.	PREM		
						strobiliformis	(Paulet ex Vittad.) Bertill.	PREM	Yes	
						vaginata	(Bull.) Lam.	PREM		
						veldiei	D.A. Reid \& Eicker		Yes	
					Limacella	guttata	(Pers.) Konrad \& Maubl.		Yes	
					Saproamanita	praeclara	(A. Pearson) Redhead, Vizzini, Drehmel \& Contu	PREM	Yes	
				Bolbitiaceae	Bolbitius	titubans	(Bull.) Fr.	PREM	Yes	
						vitellinus	(Pers.) Fr.	PREM	Yes	
						liberatus	(Berk.) R. Heim	PREM		
					Conocybe	apala	(Fr.) Arnolds		Yes	
						tenera	(Schaeff.) Fayod	PREM	Yes	
					Galeropsis	mitriformis	(Berk.) R. Heim	PREM		
					Pluteolus	reticulatus	(Pers.) Gillet	PREM		Van der Westhuizen and Eicker 1988
				Broomeiaceae	Broomeia	congregata	Berk.	PREM	Yes	
						ellipsospora	Höhn.	PREM	Yes	
				Clavariaceae	Clavaria	abietina	Schumach.	PREM		
						capensis	Thunb.			Thunberg 1800
						cinerea	Bull.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Clavariaceae	Clavaria	cladoniae	Kalchbr.	PREM		
						contorta	Holmsk.	PREM		
						corniculata	Schaeff.	PREM		
						cristata	(Holmsk.) Pers.	PREM		
						flaccida	Fr.	PREM		
						helicoides	Pat. \& Demange	PREM		
						kunzei	Fr.	PREM		
						laeticolor	Berk. \& M.A. Curtis	PREM		
						ligula	Schaeff.	PREM		
						persimilis	Cotton	PREM		
						pulchra	Peck	PREM		
						stricta	Schumach.	PREM		
					Clavulinopsis	luteoalba	(Rea) Corner		Yes	
						ochracea	Corner	PREM		
					Mucronella	aggregata	(Fr.) Fr.	PREM		
				Cortinariaceae	Cortinarius	argutus	Fr.	PREM		
						brunneolimosus	A. Pearson	PREM		
						camurus	Fr.	PREM		Van der Westhuizen and Eicker 1988
						castaneus	(Bull.) Fr.	PREM		
						fuscotinctus	Rea	PREM		Van der Westbuizen and Eicker 1988
						lepidopus	Cooke	PREM		Van der Westbuizen and Eicker 1988
						multiformis	(Fr.) Fr.	PREM		
						radiofibrillosus	A. Pearson	PREM		
					Locellina	acetabulosa	(Sowerby) Sacc.	PREM		
				Cyphellaceae	Chondrostereum	purpureum	(Pers.) Pouzar	PREM	Yes	
					Cyphella	tabacina	Cooke \& W. Phillips	PREM		
						applanata	P.H.B. Talbot	PREM		
						farinacea	Kalchbr. \& Cooke	PREM		
				Entolomataceae	Claudopus	variabilis	(Pers.) Fr.	PREM		
					Clitopilus	prunulus	(Scop.) P. Kumm.	PREM	Yes	
					Entoloma	lividum	(Bull.) Quél.	PREM		
						olivipes	A. Pearson ex Pegler			Pearson 1996
						sagittiforme	(Kalchbr. \& Cooke) Sacc.	PREM		
				Fistulinaceae	Fistulina	africana	Van der Byl	PREM	Yes	
				Hydnangiaceae	Laccaria	amethystea	(Bull.) Murrill	PREM	Yes	
						laccata	(Scop.) Cooke	PREM	Yes	
						tortilis	(Bolton) Cooke		Yes	
				Hygrophoraceae	Hygrocybe	aurantiorufa	A. Pearson ex Pegler			Pearson 1996
						chlorophana	(Fr.) Wünsche		Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	$\begin{array}{\|c\|} \hline \text { Fun- } \\ \text { garium } \end{array}$	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Hygrophoraceae	Hygrocybe	conica	Velen.	PREM	Yes	
						nigrescens	(Quél.) Kühner	PREM	Yes	
						zuluensis	Boertm.			Boertman 1998
					Hygrophorus	coccineus	(Schaeff.) Fr.	PREM		
						conicus	(Schaeff.) Fr.	PREM		
						conicus var.	(Quél.) Konrad \& Maubl.	PREM		
						nigrescens	(Quél.) Konrad \& Maubl.	PREM		
						discolor	(Feltgen) Sacc. \& Trotter	PREM		
				Incertae sedis	Anellaria	separata	(L.) P. Karst.	PREM		
					Panaeolina	foenisecii	(Pers.) Maire	PREM	Yes	
					Panaeolus	caliginosus	(Jungh.) Gillet	PREM		
						campanulatus	(L.) Quél.	PREM		Van der Westhuizen and Eicker 1988
						fimicola	(Pers.) Gillet	PREM		
						fimicoloides	A. Pearson	PREM		
						papilionaceus	(Bull.) Quél.	PREM	Yes	
						retirugus	(Fr.) Gillet	PREM		
						semiovatus	(Sowerby) S. Lundell \& Nannf.		Yes	
						semiovatus f. exannulatus	A. Pearson			Pearson 1950
						solidipes	(Peck) Sacc.	PREM		
						sphinctrinus	(Fr.) Quél.	PREM		
						subbalteatus	(Berk. \& Broome) Sacc.		Yes	
				Inocybaceae	Astrosporina	maritima	(P. Karst.) Rea	PREM		Van der Westhuizen and Eicker 1988
					Crepidotus	austroafricanus	Pilát			Pilát 1950
						haustellaris	(Fr.) P. Kumm.	PREM		
						inandae	Cooke	PREM		
						mollis	(Schaeff.) Staude	PREM	Yes	
						pogonatus	Kalchbr.	PREM		
						variabillis	(Pers.) P. Kumm.	PREM	Yes	
					Inocybe	cinnamomea	A. Pearson ex Pegler			Pearson 1996
						congregata	A. Pearson			Pearson 1950
						curvipes	P. Karst.			Vellinga et al. 2009
				Inocybaceae	Inocybe	eutheles	Sacc.	PREM	Yes	
						birtella	Bres.		Yes	
						lanuginella	(J. Schröt.) Konrad \& Maubl		Yes	
						microspora	J.E. Lange	PREM		Van der Westhuizen and Eicker 1988
						mixtilis	(Britzelm.) Sacc.	PREM		Van der Westhuizen and Eicker 1988
						*	Gillet		Yes	
						patouillardii	Bres.		Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Inocybaceae	Inocybe	pullata	A. Pearson ex Pegler			Pearson and Pegler 1996
					Phaeoglabrotricha	farinacea	(Kalchbr. \& Cooke) W.B. Cooke	PREM		
					Phaeosolenia	densa	(Berk.) W.B. Cooke	PREM		
				Lyophyllaceae	Lyophyllum	decastes	(Fr.) Singer		Yes	
					Podabrella	microcarpa	(Berk. \& Broome) Singer	PREM		
					Termitomyces	clypeatus	R. Heim		Yes	
						microcarpus	(Berk. \& Broome) R. Heim		Yes	
						reticulatus	Van der Westh. \& Eicker		Yes	
						sagittiformis	(Kalchbr. \& Cooke) D.A. Reid		Yes	
						schimperi	(Pat.) R. Heim		Yes	
						umkowaan	(Cooke \& Massee) D.A. Reid		Yes	
				Marasmiaceae	Calyptella	capensis	W.B. Cooke \& P.H.B. Talbot	PREM		
						capensis	(Berk.) D.A. Reid		Yes	
					Marasmius	bekolacongoli	Beeli		Yes	
						calopus	(Pers.) Fr.	PREM		
						candidus	(Bolton) Fr.	PREM		
						delectans	Morgan	PREM		Van der Westhuizen and Eicker 1988
						epiphyllus	(Pers.) Fr.	PREM		Van der Westhuizen and Eicker 1988
						filaris	Kalchbr. \& MacOwan	PREM		
						haematocephalus	(Mont.) Fr.		Yes	
						helvolus	Berk.	PREM		
						oreades	(Bolton) Fr.		Yes	
						oreadoides	Pass.	PREM		
						petalinus	Berk. \& M.A. Curtis	PREM		
						rotula	(Scop.) Fr.	PREM		Van der Westhuizen and Eicker 1988
						scorodonius	(Fr.) Fr.	PREM		Van der Westhuizen and Eicker 1988
						siccus	(Schwein.) Fr.	PREM		Van der Westhuizen and Eicker 1988
						tener	Berk. \& M.A. Curtis	PREM		
						thwaitesii	Berk. \& Broome	PREM		
						titanosporus	D.A. Reid \& Jacot Guill.			Reid and Guillarmod 1988
				Marasmiaceae	Marasmius	zenkeri	Henn.	PREM		
					Solenia	minima	Cooke \& W. Phillips	PREM		
						natalensis	W.B. Cooke	PREM		
						rhoina	W.B. Cooke	PREM		
				Mycenaceae	Cruentomycena	viscidocruenta	(Cleland) R.H. Petersen \& Kovalenko		Yes	
					Favolaschia	thwaitesii	(Berk. \& Broome) Kuntze	PREM	Yes	
					Mycena	acicula	(Schaeff.) P. Kumm.	PREM		Van der Westhuizen and Eicker 1988
						aetites	(Fr.) Quél.		Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Mycenaceae	Mycena	alcalina	(Fr.) P. Kumm.	PREM		
						alcalinoides	A. Pearson	PREM		
						clavicularis	(Fr.) Gillet	PREM		
						corticola	(Schumach.) Quél.	PREM		Van der Westhuizen and Eicker 1988
						hiemalis	(Osbeck) Quél.	PREM		
						hyalina	A. Pearson	PREM		
						pura	(Pers.) P. Kumm.		Yes	
						rhodiophylla	(Kalchbr.) Sacc.	PREM		
						rubromarginata	(Fr.) P. Kumm.	PREM		
						sciola	(Kalchbr.) Sacc.	PREM		
						vibecina	A. Pearson	PREM	Yes	
				Niaceae	Flagelloscypha	applanata	(P.H.B. Talbot) W.B. Cooke	PREM		
					Lachnella	alboviolascens	(Alb. \& Schwein.) Fr.	PREM		
				Nidulariaceae	Cyathus	berkeleyanus	(Tul. \& C. Tul.) Lloyd	PREM		
						dasypus	Nees	PREM		
						hookeri	Berk.	PREM		
						microsporus	Tul. \& C. Tul.	PREM		
						minutosporus	Lloyd	PREM		
						montagnei	Tul. \& C. Tul.	PREM		
						olla	(Batsch) Pers.	PREM	Yes	
						pallidus	Berk. \& M.A. Curtis	PREM		
						poeppigii	Tul. \& C. Tul.	PREM		
						stercoreus	(Schwein.) De Toni	PREM		
						striatus	(Huds.) Willd.		Yes	
						vernicosus	(Bull.) DC.	PREM		
				Omphalotaceae	Anthracophyllum	nigritum	(Lév.) Kalchbr.	PREM		
						archeri	(Berk.) Pegler		Yes	
					Gymnopus	androsaceus	(L.) Della Magg. \& Trassin.	PREM	Yes	
					Marasmiellus	candidus	(Fr.) Singer		Yes	
					Omphalotus	olearius	(DC.) Singer		Yes	
				Phelloriniaceae	Phellorinia	inquinans	Berk.	PREM		
						squamosa	Kalchbr. \& MacOwan	PREM		
						strobilina	(Kalchbr.) Kalchbr.	PREM		
				Physalacriaceae	Armillaria	fuscipes	Petch.		Yes	Coetzee et al. 2000
						gallica	Marxm.			Coetzee et al. 2003
						mellea	(Vahl) P. Kumm.	PREM	Yes	Coetzee et al. 2000
						ramentacea	(Bull.) Gillet	PREM		
					Armillariella	polymyces	(Pers.) Singer \& Clémençon		Yes	
					Cyptotrama	asprata	(Berk.) Redhead \& Ginns	PREM	Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Physalacriaceae	Oudemansiella	canarii	(Jungh.) Höhn.	PREM		
					Hymenopellis	radicata	(Relhan) Singer	PREM		Van der Westhuizen and Eicker 1988
					Physalacria	decaryi	Pat.	PREM		
					Xerula	atrocaerulea	R.H. Petersen \& Bougher			Petersen and Bougher 2008
				Pleurotaceae	Pleurotus	applicatus	(Batsch) P. Kumm.	PREM		
						geesterani	Singer			Singer 1962
						gilvescens	(Kalchbr.) Sacc.	PREM		
						lenticula	(Kalchbr.) Sacc.	PREM		
						limpidus	(Fr.) Sacc.	PREM		
						ostreatus	(Jacq.) P. Kumm.	PREM	Yes	
						perpusillus	(Lumn.) Gillet	PREM		
						pulmonarius	(Fr.) Quél.		Yes	
						sajor-caju	(Fr.) Singer	PREM		
						sciadium	(Kalchbr. \& MacOwan) Sacc.	PREM		
						septicus	(Fr.) P. Kumm.	PREM		
				Pluteaceae	Pluteus	atromarginatus	(Konrad) Kühner	PREM		
						pellitus	(Pers.) P. Kumm.	PREM		
						romelli	(Britzelm.) Sacc.		Yes	
						salicinus	(Pers.) P. Kumm.		Yes	
						semibulbosus	(Lasch) Gillet		Yes	
						thomsonii	(Berk. \& Broome) Dennis	PREM		
					Volvariella	speciosa	(Fr.) Singer		Yes	
				Podaxaceae	Podaxis	africana	De Villiers, Eicker \& Van der Westh.	PREM		
						pistillaris	(L.) Fr.	PREM	Yes	
						rugospora	De Villiers, Eicker \& Van der Westh.	PREM		
				Psathyrellaceae		omnivorum	Shear	PREM		
					Psathyrella	griseola	A. Pearson	PREM		
						condolleana	(Fr.) Maire		Yes	
						lionella	A. Pearson ex Pegler			Pearson 1996
				Psathyrellaceae	Psathyrella	praelonga	A. Pearson			Pearson 1950
						varicosa	A. Pearson			Pearson 1950
				Pterullaceae	Pterula	subulata	Fr.		Yes	
				Schizophillaceae	Schizophyllum	commune	Fr.		Yes	
				Sebacinaceae	Sebacina	schweinitzii	(Peck) Oberw.		Yes	
				Strophariaceae	Agrocybe	praecox	(Pers.) Fayod	PREM	Yes	
						pediades	(Fr.) Fayod		Yes	
					Deconica	atrorufa	(Schaeff.) P. Karst.	PREM		
						coprophila	(Bull.) Fr.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Strophariaceae	Deconica	protea	(Kalchbr.) Desjardin \& B.A. Perry			Kalchbrenner 1876 (as Agaricus proteus)
					Flammula	alnicola	(Fr.) P. Kumm.	PREM		
						harmoge	(Fr.) Sacc.	PREM		
						hybrida	(Bull.) Gillet	PREM		
						laetilamellata	A. Pearson	PREM		
						luxurians	A. Pearson	PREM		
						papillata	A. Pearson	PREM		
						penetrans	(Fr.) Quél.	PREM		
						sapinea	(Fr.) Pat.	PREM		
					Galera	hypnorum	(Batsch) Quél.	PREM		
						lateritia	(Fr.) P. Kumm.	PREM		
						pygmaeoaffinis	(Fr.) Quél.	PREM		Van der Westhuizen and Eicker 1988
						spartea	Velen.	PREM		Van der Westhuizen and Eicker 1988
						tenera	(Schaeff.) P. Kumm.	PREM		
						tenera var. siliginea	(Fr.) P. Kumm.	PREM		
					Gymnopilus	hybridus	(Bull.) Maire		Yes	
						junonius	(Fr.) P.D. Orton	PREM	Yes	
						penetrans	(Fr.) Murrill	PREM	Yes	
						sapineus	(Fr.) Murrill		Yes	
					Hebeloma	angustispermum	A. Pearson	PREM		
						anthracophilum	Maire	PREM		
						crustuliniforme	(Bull.) Quél.		Yes	
						cylindrosporum	Romagn.	PREM	Yes	
						nudipes	(Fr.) Kalchbr.	PREM		
						sinapizans	(Paulet) Gillet		Yes	
						spoliatum	(Fr.) Gillet	PREM		
					Hymenogaster	albellus	Massee \& Rodway	PREM		
						reticulatus	Zeller \& C.W.	PREM		
					Hypholoma	candolleanum	(Fr.) Quél.	PREM		
						fasciculare	(Huds.) P. Kumm.	PREM	Yes	
						lateritium	(Schaeff.) P. Kumm.	PREM		
					Kuehneromyces	mutabilis	(Schaeff.) Singer \& A.H. Sm.	PREM		
					Leratiomyces	ceres	(Cooke \& Massee) Spooner \& Bridge 2008		Yes	
					Naucoria	pediades	(Fr.) P. Kumm.	PREM		
						russa	(Cooke \& Massee) Sacc.	PREM		
						scolecina	(Fr.) Quél.	PREM		
						semiorbicularis	(Bull.) Quél.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Strophariaceae	Naucoria	undulosa	(Fr.) Sacc.	PREM		
					Pholiota	aurivella	(Batsch) P. Kumm.	PREM		
						caperata	(Pers.) Gillet	PREM		
						cylindracea	(DC.) Gillet	PREM		
						flammans	(Batsch) P. Kumm.	PREM		
						mutabilis	(Schaeff.) P. Kumm.	PREM		
						parva	A. Pearson	PREM		
						pseudoerebia	A. Pearson	PREM		
						squarrosa	(Oeder) P. Kumm.		Yes	
						spectabilis	(Fr.) P. Kumm.	PREM		
						togularis	(Bull.) P. Kumm.	PREM		
						unicolor	(Vahl) Gillet	PREM		
					Psilocybe	coprophila	(Bull.) P. Kumm.		Yes	
						cylindrispora	A. Pearson			Pearson 1950
						natalensis	Gartz, D.A. Reid, M.T. Sm. \& Eicker	PREM		
					Stropharia	coccinea	A. Pearson ex Pegler			Pearson 1996
						semiglobata	(Batsch) Quél.		Yes	
					Tubaria	furfuracea	(Pers.) Gillet		Yes	
				Tricholomataceae	Amparoina	spinosissima	(Singer) Singer		Yes	
					Cellypha	rhoina	(W.B. Cooke) W.B. Cooke	PREM		
					Clitocybe	expallens	(Pers.) P. Kumm.	PREM		
						fragrans	(With.) P. Kumm.	PREM		
						gentianea	Quél.	PREM		
						nuda	(Bull.) H.E. Bigelow \& A.H. Sm.	PREM		Van der Westhuizen and Eicker 1988 (as Lepista nuda)
						rivulosa	(Pers.) P. Kumm.	PREM		
						splendens	(Pers.) Gillet	PREM		
						toxica	Stephens			Stephens 1966
					Collybia	acervata	(Fr.) P. Kumm.	PREM		
						albuminosa	(Berk.) Petch	PREM		Van der Westhuizen and Eicker 1988
						butyracea	(Bull.) P. Kumm.	PREM		Van der Westhuizen and Eicker 1988
						chrysopepla	(Berk. \& M.A. Curtis) A. Pearson	PREM		
						distorta	(Fr.) Quél.	PREM	Yes	
						dryophila	(Bull.) P. Kumm.	PREM	Yes	
						extuberans	(Fr.) Quél.	PREM		
						extuberans	(Fr.) Quél.	PREM		
						fragrantissima	A. Pearson	PREM		
						fusipes	(Bull.) Quél.	PREM	Yes	
						macilenta	(Fr.) Gillet	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Agaricales	Tricholomataceae	Collybia	maculatoides	A. Pearson	PREM		
						ocellata	(Fr.) P. Kumm.	PREM		
						radicata	(Relhan) Quél.	PREM		
						stridula	(Fr.) Sacc.	PREM		
						velutipes	(Curtis) P. Kumm.	PREM		
					Lepista	caffrorum	(Kalchbr. \& MacOwan) Singer	PREM	Yes	
						sordida	(Schumach.) Singer	PREM	Yes	
					Macrocybe	lobayensis	(R. Heim) Pegler \& Lodge	PREM	Yes	
						titans	(H.E. Bigelow \& Kimbr.) Pegler, Lodge \& Nakasone	PREM		
					Melanoleuca	brevipes	(Bull.) Pat.	PREM		
						melaleuca	(Pers.) Murrill	PREM		
					Omphalia	glaucophylla	(Lasch) Sacc.	PREM		Van der Westhuizen and Eicker 1988
						micromeles	(Berk. \& Broome) Sacc.	PREM		
						oniscus	(Fr.) Gillet	PREM		
						pyxidatoides	A. Pearson	PREM		
						rustica	(Fr.) Quél.	PREM		
					Tricholoma	albobrunneum	(Pers.) P. Kumm.		Yes	
						eucalypticum	A. Pearson			Pearson 1950
						melaleucum f . acystidiatum	A. Pearson	PREM		
						meridianum	A. Pearson			Pearson 1950
						saponaceum	(Fr.) P. Kumm.		Yes	
						ustale	(Fr.) P. Kumm.		Yes	
					Tricholomopsis	rutilans	(Schaeff.) Singer		Yes	
					Tricholosporum	laeteviolaceum	D.A. Reid, Eicker, Clémençon \& Cec. Roux	PREM		
					Trogia	cantharelloides	(Mont.) Pat.		Yes	
			Auriculariales	Auriculariaceae	Auricularia	auricula-judae	(Bull.) Quél.	PREM	Yes	
						delicata	(Mont.) Henn.	PREM		
						emini	Henn.	PREM		
						fuscosuccinea	(Mont.) Henn.	PREM		
						mesenterica	(Dicks.) Pers.	PREM		
						polytricha	(Mont.) Sacc.	PREM		
						sambucina	Mart.	PREM		
					Eichleriella Exidia	macrospora	(Ellis \& Everh.) G.W. Martin	PREM		
						glandulosa	(Bull.) Fr.	PREM	Yes	
						purpureocinerea	MacOwan \& Kalchbr.	PREM		
					Heterochaete	byliana	Talbot	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Auriculariales	Auriculariaceae	Heterochaete	grandispora	P.H.B. Talbot	PREM		
				Incertae sedis	Aporpium	caryae	(Schwein.) Teixeira \& D.P. Rogers	PREM		
			Boletales	Boletaceae	Aureoboletus	gentilis	(Earle) Klofac		Yes	
					Boletus	aureus	Schaeff.		Yes	
						aestivalis	(Paulet) Fr.	PREM	Yes	
						bovinus	Rostk.	PREM		
						bovinus var. viridocaerulescens	A. Pearson	PREM		
						collinitus	Fr.	PREM		
						edulis	Rostk.	PREM	Yes	
						flavus	Pollini	PREM		
						grevillei	Klotzsch	PREM		
						curtipes	Massee			Massee 1908
						pinicola	Sw.		Yes	
						reticulatus	Schaeff.		Yes	
						stellenbossiensis	Van der Byl			Van der Byl 1925
						subflammeus	Berk.			Berkeley 1876
					Buchwaldoboletus	hemichrysus	(Berk. \& M.A. Curtis) Singer		Yes	
					Chalciporus	piperatus	(Bull.) Bataille	PREM	Yes	
					Imleria	badia	(Fr.) Vizzini	PREM	Yes	
					Leccinum	duriusculum	(Schulzer ex Kalchbr.) Singer	PREM	Yes	
					Octaviania	africana	Lloyd	PREM		
						flava	(Rodway) G. Cunn.	PREM		
					Xerocomellus	chrysenteron	(Bull.) Šutara		Yes	
				Boletinellaceae	Phlebopus	sudanicus	(Har. \& Pat.) Heinem.	PREM	Yes	
				Boletinellaceae	Phlebopus	colossus	(R. Heim) Singer		Yes	
				Coniophoraceae	Coniophora	arida	(Fr.) P. Karst.	PREM		
						cerebella	(Pers.) Pers.	PREM		
						fodinarum	P.H.B. Talbot	PREM		
						incrustata	P.H.B. Talbot	PREM		
						mollis	Ginns			Ginns 1982
						olivacea	Massee	PREM		
						papillosa	P.H.B. Talbot	PREM		
					Gyrodontium	capense	D.A. Reid			Reid 1963
				Gyroporaceae	Gyroporus	castaneus	(Bull.) Quél.	PREM	Yes	
				Paxillaceae	Melanogaster	ambiguus	(Vittad.) Tul. \& C. Tul.	PREM		
					Paxillus	extenuatus	Fr.	PREM		
						involutus	(Batsch) Fr.	PREM	Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Boletales	Paxillaceae	Paxillus	panuoides	(Fr.) Fr.	PREM	Yes	
				Rhizopogonaceae	Rhizopogon	capensis	C.G. Loyd	PREM		
						luteolus	Fr. \& Nordholm		Yes	
				Sclerodermataceae	Pisolithus	tinctorius	(Mont.) E. Fisch.	PREM	Yes	
					Scleroderma	capense	C.G. Loyd	PREM		
						сера	Pers.		Yes	
						citrinum	Pers.		Yes	
						flavidum	Ellis \& Everh.		Yes	
						verrucosum	(Bull.) Pers.		Yes	
						stellenbosiensis	Verwoerd	PREM		
				Serpulaceae	Serpula	himantioides	(Fr.) P. Karst.		Yes	
				Suillaceae	Suillus	bellinii	(Inzenga) Watling		Yes	
						bovinus	(L.) Roussel		Yes	
						granulatus	(L.) Roussel		Yes	
						luteus	(L.) Roussel		Yes	
			Cantharellales	Cantharellaceae	Cantharellus	cibarius	Fr.	PREM		
						longisporus	Heinem.		Yes	
				Ceratobasidiaceae 	Pellicularia	asperula	D.P. Rogers	PREM		
						filamentosa	(Pat.) D.P. Rogers	PREM		
						fodinarum	P.H.B. Talbot \& V.C. Green	PREM		
						vaga	(Berk. \& M.A. Curtis) D.P. Rogers ex Linder	PREM		
				Clavulinaceae	Clavulina	cinerea	(Bull.) J. Schröt.	PREM		
						cristata	(Holmsk.) J. Schröt.	PREM	Yes	
			Corticiales	Corticiaceae	Corticium	argillaceum	Bres.	PREM		
					Corticium	armeniacum	Sacc.	PREM		
						coeruleum	(Lam.) Fr.	PREM		
						confluens	(Fr.) Fr.	PREM		
						gloeosporum	P.H.B. Talbot	PREM		
						laetum	(P. Karst.) Bres.	PREM		
						luteocystidiatum	P.H.B. Talbot	PREM		
						moniliforme	P.H.B. Talbot	PREM		
						portentosum	Berk. \& M.A. Curtis	PREM		
						punctulatum	Cooke	PREM		
						salmonicolor	Berk. \& Broome	PREM		
						scutellare	Berk. \& M.A. Curtis	PREM		
						tumulosum	P.H.B. Talbot	PREM		
						vagum	Berk. \& M.A. Curtis	PREM		
					Cytidia	flocculenta	(Fr.) Höhn. \& Litsch.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Corticiales	Corticiaceae	Dendrothele	duthiei	P.H.B. Talbot	PREM		
					Laetiporus	baudonii	(Pat.) Ryvarden		Yes	
						sulphureus	(Bull.) Murrill	PREM	Yes	
					Tretopileus	sphaerophorus	(Berk. \& M.A. Curtis) S. Hughes \& Deighton	PREM		
			Geastrales	Geastraceae	Geasteropsis	conrathi	Hollós	PREM		
					Geastrum	ambiguum	Mont.	PREM		
						arenarium	Lloyd	PREM		
						bryantii	Berk.	PREM		
						campestre	Morgan	PREM		
						coronatum	Pers.	PREM		
						dissimile	Bottomley	PREM		
						fimbriatum	Tul. \& C. Tul.	PREM		
						floriforme	Vittad.	PREM		
						fornicatum	(Huds.) Hook.	PREM		
						hieronymi	Henn.	PREM		
						hygrometricum	Pers.	PREM		
						kotlabae	V.J. Staněk		Yes	
						lageniforme	Cooke	PREM		
						limbatum	Fr.	PREM	Yes	
						mammosum	De Toni	PREM		
						minimum	Chevall.	PREM		
						mirabile	Mont.	PREM		
						nanum	Pers.	PREM		
						pectinatum	Pers.	PREM	Yes	
						pouzarii	V.J. Staněk	PREM		
						quadrifidum	DC. ex Pers.	PREM		
						rabenhorstii	Kunze	PREM		
						saccatum	Speg.	PREM	Yes	
						schmidelii	Vittad.	PREM		
						schweinitzii	(Berk. \& M.A. Curtis) Zeller		Yes	
						sessile	(Sowerby) Pouzar		Yes	
						smardae	V.J. Staněk	PREM		
						striatum	Quél.	PREM		
						triplex	Jungh.	PREM	Yes	
						velutinum	Morgan	PREM		
					Myriostoma	coliforme	(Dicks.) Corda	PREM	Yes	
						coliforme var. capillisporum	V.J. Staněk			Staněk 1958

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Incertae sedis	Incertae sedis	Riessia	semiophora	Fresen.	PREM		
			Phallales	Phallaceae	Anthurus	archeri	(Berk.) E. Fisch.	PREM		
					Aseroë	rubra	Labill.	PREM	Yes	
					Blumenavia	angolensis	(Welw. \& Curr.) Dring		Yes	
					Clathrella	roseolescens	E. Fisch.	PREM		
					Clathrus	affinis	Lloyd	PREM		
						archeri	(Berk.) Dring	PREM	Yes	
						gracilis	(Berk.) Schltdl.	PREM		
						pseudocancellatus	(E. Fisch.) Lloyd	PREM		
						transvaalensis	Eicker \& D.A. Reid		Yes	
					Ileodictyon	gracile	Berk.			Bottomley 1948; Coetzee 2010
					Itajahya	galericulata	Möller	PREM	Yes	
						rosea	(Delile) E. Fisch.		Yes	
					Jaczewskia	phalloides	Mattir.	PREM		
					Kalchbrennera	corallocephala	(Welw. \& Curr.) Kalchbr.	PREM	Yes	
					Lysurus	cruciatus	(Lepr. \& Mont.) Henn.			Bottomley 1948; Coetzee 2010
						gardneri	Berk.	PREM		
					Mutinus	bambusinus	(Zoll.) E. Fisch.	PREM		
						caninus	(Huds.) Fr.	PREM		
						simplex	Lloyd.	PREM		
					Phallus	duplicatus	Bosc		Yes	
						impudicus	L.	PREM	Yes	
						indusiatus	Vent.	PREM	Yes	
					Phallus	rubicundus	(Bosc) Fr.	PREM	Yes	
			Polyporales	Fomitopsidaceae	Daedalea	biennis	(Bull.) Fr.	PREM		
						hobbsii	Van der Byl	PREM		
						quercina	(L.) Pers.	PREM	Yes	
					Fomitopsis	ochroleuca	(Berk.) G. Cunn.	PREM		
					Gloeocystidium	tenue	(Pat.) Höhn. \& Litsch.	PREM		
					Phaeolus	schweinitzii	(Fr.) Pat.	PREM	Yes	
					Rhodofomitopsis	lilacinogilva	(Berk.) B.K. Cui, M.L. Han \& Y.C. Dai	PREM	Yes	
				Ganodermataceae	Amauroderma	leptopus	(Pers.) J.S. Furtado	PREM		
						fuscoporia	Wakef.			Wakefield 1948
						rude	(Berk.) Torrend	PREM	Yes	
						schomburgkii	(Mont. \& Berk.) Torrend	PREM		
						sprucei	(Pat.) Torrend		Yes	
						zuluense	Talbot	PREM		
					Ganoderma	alluaudi	Pat. \& Har.	PREM		
						annulare	(Fr.) Gilb.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Gloeophyllales	Gloeophyllaceae	Gloeophyllum	sepiarium	(Wulfen) P. Karst.	PREM	Yes	
						trabeum	(Pers.) Murrill	PREM	Yes	
			Gomphales	Gomphaceae	Ramaria	formosa	(Pers.) Quél.		Yes	
				Clavariadelphaceae	Clavariadelphus	clavulinoides	R.H. Petersen			Petersen 1967
			Hymenochaetales	Hymenochaetaceae	Coltricia	perennis	(L.) Murrill	PREM	Yes	
					Fomitoparia	capensis	M. Fisch., Cloete, L. Mostert \& Halleen			Cloete et al. 2014
					Fomitoparia	punctata	(P. Karst.) Murrill		Yes	
					Fuscoporia	gilva	(Schwein.) T. Wagner \& M. Fisch.		Yes	
					Hydnum	auriscalpium	Lour.	PREM		
						longospinosum	Lloyd	PREM		
						mucidum	Pers.	PREM		
						sclerodontium	Mont. \& Berk.	PREM		
						setosum	Pers.	PREM		
					Hymenochaete	cinnamomea	(Pers.) Bres.	PREM		
						contiformis	G. Cunn.	PREM		
						fasciculata	P.H.B. Talbot	PREM		
						fulva	Burt	PREM		
						luteobadia	(Fr.) Höhn. \& Litsch.	PREM		
						ochromarginata	P.H.B. Talbot	PREM	Yes	
						pinnatifida	Burt	PREM		
						rubiginosa	(Dicks.) Lév.	PREM	Yes	
						semistupposa	Petch	PREM		
						tabacina	(Sowerby) Lév.	PREM		
			Hymenochaetales	Hymenochaetaceae	Hymenochaete	tristicula	(Berk. \& Broome) Massee	PREM		
					Phellinus	gilvus	(Schwein.) Pat.	PREM	Yes	
						igniarius	(L.) Quél.		Yes	
						resupinatus	M. Fisch., Cloete, L. Mostert \& Halleen			Cloete et al. 2016
						rimosus	(Berk.) Pilát	PREM	Yes	
					Polystictus	albobadius	C.G. Loyd	PREM		
						doidgei	C.G. Loyd	PREM		
						subiculoides	C.G. Loyd	PREM		
					Trichaptum	byssogenum	(Jungh.) Ryvarden		Yes	
			Incertae sedis	Incertae sedis	Cotylidia	aurantiaca f. infundibuliformis	D.A. Reid	PREM		
					Grandinia	bicolor	P.H.B. Talbot	PREM		
					Heterochaete	byliana	P.H.B. Talbot	PREM		
					Heterochaete	grandispora	P.H.B. Talbot	PREM		
					Oxyporus	populinus	(Schumach.) Donk	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	$\begin{array}{\|c\|} \hline \text { Fun- } \\ \text { garium } \end{array}$	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Ganodermataceae	Ganoderma	applanatum	(Pers.) Pat.	PREM	Yes	
						aridicola	J.H. Xing \& B.K. Cui			Xing et al. 2016
						austroafricanum	Coetzee, M.J. Wingf., Marinc., Blanchette			Crous et al. 2014
						chilense	(Fr.) Pat.	PREM		
						colossus	Fr.) C.F.) Baker	PREM		
						cf. cupreum	(Sacc.) Bres.			Tchotet et al. 2019
						curtisii	(Berk.) Murrill	PREM		
						destructans	M.P.A. Coetzee, Marinc., M.J. Wingf.			Coetzee et al. 2015
						dunense	Tchotet, Rajchenb. \& Jol. Roux			Tchotet et al. 2018
						eickeri	Tchotet, M.P.A. Coetzee, Rachjenb. \& Jol. Roux			Tchotet et al. 2019
						eminii	Henn.	PREM		
						cf. cupreum	(Sacc.) Bres			Tchotet et al. 2019
						enigmaticum	M.P.A. Coetzee, Marinc., M.J. Wingf.			Coetzee et al. 2015
						fulvellum	Bres.	PREM		
						bildebrandii	Henn.	PREM		
						knysnamense	Tchotet, M.P.A. Coetzee, Rachjenb. \& Jol. Roux			Tchotet et al. 2019
						lucidum	(Curtis) P. Karst.	PREM	Yes	
						mastoporum	(Lév.) Pat.	PREM		
						mollicarnosum	(Lloyd) Sacc. \& Trotter	PREM		
						nigrolucidum	(Lloyd) D.A. Reid	PREM		
						oerstedii	(Fr.) Torrend	PREM		
						oregonense	Murrill	PREM		
						oroflavum	(Lloyd) C.J. Humphrey	PREM		
						resinaceum	Boud.	PREM	Yes	Tchotet et al. 2019
						tornatum	(Pers.) Bres.	PREM		
						zonatum	Murrill	PREM		
				Incertae sedis	Crustodontia	chrysocreas	(Berk. \& M.A. Curtis) Hjortstam \& Ryvarden		Yes	
				Meruliaceae	Acia	conferta	P.H.B. Talbot	PREM		
						stenodon	(Pers.) Bourdot \& Galzin	PREM		
						uda	(Fr.) P. Karst.	PREM		
					Aegerita	webberi	H.S. Fawc	PREM		
					Bjerkandera	adusta	(Willd.) P. Karst.	PREM	Yes	
					Cymatoderma	elegans	Jungh.	PREM	Yes	
					Gloeoporus	conchoides	Mont.	PREM		
						dichrous	(Fr.) Bres.	PREM		
					Irpex	dregeanus	(Berk.) P.H.B. Talbot	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Meruliaceae	Irpex	flavus	(Jungh.) Kalchbr.	PREM		
						grossus	Kalchbr.	PREM		
						modestus	Berk. ex Cooke	PREM		
						obliquus	(Schrad.) Fr.	PREM		
						villereus	Berk. \& Broome	PREM		
					Laschia	frieseana	(Henn.) Sacc.	PREM		
						pustulata	Berk. \& Broome	PREM		
						volkensii	Bres.	PREM		
					Merulius	corium	(Pers.) Fr.	PREM		
						gelatinosus	Petch	PREM		
						himantioides	Fr.	PREM		
						lacrymans	(Wulfen) Schumach.	PREM		
						molluscus	Fr.	PREM		
						pinastri	(Fr.) Burt	PREM		
						rufus	Pers.	PREM		
						squalidus	Fr.	PREM		
						tremellosus	Schrad.	PREM		
					Mycoleptodon	ochraceus	(Pers.) Bourdot \& Galzin	PREM		
					Odontia	arguta	(Fr.) Quél.	PREM		
						bicolor	(Alb. \& Schwein.) Quél.	PREM		
						mellea	(Berk. \& Broome) Rea	PREM		
					Pblebia	strigosozonata	(Schwein.) Lloyd	PREM		
					Podoscypha	affinis	(Berk. \& M.A. Curtis) Pat.	PREM		
						involuta	(Klotzsch) Imazeki	PREM		
						parvula	(Lloyd) D.A. Reid	PREM	Yes	
				Phanerochaetaceae	Pseudolagarobasidium	acaciicola	Ginns			Wood and Ginns 2006
				Podoscyphaceae	Abortiporus	biennis	(Bull.) Singer		Yes	
				Polyporaceae	Coriolopsis	lata	(Berk.) Ryvarden	PREM		
						polyzona	(Pers.) Ryvarden	PREM	Yes	
						strumosa	(Fr.) Ryvarden	PREM		
					Coriolus	azureus	(Fr.) G. Cunn.	PREM		
						obducens	(Pers.) Bourdot \& Galzin	PREM		
						pubescens	(Schumach.) Quél.	PREM		
						unicolor	(Bull.) Pat.	PREM		
						zonatus	(Nees) Quél.	PREM		
					Daedaleopsis	confragosa	(Bolton) J. Schröt.	PREM	Yes	
					Favolus	brasiliensis	(Fr.) Fr.	PREM		
						europaeus	Fr.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Favolus	friesii	Berk. \& M.A. Curtis	PREM		
						hispidulus	Berk. \& M.A. Curtis	PREM		
						spathulatus	(Jungh.) Lév.	PREM	Yes	
					Fomes	annosus	(Fr.) Cooke	PREM		
						caliginosus	(Berk.) Cooke	PREM		
						caryophylli	(Racib.) Bres.	PREM		
						conchatus	(Pers.) Gillet	PREM		
						connatus	(Weinm.) Gillet	PREM		
						fraxineus	(Bull.) Cooke	PREM		
						fulvus	(Scop.) Gillet	PREM		
						geotropus	(Cooke) Cooke	PREM		
						gibbosus	(Blume \& T. Nees) Sacc.	PREM		
						gilvus	(Schwein.) Lloyd	PREM		
						glaucoporus	Lloyd	PREM		
						hornodermus	(Mont.) Cooke	PREM		
						kamphoeveneri	(Fr.) Sacc.	PREM		
						langloisii	Murrill) Sacc. \& D. Sacc.	PREM		
						laricis	(F. Rubel) Murrill	PREM		
						leucophaeus	(Mont.) Cooke	PREM		
						lignosus	(Klotzsch) Bres.	PREM		
						lividus	(Kalchbr. ex Cooke) Sacc.	PREM		
						macgregorii	Bres.	PREM		
						marginatus	(Pers.) Fr.	PREM		
						marmoratus	(Berk. \& M.A. Curtis) Cooke	PREM		
						melanoporus	(Mont.) Sacc.	PREM		
						minutulus	Henn.	PREM		
						pachyphloeus	Corner	PREM		
						pectinatus	Lloyd	PREM		
						pinicola	(Sw.) Cooke	PREM		
						putearius	Weir	PREM		
						ribis	(Schumach.) Gillet	PREM		
						rimosus	(Berk.) Cooke	PREM		
						robinsoniae	(Murrill) Sacc. \& Trotter	PREM		
						roburneus	Lázaro Ibiza	PREM		
						roseus	(Alb. \& Schwein.) Fr.	PREM		
						scalaris	(Berk.) Sacc.	PREM		
						senex	(Nees \& Mont.) Cooke	PREM		
						sessilis	(Murrill) Sacc. \& D. Sacc.	PREM		
						ulmarius	(Sowerby) Gillet	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Fomes	ungulatus	Lázaro Ibiza	PREM		
						velutinus	Bres.	PREM		
						yucatanensis	(Murrill) Sacc. \& D. Sacc.	PREM		
						zambesianus	(Lloyd) Sacc.	PREM		
						zuluensis	Wakef.	PREM		
					Funalia	gallica	(Fr.) Bondartsev \& Singer		Yes	
						leonina	(Klotzsch) Pat.	PREM		
						protea	(Berk.) D.A. Reid		Yes	
						trogii	(Berk.) Bondartsev \& Singer		Yes	
					Grammothele	pseudomappa	P.H.B. Talbot	PREM		
					Heliocybe	sulcata	(Berk.) Redhead \& Ginns		Yes	
					Hexagonia	albida	Lloyd	PREM		
						crinigera	Fr.	PREM		
						discopoda	Pat. \& Har.	PREM		
						dregeana	Lév.	PREM		
						friesiana	Speg.	PREM		
						glabra	(P. Beauv.) Ryvarden	PREM		
						hirta f. hystrix	(Cooke) O. Fidalgo	PREM		
						pobeguinii	Har.	PREM		
						polygramma	(Mont.) Fr.	PREM		
						rigida	Berk.	PREM		
						speciosa	Fr.	PREM		
						tenuis	(Hook.) Fr.	PREM	Yes	
						tricolor	Fr.	PREM		
						zambesiana	Torrend	PREM		
					Lentinus	arcularius	(Batsch) Zmitr	PREM	Yes	
						bisus	Quél.	PREM		
						fastuosus	Kalchbr. \& MacOwan	PREM		
						flabelliformis	(Bolton) Fr.	PREM		
						lecomtei	Fr.	PREM		
						murrayi	Kalchbr. \& MacOwan	PREM		
						nigripes	Fr.	PREM		
						omphalodes var. africanus	A. Pearson			Pearson 1950
						sajor-caju	(Fr.) Fr.	PREM	Yes	
						strigosus	Fr.	PREM	Yes	
						stuppeus	Klotzsch	PREM	Yes	
						tigrinus	(Bull.) Fr.	PREM		
						tuber-regium	(Fr.) Fr.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Lentinus	velutinus	Fr.	PREM	Yes	
						villosus	Klotzsch	PREM	Yes	
						zeyheri	Berk.	PREM		
					Lenzites	abietina	(Bull.) Fr.	PREM		
						aspera	(Klotzsch) Fr.	PREM		
						betulina	(L.) Fr.	PREM	Yes	
						guineensis	(Afzel. ex Fr.) Fr.	PREM		
						junghubnii	Lév.	PREM		
						palisoti	(Fr.) Fr.	PREM		
						quercina	(L.) P. Karst.	PREM		
						repanda	(Mont.) Fr.	PREM		
						tricolor	(Bull.) Fr.	PREM		
					Lopharia	lirellosa	Kalchbr. \& MacOwan			Kalchbrenner \& MacOwan 1881
						mirabilis	(Berk. \& Broome) Pat.	PREM		
					Lignosus	sacer	(Afzel. ex Fr.) Ryvarden	PREM	Yes	
					Microporus	xanthopus	(Fr.) Kuntze	PREM	Yes	
					Nigroporus	vinosus	(Berk.) Murrill	PREM		
					Neolentinus	lepideus	(Fr.) Redhead \& Ginns	PREM	Yes	
					Panus	stipticus	(Bull.) Fr.	PREM		
						stipticus var. farinaceus	(Schumach.) Rea	PREM		
						stuppeus	(Klotzsch) Pegler \& R.W. Rayner	PREM		
					Perenniporia	ochroleuca	(Berk.) Ryvarden	PREM		
					Picipes	badius	(Pers.) Zmitr. \& Kovalenko		Yes	
					Phellinus	badius	(Cooke) G. Cunn.	PREM	Yes	
						robustus	(P. Karst.) Bourdot \& Galzin	PREM	Yes	
					Polyporus	adustus	(Willd.) Fr.	PREM		
						affinis	Blume \& T. Nees	PREM		
						anebus	Berk.	PREM		
						arenosobasus	Lloyd	PREM		
						australiensis	Wakef.	PREM		
						baurii	Kalchbr.	PREM		
						berkeleyi	Fr.	PREM		
						biformis	Fr.	PREM		
						chilensis	Speg.	PREM		
						cichoriaceus	Berk.	PREM		
						conchatus	C.G. Loyd	PREM		
						cotoneus	Pat. \& Har.	PREM		
						cuticularis	(Bull.) Fr.	PREM		

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Polyporus	dictyopus	Mont.	PREM	Yes	
						doidgeae	Wakef.	PREM		
						durbanensis	Van der Byl	PREM		
						durus	(Timm) Kreisel	PREM		
						favoloides	Henn.	PREM		
						flabelliformis	Klotzsch	PREM		
						flexilis	Van der Byl	PREM		
						fruticum	Berk. \& M.A. Curtis	PREM		
						gilvus	(Schwein.) Fr.	PREM		
						grammocephalus	Berk.	PREM		
						heteroclitus	(Bolton) Fr.	PREM		
						immaculatus	Berk. ex Lloyd	PREM		
						isidioides	Berk,			Berkeley 1843
						mastoporus	Lév.	PREM		
						ochrolaccatus	Mont.	PREM		
						ochroleucus	Berk.	PREM		
						ochroporus	Van der Byl	PREM		
						patouillardi	Lloyd	PREM		
						picipes	Rostk.	PREM		
						pocula	(Fr.) Berk. \& M.A. Curtis	PREM		
						radiatus	(Sowerby) Fr.	PREM		
						rhipidium	Berk.	PREM		
						rubidus	Berk.	PREM		
						rugulosus	Lasch	PREM		
						rusticus	C.G. Loyd	PREM		
						schweinitzii	Fr.	PREM		
						semipileatus	Peck	PREM		
						setiporus	Berk.	PREM		
						squamosus	(Huds.) Fr.	PREM		
						subradiatus	Bres.	PREM		
						telfairii	Klotzsch	PREM		
						trichiliae	Van der Byl	PREM		
						undatus	Pers.	PREM		
						varius	(Pers.) Fr.	PREM		
						vibecinus var. antilopum	Kalchbr.	PREM		
					Pycnoporus	sanguineus	(L.) Murrill	PREM	Yes	
					Trametes	albotexta	C.G. Loyd	PREM		
						capensis	Lloyd			Doidge 1950

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Trametes	cingulata	Berk.		Yes	
						elegans	(Spreng.) Fr.	PREM	Yes	
						gibbosa	(Pers.) Fr.		Yes	
						griseolilacina	Van der Byl	PREM		
						birsuta	(Wulfen) Loyd	PREM	Yes	
						keetii	Van der Byl	PREM		
						meyenii	(Klotzsch) Lloyd		Yes	
						subflava	C.G. Loyd	PREM		
						versicolor	(L.) Loyd	PREM	Yes	
			Russulales	Auriscalpiaceae	Lentinellus	omphalodes var. africanus	A. Pearson		Yes	
				Hericiaceae	Dentipellicula	austroafricana	Jia J. Chen, L.L. Shen \& Y.C. Dai			Chen et al. 2015
					Laxitextum	bicolor	(Pers.) Lentz	PREM	Yes	
				Lachnocladiaceae	Asterostroma	cervicolor	(Berk. \& M.A. Curtis) Massee	PREM		
					Dichostereum	rhodosporum	(Wakef.) Boidin \& Lanq.	PREM		
					Lachnocladium	cristatum	Lloyd	PREM		
						zenkeri	Henn.	PREM		
				Peniophoraceae	Peniophora	arenata	P.H.B. Talbot	PREM		
						aspera	(Pers.) Sacc.	PREM		
						carnea	(Willd.) P. Karst.	PREM		
						cinerea	(Pers.) Cooke	PREM		
						filamentosa	(Berk. \& M.A. Curtis) Moffatt	PREM		
						gigantea	(Fr.) Massee	PREM		
						heterocystidia	Burt	PREM		
						longispora var. brachyspora	P.H.B. Talbot \& V.C. Green	PREM		
						lycii	Höhn. \& Litsch.	PREM		
						pelliculosa	P.H.B. Talbot	PREM		
						quercina	(Pers.) Cooke	PREM		
						rimicola	(P. Karst.) Höhn. \& Litsch.	PREM		
						roumeguerei	(Bres.) Bres.	PREM		
						tenuis	(Pat.) Massee	PREM		
						tristicula	(Berk. \& Broome) Boidin \& Lanq.	PREM		
						velutina	(DC.) Cooke	PREM		
				Russulaceae	Lactarius	deliciosus	(L.) Gray	PREM	Yes	
						hepaticus	Plowr.	PREM	Yes	
					Russula	piperatus	(L.) Pers.	PREM		Van der Westhuizen and Eicker 1988
						agaricina	(Kalchbr. ex Berk.) Trappe \& T.F. Elliott			Berkeley 1876
						caerulea	Fr.		Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Fungi	Basidiomycota	Agaricomycetes	Russulales	Russulaceae	Russula	capensis	A. Pearson		Yes	
						fallax	(Fr.) Fr.		Yes	
						sardonia	Fr.	PREM	Yes	
						sororia	(Fr.) Romell		Yes	
						xerampelina	(Schaeff.) Fr.		Yes	
				Stereaceae	Aleurodiscus	acerinus var. longispora	Höhn. \& Litsch.,	PREM		
						disciformis	(DC.) Pat.	PREM		
						limonisporus	D.A. Reid	PREM		
						mirabilis	(Berk. \& M.A. Curtis) Höhn.	PREM		
						polygonioides	(P. Karst.) Pilát	PREM		
						roseus	(Pers.) Höhn. \& Litsch.	PREM		
					Stereum	adnatum	C.G. Loyd	PREM		
						australe	Lloyd		Yes	
						erumpens	Burt			Burt 1920
						hirsutum	(Wild.) Pers.	PREM	Yes	
						laxum	C.G. Loyd	PREM		
						ostrea	(Blume \& T. Nees) Fr.		Yes	
						rimosum var. africanum	P.H.B. Talbot	PREM		
						subpiliatum	Berk. \& M.A. Curtis	PREM		
						tomentosum	Van der Byl	PREM		
						turgidum	C.G. Loyd	PREM		
			Thelephorales	Thelephoraceae	Hypochnus	eylesii	Van der Byl	PREM		
						michelianus	Caldesi	PREM		
					Thelephora	penicillata	C.G. Loyd	PREM		
						terrestris	Ehrh.		Yes	
		Dacrymycetes	Dacrymycetales	Dacrymycetaceae	Arrhytidia	involuta	(Schwein.) Coker	PREM		
					Calocera	cornea	(Batsch) Fr.	PREM	Yes	
						viscosa	(Pers.) Fr.	PREM		
					Dacrymyces	deliquescens	(Bull.) Duby	PREM		
						palmatus	(Schwein.) Burt	PREM		
					Dacryopinax	elegans	(Berk. \& M.A. Curtis) G.W. Martin	PREM		
						spathularia	(Schwein.) G.W. Martin	PREM	Yes	
					Femsjonia	natalensis	Cooke	PREM		
		Incertae sedis	Incertae sedis	Incertae sedis	Naematoloma	capnoides	(Fr.) P. Karst.	PREM		
						fasciculare	(Huds.) P. Karst.	PREM		
		Tremellomycetes	Tremellales	Tremellaceae	Tremella	fuciformis	Berk.		Yes	
						mesenterica	(Schaeff.) Retz.		Yes	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)	
Fungi	Basidiomycota	Tremellomycetes	Tremellales	Tremellaceae	Tremella	micropera	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1880	
						microspora	Lloyd			Lloyd 1920	
					Phaeotremella	foliaceae	(Pers.) Wedin, J.C. Zamora \& Millanes		Yes		
				Sirobasidiaceae	Sirobasidium	magnum	Boedijn 1934		Yes		
	Mucoromycota	Mucoromycetes	Mucorales	Pilobolacecae	Pilobolus	crystallinus	(F.H. Wigg.) Tode		Yes		
Amoebozoa	Mycetozoa	Myxomycetes Echinosteliales Liceales		Echinosteliaceae	Echinostelium	coelocephalum	T.E.Brooks \& H.W.Keller			See text	
				Cribrariaceae	Cribraria	argillacea	(Pers. ex J.F.Gmel.) Pers.			See text	
				cancellata		(Batsch) Nann.-Bremek.			See text		
				intricata		Schrad.			See text		
				tenella		Schrad.			See text		
				Dictydiaethaliaceae	Dictydiaethalium	plumbeum	(Schumach.) Rostaf.			See text	
				Liceaceae	Licea	biforis	Morgan			See text	
				kleistobolus		G.W.Martin			See text		
				pedicellata		(H.C.Gilbert) H.C.Gilbert			See text		
				Tubiferaceae	Lycogala	epidendrum	(L.) Fr.			See text	
				flavofuscum		(Ehrenb.) Rostaf.			See text		
				Reticularia	lycoperdon	Bull.			See text		
				Tubifera	ferruginosa	(Batsch) J.F. Gmel.			See text		
			Physarales		Didymiaceae	Diachea	leucopodia	(Bull.) Rostaf.			See text
						Diderma	subdictyospermum	(Rostaf.) G.Lister			See text
							effusum	(Schwein.) Morgan			See text
				hemisphaericum			(Bull.) Hornem.			See text	
				saundersii			(Berk. \& Broome ex Massee) Lado			See text	
				Didymium		melanospermum	(Pers.) T.Macbr.			See text	
						difforme	(Pers.) Gray			See text	
						eximium	Peck			See text	
						iridis	(Ditmar) Fr.			See text	
						nigripes	(Link) Fr.			See text	
						squamulosum	(Alb. \& Schwein.) Fr. \& Palmquist			See text	
				Mucilago		crustacea	F.H.Wigg.			See text	
				Physaraceae	Badhamia	foliicola	Lister			See text	
						macrocarpa	(Ces.) Rostaf.			See text	
						affinis	Rostaf.			See text	
						nitens	Berk.			See text	
						spinispora	(Eliasson \& N.Lundq.) H.W.Keller \& Schokn.			See text	
						utricularis	(Bull.) Berk.			See text	
					Badhamiopsis	ainoae	(Yamash.) T.E.Brooks \& H.W.Keller			See text	

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Amoebozoa	Mycetozoa	Myxomycetes	Physarales	Physaraceae	Craterium	leucocephalum	(Pers. ex J.F.Gmel.) Ditmar			See text
						aureum	(Schumach.) Rostaf.			See text
						dictyosporum	(Rostaf.) H.Neubert, Nowotny \& K.Baumann			See text
						minutum	(Leers) Fr.			See text
					Fuligo	cinerea	(Schwein.) Morgan			See text
						muscorum	Alb \& Schwein			See text
						septica	(L.) F.H.Wigg.			See text
					Leocarpus	fragilis	(Dicks.) Rostaf.			See text
					Physarella	oblonga	(Berk. \& M.A.Curtis) Morgan			See text
					Physarum	cinereum	(Batsch) Pers.			See text
						melleum	(Berk. \& Broome) Massee			See text
						pezizoideum	(Jungh.) Pavill. \& Lagarde			See text
						album	(Bull.) Chevall.		Yes	See text
						auriscalpium	Cooke			See text
						bitectum	G.Lister			See text
						bivalve	Pers.			See text
						bogoriense	Racib.			See text
						citrinum	Schumach.			See text
						compressum	Alb. \& Schwein.			See text
						confertum	T.Macbr.			See text
						didermoides	(Pers.) Rostaf.			See text
						digitatum	G.Lister \& Farquharson		Yes	See text
						flavicomum	Berk.			See text
						gyrosum	Rostaf.			See text
						javanicum	Racib.			See text
						leucophaeum	Fr.			See text
						leucopus	Link			See text
						mutabile	(Rostaf.) G.Lister			See text
						notabile	T.Macbr.			See text
						nucleatum	Rex			See text
						penetrale	Rex			See text
						pusillum	(Berk. \& M.A.Curtis) G.Lister			See text
						roseum	Berk. \& Broome			See text
						stellatum	(Massee) G.W.Martin			See text
						tenerum	Rex			See text
						vernum	Sommerf.			See text
						viride	(Bull.) Pers.			See text
					Willkommlangea	reticulata	(Alb. \& Schwein.) Kuntze			See text

Kingdom	Phylum	Class	Order	Family	Genus	Species	Authority	Fungarium	Field guides	Previous publications (if not in field guides)
Amoebozoa	Mycetozoa	Myxomycetes	Stemonitales	Stemonitidaceae	Amaurochaete	atra	(Alb. \& Schwein.) Rostaf.			See text
					Comatricha	alta	Preuss			See text
						nigra	(Pers. ex J.F.Gmel.) J.Schröt.			See text
					Enerthenema	papillatum	(Pers.) Rostaf.			See text
					Lamproderma	arcyrioides	(Sommerf.) Rostaf.			See text
						scintillans	(Berk. \& Broome) Morgan			See text
					Stemonaria	irregularis	(Rex) Nann.-Bremek., R.Sharma \& Y.Yamam.			See text
						longa	(Peck) Nann.-Bremek.			See text
					Stemonitis	splendens	Rostaf.			See text
						axifera	(Bull.) T.Macbr.			See text
						fusca	Roth			See text
						herbatica	Peck			See text
						pallida	Wingate			See text
					Stemonitopsis	typhina	(F.H.Wigg.) Nann.-Bremek.			See text
			Trichiales	Dianemaceae	Calomyxa	metallica	(Berk.) Nieuwl.			See text
				Trichiaceae	Arcyria	cinerea	(Bull.) Pers.			See text
						denudata	(L.) Wettst.			See text
						incarnata	(Pers. ex J.F.Gmel.) Pers.			See text
						insignis	Kalchbr. \& Cooke			See text
						minuta	Buchet			See text
						obvelata	(Oeder) Onsberg			See text
						oerstedii	Rostaf.			See text
						pomiformis	(Leers) Rostaf.			See text
					Hemitrichia	clavata	(Pers.) Rostaf.			See text
						serpula	(Scop.) Rostaf. ex Lister			See text
					Metatrichia	vesparia	(Batsch) Nann.-Bremek. ex G.W.Martin \& Alexop.			See text
					Oligonema	schweinitzii	(Berk.) G.W.Martin			See text
					Perichaena	depressa	Lib.			See text
						corticalis	(Batsch) Rostaf.			See text
					Trichia	persimilis	P.Karst.			See text
						affinis	de Bary			See text
						botrytis	(J.F.Gmel.) Pers.			See text
						favoginea	(Batsch) Pers.			See text
						scabra	Rostaf.			See text
						varia	(Pers. ex J.F.Gmel.) Pers.			See text
		Protostelids	Protosteliales	Ceratiomyxaceae	Ceratiomyxa	fruticulosa	(O.F.Müll.) T.Macbr.			See text
					Ceratium	sphaeroideum	Kalchbr. \& Cooke			Kalchbrenner and Cooke 1880

Number of taxa

Figure I. Bargraph indicating proportions of families, genera and species per order.
as myxomycetes, is represented by only two species, Ceratiomyxa fruticulosa (O.F. Müll.) T. Macbr and Ceratium sphaeroideum Kalchbr. \& Cooke (Kalchbrenner and Cooke 1880; Spiegel et al. 2017).

As expected, cosmopolitan and widespread species in Africa have been reported from South Africa, such as Arcyria cinerea (Bull.) Pers., Arcyria denudata (L.) Wettst., Stemonitis fusca Roth, Physarum pusillum (Berk. \& M.A. Curtis) G. Lister, P. compressum Alb. \& Schwein., Lycogala epidendrum (L.) Fr., Diderma hemisphaericum (Bull.) Hornem., Stemonitis splendens Rostaf., Didymium squamulosum (Alb. \& Schwein.) Fr. \& Palmquist, Fuligo septic (L.) F.H. Wigg., Hemitrichia serpula (Scop.) Rostaf. ex Lister, Metatrichia vesparia (Batsch) Nann.-Bremek. ex G.W. Martin \& Alexop. and Pericheana depressa Lib (http://www.discoverlife.org/). The number of species reported from South Africa also compares favorably with the approximately 375 myxomycete species reported from the African continent and its territories (Ndiritu and de Haan 2017). However, this is fewer than the 431 species reported from 30 countries in the Neotropics and 880 species from across the world (Lado 2005-2018).

Myxomycetes are not represented in PREM. This large deficit is most likely because slime molds have a different biology from fungi. This also reflects the limited focus that the broad fungal diversity has received in South Africa, with a much larger focus on disease causing fungi of plants, animals and humans. Even within mycological circles, slime molds have received very limited attention and there has been no expertise in studying them.

Discussion

The checklist gives an overview of the visible mycobiota of South Africa from different sources of data. The checklist presented in this publication is the first for South African macrofungi and is as comprehensive as can be of currently collected and published macrofungi. The list will serve as a foundation to add names to a future real-time, developing, online list that should eventually become as complete as possible, similar to what is available for other organisms in South Africa such as plants and animals. Information on South African macrofungi is still scanty and a great degree of inventorying is needed to document existing species, as well as new species, in order to produce more detailed checklists of macrofungi of South Africa. It will also need future refinement and additions are already forthcoming, including ecological and distribution information.

South Africa has a long history of mycology. Based on what was published in the available field guides on macrofungi for South Africa (Stephens and Kidd 1953a, b; Levin et al. 1985; Van der Westhuizen and Eicker 1994; Branch 2001; Gryzenhout 2010; Goldman and Gryzenhout 2019), the most common macrofungal species reported across all the years belonged to several genera, including Agaricus L., Amanita Pers., Boletus L., Coprinus Pers., Lactarius Pers., Laetiporus Murr., Macrolepiota Singer, Russula Pers., and Suillus Gray. There exists a level of overlap of species mentioned in the different field guides, but each field guide also included unique species while not one of them is complete or comprehensive due to publishing constraints. However, even the guides combined do not yet encompass the diversity of known and unknown species present in South Africa.

A number of scientific publications exist that listed macrofungi for South Africa in general. Doidge (1950) summarized the content of her book in tabular form, listing 835 Ascomycete species, 1704 Basidiomycetes species (36%) and several species of myxomycetes. The phytopathogenic component of these species, and species discovered since then, were summarized by Crous et al. (2000). Van der Westhuizen and Eicker (1988) listed the various fungi known at that stage in the Pretoria area (Gauteng Province), while Gorter and Eicker (1988) provided Afrikaans names for a list of fungi. Vellinga et al. (2009) and Wood (2017) listed a number of fungi, including macrofungi that they considered to be introduced into South Africa.

Eicker and Baxter (1999) presented a good overview of research done on basidiomycetes from 1977 to 1999. Their publication provides references to studies on the genera and species of Phaeolus (Pat.) Pat., Pisolithus Alb. \& Schwein., Termitomyces R. Heim, Amanita Pers., Chlorophyllum Massee, Clathrus P. Micheli ex L., Hymenagaricus Heinem., Lepiota (Pers.) Gray, Macrolepiota Singer, Leucoagaricus Locq. ex Singer, Leucocoprinus Pat., Montagnea Fr. and Hymenochaete Lév. A monograph on resupinate and stereoid Hymenomycetes, a revision of Hymenochaete Lév. (Hymenochaetaceae) (Job, 1987) and a series of papers dealing with Stereum Pers., Lopharia Kalchbr. \& MacOwan, Cymatoderma Jungh. and the Thelephoraceae (Gorter, 1979). Paul A. van der Byl was known for his pioneering work on polypores or bracket fungi while Averil M. Bottomley documented South African Gasteromycetes (Bottomley, 1948). New species of Gasteromycetes were described, such as Bovista acocksii De Villiers, Eicker \& Van der Westhuizen (De Villiers
et al. 1989), but limited information is still available for the Geasteraceae of South Africa (Coetzee and Van Wyk 2003). A new basidiomycetous species, namely Pseudolagarobasidium acaciicola Ginns, was considered to be a potential biocontrol against the invasive weed Acacia cyclops (Wood and Ginns 2006; Kotzé et al. 2015).

A number of recent studies on macrofungi included DNA phylogenetic data. For example, studies during the early part of the last century reported Armillaria mellea (Vahl: Fr.) P. Kumm. in South Africa (Pole 1933; Kotzé 1935; Bottomley 1937), that was largely associated with an expanding plantation forestry industry and the pathogenic nature of the fungus. However, recent morphologic and DNA-based studies showed that the fungus killing pine trees in South Africa is A. fuscipes Petch (Coetzee et al. 2000), while the Northern Hemisphere species A. mellea and A. gallica Marxm. \& Romagn. are restricted to the Western Cape on non-native trees and dying Protea plants in the Kirstenbosch Botanical Gardens, respectively (Coetzee et al. 2000, 2003). However, recent studies alarmingly showed that A. mellea is spreading to native fynbos areas and is able to infect a number of native plants in natural ecosystems of the Western Cape (Coetzee et al. 2018).

A number of new Ganoderma species were discovered through the use of DNA sequences. These include Ganoderma austroafricanum Coetzee, M.J. Wingf., Marinc., Blanchette on Jacaranda mimosifolia, which was assumed to be the main causal agent of root rot on these trees (Crous et al. 2014), G. enigmaticum M.P.A. Coetzee, Marinc., M.J. Wingf. and G. destructans M.P.A. Coetzee, Marinc., M.J. Wingf. (Coetzee et al. 2015). Ganoderma destructans, another novel species G. dunense Tchotet, Rachjenb. \& Jol. Roux, an undescribed novel species of Ganoderma, and Pseudolagaricobasidion acaciicola were also found associated with dying plants of the invasive weed Acacia cyclops in the Eastern and Western Cape Province (Tchoumi et al. 2018). A survey (Tchotet et al. 2017) on wood-rotting basidiomycetes from various declining native tree species in the Garden Route National Park (Western Cape) also showed Ganoder$m a$ to be the most prominent associated group, together with Innonotus, Fomitoparia and Wrightoporia to a lesser degree. The study also defined other operational taxonomic units (OTUs) with sequence data from such symptoms, and assigned tentative identities based on closest sequence hits on the UNITE database. In Tchotet et al. (2019) the OTU's belonging to Ganoderma was further characterized based on multigene phylogenies and brought up the number of Ganoderma species present in South Africa to 13 . From the study another two new species, namely G. eickeri Tchotet, M.P.A. Coetzee, Rachjenb. \& Jol. Roux and G. knysnamense Tchotet, M.P.A. Coetzee, Rachjenb. \& Jol. Roux, were described, and the two phylogenetetic groups named as G. cf. resinaceum Boud. and G. cf. сирreum (Sacc.) Bres. could indicate the first reports of these species in South Africa. Ganoderma cf. cupreum has not been previously collected or observed (Table 1), while specimens of G. resinaceum are present in PREM and the species has been recorded previously (Table 1).

A new Fomitiporia species, F. capensis M. Fisch., M. Cloete, L. Mostert, F. Halleen, was described from South Africa based on fruit body morphology and combined internal transcribed spacer (ITS) and large-subunit ribosomal RNA gene (LSU) sequence comparisons (Cloete et al. 2014). The new species Phellinus resupinatus M. Fisch., M.

Cloete, L. Mostert, F. Halleen, was found to be associated with the disease esca and white rot on grape vines (Cloete et al. 2016). Two new Chlorophyllum species, namely C. palaeotropicum Z.W. Ge \& A. Jacobs and C. africanum Z.W. Ge \& A. Jacobs, were described based on morphology and DNA sequences of the ITS, partial LSU, the second largest subunit of RNA polymerase II ($r p b 2$) and translation elongation factor $1-\alpha$ (tefl) sequences (Ge et al. 2018). The jacaranda stinkhorn (Itajahya galericulata Möller) in Pretoria was also typed phylogenetically (Marincowitz et al. 2015).

Fungi associated with termite mounds formed the focus of a number of studies. Termitomyces spp. associated with some termite species are arguably some of the best known fungi among non-specialists in South Africa, as they are rather obvious, numerous, interesting and a well-loved delicacy. A number of species have been described from South Africa (Botha and Eicker 1991a, b; Eicker and Baxter 1999; Fine Licht et al. 2005), but not all species of Termitomyces associated with the 42 South African fungus growing termite species have been characterized. Neither have the Xylaria Hill ex Schrank species (Ascomycetes, Xylariaceae) associated with termite nests been fully characterized. However, X. fioriana Sacc. was identified and described in South Africa (Saccardo 1891). Another well-known associate with termite mounds, Podaxis pistillaris (L.) Fr., was also found to consist of more than one phylogenetic lineage, including several collections from Africa, that could be supported morphologically and ecologically (Conlon et al. 2016, 2019).

A total of 105 myxomycete species (Table 1) are known from South Africa (Ndiritu and De Haan 2017). The first record of myxomycetes of South African myxomycetes was published in 1917 (Duthie 1917a). Additional published surveys included Duthie (1917b) and Doidge (1950). One would expect more species in South Africa especially when considering the presence of diverse habitats across such a large surface area. Clearly, this is a vastly understudied and underexploited group in South Africa supported by no local expertise.

A number of species presented in past field guides (Table 1), which should present studied fungi, do not have specimens lodged in PREM (15\%, excluding slime molds) and are thus not present in our National Collection. For instance, none of the important termite-cultivated Termitomyces species, including the iconic Termitomyces umkowann (Cooke \& Massee) D.A. Reid that is readily consumed by many, has fungorium specimens in PREM. These even include commonly occurring species such as Schizophyllum commune Fr. that are widespread throughout South Africa and that can even be observed in dry conditions. Only 14% of fungi (excluding slime molds) published in previous field guides are also lodged in PREM (Table 1).

Conversely, a very large proportion of species in PREM (77\% excluding slime molds) have not been included in popular field guides and are thus largely unknown to citizens interested in these fungi, and even professional mycologists. These pieces of forgotten knowledge are crucial to complete the current and future status of our fungal biodiversity, and represent a glimpse of the diversity in earlier times. For instance, 11 species of Pholiota (Fr.) P. Kumm. are lodged in PREM but did not feature in previous field guides. A twelfth species, P. squarrosa (Oeder) P. Kumm., is the only species currently listed in field guides but specimens for this species are not lodged in PREM
(Table 1). Many of these collections representing genera or closely related groups, however, represent invaluable research opportunities to update the status of species in South Africa in the form of monographs and contemporary phylogenetic studies, to add new samples and possibly describe novel species.

Although great care was taken to eliminate possible synonyms present in the list, and to provide the most recent names for species listed under previous names (Index Fungorum 2019; Crous et al. 2004), a number of synonyms and previous names most likely are still present. It is impossible to continuously crosscheck the list, but errors can be rectified with future revisions for certain groups in the list that aim to eliminate these problems. It is also important to remember when using the list for research, that previous synonyms (including original published or collected names as listed in the contemporary taxonomic databases Index Fungorum and Mycobank) must also be searched.

A number of names listed in Doidge (1950) are not yet present in the list. Since a large proportion of these listed names have new combinations, it was uncertain whether the original author/-s observed them in the sense of what they are called today, or to what genus or species they were attributed to in the past. Some of these names also proved to be non-existent. Due to the importance of Doidge (1950) and the large number of names it contains, it was thus decided to rather treat the names included in Doidge (1950) separately where they can be more carefully linked to existing names and collections and their validity verified, before inclusion in the current checklist published here.

We emphasize that data obtained from publications and books were based on names only at this stage, because although published, some names were not supported by voucher collections that can be used to validate the accuracy of the included names. Even lists obtained from the fungorium, although tied to specimens, may represent misidentifications, previous synonyms or specimens not yet updated to recent systematic schemes for the particular taxon. Furthermore, a large number of macrofungi are still unnamed in South Africa, remain undiscovered, or new reports continue to be generated where discovered fungi could be identified. However, the working list presented here should form a solid foundation to revise names and add more names in future, especially if tied to certain targets or priorities matched to existing expertise and collaborations.

Having a fungal name list is invaluable. It is the first step towards compiling an atlas for macrofungi, similar to what exists for other organisms in South Africa (for example, Harrison et al. 1997). Such an atlas can also include distribution, ecological and biological data useful for diverse end users in governmental institutions, and those linked to conservation, ecology, academia and citizen science (Gryzenhout 2015). Additional products would be used to compile, for the first time, a red-list of macrofungi based on International Union for the Conservation of Nature (IUCN) criteria, and guidelines to protect them based on their biology. It will aid to identify indicator species to monitor ecological integrity and change. The residency status of macrofungi can be defined better, and species that are truly endemic, naturalized, introduced or
invasive can be defined properly within each group. The need for this is already evident where fungi have been previously listed (Vellinga et al. 2009; Wood 2017) but there was no national list for comparison. In fact, one species listed in Vellinga et al. (2009), Inocybe curvipes P. Karst., is not present in previous publications or in PREM (Table 1). The checklist information can be used in education for the sustainable and safe use of fungal natural resources, to produce conservation awareness and regulation to protect naturally harvested species and habitats from over-harvesting (Gryzenhout et al. 2010, 2012). Lastly, the lists will be instrumental to do gap assessments from the compiled data to help identify research needs in future, for example where to focus surveys and collections, revisions, and where the greatest gaps for species descriptions exist. A list will also enable citizen scientist collaboration and participation and make the study of fungi more transparent (Gryzenhout 2015).

Human capacity should be developed in the area of mycology and biodiversity conservation. The species found in each region of South Africa is still unknown and there have not been any recent monographic works. Furthermore, a great need exists to continue revising the list, to ensure that more representatives of species are added and taxonomic revisions are undertaken and included in the list. The list should also be enabled to continue and long-term plans should be developed to ensure its sustainability.

The list presented is only based on species and specimens that could be named. A great deal of unknown taxa of macrofungi still exist. In fact, approximately 200 "unknown" macrofungal species of the fungorium records were left out from the list. Furthermore, approximately half of the records lodged in MushroomMap (http://adu. org.za/) represent fungi that could not be identified, whereas a great number of equally unknown fungi is posted on the Mushrooms for South Africa Facebook page (https:// www.facebook.com/groups/MushroomsSouthernAfrica/), or communicated by citizen scientists (Gryzenhout 2015). This great deficit or inability to name numerous South African macrofungi is indicative of the great diversity that we have, the large proportion that are still undiscovered, unstudied, and hence under-utilized, and the paucity of human capacity to do this (South African Fungal Diversity Network 2013). Without active description and characterization, these fungi will remain in obscurity.

Acknowledgements

Without financial support from the Foundational Biodiversity Information Programme (FBIP), South African National Biodiversity Institute, Pretoria, this would not have been possible. Thanks also to Dr Paul Kirk (UK) for providing us with a list of species that was first described from South Africa, and the invaluable comments of the reviewers. Paul Kirk for providing us with a list of species first described from South Africa, and Dr David Minter for inclusion of the data in Cybertruffle (both from Centre of Bioscience and Agriculture, UK). We also thank the reviewers for their invaluable comments.

References

Albertini JB, Schweinitz LD von (1805) Conspectus Fungorum in Lusatiae Superioris, 376 pp. Ananbeh KM (2003) Production of Oyster Mushroom on Different Agricultural Wastes Available in Jordan. M. Sc. thesis, Jordan University, Jordan.
Baudalf SL (2008) An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution 46: 263-273.
Berkeley MJ (1843) Enumeration of fungi, collected by Herr Zeyher in Uitenhage. London Journal of Botany 2: 507-527.
Berkeley MJ (1846) Decades of fungi. Decade XI. London Journal of Botany 5: 1-6.
Berkeley MJ (1876) Two new fungi. Gardeners' Chronicle 5: 1-785.
Berkeley MJ (1876) An enumeration of the fungi collected at the Cape of Good Hope during the stay of the English Transit of Venus expedition in 1874. Journal of Botany, British and Foreign 14: 173-176.
Boertmann D (1998) A new species of Hygrocybe (Agaricales) from KwaZulu-Natal, South Africa. South African Forestry Journal 64: 178-181. https://doi.org/10.1016/S0254-6299(15)30863-2
Botha WJ, Eicker A (1991a) Cultural studies on the genus Termitomyces in South Africa. I. Macro- and microscopic characters of basidiome context cultures. Mycological Research 95: 435-443. https://doi.org/10.1016/S0953-7562(09)80843-5
Botha WJ, Eicker A (1991b) Cultural studies on the genus Termitomyces in South Africa. II. Macro- and micromorphology of comb sporodochia. Mycological Research 95: 444-451. https://doi.org/10.1016/S0953-7562(09)80844-7
Bottomley AM (1937) Some of the more important diseases affecting timber plantations in the Transvaal. South African Journal of Science 33: 373-376.
Bottomley AM (1948) Gasteromycetes from South Africa. Bothalia 4: 473-810. https://doi. org/10.4102/abc.v4i3.1859
Branch M (2001) First Field Guide to the Mushrooms of South Africa. Struik Publishers.
Burt EA (1920) The Thelephoraceae of North America. XII. Stereum. Annals of the Missouri Botanical Garden 7: 81-248. https://doi.org/10.2307/2990127
Chen JJ, Shen LL, Dai YC (2015) Dentipellicula austroafricana sp. nov. supported by morphological and phylogenetic analyses. Mycotaxon 130: 17-25. https://doi.org/10.5248/130.17
Cloete M, Fischer M, Mostert L, Halleen F (2014) A novel Fomitiporia species associated with esca on grapevine in South Africa. Mycological Progress 13: 303-311. https://doi. org/10.1007/s11557-013-0915-5
Cloete M, Fischer M, Plessis IL, Mostert L, Halleen F (2016) A new species of Phellinus sensu stricto associated with esca on grapevine in South Africa. Mycological Progress 15: 1-9. https://doi.org/10.1007/s11557-016-1168-x
Coetzee JC, Van Wyk AE (2003) Calvatia sect. Macrocalvatia redefined and a new combination in the genus Calvatia. Bothalia 33: 156-158. https://doi.org/10.4102/abc.v33i2.445
Coetzee JC, Van Wyk AE (2005) Lycoperdaceae-Gasteromycetes - Bovista capensis, the correct name for Bovista promontorii. Bothalia 35: 74-75. https://doi.org/10.4102/abc.v35i1.374

Coetzee MPA, Musasira NY, Roux J, Roets F, Van der Merwe NA, Wingfield MJ (2018) Armillaria root rot spreading into a natural woody ecosystem in South Africa. Plant Pathology 67: 883-891. https://doi.org/10.1111/ppa. 12804
Coetzee MPA, Wingfield BD, Coutinho TA, Wingfield MJ (2000) Identification of the causal agent of Armillaria root rot of Pinus species in South Africa. Mycologia 92: 777-785. https://doi.org/10.1080/00275514.2000.12061218
Coetzee MPA, Wingfield BD, Roux J, Crous PW, Denman S, Wingfield MJ (2003) Discovery of two northern hemisphere Armillaria species on Proteaceae in South Africa. Plant Pathology 52: 604-612. https://doi.org/10.1046/j.1365-3059.2003.00879.x
Coetzee MPA, Marincowitz S, Muthelo VG, Wingfield MJ (2015) Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South Africa. IMA Fungus 6: 249-256. https://doi.org/10.5598/imafungus.2015.06.01.16
Conlon BH, De Beer WZ, De Fine Licht HH, Aanen DK, Poulsen M (2016) Phylogenetic analyses of Podaxis specimens from southern Africa reveal hidden diversity and new insights into associations with termites. Fungal Biology 120: 1065-1076. https://doi. org/10.1016/j.funbio.2016.05.011
Conlon BH, Aanen DK, Beemelmanns C, de Beer ZW, De Fine Licht HH, Gunde-Cimerman N, Schiøtt M, Poulsen M (2019) Reviewing the taxonomy of Podaxis: Opportunities for understanding extreme fungal lifestyles. Fungal Biology 123: 183-187. https://doi. org/10.1016/j.funbio.2019.01.001
Cooke MC (1890) Some African fungi. Grevillea 19: 6-7.
Crous PW, Rong IH, Wood A, Lee S, Glen H, Botha W, Slippers B, De Beer WZ, Wingfield MJ, Hawksworth DL (2006) How many species of fungi are there at the tip of Africa? Studies in Mycology 55: 13-33. https://doi.org/10.3114/sim.55.1.13
Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Garethjones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MPA, Damm U, De Cock CA, Den Breeÿen A, De Vries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadehfazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJC, Swart WJ, Tan YP, Vanderbank M, Wood AR, Zhang Y, Groenewald JZ (2014) Fungal Planet description sheets: 281-319. Persoonia 33: 212-289. https://doi.org/10.3767/003158514X685680
Crous PW, Phillips AJL, Baxter AP (2000) Phytopathogenic Fungi from South Africa. Department of Plant Pathology Press, University of Stellenbosch.
Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the $21^{\text {st }}$ century. Studies in Mycology 50: 19-22.
Cybertruffle's Robigalia (2017) Observations of Fungi and their Associated Organisms. www. cybertruffle.org.uk/robigalia/eng [accessed: 27 May 2017]
De Villiers JJR, Eicker A, Van der Westhuizen GCA (1989) A new section and two new species of Podaxis (Gasteromycetes) from South Africa. South African Journal of Botany 55: 159-164. https://doi.org/10.1016/S0254-6299(16)31201-7

De Villiers JJR, Eicker A, Van der Westhuizen GCA (1989) A new species of Bovista (Gasteromycetes) from South Africa. South African Journal of Botany 55: 156-158. https://doi. org/10.1016/S0254-6299(16)31200-5
Desvaux NA (1809) Observations sur quelques genres a etablir dans la famille des champignons. Journal de Botanique 2: 38-105.
Doidge EM (1950) The South African fungi and lichens to the end of 1945. Bothalia 5: 1-1094. https://doi.org/10.4102/abc.v5i1. 1880
Duthie AV (1917a) South African Myxomycetes. South Africa Journal of Science 14: 456-460.
Duthie AV (1917b) African Myxomycetes. Transactions of the Royal Society of South Africa 6: 297-310. https://doi.org/10.1080/00359191709520190
Egbe EA, Tonjock RK, Ebai MT, Nji T, Afui MM (2013) Diversity and distribution of macrofungi in the Mount Cameroon Region. Journal of Ecology and Natural Environment 5: 318-334. https://doi.org/10.5897/JENE2013.0397
Eicker A, Baxter AP (1999) An historical overview of southern African systematic mycology. Transactions of the Royal Society of South Africa 54: 5-19. https://doi. org/10.1080/00359199909520400
De Fine Licht HH, Andersen A, Aanen DK (2005) Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycological Research 109: 314-318. https://doi.org/10.1017/S0953756204001844
Feest A, Campbell R (1986) The microbiology of soils under successive wheat crops in relation to take-all disease. FEMS Microbiology Letters 38: 99-111. https://doi. org/10.1111/j.1574-6968.1986.tb01957.x
Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist 161: 55-70. https:// doi.org/10.1016/j.protis.2009.05.002
Ge Z-W, Jacobs A, Vellinga EC, Sysouphanthong P, Van der Walt R, Lavorato C, An Y-F, Yang ZL (2018) A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification. MycoKeys 32: 65-90. https:// doi.org/10.3897/mycokeys.32.23831
Gençcelep H, Uzun Y, Yusuf Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-grown edible mushrooms. Food Chemistry 113: 1033-1036. https://doi. org/10.1016/j.foodchem.2008.08.058
Ginns J (1982) A monograph of the genus Coniophora (Aphyllophorales, Basidiomycetes). Opera Botanica 61: 1-61.
Gryzenhout M (2010) Pocket Guide: Mushrooms of South Africa. Randomhouse-Struik.
Gryzenhout M (2015) The need to engage with citizen scientists to study the rich fungal biodiversity in South Africa. IMA Fungus 6: 58-68. https://doi.org/10.1007/BF03449355
Gryzenhout M, Roets F, De Villiers R (2010) Fungal conservation in Africa. Mycologica Balcanica 7: 53-58.
Gryzenhout M, Jefwa JM, Yorou NS (2012) The status of mycology in Africa: A document to promote awareness. IMA Fungus 3: 99-102. https://doi.org/10.5598/imafungus.2012.03.01.11
Goldman GB, Gryzenhout M (2019) Field Guide to Mushrooms and Other Fungi from South Africa. Penguin-Randomhouse-Struik, Capetown.

Gorter GJMA (1979) An annotated check list and selected bibliography of South African fungi for the period 1946-1977. Republic of South Africa Department of Agricultural Technical Services Science Bulletin 163: 1-34.
Gorter GJMA, Eicker A (1988) Gewone Afrikaanse en Engelse name vir die meer algemene Suid-Afrikaanse sampioene en ander makroswamme. Suid Afrikaanse Tydskryf vir Natuurwetenskap en Tegnologie 7: 55-64. https://doi.org/10.4102/satnt.v7i1. 900
Harrison JA, Allan DG, Underhill LG, Herremans M, Tree AJ, Parker V, Brown CJ (1997) The Atlas for Southern African Birds. Birdlife South Africa. Johannesburg.
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. In: Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (Ed.) The Fungal Kingdom. ASM Press, Washington. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
Hawksworth DL (2001) The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycological Research 105: 1422-1432. https://doi.org/10.1017/ S0953756201004725
Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, De Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu J, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O'Brien M, Penkhrue W, Phukhamsakda C, Shaanker Ramanan U, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan WS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe NS, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi, 50 ways we can exploit fungi industrially. Fungal Diversity 97: 1-136. https://doi.org/10.1007/s13225-019-00430-9
Index Fungorum (2019) www.indexfungorum.org CABI. [Accessed 27 Mary 2019]
Job DJ (1987) South African species of Hymenochaete (Aphyllophorales). South African Journal of Botany 53: 293-299. https://doi.org/10.1016/S0254-6299(16)31419-3
Kalchbrenner K (1881) Fungi MacOwaniani. Grevillea 9: 52-137.
Kalchbrenner K, Cooke MC (1880) South African fungi. Grevillea 9: 17-34.
Kreisel H (1967) Taxonomisch-Pflanzengeographische monographie der Gattung Bovista. Beihefte zur Nova Hedwigia 25: 1-244.
Kotzé JJ (1935) Forest Fungi: The Position in South Africa. British Empire Forestry Conference, South Africa, 1935. The Government Printer, Pretoria.
Kotzé LJD, Wood AR, Lennox CL (2015) Risk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in South African strandveld and limestone fynbos. Biological Control 82: 52-60. https://doi.org/10.1016/j.biocontrol.2014.12.011
Kulshrestha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in Mycoremediation. AMC Express 4: 1-29. https://doi.org/10.1186/s13568-014-0029-8
Kunze G (1840) Secotium, eine neue Gattung der Gastromycetes Trichogastres. Flora (Regensburg) 23: 321-322.

Lado C (2005-2018) An Online Nomenclatural Information System of Eumycetozoa. Real Jardín Botánico, CSIC, Madrid. http://www.nomen.eumycetozoa.com [accessed 8 August 2018]
Leung MYK, Liu C, Koon JCM, Fung KP (2006) Polysaccharide biological response modifier. Immunology Letters 105: 101-114. https://doi.org/10.1016/j.imlet.2006.01.009
Levin H, Branch M, Rappoport S, Mitchell D (1987) A Field Guide to the Mushrooms of South Africa. C. Struik (Pty.) Ltd, Cape Town.
Lloyd CG (1920) Mycological Notes 64. Mycological Writings 6: 985-1028.
Marasas WFO, Trappe JM (1973) Notes on Southern African Tuberales. Bothalia 11: 139141. https://doi.org/10.4102/abc.v11i1/2.1994

Maria L, Tzenka R (2014) Fungal diversity in Chivira Protected Area, Mt. Sredna Gora, Bulgaria. International Journal of Biological Science 11: 1-17.
Marincowitz S, Coetzee MPA, Wilken PM, Wingfield BD, Wingfield MJ (2015) Phylogenetic placement of Itajahya: An unusual jacaranda fungal associate. IMA Fungus 6: 257-262. https://doi.org/10.5598/imafungus.2015.06.02.01
Martin GW, Alexopoulos CJ (1969) The Myxomycetes. University of Iowa Press, Iowa City.
Massee GE (1888) A revision of the genus Bovista. Journal of Botany, British and Foreign 26: 129-137.
Massee G (1895) A revision of the genus Cordyceps. Annals of Botany 9: 1-44. https://doi. org/10.1093/oxfordjournals.aob.a090724
Massee GE (1908) Fungi exotici, VIII. Bulletin of Miscellaneous Informations of the Royal Botanical Gardens Kew 1908: 216-219. https://doi.org/10.2307/4111711
Miller JH (1942) South African Xylariaceae. Bothalia 4: 251-272.
Mueller G, Schmit J, Leacock P, Buyck B, Cifuentes J, Desjardin D, Halling R, Hjortstan K, Iturriaga T, Larsson K, Lodge D, May T, Minter D, Rajchenberg M, Redhead S, Ryvarden L, Trappe J, Waltin R, Wu Q (2007) Global diversity and distribution of macrofungi. Biodiversity and Conservation 16: 37-48. https://doi.org/10.1007/s10531-006-9108-8
Mordali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in realm of macromycetes fungi (macrofungi). International Immunopharmacology 7: 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
Ndiritu GG, De Haan M (2017) More Additions to the Checklist of African Myxomycetes. 8 ${ }^{\text {th }}$ International Congress on Systematics and Ecology of Myxomycetes, Changchun.
Ndiritu GG, Winsett KE, Spiegel FW, Stephenson SL (2009) A checklist of African myxomycetes. Mycotaxon 107: 353-356. https://doi.org/10.5248/107.353
Osarenkhoe1 OO, Okhuoya AJ, Dania AT (2014) Ethnomycological conspectus of West African mushrooms: An awareness document. Advances in Microbiology 4: 39-54. https:// doi.org/10.4236/aim.2014.41008
Pearson AA (1950) Cape agarics and boleti. Transactions of the British Mycological Society 33: 276-314. https://doi.org/10.1016/S0007-1536(50)80080-3
Pearson A (1996) Agaricus griseovinaceus. Kew Bulletin 51: 1-790.
Pegler DN (1996) Agarics described from Cape Province, South Africa. Kew Bulletin 51: 787797. https://doi.org/10.2307/4119734

Petersen RH (1967) Notes on clavarioid fungi - VI. New species and notes on the origin of i. Mycologia. 59: 39-46. https://doi.org/10.1080/00275514.1967.12018393

Petersen RH (2008) The genus Xerula (Agaricales; Fungi) in Australia and New Zealand. Nova Hedwigia 87: 1-67. https://doi.org/10.1127/0029-5035/2008/0087-0001
Pilát A (1950) Revision of the types of some extra-european species of the genus Crepidotus Fr. Transactions of the British Mycological Society 33: 215-249. https://doi.org/10.1016/ S0007-1536(50)80077-3
Pole EIB (1933) Safeguarding the soil products of the Union. Annual report of the Division of Plant Industry. Farming in South Africa 8: 486-493.
Reid DA (1963) New or interesting records of Australasian Basidiomycetes: V. Kew Bulletin 17: 267-308. https://doi.org/10.2307/4118959
Reid DA (1975) Type studies of the larger Basidiomycetes described from South Africa. Contributions from the Bolus Herbarium 7: 1-255.
Reid DA, Guillarmod AJ (1988) Marasmius titanosporus, a new species from the Eastern Cape, South Africa. Transactions of the British Mycological Society 91: 707-709. https://doi. org/10.1016/S0007-1536(88)80052-4
Roda FA (2010) Survey of Macrofungi (including truffles) in Qatar. KBM Journal of Biology 1: 26-29. https://doi.org/10.5147/kbmjb.2010.0010
Saccardo PA (1891) Sylloge fungorum 9, Patavii.
Servi H, Akata I, Cetin B (2010) Macrofungal diversity of Bolu Abant Nature Park (Turkey). African Journal of Biotechnology 9: 3622-3628.
Singer R (1962) Diagnoses fungorum novorum Agaricalium II. Sydowia 15: 45-83.
South African Fungal Diversity Network (2013) Fungi. In: Victor JE, Hamer M, Smith GF (Eds) A Biosystematics Research Strategy for the Algae, Animals, Bacteria and Archaea, Fungi and Plants of South Africa 2013-2018. SANBI Biodiversity Series no. 23, South African National Biodiversity Institute, Pretoria, 40 pp.
Spiegel FW, Shadwick LL, Ndiritu GG, Brown MW, Aguilar M, Shadwick JD (2017) Protosteloid Amoebae (Protosteliida, Protosporangiida, Cavosteliida, Schizoplasmodiida, Fractoviteliida, and Sporocarpic Members of Vannellida, Centramoebida, and Pellitida). In Handbook of the Protists. Springer, Cham, 38 pp. https://doi.org/10.1007/978-3-319-32669-6_12-1
Staněk (1958) Flora CSR - Gasteromycetes: 1-864.
Stephens EL (1966) Clitocybe toxica. A new species. Journal South African Botany 32: 1-61.
Stephenson SL, Feest A (2015) Ecology of soil eumycetozoans. Acta Protozoologica 51: 201-208.
Stephens EL, Kidd MM (1968a) Some South African Edible Fungi (2 ${ }^{\text {nd }}$ edn.). Longman's, Green and Co Ltd.
Stephens EL, Kidd MM (1968b) Some South African Poisonous \& Inedible Fungi (2 $2^{\text {nd }}$ edn.). Longman's, Green and Co Ltd.
Talbot PHB (1958) Studies of some South African resupinate Hymenomycetes. Part II. Bothalia 7: 131-187. https://doi.org/10.4102/abc.v7i1.1652
Tchotet JMT, Coetzee MPA, Rajchenberg M, Roux M (2019) Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 111(5): 730-747. https://doi.org/10 .1080/00275514.2019.1635387
Tchotet JMT, Coetzee MPA, Rajchenberg M, Wingfield MJ, Roux J (2018) Three Ganoderma species, including Ganoderma dunense sp. nov., associated with dying Acacia cyclops trees in

South Africa. Australasian Plant Pathology 47: 431-447. https://doi.org/10.1007/s13313-018-0575-7
Tchotet JMT, Coetzee MPA, Vivas M, Rajchenberg M, Roux J (2017) Wood-rotting basidiomycetes associated with declining native trees in timber-harvesting compartments of the Garden Route National Park of South Africa. Australian Ecology 42: 947-963. https://doi. org/10.1111/aec. 12524
TheMycologyBlog (2019) TheMycologyBlog. https://www.themycologyblog.com/sa-checklist-for-macrofungi-and-sli [accessed: 27 May 2019]
Thunberg CP (1800) Clavaria capensis Thunb. Prodr. Plant. Capens 2: 1-182.
Van der Byl PA (1925) Description of some previously unnamed South African fungi. I. South African Journal of Science 22: 167-169.
Van der Byl PA (1932) Die Swamfamilie Xylariaceae in die Unie van Suid-Afrika. Annale van die Universiteit van Stellenbosch 10: 1-10.
Van der Westhuizen GCA, Eicker A (1988) Die sampioene van Pretoria en omgewing. SuidAfrikaanse Joernaal vir Wetenskap en Tegnologie 7: 15-25. https://doi.org/10.4102/satnt. v7i1.894
Van der Westhuizen GCA, Eicker A (1994) Field Guide: mushrooms of southern Africa. South African Forestry Journal 170(1): 1-46. https://doi.org/10.1080/00382167.1994.9629676
Vellinga EC, Wolfe BE, Pringle A (2009) Global patterns of ectomycorrhizal introductions. New Phytologist 181: 960-973. https://doi.org/10.1111/j.1469-8137.2008.02728.x
Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. Journal of Medicinal Plants Research 4: 2598-2604. https://doi.org/10.5897/JMPR09.565
Wakefield EM, Talbot PHB (1948) Descriptions of some new Hymenomycetes. Bothalia 4: 939-949.
Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60: 258-274. https://doi. org/10.1007/s00253-002-1076-7
Wood AR (2017) Fungi and invasions in South Africa. Bothalia 47(2): a2124. https://doi. org/10.4102/abc.v47i2.2124
Wood AR, Ginns J (2006) A new disease of Acacia cyclops in South Africa caused by Pseudolagarobasidium acaciicola sp. nov. Canadian Journal of Botany 87: 750-758. https://doi. org/10.1139/b06-032
Xing JH, Song J, Decock C, Cui BK (2016) Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 266: 115-124. https://doi.org/10.11646/phytotaxa.266.2.5
Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science and Technology 18: 4-19. https://doi.org/10.1016/j.tifs.2006.07.013

Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov.

Qian Zhang', Zai-Fu Yang', Wei Cheng², Nalin N. Wijayawardene³, Kevin D. Hyde ${ }^{4}$, Zhuo Chen ${ }^{5}$, Yong Wang'
I Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China 2 Department of Practaculture Science, Animal Science College, Guizhou University, Guiyang, Guizhou 550025, China 3 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 4 Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand $\mathbf{5}$ Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China

Corresponding author: Zhuo Chen (gychenzhuo@aliyun.com), Yong Wang (yongwangbis@aliyun.com)

[^1]
Abstract

Five Curvularia strains isolated from diseased leaves of lemongrass (Cymbopogon citratus) in Guangxi Province, China, were examined. NCBI-Blast searches of ITS sequences suggested a high degree of similarity (99-100\%) to Curvularia akaii, C. akaiiensis, C. bothriochloae, C. heteropogonis and C. sichuanensis. To accurately identify these strains, we further analysed their morphology and phylogenetic relationships based on combinations of ITS, GAPDH, and tef1 gene sequences. Morphological observations indicated that the key character differing from similar species was conidial size, whereas phylogenetic analyses indicated that the five strains represent one species that is also distinct from C. akaii, C. akaiiensis and C. bothriochloae by conidial size and conidiophore length. Thus, the strains examined are found to represent a new species described herein as Curvularia nanningensis. The pathogenicity test on the host and detached leaves confirmed the new species to be pathogenic on Cymbopogon citratus leaves. Standardised requirements for reliable identification of Curvularia pathogens are also proposed.

Keywords

Cymbopogon, phylogeny, plant disease, Pleosporaceae, taxonomy

Introduction

Cymbopogon citratus Stapf (lemongrass), believed to be a native of Malaysia, is now widely distributed in all continents and particularly in America, China, Guatemala and Southeast Asia. Essential oil from lemongrass is often used in aromatherapy (Williamson et al. 1996; Noel et al. 2002; Yang and Lei 2005; Shah et al. 2011). As a traditional Chinese medicine, lemongrass is known to provide relief from a variety of ailments including eczema, cold, headache and stomach-ache (Zhou et al. 2011). Guatemala is known to be the main exporter of lemongrass with about 250 tons per year. China produces 80 to 100 tons of lemongrass annually and the USA and Russia each imports about 70 tons per year (DAFF 2012). Depending on climatic conditions, lemongrass can be severely infected with a rust disease caused by Puccinia nakanishikii Dietel in Hawaii and California (Gardner 1985; Koike and Molinar 1999). In Brazil, a rust on lemongrass caused by another Puccinia species named P. cymbopogonis Massee has been reported (Vida et al. 2006). Joy et al. (2006) summarised the various disease symptoms and their causal agents of lemongrass.

Curvularia spp. infect many herbaceous plants including Cymbopogon Spreng. (Smith et al. 1989). Helminthosporium cymbopogi C.W. Dodge (\equiv Curvularia cymbopogonis (C.W. Dodge) J.W.Groves \& Skolko) is responsible for a severe disease of lemongrass in the lowlands of Guatemala (Dodge 1942). Barua and Bordoloi (1983) discovered C. verruciformis causing disease on Cymbopogon flexuosus Stapf. Curvularia andropogonis (Zimm.) Boedijn led to foliage blight of Cymbopogon nardus (L.) Rendle in the Philippines (Sato and Ohkubo 1990). Thakur (1994) reported C. lunata (Wakker) Boedijn as the causal agent of a new blight disease of Cymbopogon martini (Roxb.) Wats. var. motia Burk. Chutia et al. (2006) discovered that a leaf blight of Cymbopogon winterianus Jowitt is caused by Curvularia spp., resulting in a dramatic change in oil yield and its constituents. Recently, Santos et al. (2018) characterised the morphological and molecular diversity of the isolates of C. lunata, associated with Andropogon Linn. seeds.

Starting in 2010, there have been outbreak reports of pathogenic Curvularia in Asian countries, especially India and Pakistan (Pandey et al. 2014; Avasthi et al. 2015; Majeed et al. 2015). As China is a neighbouring country, we felt obligated to evaluate the potential threat of Curvularia to our crops. A severe Curvularia leaf blight disease was observed in three farms of Curcuma aromatica Salisb. in Hainan Province during 2010 (Chen et al. 2013). Gao et al. (2012) reported a new rice black sheath spot disease caused by C. fallax Boedijn in Hunan Province. Our research group is also conducting a disease survey on the occurrence of Curvularia diseases in Southwest China since 2017. Two new pathogens (C. asianensis Manamgoda, L. Cai \& K.D. Hyde and C. microspora Y. Liang, K.D. Hyde, J. Bhat \& Yong Wang bis), which affected Epipremnum pinnatum (L.) Engl. and Hippeastrum rutilum Herb. (Liang et al. 2018; Wang et al. 2018), respectively, were found.

Meanwhile, a severe leaf blast disease on lemongrass was found in Guangxi Province, China, that first appeared on the tips of leaves. As the infection progressed, more than 30% of leaves showed different degrees of abnormalities, while in the later stages
more than 50% of the upper leaves appeared diseased and disease incidence reached 80% or above in the lower leaf blades. We provide a detailed morphological description and phylogenetic analyses of the pathogen confirming it as a new Curvularia species. Koch's postulates (see later text) have been carried out to confirm its pathogenicity. Our study provides a further understanding of Curvularia disease on lemongrass in China.

Materials and methods

Isolation

Leaves of Cymbopogon citratus showing leaf blast symptoms were collected from Guangxi Medicinal Botanical Garden in Nanning, China, during 2017. Diseased leaf pieces were surface disinfected with 70% ethanol for $30 \mathrm{~s}, 1 \% \mathrm{NaClO}$ for 1 min and repeatedly rinsed in sterile distilled water for 30 s . For isolation of Curvularia, conidia were removed from the diseased tissue surface using a sterilised needle and placed in a drop of sterilised water followed by microscopic examination. The spore suspension was drawn with a Pasteur pipette and transferred to a Petri dish with 2\% water agar (WA) or 2% malt extract agar (MEA) and $100 \mathrm{mg} / \mathrm{l}$ streptomycin to inhibit the growth of bacteria. The plates were incubated for 24 h in an incubator $\left(25^{\circ} \mathrm{C}\right)$ and examined for single spore germination under a dissecting microscope. Germinating conidia were transferred separately to new 2% MEA plates (Chomnunti et al. 2014).

Morphological studies

Single germinated spores were transferred to PDA or MEA and incubated at $28^{\circ} \mathrm{C}$ in a light incubator with 12 h light $/ 12 \mathrm{~h}$ darkness. Ten days later, the colony and morphological characters were recorded according to Manamgoda et al. (2011, 2012). Colony diameters on PDA and MEA were measured at $1,3,5$ and 7 days post-inoculation and average growth rates were calculated. Conidia and conidiophores were examined using a compound microscope fitted with a digital camera (Olympus BX53). The holotype specimen is deposited in the Herbarium of the Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). An ex-type culture is deposited in the Culture Collection of the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC) and Mae Fah Luang University Culture Collection (MFLUCC) in Thailand (Table 1).

DNA Extraction and Sequencing

Fungal cultures were grown on PDA at $28^{\circ} \mathrm{C}$ until the entire Petri dish (90 mm) was colonised. Fresh fungal mycelia were scraped off the surface of the PDA using a sterilised scalpel. A BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416,

Table I. Sequences used for phylogenetic analysis.

Species name	Strain number	GenBank Accession numbers		
		ITS	GAPDH	tef1
Curvularia aeria	CBS 294.61 ${ }^{\text {T }}$	HE861850	HF565450	-
C. affinis	CBS 154.34 ${ }^{\text {T }}$	KJ909780	KM230401	KM196566
C. abvazensis	CBS $144673^{\text {T }}$	KX139029	MG428693	MG428686
C. akaii	CBS 317.86	KJ909782	KM230402	KM196569
C. akaiiensis	BRIP $16080^{\text {T }}$	KJ415539	KJ415407	KJ415453
C. alcornii	MFLUCC 10-0703 ${ }^{\text {T }}$	JX256420	JX276433	JX266589
C. americana	UTHSC 08-3414 ${ }^{\text {T }}$	HE861833	HF565488	-
C. asiatica	MFLUCC 10-0711 ${ }^{\text {T }}$	JX256424	JX276436	JX266593
C. australiensis	BRIP 12044 ${ }^{\text {T }}$	KJ415540	KJ415406	KJ415452
C. australis	BRIP $12521^{\text {T }}$	KJ415541	KJ415405	KJ415451
C. bannonii	BRIP $16732^{\text {T }}$	KJ415542	KJ415404	KJ415450
C. beasleyi	BRIP $10972^{\text {T }}$	MH414892	MH433638	MH433654
C. beerburrumensis	BRIP $12942^{\text {T }}$	MH414894	MH433634	MH433657
C. boeremae	IMI $164633^{\text {T }}$	MH414911	MH433641	-
C. borreriae	CBS 859.73	HE861848	HF565455	-
	MFLUCC 11-0422	KP400638	KP419987	KM196571
C. bothriochloae	BRIP $12522^{\text {T }}$	KJ415543	KJ415403	KJ415449
C. brachyspora	CBS 186.50	KJ922372	KM061784	KM230405
C. buchloes	CBS $246.49^{\text {T }}$	KJ909765	KM061789	KM196588
C. carica-papayae	CBS $135941^{\text {T }}$	HG778984	HG779146	-
C. chiangmaiensis	CPC $28829^{\text {T }}$	MF490814	MF490836	MF490857
C. chlamydospora	UTHSC 07-2764 ${ }^{\text {T }}$	HG779021	HG779151	-
C. clavata	BRIP 61680b	KU552205	KU552167	KU552159
C. coatesiae	BRIP $24261^{\text {T }}$	MH414897	MH433636	MH433659
C. coicis	CBS 192.29 ${ }^{\text {T }}$	JN192373	JN600962	JN601006
C. colbranii	BRIP $13066^{\text {T }}$	MH414898	MH433642	MH433660
C. crustacea	BRIP $13524^{\text {T }}$	KJ415544	KJ415402	KJ415448
C. cymbopogonis	CBS 419.78	HG778985	HG779129	-
C. dactyloctenicola	CPC $28810^{\text {T }}$	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP $12846^{\text {T }}$	KJ415545	KJ415401	KJ415447
C. deightonii	CBS 537.70	LT631356	LT715839	-
C. ellisii	CBS 193.62 ${ }^{\text {T }}$	JN192375	JN600963	JN601007
C. eragrosticola	BRIP $12538{ }^{\text {T }}$	MH414899	MH433643	MH433661
C. eragrostidis	CBS 189.48	HG778986	HG779154	-
C. geniculata	CBS 187.50 ${ }^{\text {T }}$	KJ909781	KM083609	KM230410
C. gladioli	CBS 210.79	HG778987	HG779123	
C. graminicola	BRIP $23186^{\text {T }}$	JN192376	JN600964	JN601008
C. gudauskasii	DAOM 165085	AF071338	-	-
C. harveyi	BRIP $57412^{\text {T }}$	KJ415546	KJ415400	KJ415446
C. bawaiiensis	BRIP $11987^{\text { }}$	KJ415547	KJ415399	KJ415445
C. heteropogonicola	BRIP $14579^{\text {T }}$	KJ415548	KJ415398	KJ415444
C. heteropogonis	CBS $284.91^{\text {T }}$	JN192379	JN600969	JN601013
C. hominis	CBS $136985^{\text {T }}$	HG779011	HG779106	-
C. homomorpha	CBS 156.60 ${ }^{\text {T }}$	JN192380	JN600970	JN601014
C. inaequalis	CBS 102.42 ${ }^{\text {T }}$	KJ922375	KM061787	KM196574
C. intermedia	CBS 334.64	HG778991	HG779155	-
C. ischaemi	CBS $630.82^{\text {T }}$	JX256428	JX276440	-
C. kenpeggii	BRIP $14530^{\text {T }}$	MH414900	MH433644	MH433662
C. kusanoi	CBS 137.29 ${ }^{\text {T }}$	JN192381	-	JN601016
C. lamingtonensis	BRIP $12259^{\text {T }}$	MH414901	MH433645	MH433663
C. lunata	CBS 730.96 ${ }^{\text {T }}$	JX256429	JX276441	JX266596
C. malina	CBS $131274^{\text {T }}$	JF812154	KP153179	KR493095
C. mebaldsii	BRIP $12900^{\text {T }}$	MH414902	MH433647	MH433664
C. micropus	CBS $127235^{\text {T }}$	HE792934	LT715859	-
C. microspora	GUCC 6272 ${ }^{\text {T }}$	MF139088	MF139106	MF139115
C. miyakei	CBS 197.29 ${ }^{\text {T }}$	KJ909770	KM083611	KM196568
C. mosaddeghii	IRAN 3131C ${ }^{\text {T }}$	MG846737	MH392155	MH392152
C. mueblenbeckiae	CBS 144.63 ${ }^{\text {T }}$	HG779002	HG779108	-

Species name	Strain number	GenBank Accession numbers		
		ITS	GAPDH	tef1
C. neergaardii	BRIP 12919 ${ }^{\text {T }}$	KJ415550	KJ415397	KJ415443
C. nanningensis sp. nov.	GUCC 11000	MH885316	MH980000	MH980006
	GUCC 11001	MH885317	MH980001	MH980007
	GUCC 11002	MH885318	MH980002	MH980008
	GUCC 11003	MH885319	MH980003	MH980009
	GUCC 11005 ${ }^{\text {T }}$	MH885321	MH980005	MH980011
C. neoindica	BRIP 17439	AF081449	AF081406	-
C. nicotiae	CBS 655.74 ${ }^{\text {T }}=$ BRIP 11983	KJ415551	KJ415396	KJ415442
C. nodosa	CPC $28800^{\text {T }}$	MF490816	MF490838	MF490859
	CPC 28801	MF490817	MF490839	MF490860
	CPC 28812	MF490818	MF490840	MF490861
C. nodulosa	CBS 160.58	JN601033	JN600975	JN601019
C. oryzae	CBS 169.53 ${ }^{\text {T }}$	KP400650	KP645344	KM196590
C. ovariicola	CBS 470.90 ${ }^{\text {T }}$	JN192384	JN600976	JN601020
C. pallescens	CBS $156.35^{\text {T }}$	KJ922380	KM083606	KM196570
C. palmicola	MFLUCC 14-0404	MF621582	-	-
C. papendorfii	CBS 308.67 ${ }^{\text {T }}$	KJ909774	KM083617	KM196594
C. perotidis	CBS 350.90 ${ }^{\text {T }}$	JN192385	KJ415394	JN601021
C. petersonii	BRIP $14642^{\text {T }}$	MH414905	MH433650	MH433668
C. pisi	CBS 190.48 ${ }^{\text {T }}$	KY905678	KY905690	KY905697
C. platzii	BRIP 27703b ${ }^{\text {T }}$	MH414906	MH433651	MH433669
C. portulacae	CBS 239.48 ${ }^{\text {T }}=$ BRIP 14541	KJ415553	KJ415393	KJ415440
C. prasadii	CBS 143.64 ${ }^{\text {T }}$	KJ922373	KM061785	KM230408
C. protuberata	CBS 376.65 ${ }^{\text {T }}$	KJ922376	KM083605	KM196576
C. pseudobrachyspora	CPC $28808{ }^{\text {T }}$	MF490819	MF490841	MF490862
C. pseudolunata	UTHSC 09-2092 ${ }^{\text {T }}$	HE861842	HF565459	-
C. pseudorobusta	UTHSC 08-3458	HE861838	HF565476	-
C. ravenelii	BRIP $13165^{\text {T }}$	JN192386	JN600978	JN601024
C. reesii	BRIP $4358^{\text {T }}$	MH414907	MH433637	MH433670
C. richardiae	BRIP 4371 ${ }^{\text {T }}$	KJ415555	KJ415391	KJ415438
C. robusta	CBS $624.68{ }^{\text {T }}$	KJ909783	KM083613	KM196577
C. roubanii	CBS 144674 ${ }^{\text {T }}$	KX139030	MG428694	MG428687
C. ryleyi	BRIP $12554{ }^{\text {T }}$	KJ415556	KJ415390	KJ415437
C. senegalensis	CBS 149.71	HG779001	HG779128	-
C. sesuvii	Bp-Zi $01{ }^{\text {T }}$	EF175940	-	-
C. shahidchamranensis	IRAN 3133C ${ }^{\text {T }}$	MH550084	MH550083	-
C. soli	CBS $222.96^{\text {T }}$	KY905679	KY905691	KY905698
C. sorghina	BRIP $15900^{\text {T }}$	KJ415558	KJ415388	KJ415435
C. spicifera	CBS 274.52	JN192387	JN600979	JN601023
C. sporobolicola	BRIP $23040 \mathrm{~b}^{\text {T }}$	MH414908	MH433652	MH433671
C. subpapendorfii	CBS 656.74 ${ }^{\text {T }}$	KJ909777	KM061791	KM196585
C. trifolii	CBS 173.55	HG779023	HG779124	-
C. tripogonis	BRIP $12375{ }^{\text {T }}$	JN192388	JN600980	JN601025
C. tropicalis	BRIP $14834^{\text {T }}$	KJ415559	KJ415387	KJ415434
C. tsudae	ATCC $44764^{\text {T }}$	KC424596	KC747745	KC503940
C. tuberculata	CBS 146.63 ${ }^{\text {T }}$	JX256433	JX276445	JX266599
C. uncinata	CBS 221.52 ${ }^{\text {T }}$	HG779024	HG779134	-
C. variabilis	CPC 28813	MF490820	MF490842	MF490863
	CPC 28814	MF490821	MF490843	MF490864
	CPC $28815^{\text {T }}$	MF490822	MF490844	MF490865
	CPC 28816	MF490823	MF490845	MF490866
C. verruciformis	CBS 537.75	HG779026	HG779133	-
C. verruculosa	CBS 150.63	KP400652	KP645346	KP735695
	CPC 28792	MF490825	MF490847	MF490868
	CPC 28809	MF490824	MF490846	MF490867
C. warraberensis	BRIP $14817^{\text {T }}$	MH414909	MH433653	MH433672
Bipolaris drechsleri	MUS0028	KF500532	KF500535	KM093761
B. maydis	CBS 136.29 ${ }^{\text {T }}$	AF071325	KM034846	KM093794

Ex-type isolates were labeled with "T".

BIOMIGA, Inc., San Diego, California, USA) was used to extract the genomic DNA. DNA amplification was performed in a $25 \mu \mathrm{l}$ reaction volume which contained $2.5 \mu \mathrm{l}$ $10 \times$ PCR buffer, $1 \mu \mathrm{l}$ of each primer $(10 \mu \mathrm{M}), 1 \mu \mathrm{l}$ template DNA, $0.25 \mu \mathrm{l}$ Taq DNA polymerase (Promega, Madison, WI, USA) and $18.5 \mu \mathrm{lddH} \mathrm{H}_{2} \mathrm{O}$. Primers used and thermal cycling programme for PCR amplification of the ITS (ITS4/ITS5), GAPDH (gpd1/gpd2) and tef1 (EF-526F/1567R) genes were followed as described previously (White et al. 1990; Berbee et al. 1999; Schoch et al. 2009; Liang et al. 2018).

Phylogenetic analyses

DNA sequences originated from five strains (GUCC 11000, GUCC 11001, GUCC 11002, GUCC 11003 and GUCC 11005) and reference sequences of ex-type or representative sequences of Curvularia species were downloaded from GenBank database (Table 1) with strains of Bipolaris maydis (Y. Nisik. \& C. Miyake) Shoemaker (CBS 136.29) and B. drechsleri Manamgoda \& Minnis (MUS0028) as outgroup taxa. Alignments for each locus were performed in MAFFT v7.307 online version (Katoh and Standley 2016) and manually verified in MEGA 6.06 (Tamura et al. 2013). Phylogenetic analyses were performed by Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian methods. Sequences were optimised manually to allow maximum alignment and maximum sequence similarity as detailed in Manamgoda et al. (2012). MP analyses were performed in PAUP v. 4.0b10 (Swofford 2003) using the heuristic search option with 1,000 random taxa additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm. Five thousand maxtrees were set to build up the phylogenetic tree. The characters in the alignment matrix were ordered according to ITS+GAPDH $+t e f 1$ with equal weight, and gaps were treated as missing data. The MP phylogenetic analysis of Curvularia ITS sequences included pathogens from China, India and Pakistan and the wrong sequence (KN879930), actually belonging to Alternaria alternata (taxon:5599), was selected as the outgroup. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were calculated for each tree generated. The resulting PHYLIP file was used to generate the ML tree on the CIPRES Science Gateway (https://www.phylo.org/portal2/login.action) using the RAxML-HPC2 black box with 1000 bootstrap replicates and GTRGAMMA as the nucleotide substitution model. For Bayesian inference analysis, the best model of evolution (GTR $+\mathrm{I}+\mathrm{G}$) was determined using MrModeltest v2 (Nylander 2004). Bayesian inference analysis was done using MrBayes v 3.2.6 (Ronquist et al. 2012). Bayesian analyses were launched with random starting trees for 2000000 generations and Markov chains were sampled every 1000 generations. The first 25% resulting trees were discarded as burn-in. Alignment matrices are available in TreeBASE under the study ID 25080.

Koch's Postulate test

To confirm the pathogenicity of the fungus, five healthy plants of Cymbopogon citratus were inoculated with 5 mm diameter mycelial plugs of the five isolates (GUCC 11000, GUCC 11001, GUCC 11002, GUCC 11003 and GUCC 11005) cut from the margins of 10-day-old actively growing cultures; the control was treated with sterile agar plugs. The plants were kept for two days in an illuminating incubator at $28^{\circ} \pm 3^{\circ} \mathrm{C}$. Additionally, two plants were sprayed with distilled water and kept as control under the same conditions. Both inoculated (host and detached leaves) and control plants were kept for two days in an illuminating incubator at $28 \pm 3^{\circ} \mathrm{C}$. After four days of incubation, the inoculated plants and leaves were observed for the development of symptoms (Zhang et al. 2018). Infected leaves were collected and the fungus was re-isolated using PDA medium and the ITS sequence was compared with original strains.

Results

Phylogenetic analyses

First, we compared the DNA sequence identity of ITS, GAPDH and tefl gene regions (Table 2). Among our five strains, there was only one base difference. In the ITS gene region, for C. akaiiensis, the base sequence was identical to our strains; only 1 difference for C. bothriochloae; base differences were 8 for C. akaii, 9 for C. deightonii and 5 for C. sichuanensis. Only C. heteropogonis had noticeable (25) base differences with our strains. In the GAPDH and tefl gene regions, the mutation rate of DNA bases was apparently faster than the ITS region. There were between 9 to 19 base differences in GAPDH and 3 to 8 in tefl. This means that in Curvularia, GAPDH has a faster

Table 2. DNA sequence differences between Curvularia nanningensis and related species in three gene regions.

Species	Strain number	ITS (1-547 bp)	GAPDH ($\mathbf{5 5 0} \mathbf{- 1 0 3 1 b p})$	tef1 (1034-1899 bp)
C. nanningensis	GUCC11000	0	1	0
	GUCC11001	0	0	0
	GUCC11002	0	1	0
	GUCC11003	0	1	0
	GUCC11005	0	0	
C. akaii	CBS 317.86	0	9	4
C. akaiiensis	BRIP 16080^{T}	8	10	5
C. bothriochloae	BRIP 12522^{T}	0	19	8
C. deightonii	CBS 537.70	1	13	-
C. heteropogonis	CBS 284.91^{T}	9	12	3
C. sichuanensis	HSAUP $15.2650-1^{\mathrm{T}}$	25	-	-

[^2]

Figure I. Maximum Parsimony (MP) topology of Curvularia generated from a combination of ITS, GAPDH and tef1 sequences. Bipolaris maydis (CBS 136.29) and B. drechsleri (MUS0028) were used as outgroup taxa. MP and ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by "/". The bootstrap values below 50% and BPP values below 0.90 were labelled with "-". Our main research clade was labelled with green colour.

Figure 2. Maximum Parsimony (MP) analysis of Curvularia pathogens in China, India and Pakistan based on ITS sequences. Alternaria alternata (taxon:5599) was used as outgroup taxon. Bootstrap values $(\geq 50 \%)$ of the MP method are shown near the nodes.
evolutionary rate than ITS and tefl and therefore some mycologists have suggested the use of ITS+GAPDH for phylogenetic analysis and GAPDH as a secondary barcode marker for accurate identification.

The alignment of Curvularia combining three gene fragments (ITS, GAPDH and tef1) comprised 116 strains belonging to 104 taxa. In order to accurately identify our strains, phylogenetic analysis included all ex-type and published strains of all Curvularia spp. described recently (Hyde et al. 2017; Marin-Felix et al. 2017; Dehdari et al. 2018; Heidari et al. 2018; Hernández-Restrepo et al. 2018; Mehrabi-Koushki et al. 2018; Tan et al. 2018; Jayawardena et al. 2019) which are listed in Table 1. The final alignment comprised 2032 characters (each gene fragment was separated with 2 " N ") including gaps (ITS: 1-600, GAPDH: 603-1162 and tef1: 1165-2032). Among these characters, 2032 are constant, 125 variable characters are parsimony-uninformative and 503 are parsimony-informative. The parameters of the phylogenetic trees are TL $=2590, \mathrm{CI}=0.38, \mathrm{RI}=0.72$ and $\mathrm{HI}=0.62$. In the Curvularia phylogenetic tree (Figure 1), all isolates grouped together with 100% (MP and ML) bootstrap support. Our strains (GUCC 11000, 11001, 11002, 11003 and 11005) formed a strongly supported group (MP: 100\%; ML: 100\%; BPP: 1.00) with a close relationship to C. akaii, C. akaiiensis, C. bothriochloae, C. deightonii and C. heteropogonis with high bootstrap support (MP: 94\%; ML: 97\%; BPP: 1.00). In this group, the five examined strains were closer to C. akaii, C. akaiiensis and C. bothriochloae and also showed high bootstrap support (MP: 82\% and ML: 94\%; BPP: 0.98).

The phylogenetic analysis of the ITS gene region evaluated all new Curvularia pathogens recently described from China, India and Pakistan. The aligned matrix consisted of fifty-four ITS sequences and included ex-type sequences of 13 Curvularia species (Supplementary Table 1). The phylogenetic tree (Figure 2) indicated that ITS BLAST searches only provided limited value for pathogenic identification. In Curvularia lunata, only one sequence WCCL (MG063428) showed a very close relationship with the ex-type strain sequence of C. lunata CBS 730.96 (MG722981). The other eight sequences were grouped into two branches, e.g. taxon:5503 (LN879926) which might belong to C. aeria, while the other seven formed an independent lineage. ITS sequences did not separate Curvularia affinis, C. asianensis and C. fallax and some of their sequences even clustered with C. australiensis HNWB9-1 (KT719300). After multi-gene analysis, the phylogenetic distance was shown to be unreliable and may suggest whether they belong perhaps to different species.

Taxonomy

Curvularia nanningensis Qian Zhang, K.D. Hyde \& Yong Wang bis, sp. nov. MycoBank No: 829056
 Facesoffungi number: FoF 05596
 Figure 3A-I

Diagnosis. Characterised by the size of conidia.
Type. China, Guangxi Province, Nanning City, Guangxi Medicinal Botanical Garden, $22^{\circ} 51^{\prime} \mathrm{N}, 108^{\circ} 19^{\prime} \mathrm{E}$, on blighted leaves of Cymbopogon citratus, 30 Septem-

Figure 3. Curvularia nanningensis (GUCC11005, holotype) A, B diseased symptom \mathbf{C} colony on PDA from above \mathbf{D} colony on PDA from below $\mathbf{E}-\mathbf{G}$ conidia and conidiophores $\mathbf{H}-\mathbf{I}$ conidia. Scale bars: 50 $\mu \mathrm{m}(\mathbf{E}), 20 \mu \mathrm{~m}(\mathbf{F}), 10 \mu \mathrm{~m}(\mathbf{G}-\mathbf{I})$.
ber 2017, Q. Zhang, ZQ0091 (HGUP 11005, holotype, MFLU19-1227, isotype), GUCC 11005 and MFLUCC 19-0092, ex-type.

Description. Pathogenic on Cymbopogon citratus. Fungus initially producing white to grey lesions with dark borders on all parts of the shoot, later enlarging and coalescing over entire leaf.

Colonies on PDA irregularly circular, with mycelial growth rate $=1.0 \mathrm{~cm} /$ day, vegetative hyphae septate, branched, subhyaline to brown, smooth to verruculose, $2-3 \mu \mathrm{~m}$, anastomosing. Aerial mycelium dense, felted, initially pale grey, becoming darkened and greyish-green at maturity, producing black extracellular pigments. On MEA, the colony morphology similar to PDA, with growth rate $=1.35 \mathrm{~cm} /$ day. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Conidiophores macronematous, arising singly, simple or branched, flexuous, $8-10$ septate, geniculate, pale brown to dark brown, paler towards apex, $120-200 \times 2-3 \mu \mathrm{~m}(\mathrm{av} .=170 \times 2.5 \mu \mathrm{~m}, \mathrm{n}=30)$. Conidiogenous cells polytretic, sympodial, terminal, sometimes intercalary, cicatrised, with thickened and darkened conidiogenous loci up to $1.0-1.2 \mu \mathrm{~m}$ diam., smooth. Mature conidia 3 to rarely 4 septa, acropleurogenous, obovoid, usually straight to curved at the slightly wider, smooth-walled, larger third cell from the base, $24.5-36.0 \times 14.0-20.5$ $\mu \mathrm{m}(\mathrm{av} .=29.5 \times 17.5 \mu \mathrm{~m}, \mathrm{n}=50)$, sub-hyaline to pale brown end cells, pale brown to dark brown at intermediate cells, with conspicuous or sometimes slightly protuberant hilum. Germination of conidia bipolar.

Distribution. China, Guangxi Province, Nanning City.
Other material examined. China, Guangxi Province, Nanning city, Guangxi Medicinal Botanical Garden, on blight leaves of C. citratus, 30 September 2017,
Q. Zhang, ZQ0087 (HGUP 11000); ZQ0088 (HGUP 11001); ZQ0089 (HGUP 11002); ZQ0090, (HGUP 11003).

Etymology. With reference to the location, Nanning City where the fungus was isolated.

Pathogenicity test

Four days after inoculation, blast symptoms appeared on all inoculated plants, which were similar to symptoms of plants in the field (Figures 3A, B, 4A, B). Non-treated control plants remained healthy without any symptoms (Figure 4C). Curvularia nanningensis was re-isolated from the lesions of inoculated plants and the identity of the fungus was confirmed by sequencing the ITS region. Meanwhile, a detached leaf-experiment was also conducted in an illuminated incubator at $28 \pm 3^{\circ} \mathrm{C}$, where similar symptoms appeared on healthy inoculated leaves of Cymbopogon citratus after four days (Figure 4 D right), while the control leaf (Figure 4 D left) did not show symptoms.

Discussion

Phylogenetic analysis based on combined DNA sequences of ITS, GAPDH and tef1 showed that our strains were related to three Curvularia species named C. akaii (Tsuda \& Ueyama) Sivan., C. akaiiensis Sivan. and C. bothriochloae Sivan., Alcorn \& R.G. Shivas. The main morphological characters that discriminate our strains from related species are the size-range of conidia and length of conidiophores. Curvularia bothriochloae produced conidia measuring $30-47 \times 15-25 \mu \mathrm{~m}$ (Sivanesan et al. 2003) while C. akaiiensis produced the smallest conidia ($22.5-27.5 \times 7.5-15.5 \mu \mathrm{~m}$). Conidial length of C. nanningensis was very close to C. akaii ($24-34 \mu \mathrm{~m}$) (Tsuda and Ueyama 1985) but the conidia of our species were broader than those of C. akaii ($8.7-13.8 \mu \mathrm{~m}$). Conidiophores of C. nanningensis were shorter than those of C. bothriochloae (360-425 $\mu \mathrm{m}$) (Alcorn 1990). In the case of C. sichuanensis Meng Zhang \& T.Y. Zhang, only one ITS sequence AB453881 was available in GenBank for analysis. While examining our sequences, only $4-5 \mathrm{bp}$ differences were revealed in 499 bp characters between C. nanningensis and C. sichuanensis, thus indicating a close relationship between the two strains based on ITS sequence data and likely between the two species. However, according to Zhang et al. (2007), the conidial width of C. sichuanensis ($10-15 \mu \mathrm{~m}$) is smaller than C. nanningensis ($14-20.5 \mu \mathrm{~m}$) on PDA. For C. sichuanensis, the conidial wall of the median cell is deepened and thickened while C. nanningensis obviously does not have these characters. Meanwhile, the hilum of conidia in C. sichuanensis is obviously protuberant while C. nanningensis lacked this character.

The pathogenicity test based on natural inoculation and detached leaves (Figure 3) confirmed that Curvularia nanningensis is a pathogen of Cymbopogon citratus blast disease. We previously named our strains as C. cymbopogonis following a previous report of the species by Groves and Skolko (1945) as a seed-borne pathogen of Cymbopogon

Figure 4. Pathogen inoculation and symptom (4 days). A Cymbopogon citratus inoculated and disease symptom B inoculation point and disease symptom \mathbf{C} control \mathbf{D} detached experiment. Left. Control. Right. Inoculation point and disease symptoms.
nardus. Curvularia cymbopogonis is a common pathogen which also causes diseases of sugar-cane, rice, seedlings of itchgrass, Agrostis palustris Huds. and Dactylis glomerata L. (Santamaria et al. 1971; Walker and White 1979; Olufolaji 1996; Yi et al. 2002). A single strain named C. cymbopogonis (CBS 419.78) included in our analyses grouped distant from C. nanningensis but its reliability seems questionable and apparently belongs to a different species (Fig. 1). We further checked the original description of this species (Groves and Skolko 1945) and found that differences in conidial shape mainly resulted from conidial width (C. cymbopogonis: $11-13 \mu \mathrm{~m}$ vs C. nanningensis: 14-20.5 $\mu \mathrm{m}$). Additionally, Groves and Skolko (1945), Hall and Sivanesan (1972) and Yi et al. (2002) reported that C. cymbopogonis produced 4 to 5 -septate conidia, whereas conidia of C. nanningensis only had 3-septa. Curvularia spp. are important pathogens of lemongrass. Morphological studies together with phylogenetic analyses provided evidence that C. nanningensis is a new pathogen distinct from all hitherto reported diseases on lemongrass. Our findings expanded the documented diversity of Cymbopogon
pathogens within the genus Curvularia and further clarified the taxonomy of this novel pathogen, Curvularia nanningensis.

Moreover, 29 first reports of Curvularia diseases on different plants in China, India and Pakistan were found in the literature from 2010 to the present. It is evident that in this vast geographical area, Curvularia spp. have maintained a close association with plant diversity and thereby possess a rich fungal diversity that is affected by crops distribution. Among them, six reports only provided morphological data and more than half (16) only referred to ITS sequence data and morphological description (Suppl. Table 1). For unknown reasons, Iftikhar et al. (2016) misidentified the Curvularia pathogen with an Alternaria sequence (LN879930.1). Our phylogenetic tree, based on 54 reported ITS sequence data of Curvularia diseases in these countries (Figure 2), also indicated that this approach is not effective for identifying these pathogens, especially in the case of C. lunata as a prevalent species. However, identification of Curvularia isolates by multi-gene phylogenetic analyses has withstood scrutiny (Liang et al. 2018; Wang et al. 2018; Zhang et al. 2018). Additionally, nearly all reports, even for severe diseases, are based on a single isolate, which preclude an objective evaluation. We, therefore, propose the following standardised steps as required for the reliable identification of Curvularia diseases: 1) collect several isolates from diseased samples, 2) obtain sequences of the ITS, GAPDH and tefl or at least ITS+GAPDH for phylogenetic analysis, 3) perform BLAST searches with sequences originated from ex-type or representative strains in GenBank, and 4) combine morphological comparison and phylogenetic analysis for accurate identification.

Acknowledgments

This research is supported by the following projects: National Natural Science Foundation of China (No. 31972222, 31560489), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), Science and Technology basic work of MOST [2014FY120100], National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAD23B03/03), Talent project of Guizhou Science and Technology Cooperation Platform ([2017]5788-5 and [2019]5641) and Guizhou Science, Technology Department International Cooperation Base project ([2018]5806). Nalin Wijayawardene thanks National Natural Science Foundation of China (No. NSFC 31950410558). We thank Mr Mike Skinner for linguistic editing.

References

Alcorn JL (1990) Additions to Cochliobolus, Bipolaris and Curvularia. Mycotaxon 39: 361-392. Avasthi S, Gautam AK, Bhadauria R (2015) Occurrence of leaf spot diseases on Aloe vera (L.) Burm.f. caused by Curvularia species from Madhya Pradesh, India. Biodiversitas 16(1): 79-83. https://doi.org/10.13057/biodiv/d160110

Barua A, Bordoloi DN (1983) Record of a new disease of lemongrass (Cymbopogon flexuosus Stapf.) caused by Curvularia verruciformis Agarwal and Sahni. Current Science 52: 640-641.
Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91(6): 964-977. https://doi.org/10.2307/3761627
Chen XY, Feng JD, Su Z, Sui C, Huang X (2013) First report of Curvularia leaf blight on Curcuma wenyujin caused by Curvularia clavata in China. Plant Disease 97(1): 138. https:// doi.org/10.1094/PDIS-04-12-0392-PDN
Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Persoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1-36. https://doi.org/10.1007/s13225-014-0278-5
Chutia M, Mahanta JJ, Sakia RC, Baruah AKS, Sarma TC (2006) Influence of leaf blight disease on yield and its constituents of Java citronella and in vitro control of the pathogen using essential oils. World Journal of Agricultural Sciences 2(3): 319-321.
DAFF (Department: Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA) (2012) Lemongrass production. pp. 1-20.

Dehdari F, Mehrabi-Koushki M, Hayati J (2018) Curvularia shahidchamranensis sp. nov., a crude oil-tolerant fungus. Current Research in Environmental \& Applied Mycology 8: 572-584. https://doi.org/10.5943/cream/8/6/2
Dodge CW (1942) Helminthosporium spot in Citronella and lemongrass in Guatemala. Annals of the Missouri Botanical Garden 29: 127-140. https://doi.org/10.2307/2394334
Gao BD, Huang W, Xia H (2012) A new rice disease, black sheath spot, caused by Curvularia fallax in China. Plant Disease 96(8): 1224. https://doi.org/10.1094/PDIS-01-12-0021PDN
Gardner DE (1985) Lemongrass rust caused by Puccinia nakanishikii in Hawaii. Plant Disease 69(12): 1100. https://doi.org/10.1094/PD-69-1100a
Groves JW, Skolko AJ (1945) Notes on seed-borne fungi. III. Curvularia. Canadian Journal of Research 23: 94-104
Hall JA, Sivanesan A (1972) Cochliobolus state of Curvularia cymbopogonis. Transactions of the British Mycological Society 59(2): 314, 317. https://doi.org/10.1016/S0007-1536(72)80018-4
Heidari K, Mehrabi-Koushki M, Farokhinejad R (2018) Curvularia mosaddeghii sp. nov., a novel species from the family Pleosporaceae. Mycosphere 9(4): 635-646. https://doi. org/10.5943/mycosphere/9/4/2
Hernández-Restrepo M, Madrid H, Tan YP, da Cunha KC, Gené J, Guarro J, Crous PW (2018) Multi-locus phylogeny and taxonomy of Exserohilum. Persoonia 41: 71-108. https://doi. org/10.3767/persoonia.2018.41.05
Hyde KD, Norphanphoun C, Bazzicalupo A, Karunarathna A, Ekanayaka AH, Dissanayake A J, Soares MA, Phukhamsakda A, Wanasinghe DN, Tennakoon DS, Abdel-Aziz FA, Lee H, Siedlecki I, Senanayake IC, Manawasinghe IS, Kušan I, Yang J, Li J, Chethana KWT, Thambugala KM, He MQ, Mapook A, Clericuzio M, Dayarathne MC, Liu NG, Tian Q, Phookamsak R, Jayawardena RS, Tibpromma S, Huang SK, Hongsanan S, Konta S,

Jayasiri SC, Abreu VP, Li V, Li WJ, Zeng XY, Xiao YP, Luo ZL, Daranagama DA, de Silva NI, Shang QJ, Perera RH, Vizzini A, Bahkali AH, Romero AI, Mešić A, Buyck B, Miller D, Camporesi E, Dovana F, Plautz HL, Promputtha I, Su HY, Bhat DJ, Jones EBG, McKenzie EHC, Kang JC, Liu JK, Xu JC, Pawłowska J, Ryvarden L, Jadan M, Wrzosek M, Berbee ML, Doilom M, Abdel-Wahab MA, Kim NK, Matočec N, Pereira O L, Chomnunti P, Zhao Q, Castañeda-Ruiz RF, Jeewon R, Zhao RL, Lumyong S, Maharachchikumbura SSN, Karunarathna SC, Boonmee S, Suetrong S, Gibertoni TB, Wen TC, Lim YW, Tkalčec Z, Liu ZY, Mortimer PE (2017) Fungal diversity notes 603-708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87(1): 1-235. https://doi. org/10.1007/s13225-017-0391-3
Iftikhar S, Shahid AA, Ali S (2016) First report of Curvularia lunata var. aeria causing leaf blight on tomato in Pakistan. Journal of Plant Pathology 98(1): 180.
Jayawardena RS, Hyde KD, Jeewon R, Ghobad-Nejhad M, Wanasinghe DN, Liu NG, Phillips AJL, Oliveira-Filho JRC, da Silva GA, Gibertoni TB, Abeywikrama P, Carris LM, Chethana KWT, Dissanayake AJ, Hongsanan S, Jayasiri JC, McTaggart AR, Perera R H, Phutthacharoen K, Savchenko KG, Shivas RG, Thongklang N, Dong W, Wei DP, Wijayawardena NN, Kang JC (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26-50. Fungal Diversity 94(1): 41-129. https://doi.org/10.1007/s13225-019-00418-5
Joy PP, Skaria BP, Mathew S, Mathew G, Joseph A (2006) Lemongrass: the fame of cochin. Indian Journal of Arecanut, Spices \& Medicinal Plants 2: 55-64. https://doi. org/10.1533/9781845691717.3.400
Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32: 1933-1942. https://doi. org/10.1093/bioinformatics/btw108
Koike ST, Molinar RH (1999) Rust Disease on Lemongrass in California. Plant Disease 83(3): 304. https://doi.org/10.1094/PDIS.1999.83.3.304D

Liang Y, Ran SF, Bhat J, Hyde KD, Wang Y, Zhao DG (2018) Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China. MycoKeys 29: 49-61. https:// doi.org/10.3897/mycokeys.29.21122
Majeed RA, Shahid AA, Ashfaq M, Saleem MZ, Haider MS (2015) First report of Curvularia lunata causing brown leaf spots of rice in Punjab, Pakistan. Plant Disease 100(1): 219. https://doi.org/10.1094/PDIS-05-15-0581-PDN
Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Diversity 51(1): 3-42. https://doi.org/10.1007/ s13225-011-0139-4
Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the Bi-polaris-Cochliobolus-Curvularia complex. Fungal Diversity 56(1): 131-144. https://doi. org/10.1007/s13225-012-0189-2
Marin-Felix Y, Senwanna C, Cheewangkoon R, Crous PW (2017) New species and records of Bipolaris and Curvularia from Thailand. Mycosphere 8(9): 1556-1574. https://doi. org/10.5943/mycosphere/8/9/11

Mehrabi-Koushki M, Pooladi P, Eisvand P, Babaahmadi G (2018) Curvularia ahvazensis and C. rouhanii spp. nov. from Iran. Mycosphere 9(6): 1173-1186. https://doi.org/10.5943/ mycosphere/9/6/7
Noel B, Amrine J, Kovacs A (2002) Organic treatment IPM for honey bee mites. American Bee Journal 142(5): 359-361.
Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Olufolaji DB (1996) Effects of some fungicides on germination, growth and sporulation of Curvularia cymbopogonis. Cryptogamie Mycologie 17(1): 47-53.
Pandey S, Kumar R, Rishi R, Giri K, Mishra G (2014). First report of Curvularia malucans causing severe leaf necrosis of Curculigo orchoides in India. Journal of Biology \& Earth Sciences 4(2): B176-B178.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029
Santamaria PA, Benoit A, Mathur SB (1971) Curvularia cymbopogonis, a hitherto unreported species pathogenic to rice in the Philippines. Plant Disease Reporter 55: 349-350.
Santos PRR, Leão EU, Aguiar RWS, Melo MP, Santos GR (2018) Morphological and molecular characterization of Curvularia lunata pathogenic to andropogon grass. Bragantia 77(2): 326-332. https://doi.org/10.1590/1678-4499.2017258
Sato T, Ohkubo H (1990) Newly discovered leaf blight of citronella grass caused by Curvularia andropogonis in the Philippines. Japan Agricultural Research Quarterly 23(3): 170-175.
Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch H.T., Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58(2): 224-239. https://doi.org/10.1093/sysbio/syp020
Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS (2011) Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (lemongrass). Journal of Advanced Pharmaceutical Technology and Research 2(1): 3-8. https://doi.org/10.4103/2231-4040.79796
Sivanesan A, Alcorn JL, Shivas RG (2003) Three new graminicolous species of Curvularia (anamorphic fungi) from Queensland, Australia. Australian Systematic Botany 16(2): 275-278. https://doi.org/10.1071/SB02007
Smith JD, Jackson N, Woolhouse AR (1989) Fungal Diseases of Amenity Turf Grasses, $3^{\text {rd }}$ Edn. London: E. \& F.N. Spon.

Swofford D (2003) PAUP* - Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.
Tan YP, Crous PW, Shivas RG (2018) Cryptic species of Curvularia in the culture collection of the Queensland Plant Pathology Herbarium. MycoKeys 35: 1-25. https://doi. org/10.3897/mycokeys. 35.25665
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
Thakur RN (1994) Curvularia leaf blight - a new disease of Palma rosa. Indian Phytopathology 47: 214.
Tsuda M, Ueyama A (1985) Two new Pseudocochliobolus and a new species of Curvularia. Transactions of the Mycological Society of Japan 26: 321-330.
Vida JB, Carvalho Jr. AA, Verzignassi JR (2006) Primeira ocorrência de ferrugem em capim-limão causada por Puccinia cymbopogonis no Brasil. Summa Phytopatologica 32(1): 89-91. http://dx.doi.org/10.1590/S0100-54052006000100015
Walker HL, White JC (1979) Curvularia cymbopogonis, a pathogen of itchgrass (Rottboellia exaltata) in southern Louisiana. Plant Disease Reporter 63: 642-644.
Wang Y, Pan XJ, Zhang Q, Zhao DG (2018). First report of Curvularia asianensis, a leaf blotch disease associated with Epipremnum pinnatum in Guangxi Autonomous Region of China. Plant Disease 102(9): 1854.
White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Gelfand M, Sninsky JI, White TJ (Eds) PCR protocols: a guide to methods and applications, Academic Press, USA, 315-322. https://doi. org/10.1016/B978-0-12-372180-8.50042-1
Williamson EM, Okpako DT, Evans FJ (1996) Selection, Preparation and Pharmacological Evaluation of Plant Material. New York, UK: John Wiley \& Sons.
Yang SY, Lei Y (2005) Antimicrobial activity of Cymbopogon citratus against utilized bacteria and fungus. Journal of Shanghai Jiaotong University (Science) 23(4): 374-382.
Yi JH, Kim JW, Lee DH, Shim GY (2002) Identification of Curvularia spp. isolated from gramineous plants in Korea. Febs Letters 30: 244-248. https://doi.org/10.4489/ KJM.2002.30.1.056
Zhang M, Wu HY, Pei ZY, Zhang TY (2007) A new species and a new variety of Curvularia in China. Southwest China Journal of Agricultural Sciences 20(5): 1144-1145.
Zhang W, Liu JX, Huo PH, Huang ZC (2018) Curvularia malina causes a foliar disease on hybrid Bermuda grass in China. European Journal of Plant Pathology 151(2): 557-562. https://doi.org/10.1007/s10658-017-1390-7
Zhou J, Xie G, Yan X (2011) Encyclopedia of Traditional Chinese Medicines - Molecular Structures, Pharmacological Activities, Natural Sources and Applications: Isolated Compounds T-z, References for Isolated Compounds Tcm Original Plants and Congeners. Berlin: Springer-Verlag.

Supplementary material I

Table S1. Disease occurrence caused by Curvularia spp. in China, India and Pakistan
Authors: Qian Zhang, Zai-Fu Yang, Wei Cheng, Nalin N. Wijayawardene, Kevin D. Hyde, Zhuo Chen, Yong Wang
Data type: occurrence
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.63.49264.suppl1

The genus Melanconis (Diaporthales)

Walter M. Jaklitsch ${ }^{1,2}$, Hermann Voglmayr ${ }^{1,2}$
I Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria 2 Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria

Corresponding author: Walter M. Jaklitsch (walter.jaklitsch@univie.ac.at)

[^3]
Abstract

The genus Melanconis (Melanconidaceae, Diaporthales) in the strict sense is here re-evaluated regarding phylogenetic structure, taxonomy, distribution and ecology. Using a matrix of sequences from ITS, LSU, $m s 204, r p b 2$, tef 1 and tub2, eight species are recognised and their phylogenetic positions are determined. Based on phylogenetic, morphological and geographical differentiation, Melanconis marginalis is subdivided into four subspecies. Melanconis italica is reduced to a subspecies of Melanconis marginalis. The two species Melanconis larissae from Betula sp. and M. pacifica from Alnus rubra are described as new. Melanconis alni and M. stilbostoma are lectotypified and M. alni, M. marginalis and M. stilbostoma are epitypified. All GenBank sequences deposited as Melanconis alni are shown to actually represent M. marginalis and those as M. marginalis belong to the newly described M. pacifica. Currently, Alnus and Betula are the sole host genera of Melanconis. All species and subspecies are (re-)described and illustrated. In addition, the neotypification of Melanconium pterocaryae is here validated.

Keywords

Juglanconis, Melanconiella, Melanconium, multigene phylogeny, pyrenomycetes, systematics, 1 new combination, 2 new species

Introduction

Melanconis, the type genus of the family Melanconidaceae (Diaporthales), was originally described by Tulasne (1856) with M. stilbostoma as its generic type, but without a generic diagnosis. His inclusion of species like M. spodiaea made the genus heterogeneous from the beginning. Since then, many species names have been erected in the genus. In his
generic revision, Wehmeyer (1941) treated the genus in a very wide sense, organising the species in subgenera and sections, which themselves were heterogeneous, containing species of genera like Chapeckia, Coryneum (Pseudovalsa), Macrodiaporthe, Massariovalsa, Melanconiella or Pseudovalsella. Barr (1978) accepted Melanconis roughly in the sense of Wehmeyer's subgenus Eumelanconis, which included Melanconiella. In this sense, the genus Melanconis was one of many genera of the large family Melanconidaceae and was defined by a distinct ectostromatic disc, a more or less well-developed entostroma, twocelled hyaline or brown ascospores with or without appendages, in combination with melanconium- or discosporium-like asexual morphs (Barr 1978). The first phylogenetic analyses of the Diaporthales (Castlebury et al. 2002; see also Jaklitsch et al. 2016, Senanayake et al. 2018), however, suggested that Melanconidaceae should be confined to its type genus Melanconis with a restricted number of species. This phylogenetic generic concept corresponds, apart from a few exceptions, with Wehmeyer's (1941) section Stilbostomae of his subgenus Eumelanconis. Subsequently, many names have been combined in other genera in various families following morphological and/or phylogenetic analyses (Barr 1978; Jaklitsch and Voglmayr 2004; Voglmayr and Jaklitsch 2008; De Silva et al. 2009). Melanconiella was extensively studied by Voglmayr et al. (2012), who determined that species of Melanconis cause more conspicuous bumps in the host bark than those of Melanconiella and form light-coloured, white or yellowish ectostromatic discs. Wehmeyer (1941) had used this trait to distinguish his section Stilbostomae from his Chrysostromae, which are characterised by dark coloured discs. Although light coloured discs are not uncommon in Melanconiella, Wehmeyer's (1941) section Chrysostromae of his subgenus Eumelanconis basically matches the phylogenetically conceived genus Melanconiella, except for a few species, which belong elsewhere. For some of these species, the new genus Juglanconis was established in the new family Juglanconidaceae (Voglmayr et al. 2017, 2019). Two other species were segregated from Melanconis to Alnecium and Phaeodiaporthe by Voglmayr and Jaklitsch (2014). Voglmayr et al. (2012) found an unexpectedly high species diversity in Melanconiella, particularly on Carpinus spp. and showed that its species either have a melanconium- or a discosporina-like asexual morph, but never both morph types. They gave also information of taxonomic placement of other Melanconis spp. Here we treat the residual species of Melanconis in the strict sense.

Materials and methods

Sample sources

All isolates included in this study originated from ascospores or conidia of freshly collected specimens derived from recently dead branches or twigs. Details of the strains including NCBI GenBank accession numbers of gene sequences used to compute the phylogenetic trees are listed in Table 1. Strain acronyms, other than those of official culture collections, are used here primarily as strain identifiers throughout the work. Representative isolates have been deposited at the Westerdijk Fungal Biodiversity Centre (CBS-KNAW), Utrecht, The Netherlands. Details of the specimens, used for morphological investigations,
are listed in the Taxonomy section under the respective descriptions. Herbarium acronyms are according to Thiers (2019). Freshly collected specimens have been deposited in the Fungarium of the Department of Botany and Biodiversity Research, University of Vienna (WU) and in the Fungarium of the Natural History Museum of Vienna (W).

Morphology

Microscopic observations were made in tap water, except where noted. Morphological analyses of microscopic characters were carried out as described by Jaklitsch (2009). Methods of microscopy included stereomicroscopy using a Nikon SMZ 1500 and Nomarski differential interference contrast (DIC), using the compound microscopes Nikon Eclipse E600 or Zeiss Axio Imager.A1 equipped with a Zeiss Axiocam 506 colour digital camera. Images and data were gathered using a Nikon Coolpix 4500 or a Nikon DS-U2 digital camera and measured by using the NIS-Elements D v. 3.0 or 3.22 .15 or Zeiss ZEN Blue Edition software packages. For certain images of ascomata, the stacking software Zerene Stacker v. 1.04 (Zerene Systems LLC, Richland, WA, USA) was used. Measurements are reported as maxima and minima in parentheses and the range representing the mean plus and minus the standard deviation of the number of measurements given in parentheses.

Culture preparation, DNA extraction, PCR and sequencing

Ascospore isolates were prepared and grown on 2% corn meal dextrose agar (CMD; CMA: Sigma, St Louis, Missouri; supplemented with 2% (w/v) D(+)-glucosemonohydrate) or 2% malt extract agar (MEA; $2 \% \mathrm{w} / \mathrm{v}$ malt extract, $2 \% \mathrm{w} / \mathrm{v}$ agar-agar; Merck, Darmstadt, Germany). Growth of liquid cultures and extraction of genomic DNA was performed as reported previously (Voglmayr and Jaklitsch 2011; Jaklitsch et al. 2012) using the DNeasy Plant Mini Kit (QIAgen GmbH, Hilden, Germany). The following loci were amplified and sequenced: a ca. 1.6 kb fragment containing the terminal part of the small subunit nuclear ribosomal DNA (nSSU rDNA), the complete internal transcribed spacer region (ITS1-5.8S-ITS2) and a ca. 900 bp fragment of the large subunit nuclear ribosomal DNA ($n \mathrm{LSU}$ rDNA), amplified and sequenced as a single fragment with primers V9G (De Hoog and Gerrits van den Ende 1998) and LR5 (Vilgalys and Hester 1990); a ca. 1 kb fragment of the guanine nucleotide-binding protein subunit beta (ms204) gene with primers MS-E1F1 and MS-E5R1 (Walker et al. 2012); a ca. 1.2 kb fragment of the RNA polymerase II subunit $2(r p b 2)$ gene with primers fRPB2-5F and fRPB2-7cR (Liu et al. 1999) or dRPB2-5f and dRPB2-7r (Voglmayr et al. 2016); and a ca. 1.3-1.5 kb fragment of the translation elongation factor 1 -alpha (tef1) gene with primers EF1-728F (Carbone and Kohn 1999) and TEF1LLErev (Jaklitsch et al. 2005). For the β-tubulin (tub2) gene, either a ca. 0.45 kb fragment was amplified with primers T1 (O’Donnell and Cigelnik 1997) and BtHV2r (Voglmayr et al. 2016) or a ca. 1.6 kb fragment with primer pairs T1 and T22 (O'Donnell and Cigelnik 1997) or T1D and T22D (Voglmayr et al. 2019).
Table I. Isolates and accession numbers of sequences used in the phylogenetic analyses.

Taxon	Strain ${ }^{1}$	Origin	Host	GenBank accession no. ${ }^{2}$					
				ITS	LSU	ms204	rpb2	tef1	tub2
Juglanconis appendiculata	MC	Greece	Juglans regia	KY427141	KY427141	KY427159	KY427191	KY427210	KY427227
Juglanconis japonica	MAFF $410079=$ ME20*	Japan	Pterocarya rhoifolia	KY427155	KY427155	KY427172	KY427205	KY427224	KY427240
Juglanconis juglandina	CBS $133343=$ ME22	Austria	Juglans regia	KY427149	KY427149	KY427166	KY427199	KY427218	KY427234
Juglanconis oblonga	CBS $133344=$ ME14	USA	Juglans cinerea	KY427151	KY427151	KY427168	KY427201	KY427220	KY427236
Juglanconis pterocaryae	CBS $144326=$ D272*	Austria	Pterocarya fraxinifolia	MK229175	MK229175	MK238314	MK238324	MK238332	MK238338
Melanconis alni	CBS 131693 = MAMI	Austria	Alnus glutinosa	MN784962	MN784962	MN780721	MN780745	MN780774	MN780803
	CBS 131695 = MAW* (from ascospores)	Austria	Alnus glutinosa	MN784963	MN784963	MN780722	MN780746	MN780775	MN780804
	MEW*(from conidia)	Austria	Alnus glutinosa	MN784964	MN784964	MN780723	MN780747	MN780776	MN780805
	MAIV	France	Alnus incana	MN784965	MN784965	MN780724	MN780748	MN780777	MN780806
	D156	Poland	Alnus glutinosa	MN784966	MN784966	MN780725	MN780749	MN780778	MN780807
Melanconis betulae	CFCC 50471*	China	Betula albosinensis	KT732952	KT732971	-	KT732984	KT733001	KT733022
	CFCC 50472	China	Betula albosinensis	KT732953	KT732972	-	KT732985	KT733002	KT733023
	CFCC 50473	China	Betula albosinensis	KT732954	KT732973	-	KT732986	KT733003	KT733024
Melanconis groenlandica	CBS $116450=$ UPSC 3407*	$\begin{gathered} \text { Denmark } \\ \text { (Greenland) } \end{gathered}$	Betula nana	KU878552	KU878553	-	-	KU878554	KU878555
	MAFF 410219 = M4-2 = ME1	Japan	Betula maximowicziana	MN784967	MN784967	MN780726	MN780750	MN780779	MN780808
	CBS 133341 $=$ LCM191.01 $=$ ME10	USA	Betula papyrifera	MN784968	MN784968	MN780727	MN780751	MN780780	MN780809
	CBS $133339=$ LCM $02.02=$ ME13	USA	Betula sp.	MN784969	MN784969	MN780728	MN780752	MN780781	MN780810
	CBS 133340 = LCM 185.01	USA	Betula papyrifera	MN784970	MN784970	MN780729	MN780753	MN780782	MN780811
Melanconis itoana	MAFF $410080=$ LFP-M4-9 = ME8	Japan	Betula ermanii	MN784971	MN784971	MN780730	MN780754	MN780783	MN780812
	CFCC 50474	China	Betula albosinensis	KT732955	KT732974	-	KT732987	KT733004	KT733025
	CFCC 52876	China	Betula albosinensis	MK096324	MK096364	-	MK096409	MK096284	-
	CFCC 52877	China	Betula albosinensis	MK096326	MK096366	-	MK096411	MK096286	-
	CFCC 52878	China	Betula albosinensis	MK096327	MK096367	-	MK096412	MK096287	-
Melanconis larisae	CBS $123196=$ AR $3886=$ ME7 *	USA	Betula sp.	MN784972	MN784972	MN780731	MN780755	MN780784	MN780813
Melanconis marginalis subsp. europaea	D157	Austria	Alnus alnobetula	MN784973	MN784973	-	MN780756	MN780785	-
	D158	Austria	Alnus alnobetula	MN784974	MN784974	MN780732	MN780757	MN780786	MN780814
	D257	Austria	Alnus incana	MN784975	MN784975	-	MN780758	MN780787	MN780815
	CBS $131692=$ MAI *	Austria	Alnus incana	MN784976	MN784976	MN780733	MN780759	MN780788	MN780816
	CBS $131694=$ MAV	Austria	Alnus alnobetula	MN784977	MN784977	MN780734	MN780760	MN780789	MN780817
	MAV1	Austria	Alnus alnobetula	MN784978	MN784978	MN780735	MN780761	MN780790	MN780818
Melanconis marginalis subsp. italica	MFLUCC 16-1199*	Italy	Alnus cordata	MF190151	MF190096	-	-	-	-
	MFLUCC 17-1659*	Italy	Alnus cordata	MF190152	MF190097	-	MF377602	-	-

Taxon	Strain ${ }^{1}$	Origin	Host	GenBank accession no. ${ }^{2}$					
				ITS	LSU	ms204	$r p b 2$	tef1	tub2
Melanconis marginalis subsp. marginalis	D321 (from ascospores)*	Canada	Alnus alnobetula subsp. crispa	MN784979	MN784979	-	MN780762	MN780791	MN780819
	D321a (from α-conidia)*	Canada	Alnus alnobetula subsp. crispa	MN784980	MN784980	-	MN780763	MN780792	MN780820
	D321b (from β-conidia)*	Canada	Alnus alnobetula subsp. crispa	MN784981	MN784981	-	MN780764	MN780793	MN780821
	CBS $109496=$ AR $3529=$ ME2	Russia	Alnus alnobetula subsp. maximowiczii	MN784982	MN784982	MN780736	MN780765	MN780794	MN780822
	AR 4864 = ME5	USA	Alnus alnobetula	MN784983	MN784983	MN780737	MN780766	MN780795	MN780823
	CBS $133346=$ AR $4865=$ ME6	USA	Alnus alnobetula	MN784984	MN784984	MN780738	MN780767	MN780796	MN780824
	MAFF 410218 = M4-6 = ME9	Japan	Alnus alnobetula subsp. maximowiczii	MN784985	MN784985	MN780739	MN780768	MN780797	MN780825
Melanconis marginalis subsp. tirolensis	CBS 122310 $=$ AR 3748 $=$ ME4*	Austria	Alnus alnobetula	MN784986	MN784986	MN780740	MN780769	MN780798	MN780826
	D322a	Austria	Alnus alnobetula	MN959458	MN959458	-	MN989415	MN989416	MN989417
Melanconis pacifica	$\begin{gathered} \text { CBS } 109744=\text { AR } 3442=\text { AFTOL-ID } \\ 2128 \end{gathered}$	Canada	Alnus rubra	EU199197	AF408373	-	DQ862022	DQ862038	$\begin{aligned} & \text { EU219103, } \\ & \text { DQ862038 } \\ & \hline \end{aligned}$
Melanconis stilbostoma	D143	Poland	Betula pendula	KY427156	KY427156	KY427173	KY427206	KY427225	KY427241
	D258	Italy	Betula aetnensis	MN784987	MN784987	-	MN780770	MN780799	MN780827
	$\begin{gathered} \text { CBS } 109778=\text { AR } 3501=\text { AFTOL-ID } \\ 936=\text { ME } 11^{*} \end{gathered}$	Austria	Betula pendula	MN784988	MN784988	MN780741	MN780771	MN780800	MN780828
	MAFF $410225=$ M3-9 = ME12	Japan	Betula platyphylla var. japonica	MN784989	MN784989	MN780742	MN780772	MN780801	MN780829
	CBS 121894 = MS	Austria	Betula pendula	KY427156	KY427156	MN780743	JQ926302	JQ926368	MN780830
	CBS 133338 = DMW 514.3	USA	Betula papyrifera	MN784990	MN784990	MN780744	MN780773	MN780802	MN780831
	CFCC 50475	China	Betula platyphylla	KT732956	KT732975	-	KT732988	KT733005	KT733026
	CFCC 50476	China	Betula platyphylla	KT732957	KT732976	-	KT732989	KT733006	KT733027
	CFCC 50477	China	Betula platyphylla	KT732958	KT732977	-	KT732990	KT733007	KT733028
	CFCC 50478	China	Betula platyphylla	KT732959	KT732978	-	KT732991	KT733008	KT733029
	CFCC 50479	China	Betula platyphylla	KT732960	KT732979	-	KT732992	KT733009	KT733030
	CFCC 50480	China	Betula platyphylla	KT732961	KT732980	-	KT732993	KT733010	KT733031
	CFCC 50481	China	Betula platyphylla	KT732962	KT732981	-	KT732994	KT733011	KT733032
	CFCC 50482	China	Betula platyphylla	KT732963	KT732982	-	KT732995	KT733012	KT733033
	CFCC 50483	China	Betula platyphylla	KT732964	KT732983	-	KT732996	KT733013	KT733034
	CFCC 52843	China	Betula platyphylla	MK096338	MK096378	-	MK096423	MK096298	-
	CFCC 52844	China	Betula platyphylla	MK096341	MK096381	-	MK096426	MK096301	-
	CFCC 52845	China	Betula platyphylla	MK096343	MK096383	-	MK096428	MK096303	-

Taxon	Strain ${ }^{1}$	Origin	Host	GenBank accession no. ${ }^{2}$					
				ITS	LSU	ms204	$r p b 2$	tef1	tub2
Melanconis stilbostoma	CFCC 52846	China	Betula platyphylla	MK096347	MK096387	-	MK096432	MK096307	-
	CFCC 52847	China	Betula platyphylla	MK096348	MK096388	-	MK096433	MK096308	-
	CFCC 52848	China	Betula platyphylla	MK096349	MK096389	-	MK096434	MK096309	-
	CFCC 52849	China	Betula platyphylla	MK096328	MK096368	-	MK096413	MK096288	-
	CFCC 52850	China	Betula platyphylla	MK096329	MK096369	-	MK096414	MK096289	-
	CFCC 52851	China	Betula platyphylla	MK096330	MK096370	-	MK096415	MK096290	-
	CFCC 52852	China	Betula platyphylla	MK096331	MK096371	-	MK096416	MK096291	-
	CFCC 52853	China	Betula platyphylla	MK096332	MK096372	-	MK096417	MK096292	-
	CFCC 52854	China	Betula platyphylla	MK096333	MK096373	-	MK096418	MK096293	-
	CFCC 52855	China	Betula platyphylla	MK096334	MK096374	-	MK096419	MK096294	-
	CFCC 52856	China	Betula platyphylla	MK096335	MK096375	-	MK096420	MK096295	-
	CFCC 52857	China	Betula platyphylla	MK096336	MK096376	-	MK096421	MK096296	-
	CFCC 52858	China	Betula platyphylla	MK096337	MK096377	-	MK096422	MK096297	-
	CFCC 52859	China	Betula platyp hylla	MK096339	MK096379	-	MK096424	MK096299	-
	CFCC 52860	China	Betula platyp hylla	MK096340	MK096380	-	MK096425	MK096300	-
	CFCC 52861	China	Betula platyphylla	MK096342	MK096382	-	MK096427	MK096302	-
	CFCC 52862	China	Betula platyphylla	MK096344	MK096384	-	MK096429	MK096304	-
	CFCC 52863	China	Betula platyp hylla	MK096345	MK096385	-	MK096430	MK096305	-
	CFCC 52864	China	Betula platyphylla	MK096346	MK096386	-	MK096431	MK096306	-
	CFCC 52865	China	Betula platyphylla	MK096316	MK096356	-	MK096401	MK096276	-
	CFCC 52866	China	Betula platyphylla	MK096317	MK096357	-	MK096402	MK096277	-
	CFCC 52867	China	Betula platyphylla	MK096318	MK096358	-	MK096403	MK096278	-
	CFCC 52868	China	Betula platyphylla	MK096319	MK096359	-	MK096404	MK096279	-
	CFCC 52869	China	Betula platyphylla	MK096320	MK096360	-	MK096405	MK096280	-
	CFCC 52870	China	Betula platyphylla	MK096321	MK096361	-	MK096406	MK096281	-
	CFCC 52871	China	Betula platyp hylla	MK096322	MK096362	-	MK096407	MK096282	-
	CFCC 52872	China	Betula platyphylla	MK096323	MK096363	-	MK096408	MK096283	-
	CFCC 52873	China	Betula platyphylla	MK096350	MK096390	-	MK096435	MK096310	-
	CFCC 52874	China	Betula platyphylla	MK096351	MK096391	-	MK096436	MK096311	-
	CFCC 52875	China	Betula platyp hylla	MK096325	MK096365	-	MK096410	MK096285	-

${ }^{1}$ Ex-type strains marked by an asterisk; ${ }^{2}$ Sequences in bold were generated in the present study

PCR products were purified using an enzymatic PCR cleanup (Werle et al. 1994), as described in Voglmayr and Jaklitsch (2008). DNA was cycle-sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems, Warrington, UK) and the PCR primers; in addition, primers ITS4 (White et al. 1990), LR2R-A (Voglmayr et al. 2012) and LR3 (Vilgalys and Hester 1990) were used for the SSU-ITS-LSU region, TEF1_INTF (forward, Jaklitsch 2009) and TEFD_iR1 (reverse, Jaklitsch and Voglmayr 2019) or TEF1_INT2 (reverse, Voglmayr and Jaklitsch 2017) for tef1 and BtHVf (Voglmayr and Mehrabi 2018) and BtHV2r for the long fragment of tub2. Sequencing was performed on an automated DNA sequencer (3730xl Genetic Analyzer, Applied Biosystems).

Phylogenetic analyses

The newly generated sequences were aligned with the Melanconis sequences of Fan et al. $(2016,2018)$ and a few additional GenBank sequences. Species of Juglanconis were selected as outgroup (Voglmayr et al. 2017, 2019); the GenBank accession numbers of the sequences, used in the phylogenetic analyses, are given in Table 1. All alignments were produced with the server version of MAFFT (www.ebi.ac.uk/Tools/mafft), checked and refined using BioEdit v. 7.2.6 (Hall 1999). For phylogenetic analyses, all sequence alignments (ITS, LSU, ms204, rpb2, tef1 and tub2) were combined.

Maximum Likelihood (ML) analyses were performed with RAxML (Stamatakis 2006) as implemented in raxmlGUI 1.3 (Silvestro and Michalak 2012), using the ML + rapid bootstrap setting and the GTRGAMMA substitution model with 1000 bootstrap replicates. The matrix was partitioned for the different gene regions and substitution model parameters were calculated separately for them.

Maximum Parsimony (MP) analyses were performed with PAUP v. 4.0a166 (Swofford 2002). All molecular characters were unordered and given equal weight; analyses were performed with gaps treated as missing data; the COLLAPSE command was set to MINBRLEN. MP analysis of the combined multilocus matrix was done, using a parsimony ratchet approach. For this, a nexus file was prepared using PRAP v. 2.0b3 (Müller 2004), implementing 10000 ratchet replicates with 25% of randomly chosen positions upweighted to 2 , which were then run with PAUP. MP bootstrap analyses were performed with 1000 replicates, using 5 rounds of random sequence addition and subsequent TBR branch swapping (MULTREES option in effect, steepest descent option not in effect) during each bootstrap replicate, with each replicate limited to 100000 rearrangements.

In the Results and Discussion sections, bootstrap values (BS) below 70\% are considered low, between 70-90\% medium and above 90% high.

Results

Revision of Melanconis sequences deposited in GenBank

Comparison of our sequences with GenBank sequences revealed that all accessions of Melanconis alni and M. marginalis, deposited in GenBank, were misidentified. All GenBank accessions of M. alni were shown to actually represent M. marginalis, while the single isolate of M. marginalis turned out to be a new species, described as M. pacifica below. These misidentifications were also confirmed by morphological re-investigation of specimens from which these sequences were generated.

Phylogenetic analyses

Of the 6052 characters included in the combined multilocus analyses, 925 were parsimony informative (133 from ITS-LSU, 142 from $m s 204$, 214 from $r p b 2,245$ from tef1 and 191 from tub2). The best ML tree $(\operatorname{lnL}=-18240.558)$ revealed by RAxML is shown as Fig. 1. The MP analysis revealed 3394 MP trees 1647 steps long, which were identical except for some differences within species and a polytomy at the M. groen-landica-M. larissae-M.stilbostoma node (not shown). Tree topology of the MP strict consensus tree was compatible with the ML tree, except for a sister group relationship of M. marginalis subsp. europaea and M. marginalis subsp. marginalis and some minor topological differences within species and subspecies (not shown).

All species of Melanconis received high (M. itoana, M. groenlandica) to maximum (M. alni, M. betulae, M. marginalis, M. stilbostoma) support in both analyses (Fig. 1). Sister group relationship of M. alni and M. pacifica and monophyly of the three betulicolous species M. groenlandica, M. larissae and M. stilbostoma received maximum support as well. Within Melanconis marginalis, two main subclades were evident with ML and MP BS above 85%, one containing accessions from eastern Canada, Alaska, Japan and the Russian Far East and another with accessions from Central Europe; in addition to these two main subclades, the Melanconis marginalis clade contained two deviating lineages, an Italian collection from ?Alnus cordata described as M. italica by Senanayake et al. (2017) and two accessions from eastern Tyrol from Alnus alnobetula. In light of this geographical differentiation, a substantial genetic variability within these clades (Fig. 1) and minor morphological differences, these four lineages are formally recognised on the subspecies level.

Culture characteristics

Culture images of seven studied Melanconis species, grown on MEA and CMD, are illustrated in Figure 2. Culture descriptions are given under the respective species.

Figure I. Phylogram of the best ML tree ($\operatorname{lnL}=-18240.558$) revealed by RAxML from an analysis of the ITS-LSU-ms204-rpb2-tef1-tub2 matrix of Melanconis, with 5 species of Juglanconis (Juglanconidaceae) selected as outgroup. ML and MP bootstrap support above 50% are given at the first and second position, respectively, above or below the branches. Strain numbers are given following the taxon names; strains formatted in bold were sequenced in the current study. Melanconis taxa occurring on Alnus are marked blue, those on Betula in green. The broken branches to the outgroup were scaled to 10%.

Figure 2. Melanconis cultures. a-c M. alni (a, b D156, c MAW) d M. groenlandica ME13 e M. itoana ME8 \mathbf{f} M. larissae ME7 (after irregular rehydration) $\mathbf{g - i} M$. marginalis subsp. europaea (\mathbf{g}, \mathbf{h} D257, \mathbf{i} MAI) $\mathbf{j} \mathbf{- I}$ M. marginalis subsp. marginalis (j, k D321, I ME5) \mathbf{m} M. marginalis subsp. tirolensis ME4 $\mathbf{n} M$. pacifica ME3 o, p M. stilbostoma (\mathbf{o} D143, \mathbf{p} ME11) $\mathbf{a}, \mathbf{b}, \mathbf{g}, \mathbf{h}, \mathbf{j}, \mathbf{o}$ on CMD $\mathbf{c - f}, \mathbf{i}, \mathbf{k}, \mathbf{l} \mathbf{- n}, \mathbf{p}$ on MEA \mathbf{a}, $\mathbf{b}, \mathbf{g}, \mathbf{h}, \mathbf{j}$ at $16^{\circ} \mathrm{C}, \mathbf{j}, \mathbf{k}$ at $22^{\circ} \mathrm{C} \mathbf{c - f}, \mathbf{i}, \mathbf{k}, \mathbf{l}-\mathbf{n}, \mathbf{p}$ at room temperature $\mathbf{a}, \mathbf{g}, \mathbf{j}, \mathbf{k}$ after 3 weeks \mathbf{b}, \mathbf{h} after $3 \mathbf{c}$, i 5 d-f, l-n, p 3.7 o 2 months.

Taxonomy

Melanconis Tul. \& C. Tul., Select. fung. carpol. (Paris) 2: 115 (1863).
?= Melanconium Link : Fr., Mag. Gesell. naturf. Freunde, Berlin 3(1-2): 9 (1809).
Type species. Melanconis stilbostoma (Fr. : Fr.) Tul. \& C. Tul., Select. fung. carpol. (Paris) 2: 115 (1863).

Notes. Tulasne (1856) had already mentioned Melanconis, but did not give a generic diagnosis. Hence, the species he newly described were invalid, but became validated by reference in Tulasne and Tulasne (1863) (Paul Kirk, pers. comm.).

In contrast to Diaporthe, species of Melanconis always develop in bark, never in wood and lack stromatic zones. Pseudostromata are pulvinate to conical, circular to elliptic in outline and usually slightly project beyond the bark surface with perithecial contours remaining indistinct. Ectostromatic discs usually project distinctly from the surface of the pseudostromata and are bright, white to yellowish, to brown when old.

Nomenclaturally, the older genus Melanconium potentially competes with the younger genus Melanconis. However, as outlined in Rossman et al. (2015), the generic concept of Melanconium and the true identity of its generic type, M. atrum, are obscure and they therefore recommended to protect the well-defined Melanconis over Melanconium, which was formally adopted in the last ICN (Turland et al. 2018, Appendix III).

Melanconis alni Tul. \& C. Tul., Select. fung. carpol. (Paris) 2: 122 (1863).

Figures 3, 4
इ Melanconis alniTul., Annls Sci. Nat., Bot., sér. 4, 5: 109 (1856). (Nom. inval., Art. 35.1). = M. alniella Rehm, Ascom. exs. 148 (1872).
?= Melanconium apiocarpum Link, in Willdenow, Sp. pl., Edn 4 6(2): 90 (1825).
?= M. sphaeroideum Link, in Willdenow, Sp. pl., Edn 4 6(2): 92 (1825).
?= Stilbospora microsperma Pers., Observ. mycol. (Lipsiae) 1: 31 (1796).

Diagnosis. Melanconis alni is recognised by ascospores having filiform, tapering appendages and dark brown α-conidia with a pale to subhyaline median area.

Type material. Lectotype, here designated: France, Hauts-de-Seine, Chaville, on Alnus glutinosa, 1 Feb 1856, Tulasne (PC 0723592; MBT390380). Epitype, here designated: Austria, Oberösterreich, Raab, Wetzlbach, grid square 7648/1, on Alnus glutinosa, 4 Jun 2011, H. Voglmayr (WU 31883; ex-epitype cultures CBS 131695 = MAW (from ascospores), MEW (from α-conidia); MBT390381).

Description. Sexual morph: Pseudostromata developing in bark after the asexual morph and sometimes with acervuli of the asexual morph still present within their sides, $0.9-2.7 \mathrm{~mm}$ diam., scattered, pulvinate, more or less circular in outline, slightly projecting from the bark surface and then causing a greyish bark surface; consisting of an ectostromatic disc and perithecia embedded in an entostroma. Ectostromatic discs $0.3-1.4 \mathrm{~mm}$ diam., white to yellowish, brownish when old, flat to convex, circular, fusoid, angular or elongate in section, projecting up to 0.6 mm . Ostiolar necks cylindrical, laterally attached on perithecia and convergent in the disc, centrally only on centrally arranged perithecia, $1-15(-20)$ per disc, in the disc plane, convex to papillate and slightly projecting, with dark rounded tips; first pale brownish to greyish-brown, turning black, $(70-) 93-162(-210) \mu \mathrm{m}(\mathrm{n}=33)$ diam. apically, mostly present at the margins but often also randomly within the disc. Entostroma bark-coloured, not or

Figure 3. Melanconis alni. Sexual morph \mathbf{a}, \mathbf{b} ectostromatic discs \mathbf{c} pseudostroma with ectostromatic disc in face view \mathbf{d} cross section showing remnants of asexual morph at the sides of the sexual pseudostroma \mathbf{e} cross section showing perithecia with lateral ostiolar necks and central column \mathbf{f} vertical section showing perithecium with central ostiolar neck $\mathbf{g}-\mathbf{j}$ asci \mathbf{k}, \mathbf{I} ascus apices showing apical ring $\mathbf{m} \mathbf{- x}$ ascospores \mathbf{j}, \mathbf{l}, \mathbf{w} in aqueous Congo Red $\mathbf{a}, \mathbf{b}, \mathbf{i}$ WU $31885=$ W.J. $148 \mathbf{c - f}, \mathbf{j}, \mathbf{o} \mathbf{q}$ epitype WU $31884=$ MAIV $\mathbf{g}, \mathbf{h}, \mathbf{k}$, \mathbf{I}, \mathbf{x} WU 37043 = J.F. $10104 \mathbf{m}$ lectotype PC $0723592 \mathbf{n}$ WU $37042=$ D156 \mathbf{r}, \mathbf{s} WU $31882=$ MAMI \mathbf{t}, \mathbf{u} WU $31883=$ MAW \mathbf{v} WU $31887=$ W.J. $1194 \mathbf{w}$ WU $31886=$ W.J. 178 . Scale bars: $400 \mu \mathrm{~m}(\mathbf{a}, \mathbf{b}$, $\mathbf{d - f}), 500 \mu \mathrm{~m}(\mathbf{c}), 10 \mu \mathrm{~m}(\mathbf{g}-\mathbf{j}, \mathbf{n}, \mathbf{s}-\mathbf{u}), 7 \mu \mathrm{~m}(\mathbf{k}-\mathbf{m}, \mathbf{o}-\mathbf{r}, \mathbf{v - x})$.
only slightly paler than the surrounding bark, consisting of bark cells and some lightcoloured hyphae. Perithecia (390-)450-645(-765) $\mu \mathrm{m}(\mathrm{n}=24)$ diam., formed below overmature conidiomata in valsoid configuration, globose to subglobose, collapsing up- or laterally inwards upon drying. Hamathecium of wide multiguttulate paraphyses, collapsing, dissolving and usually absent amongst mature asci. Asci floating free at maturity, (68-)79-97(-110) $\times(10.5-) 12.5-16.5(-21) \mu \mathrm{m}(\mathrm{n}=114)$, narrowly clavate, fusoid, oblong to nearly ellipsoid, with an apical ring staining in Congo Red but invisible or indistinct in the strongly thickened apex in 3% potassium hydroxide (KOH), containing 8 biseriate ascospores. Ascospores (14.5-)16-21(-25.3) \times (4.7-)6-7.8(9) $\mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.9-) 2.3-3.2(-4.8)(\mathrm{n}=198)$, hyaline, ellipsoid, clavate or inequilaterally fusoid, bicellular with upper cell usually slightly wider, slightly or strongly constricted at the median septum, thick-walled, multiguttulate or with one large and several small guttules when fresh, with a filiform, tapering and acute, less commonly short and stout rounded, triangular or truncate appendage (2.5-)4.7-10(-24.3) $\times(1.7-) 2.3-$ $3(-4) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1-) 1.8-3.8(-8.4)(\mathrm{n}=224)$ at one or both ends; in $3 \% \mathrm{KOH}$, appendages invisible and cells tending to be more equal.

Asexual morph acervular, often conspicuous due to thick black conidial masses, first subperidermal, after ejection forming deposits $0.5-3.6 \mathrm{~mm}$ diam., sometimes confluent from 2-3 conidiomata and then up to 5 mm long, projecting to 0.5 mm . Conidiomata scattered, gregarious, sometimes confluent, pulvinate to conical, ($0.6-) 0.8-2.5 \mathrm{~mm}$ diam., consisting of a superficial, ca. $0.2-1.3 \mathrm{~mm}$ wide, flat, white to yellowish, slightly projecting disc becoming concealed by dark brown to black conidial deposits, a whitish to yellowish, when old orange-brown, compact, more or less pseudoparenchymatous base, in the centre arising as central column with circular to longish outline and sometimes wavy margin, surrounded by conidiophores and black conidial chambers. Conidiophores emerging radially from the pseudoparenchymatous base and column surface, filiform, to ca. $50 \times 4 \mu \mathrm{~m}$, branching $1-3$ times from their bases producing whorls of conidiogenous cells. Conidiogenous cells (10-) $12-43 \times 2-4 \mu \mathrm{~m}$, annellidic, more or less cylindrical, hyaline, turning brown with age, forming more or less simultaneously two types of conidia on top. Conidia dimorphic, α-conidia (9-)10.5-12.2(-14) $\times(4.8-) 6.8-8(-9) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (1.2-)1.4-1.7 -2.4) $(\mathrm{n}=301)$, dark brown, more or less cuboid or subglobose and often with pinched sides or oval, oblong to broadly ellipsoid, with a diffuse or more or less well-defined, paler to subhyaline median area or stripe; β-conidia produced in small numbers, $(5.3-) 7.3-10.3(-11.5) \times(2-) 2.5-3.2(-3.7) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2-) 2.6-3.9(-4.7)(\mathrm{n}=$ 38), oblong, mostly straight, hyaline to subhyaline, turning dilute brownish with age, containing few minute guttules, with a distinct basal abscission scar.

Culture: Colony on CMD at $16{ }^{\circ} \mathrm{C}$ first hyaline, turning yellowish-brown from the centre, becoming covered by flocks of white aerial hyphae and conidiomata forming around the centre or colony irregular, with limited growth, turning green to black due to conidiomata; on MEA first hyaline, circular, with short aerial hyphae, forming concentric zones, the outer white, the inner turning brown, black conidiomata forming between the zones, margin becoming diffuse and the entire colony turning brown. Odour indistinct.

Distribution and ecology. Melanconis alni occurs in Europe on dead twigs and branches of Alnus glutinosa and A. incana, mainly at lower elevations.

Figure 4. Melanconis alni. Asexual morph \mathbf{a}, \mathbf{b} conidiomata in face view \mathbf{c} conidioma in cross section \mathbf{d} conidioma in vertical section $\mathbf{e}-\mathbf{i}$ conidiophores and conidiogenous cells $\mathbf{j}-\mathbf{p} \alpha$-conidia \mathbf{q} - $\mathbf{\beta}$-conidia $\mathbf{a , f W U} 31885=$ W.J. $148 \mathbf{b} \mathbf{- d}, \mathbf{h}, \mathbf{m}, \mathbf{q}, \mathbf{s}$ epitype WU $31884=$ MAIV e, i PC0723596 g, j, k lectotype PC0723592 I, r WU 37043 = J.F. $10104 \mathbf{n}, \mathbf{t}$ PC0723595 o WU 31886 = W.J. $178 \mathbf{p}$ M. atrum isotype $\mathrm{K}(\mathrm{M}) 171588 \mathbf{e - o}, \mathbf{q}-\mathbf{t}$ in $3 \% \mathrm{KOH}$. Scale bars: $300 \mu \mathrm{~m}(\mathbf{a - d}), 10 \mu \mathrm{~m}(\mathbf{e}), 7 \mu \mathrm{~m}(\mathbf{f} \mathbf{- i}), 5 \mu \mathrm{~m}(\mathbf{j}-\mathbf{t})$.

Additional material examined. Austria, Kärnten, Eisenkappel, Bad Vellach, Vellacher Kotschna, grid square 9653/1, on Alnus incana, 7 Sep 1998, W. Jaklitsch W.J. 1194 (WU 31887); St. Margareten im Rosental, village area, at the brook Tumpfi, grid square 9452/4, on Alnus glutinosa, 18 Jul 1994, W. Jaklitsch W.J. 148 (WU 31885);

Trieblach, Drau-Auen, near Kucher, grid square 9452/2, on Alnus incana, 7 Aug 1994, W. Jaklitsch W.J. 178 (WU 31886); Niederösterreich, Michelbach, Mayerhöfen, on Alnus glutinosa, 18 Jun 2011, H. Voglmayr (WU 31882, culture CBS 131693 = MAMI). FRANCE, Alpes-de-Haute-Provence, Trigance SE Castellane, at the river Jabron ca. 500 m elev. before entering the Verdon river, on Alnus incana, 4 Aug 2011, H. Voglmayr (WU 31884; culture MAIV); Ariége-Rimont, Peyrau, on Alnus glutinosa, soc. Diplodia sp., 26 Jul 2010, J. Fournier J.F. 10104 (WU 37043); Hauts-de-Seine, Chaville, on Alnus glutinosa, 11 Oct 1852, Tulasne (PC 0723589, PC 0723596); Meudon, on Alnus glutinosa, 13 May 1856, Tulasne (PC 0723593); Oise, Pierrefonds, on Alnus glutinosa, 30 Jul 1857, Tulasne (PC 0723590, PC 0723591); Yvelines, Viroflay, on Alnus glutinosa, July 1860, Tulasne (PC 0723594, PC 0723595); no collection data, Tulasne (PC 0723588). POLAND, S Kuligi, Biebrzański Park Narodowy, on Alnus glutinosa, 28 Jul 2015, H. Voglmayr (WU 37042, culture D156).

Notes. Melanconis alni was described by Tulasne from Alnus glutinosa in 1856 after a presentation of the topic in April 1856. Tulasne and Tulasne (1863) validated the name in Melanconis, illustrated ascospores with typical long acute appendages and mentioned material from Meudon and Chaville. In PC, nine specimens of Tulasne are extant in the Melanconis alni folder; three of them were collected after its description in 1856 and, for one, no collection data are available. PC 0723590, PC 0723591, PC 0723593 , PC 0723594 and PC 0723595 were collected after the publication date. PC 0723588 (no data) and PC 0723589 , PC 0723596 from 1852 only contain asexual morph, but in the protologue, the sexual morph is also described. Therefore, we select PC 0723592 , which also contains few pseudostromata of the sexual morph, as the lectotype. In PC 0723592 and PC 0723595 , both α - and β-conidia are present. Generally, β-conidia are inconspicuous and produced in small numbers, i.e. they are easily overlooked. Asci in old herbarium material are shrunk and difficult to rehydrate, therefore significantly smaller than those of fresh material. In KOH , the ascus apex becomes very thick and the ring disappears; also ascospore appendages disappear in KOH .

Tulasne and Tulasne (1863) and Wehmeyer (1941) listed the following asexual morph names, amongst others, as linked to M. alni: Stilbospora microsperma Pers. Material with this name is not accessible in L; Melanconium sphaeroideum Link (1825) is more generally given as the name of the asexual morph. Sieber et al. (1991) used another name described by Link (1825), Melanconium apiocarpum, for the asexual morph of Melanconis alni. As Link's type material of these taxa is not extant in B, we are unable to draw a conclusion about their identity; in addition, the descriptions in Link (1825) are vague and he gave no hosts. Therefore, we continue to use the name M. alni, which is generally well-known. Type material of Melanconium atrum Link, the generic type of Melanconium, described from Germany (K(M) 171588, slide from Melanconium atrum type material from Persoon's herbarium) has conidia of the same shape, size and lighter median band (Fig. 4p) and may thus be conspecific with M. alni, but it was described from Fagus sylvatica. According to Sutton (1964), Link had sent his material to Persoon, because in the herbarium of the latter 3 specimens labelled M. atrum were extant. The host of one of these materials was identified as Fagus, based
on bark structure. This specimen was selected as lectotype. The slide $K(M) 171588$ (= IMI 102914) was prepared from the lectotype and is thus an isotype. Accordingly, Melanconium atrum is a different species, despite its morphological similarity with M. alni, because the latter only occurs on Alnus spp. We have not seen any Melanconium on Fagus, but Petrini and Fisher (1988), Sieber et al. (1991) and Kowalski and Kehr (1992) reported and isolated M. atrum as an endophyte of Fagus. For α-conidia of isolates from Fagus sylvatica and Quercus robur, Sieber et al. (1991) reported mean sizes of $11.7-12 \times 8.5-8.9 \mu \mathrm{~m}$, which were similar to those from Alnus glutinosa (on average, $10.1-12.3 \times 5.9-7.4 \mu \mathrm{~m}$). However, the protein profiles revealed by isozyme electrophoresis differed markedly between the isolates from Alnus glutinosa and those from Fagus/ Quercus, confirming them to represent distinct species that may not even be congeneric. Another fact may support the presence of morphologically similar but rare taxa on Fagaceae, as, for example, Melanconium gourdaeforme with similar conidia was described by Kobayashi (1968) from Castanea. A narrow light band is also characteristic for conidia of Melanconiella ostryae (Voglmayr et al. 2012).

Ascospore appendages of Melanconis alni may sometimes be similar to those of M. marginalis, at least in fractions, although truncate appendages in M. alni are rather a consequence of microscopic mount preparation. On Alnus incana both species occur, therefore the asexual morph should be sought for to reliably identify the species.

Melanconis betulae C.M. Tian \& X.L. Fan, in Fan, Du, Liang \& Tian, Mycol. Progr. 15(4/40): 4 (2016).

Note. According to Fan et al. (2016), who described this species as an asexual morph from Gansu Province in China on Betula albosinensis, Melanconis betulae can be distinguished from M. stilbostoma by the smaller average length of its alpha conidia (10 vs. $12 \mu \mathrm{~m}$). Phylogenetically, M. betulae is remote from the other betulicolous Melanconis species (Fig. 1).

Melanconis groenlandica (M. Bohn) L. Lombard \& Crous, in Lombard et al. Persoonia 36: 234 (2016).

三 Myrothecium groenlandicum M. Bohn, Mycotaxon 46: 336 (1993) (Basionym).

Type material. Holotype (not examined): Greenland, Qaqortoq, (isolated from) twigs of Betula nana, July 1991, M. Bohn (C; dried culture UPSC 3416; isotype in UPS; living cultures CBS 116450 = UPSC 3407, UPSC 3416).

Description (after Bohn 1993): Colonies on PDA and MEA 30-33 mm after 10 d (52-62 mm after 20 d), appearing leathery, at first whitish to greyish, later becoming greyish-orange, particularly on MEA; margin superficial, entire on MEA but fimbriate to lobate on PDA; exudate and diffusible pigment absent; reverse greyish-
orange, especially at the margin; brownish, thick-walled, chlamydospore-like swollen portions $6-18 \mu \mathrm{~m}$ diam. present. Conidiomata appearing after ca. 14 d as dark green pustules of various sizes, irregularly scattered over the colony surface, but sometimes arranged in concentric rings, particularly in old cultures, initially covered by mycelium but becoming almost black and shiny at later stages due to the mass of conidia; conidiomata sporodochial (acervular?), irregular, dark green, up to 2 mm diam., scattered, gregarious or coalescent, composed of a $50-70 \mu \mathrm{~m}$ high stroma of textura intricata and conidiophores. Marginal hyphae and setae absent. Conidiophores arising from the stroma , branched, septate, yellowish to brownish, ca. $40-75 \mu \mathrm{~m} \times 2-4 \mu \mathrm{~m}$. Conidiogenous cells cylindrical to subulate, $15-25 \times 2-3 \mu \mathrm{~m}$, arranged in verticils of $2-4$ at the top of the conidiophore, sometimes also intercalary, provided with conspicuous, pigmented collarettes and producing conidia by percurrent growth. Conidia black and shiny in mass, olivaceous to brownish under the microscope, straight, cylindrical with rounded ends, sometimes slightly narrowing towards the base or apiculate, $(9-) 10-12(-15) \times$ $(5-) 6(-7) \mu \mathrm{m}$, with smooth wall. Teleomorph not formed after 3 months incubation.

Culture (own observations): Colony on MEA circular, first hyaline, turning and long remaining whitish, with age forming narrow concentric zones with tooth-like margins and turning pale brownish. Odour indistinct to unpleasant.

Distribution and ecology. Melanconis groenlandica is known from North America (Greenland, USA) and Japan from Betula maximowicziana, B. nana and B. papyrifera.

Additional collections sequenced. Japan, Hokkaido, Sorachi, Furano, Hokkaido Experimental Forest of Univ. Tokyo, on B. maximowicziana, 25 Sep 1964, T. Kobayashi (TFM FPH2478, culture MAFF 410219 = M4-2, ME1). USA: New Hampshire, close to the top of Mount Washington, on Betula sp., 28 Jul 2006, L. Mejia (BPI 879597; culture CBS 133339 = LCM 02.02 = ME13); New York, Adirondack High Peaks Region, Marcy Dam, on Betula papyrifera, 2 Jun 2007, L. Mejia (BPI 881485; culture CBS $133341=$ LCM191.01 = ME10); ibidem, same host, 9 Jun 2007, L. Mejia (BPI 881515; culture CBS $133340=$ LCM 185.01).

Note. This species was isolated as a putative endophyte from Betula nana and described from MEA and potato dextrose agar as a species of Myrothecium. In our phylogenetic analyses, three isolates from North America and one from Japan grouped with the ex-type isolate of M. groenlandica with high support.

Melanconis itoana Tak. Kobay., Bull. Govt Forest Exp. Stn Meguro 226: 19 (1970).

Type material. Holotype: Japan, Shizuoka, Fujinomiya, Mt. Fuji, on Betula ermanii, 6 Aug 1968, T. Kobayashi (TFM FPH3375; ex-type culture MAFF 410080 = LFP-M4-9 = ME8).

Description. See Kobayashi (1970) and Fan et al. (2016).
Culture: Colony on MEA circular, first hyaline, forming a white outer and brown inner zone, with radial stripes; conidiomata forming mostly in the inner zone. Odour indistinct.

Note. This species occurs on Betula ermanii in Japan and Betula albosinensis in China and is particularly well characterised by its long narrow fusoid conidia, which are more or less pointed at each end. It was originally described by Kobayashi (1970) in detail and the asexual morph was redescribed by Fan et al. (2016), who gave slightly shorter measurements of conidia $(12-13.5(-14) \times 3.5-4(-4.5) \mu \mathrm{m})$. Our measurements of conidia are (13-)14.7-17.5(-20) $\times(3-) 3.5-4.3(-4.7) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(3-) 3.6-$ $4.7(-5.4)(\mathrm{n}=100)$, upon examination of the holotype, which corresponds with Kobayashi (1970). The Chinese accessions genetically differ significantly from the ex-type culture from Japan (Fig. 1) and may therefore merit separation.

Melanconis larissae Jaklitsch \& Voglmayr, sp. nov.

MycoBank No: 834108
Figure 5
Diagnosis. Melanconis larissae differs from M. stilbostoma by α-conidia having a broad diffuse light-coloured zone.

Type material. Holotype. USA, New York, Adirondack Mts., Cranberry Lake, on Betula sp., 13 Jun 2002, L. Vasilyeva (BPI 870998; ex-type culture CBS $123196=$ A.R. 3886, ME7).

Etymology. Named after the collector Larissa Vasilyeva.
Description. Sexual morph: Pseudostromata $1.8-2.7 \mathrm{~mm}$ diam., scattered to aggregated, not or only scarcely projecting from the bark surface, pulvinate, circular to elliptical in outline; consisting of an ectostromatic disc and perithecia embedded in an entostroma around a central column and sometimes conidial locules present on the ostiolar level. Ectostromatic discs $0.5-1.4 \mathrm{~mm}$ diam. or long, slightly projecting, fusoid to circular, flat or concave, white to yellow, often concealed by ostioles; central column beneath disc brightly white at upper levels, yellow amongst ostiolar necks at lower levels, consisting of hyaline hyphae and colourless crystals. Ostiolar necks cylindrical, laterally or centrally attached on perithecia, convergent and irregularly inserted in the disc; visible part (88$) 130-204(-230) \mu \mathrm{m}(\mathrm{n}=32)$ diam., $1-12$ per disc, black, subglobose to subconical with flat or pointed tips, projecting to $200 \mu \mathrm{~m}$. Entostroma consisting of hyaline hyphae and bark cells. Perithecia (420-)490-650(-690) $\mu \mathrm{m}(\mathrm{n}=14)$ diam., arranged in valsoid configuration around and below central column, globose to subglobose, collapsing up- or laterally inwards upon drying. Peridium pseudoparenchymatous, consisting of a dark brown small-celled outer and a hyaline to brownish, large-celled inner layer. Hamathecium absent at maturity. Asci floating free at maturity, (69-)84-106(-117) $\times(11-) 13-17.5(-19.7)$ $\mu \mathrm{m}(\mathrm{n}=22)$, fusoid to oblong, with an apical ring distinct in water and staining in Congo Red, but invisible or indistinct in $3 \% \mathrm{KOH}$, containing (2-)4-8 ascospores in biseriate or obliquely uniseriate arrangement. Ascospores (14.8-)17-21.5(-25) $\times(5.8-) 6.5-8.3(-9.7)$ $\mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.9-) 2.3-3(-3.7)(\mathrm{n}=93)$, ellipsoid to subfusoid, symmetric or inequilateral, bicellular, hyaline, dilute brownish when old, slightly constricted at the central to slightly eccentric septum, thick-walled, becoming verruculose with age, devoid of appendages.

Figure 5. Melanconis larissae holotype (BPI 870998) a-o sexual morph a,b ectostromatic discs \mathbf{c}, \mathbf{d} cross sections showing white upper and yellow lower parts of central columns, ostiolar necks and perithecia $\mathbf{e - g}$ asci $\mathbf{h}-\mathbf{o}$ ascospores \mathbf{f}, \mathbf{g} in aqueous Congo Red $\mathbf{p}-\mathbf{y}$ asexual morph \mathbf{p} conidial deposit \mathbf{q} conidioma in cross section \mathbf{r}, \mathbf{s} conidiophores and conidiogenous cells (showing annellations in \mathbf{s}) $\mathbf{t}-\mathbf{y} \alpha$-conidia $\mathbf{r}-\mathbf{y}$ in $3 \% \mathrm{KOH}$. Scale bars: $500 \mu \mathrm{~m}(\mathbf{a}-\mathbf{d}, \mathbf{p}, \mathbf{q}), 15 \mu \mathrm{~m}(\mathbf{e}-\mathbf{g}), 7 \mu \mathrm{~m}(\mathbf{h}-\mathbf{o}, \mathbf{r}), 5 \mu \mathrm{~m}(\mathbf{s}-\mathbf{y})$.

Asexual morph acervular, intermingled with pseudostromata of the sexual morph or developing separately, conspicuous. First white tissue (central column) forming within the bark, becoming surrounded by a yellow margin and narrow whitish to yellowish discs emerging through bark cracks, followed by the production of conidia in olivaceous to dark brown chambers. Conidiomata $1.3-2.7 \mathrm{~mm}$ diam., pulvinate, more or less circular in outline, scattered or crowded. Covering discs $0.25-1.2 \mathrm{~mm}$ long, narrowly fusoid or longish to circular, flat to convex, whitish to yellowish, becoming
obscured by large, coppery to olivaceous brown conidial deposits $1-4 \mathrm{~mm}$ diam., projecting to 1.2 mm , also confluent from two or several conidiomata; discs and pulvinate or conical columns beneath consisting of textura intricata of hyaline hyphae and numerous colourless crystals, becoming brittle with age. Conidiophores emerging around the central column from a pseudoparenchymatous base, ca. $40-70 \mu \mathrm{~m}$ long, filiform, branched near the base and usually $1-3$ fold asymmetrically at higher levels, first hyaline, turning brown from their tips; terminal conidiogenous cells (10.5-)14.5-28($36.5) \times(1.7-) 2.5-3.5(-4.2) \mu \mathrm{m}(\mathrm{n}=70)$, cylindrical and often widened towards base, with funnel-shaped collarette and up to 5 or 6 annellations, densely arranged, repetitive, producing α-conidia. Conidia (9.7-)11-13(-14.5) $\times(6.5-) 7.7-9(-9.5) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (1.1-)1.3-1.6(-2.2) ($\mathrm{n}=66$), oval, subglobose to drop-like, unicellular, dark brown, thick-walled, with a broad lighter coloured median zone and a small scar, smooth. No β-conidia detected.

Culture: Colony on MEA at room temperature circular, dense, first hyaline, turning rosy. Odour indistinct to musty.

Distribution and ecology. Melanconis larissae is known from a single specimen collected in New York State from an unidentified species of Betula.

Notes. The description of this taxon is based on a single specimen with overmature sexual morph and well-developed asexual morph with thick masses of conidia. Melanconis larissae differs from M. stilbostoma by the broad light-coloured zone of its conidia. No β-conidia have been detected in this specimen, but oblong to ellipsoid, hyaline to dilute brownish conidia $5-9 \times 1.7-5 \mu \mathrm{~m}$, which we interpret as immature α-conidia.

Melanconis marginalis (Peck) Wehm., Pap. Michigan Acad. I. 6: 382 (1926).

Notes. This species is here subdivided into four subspecies below. See under subsp. marginalis for the original species.

Although Wehmeyer (1926a) combined Diaporthe marginalis in Melanconis, he later (Wehmeyer 1941) argued that the conidia only differ from those of M. alni in depth of pigmentation and, therefore, reduced M. marginalis to a subspecies of the latter. In Europe, where, owing to Wehmeyer (1941), Melanconis on Alnus was always identified as M. alni, Petrak (1941) reported Melanconium dimorphum for the first time, described both conidial types, but still found it probable that Melanconium dimorphum was an abnormal form of M. sphaeroideum, the putative name of the asexual morph of M. alni. Kobayashi (1970) and Jensen (1984), however, were convinced that Melanconis marginalis should be treated as a species separate from M. alni, which is here confirmed phylogenetically. In addition, ascospores of M. marginalis are narrower, usually more oblong and symmetric than those of M. alni and appendages shorter, stouter and rounded or truncate at the ends, which swell and become diffuse in mounts.

Melanconis marginalis subsp. europaea Jaklitsch \& Voglmayr, subsp. nov.
 MycoBank No: 834109
 Figures 6, 7

Diagnosis. This subspecies of Melanconis marginalis occurs in Europe and differs from the American subsp. marginalis phylogenetically and by slightly larger asci, ascospores and ascospore appendages.

Type material. Holotype. Austria, Steiermark, Judenburg, Pusterwald, Hinterwinkel, grid square 8651/4, on Alnus incana, 11 Jun 2011, H. Voglmayr (WU 31888, culture CBS 131692 = MAI).

Etymology. For its occurrence in Europe.
Description. Sexual morph: Pseudostromata $1.5-3.6 \mathrm{~mm}$ diam., usually conspicuous and numerous, scattered to tightly aggregated, forming pustules, pulvinate, circular to elliptical in outline, typically elevated beyond bark surface; consisting of an ectostromatic disc and perithecia embedded in an entostroma around a central column. Ectostromatic discs $0.5-2.1$ diam. or long, discrete, less commonly confluent, bright white to yellowish, turning brownish with age, variable, fusoid, elliptic or circular in outline, flat, convex, concave, entire or coarsely fissured and crumbly, projecting up to 1 mm including projecting part of the pseudostroma; central column beneath disc whitish to yellowish, consisting of hyaline hyphae and colourless crystals. Ostiolar necks cylindrical, laterally attached on perithecia, centrally attached only on centrally arranged perithecia, convergent in the disc margin or crowded at the ends of fusoid discs, 1-25(-35) per disc. Visible part of the ostiolar necks (53-)103-167(-212) $\mu \mathrm{m}$ $(\mathrm{n}=90)$ diam., black or brown with black tips, usually circular in section, sometimes plane with the disc, but much more frequently papillate and projecting to $250 \mu \mathrm{~m}$, often resembling minute perithecia with pointed tips or discoid with depressed centre to nearly ring-like, sometimes conical to bristle-like and projecting to 0.4 mm . Entostroma bark coloured, not or only slightly paler than the surrounding bark, consisting of bark cells and some light-coloured hyphae. Perithecia (450-)515-680(-810) $\mu \mathrm{m}$ $(\mathrm{n}=58)$ diam., arranged in valsoid configuration around and below central column, globose to subglobose, collapsing up- or laterally inwards upon drying. Peridium pseudoparenchymatous, consisting of a dark brown small-celled outer and a hyaline to brownish, large-celled inner layer. Hamathecium of broad multiguttulate paraphyses, collapsing, dissolving and usually absent amongst mature asci. Asci floating free at maturity, (52-)68-85(-98) $\times(8.7-) 10.5-15.5(-18.7) \mu \mathrm{m}(\mathrm{n}=126)$, narrowly fusoid to oblong or narrowly ellipsoid, with an apical ring distinct in water and staining in Congo Red, but invisible or indistinct in $3 \% \mathrm{KOH}$, containing 8 biseriate or obliquely uniseriate ascospores. Ascospores (13.8-)17-20(-22.8) $\times(3.5-) 4.7-6.5(-7.7) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (2.5-)2.9-3.8(-5.5) (n = 242), hyaline, mostly oblong or narrowly ellipsoid, sometimes broadly ellipsoid upon release, symmetric or inequilateral, bicellular with nearly equal cells, slightly or strongly constricted at the median septum, multiguttulate or with few large and several small guttules when fresh, with a short and broad, rounded,

Figure 6. Melanconis marginalis subsp. europaea. Sexual morph a pseudostroma in face view b, cectostromatic discs \mathbf{d} subglobose visible part of ostiolar necks \mathbf{e}, \mathbf{f} cross sections (e showing central column and marginal ostioles \mathbf{f} showing central column and perithecia) \mathbf{g} vertical section showing central column and two perithecia $\mathbf{h} \mathbf{- p}$ asci $\mathbf{q}-\mathbf{y}$ ascospores $\mathbf{m} \mathbf{- p}$ in aqueous Congo Red \mathbf{a} WU $31890=$ MAV1 b-g, j, $\mathbf{n}, \mathbf{q}, \mathbf{s}, \mathbf{t}, \mathbf{w}-\mathbf{y}$ holotype WU $31888=$ MAI $\mathbf{h}, \mathbf{i}, \mathbf{m}$ WU $37045=\mathrm{D} 158 \mathbf{k}, \mathbf{r}$ WU $36699 \mathbf{I}, \mathbf{p}$ WU 31172 \mathbf{o} WU $29888 \mathbf{u}$ WU 31889 = MAV \mathbf{v} WU 38243. Scale bars: $1 \mathrm{~mm}(\mathbf{a}, \mathbf{f}), 500 \mu \mathrm{~m}(\mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{g}), 150 \mu \mathrm{~m}$ (d), $10 \mu \mathrm{~m}(\mathbf{h}-\mathbf{q}, \mathbf{t}), 7 \mu \mathrm{~m}(\mathbf{r}, \mathbf{s}, \mathbf{u}-\mathbf{y})$.
sometimes tapering, angular or bell-shaped and typically terminally truncate appendage (1.8-)2.7-4.7(-8.4) $\times(2-) 2.5-4(-5.5) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(0.4-) 0.9-1.5(-2.8)(\mathrm{n}=318)$, at one or both ends becoming invisible in $3 \% \mathrm{KOH}$ and Congo Red after release.

Figure 7. Melanconis marginalis subsp. europaea. Asexual morph a, b conidiomata and conidial deposits in face view \mathbf{c} conidioma with β-conidia in cross section \mathbf{d} conidioma with α-conidia in vertical section $\mathbf{e - h}$ conidiophores and conidiogenous cells (producing α-conidia in $\mathbf{e}, \mathbf{f}, \beta$-conidia in \mathbf{g}, \mathbf{h}) $\mathbf{i} \mathbf{- p} \alpha$-conidia q-t β-conidia e-t in $3 \% \mathrm{KOH} \mathbf{a}, \mathbf{b}, \mathbf{d}-\mathbf{f}, \mathbf{i} \mathbf{i} \mathbf{k}, \mathbf{q}-\mathbf{s}$ WU $37044=\mathrm{D} 157 \mathbf{c}, \mathbf{g}, \mathbf{h}, \mathbf{l}, \mathbf{t}$ WU $31893 \mathbf{m}$ WU $31891=$ W.J. $1542 \mathbf{n}$ WU $31888=$ MAI \mathbf{o}, \mathbf{p} WU $31889=$ MAV. Scale bars: $500 \mu \mathrm{~m}(\mathbf{a} \mathbf{d}), 5 \mu \mathrm{~m}(\mathbf{e} \mathbf{e} \mathbf{t})$.

Asexual morph acervular, intermingled with pseudostromata of the sexual morph or more frequently developing separately, usually inconspicuous, but sometimes becoming conspicuous due to greyish-brown to dark brown conidial deposits 0.2 0.6 mm diam., rarely confluent from 2 conidiomata and then up to more than 1 cm long. First, white to yellow tissue (central column) forming within the bark, becoming visible by pustulate bark and narrow whitish to yellowish or brownish slit-like discs emerging through bark cracks, usually first followed by the production of β-conidia in olivaceous chambers and later α-conidia on the same or similar conidiophores turning the contents brown and oozing out from ends of the discs or perithecia of the sexual morph formed below the acervulus. Conidiomata $1-2 \mathrm{~mm}$ diam., pulvinate, more or less circular in outline, scattered or aggregated in lines. Covering discs 0.3-
$0.9(-1.6) \mathrm{mm}(\mathrm{n}=45)$ long, narrowly fusoid or longish to rounded, plane to convex, becoming covered and obscured by conidial deposits; discs and pulvinate or conical columns beneath, consisting of compact textura intricata of hyaline hyphae and numerous colourless crystals. Conidiophores emerging around the central column or directly on bark in dense palisades, up to ca. $50 \mu \mathrm{~m}$ long, filiform, branched near the base or sometimes 1-2 fold asymmetrically at higher levels, hyaline, turning brown from their tips; terminal conidiogenous cells (10-) 14.5-23(-27) $\times(1.8-) 2.3-3.5(-5) \mu \mathrm{m}$ ($\mathrm{n}=90$), cylindrical and often widened in the middle or towards base and at the funnel-shaped tips beyond its width, with up to 3 annellations, producing β-conidia and/or α-conidia. Conidia dimorphic, α-conidia (9-)11-14(-16.3) $\times(3.2-) 4.5-5.5(-$ $6.2) ~ \mu \mathrm{~m}, \mathrm{l} / \mathrm{w}(1.7-) 2.2-2.9(-3.6)(\mathrm{n}=172)$, first hyaline, soon turning pale to medium brown or greyish-brown, unicellular, mostly fusoid, but also oblong, oval or ellipsoid, straight, less commonly slightly curved, upper end usually subacute and sometimes elongated, lower end narrowly truncate, containing several guttules, smooth; β-conidia (8-)9-11.5(-12.7) $\times(2-) 2.5-3(-3.3) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2.8-) 3.3-4.6(-5.8)(\mathrm{n}=39)$, hyaline to dilute brownish, unicellular, oblong to cylindrical, straight or slightly curved, thickwalled in water, with few guttules to eguttulate, smooth.

Culture: Colony on CMD at $16^{\circ} \mathrm{C}$ first hyaline, partly or entirely turning brownish or ochre, either covered by a dense white mat of aerial hyphae or not, sometimes becoming indistinctly zonate, sometimes forming irregularly disposed conidiomata; on MEA at room temperature, first hyaline to whitish, soon forming a few broad zones with uneven margins forming teeth, the latter partly turning brown.

Distribution and ecology. Common on Alnus alnobetula (syn. A. viridis) and A. incana in mountainous areas of Central and Eastern Europe (confirmed for Austria, the Czech Republic fide Podlahová 1973, Romania fide Szász 1966 and Switzerland fide Sieber et al. 1991).

Other material examined. Austria, Burgenland, Forchtenstein, Kohlstatt, on Alnus incana, 24 Sep 2016, H. Voglmayr \& W. Jaklitsch (WU 37046, culture D257); Kärnten, Hüttenberg, Knappenberg, grid square 9053/3, on Alnus alnobetula, 10 Jun 1992, W. Jaklitsch (WU 15093); Niederösterreich, Aspangberg-St. Peter, Mariensee, grid square 8461/4, on Alnus alnobetula, 23 Sep 2009, H. Voglmayr (WU 29888); Steiermark, Hartberg, Pinggau, Schaueregg, Alte Glashütte, on Alnus alnobetula, 28 Jul 2012, W. Jaklitsch \& H. Voglmayr (WU 38243); Judenburg, Pusterwald, grid square 8652/3, on Alnus alnobetula, 11 Jun 2011, H. Voglmayr (WU 31890, culture MAV1); Liezen, Kleinsölk, walking path between Breitlahnhütte and Schwarzensee, grid square 8649/3, on Alnus alnobetula, 6 Aug 2003, W. Jaklitsch W.J. 2296 (BPI 843621; culture CBS 121480 = A.R. 4013); St. Nikolai im Sölktal, Sölker Paß, grid square 8750/1, on Alnus alnobetula, 14 Jun 2011, H. Voglmayr (WU 31889, culture CBS 131694 = MAV); Spital am Semmering, near Pfaffensattel, grid square 8460/2, on Alnus alnobetula, 15 Aug 2003, W. Jaklitsch W.J. 2331 (BPI 872072; culture A.R. 4032); ibidem, same host, 8 Jul 2010, I. Krisai-Greilhuber \& H. Voglmayr (WU 31172); ibidem, same host, 7 Apr 2015, H. Voglmayr (WU 36699); Tirol, Kühtai, between Haggen and Kühtai, near Zirmbachalm, grid square $8732 / 3$, on Alnus alnobetula, 3 Sep 2003, W Jaklitsch W.J.

2368 (W 2004-0000062); Prägraten, Bodenalm, on Alnus alnobetula, 18 Jun 2015, H. Voglmayr \& W. Jaklitsch (WU 37044; culture D157); Umbalfälle, grid square 8939/4, on Alnus alnobetula, 28 Aug 2000, W. Jaklitsch W.J. 1542 (WU 31891, BPI 748444; culture CBS 109773 = A.R. 3500; AFTOL-ID 2127); same area and host, 17 Jun 2015, H. Voglmayr \& W. Jaklitsch (WU 37045; culture D158); Vienna, Landstraße, Botanical garden, Alpinum, grid square 7864/1, on Alnus alnobetula, 21 Aug 1994, H. Voglmayr (WU 12976); same place and host, 6 Jan 2012, H. Voglmayr (WU 31893).

Notes. This subspecies differs mainly in its occurrence in (Central) Europe and by forming a clade of its own in phylogenetic analyses (Fig. 1). While the differences of the European accessions in each marker included are few, they are consistent, resulting in a well-delimited clade in the multigene analyses. As the morphological differences from M. marginalis subsp. marginalis are only small, we prefer to classify the European taxon as a subspecies rather than a separate species.

Under the name Melanconis alni, Podlahová (1973) described both sexual and asexual morphs of a Czech collection from Alnus alnobetula which clearly represents M. marginalis, and Szász (1966) listed and described the species (as Melanconium dimorphum) from Romania, again from Alnus alnobetula. In his isozyme studies of Melanconium, Sieber et al. (1991) included a Swiss isolate from Alnus alnobetula (as Melanconi$u m \mathrm{sp.1}$). This isolate showed a distinct but similar isozyme pattern to North American collections of Melanconis marginalis and had a mean conidial size of $11.7 \times 4.3 \mu \mathrm{~m}$, indicating that this isolate also represents Melanconis marginalis subsp. europaea.

Melanconis marginalis subsp. italica (Senan., Camporesi \& K.D. Hyde) Jaklitsch \& Voglmayr, comb. et stat. nov.

MycoBank No: 834110
\equiv Melanconis italica Senan., Camporesi \& K.D. Hyde, in Senanayake et al., Stud. Mycol. 86: 273 (2017) (Basionym).

Type material. Holotype. Italy, Province of Forlì-Cesena, Fiumicello di Premilcuore, on dead branch of Alnus cordata, 4 Dec 2013, E. Camporesi IT 1557 (MFLU 17-0879; ex-type cultures MFLUCC 16-1199, MFLUCC 17-1659; isotype BBH 42441).

Notes. It is presently unclear, whether this poorly described and illustrated taxon that is only known from a single collection is simply Melanconis marginalis subsp. europaed or merits a subspecies name of its own. First, the host given by the authors, Alnus cordata, naturally occurs in southern Italy and Corsica and, thus, may be correct only if planted in the collection area, which is not given by the authors. Secondly, the ascospores are in the range of other subspecies and appendages are neither mentioned nor illustrated, although a few are visible in their ascus images. Apparently, ascospores were mounted in KOH , where appendages are invisible. Thirdly, they describe the asexual morph from culture and include only a poor image of conidia without giving any measurements. Last but not least, only LSU, ITS and rpb2 are available, which
are insufficient to reliably resolve its true phylogenetic position. In addition, instead of comparing their taxon with M. marginalis, they compare it with M. alnicola (Jaap 1917), which is a synonym of Alnecium auctum.

Melanconis marginalis subsp. marginalis (Peck) Wehm., Pap. Michigan Acad. I. 6: 382 (1926).

Figures 8, 9
\equiv Diaporthe marginalis Peck, Rep. (Annual) Trustees State Mus. Nat. Hist., New York 39: 52 (1887) [1886] (Basionym).
\equiv Melanconis alni var. marginalis (Peck) Wehm., Revision of Melanconis, Pseudovalsa, Prosthecium \& Titania: 27 (1941).
= Diaporthe nivosa Ellis \& Everh., Proc. Acad. nat. Sci. Philad. 42: 222 (1890).
= Melanconium dimorphum Peck, Ann. Rep. New York State Mus. Nat. Hist. 40: 62 (1887).

Type material. Holotype of Diaporthe marginalis: USA, New York, Essex County, Elisabethtown, on Alnus alnobetula subsp. crispa (given as Alnus viridis), May 1885, C.H. Peck (NYSf 1859!; material separated into 2 envelopes NYSf 1859.1 and NYSf 1859.2). Epitype, here designated: Canada, New Brunswick, Charlotte Co., 1.5 km SW of Little Lepreau, on Alnus alnobetula subsp. crispa attached to the tree, soc. Tortilispora aurantiaca, 3 Sep 2019, D. Malloch (WU 37850; ex-epitype cultures CBS $146200=$ D321 (from ascospores), D321a (from α-conidia), D321b (from β-conidia); MBT390382).

Description. Sexual morph: Pseudostromata immersed in bark causing pustules, scattered or aggregated, sometimes fused in pairs, $1.2-3.2 \mathrm{~mm}$ diam., pulvinate, circular to elliptic in outline, often elevated beyond bark surface; consisting of an ectostromatic disc and perithecia embedded in an entostroma around a central column, sometimes also acervuli containing α-conidia on the ostiolar level. Ectostromatic discs $0.3-1.5(-2)$ mm diam. or long, bright white to yellowish or cream, flat, convex or concave, sometimes fissured or with dark stellate stripes around disc on the bark surface, sometimes concealed by ostioles, circular, elliptic or fusoid in outline, typically distinctly projecting up to 1 mm including projecting part of the pseudostroma; central column beneath disc white to yellowish, consisting of hyaline hyphae and colourless crystals. Ostiolar necks cylindrical, laterally attached on perithecia, centrally attached only on centrally arranged perithecia, convergent in the disc margin or crowded at the ends of fusoid discs, sometimes completely filling disc, $1-15(-22)$ per disc. Visible part of the ostiolar necks (55-)87-153(-230) $\mu \mathrm{m}(\mathrm{n}=128)$ diam., shiny black or brown with black tip, flat discoid to ring-like, papillate to subglobose with pointed tip or conical, sometimes bristlelike and projecting up to 0.6 mm . Entostroma bark coloured, not or only slightly paler than the surrounding bark, consisting of bark cells and some light-coloured hyphae. Perithecia (420-)480-650(-750) $\mu \mathrm{m}(\mathrm{n}=34)$ diam., arranged in valsoid configuration around and below central column, depressed subglobose, collapsing up- or laterally
inwards upon drying. Peridium pseudoparenchymatous, consisting of a dark brown small-celled outer and a hyaline to brownish, large-celled inner layer. Hamathecium of broad multiguttulate paraphyses, collapsing, dissolving and usually absent amongst mature asci. Asci floating free at maturity, (46-)56-69(-82) $\times(10-) 11-14.5(-18) \mu \mathrm{m}$ ($\mathrm{n}=116$), mostly oblong to fusoid, but also clavate or narrowly ellipsoid, with an apical ring distinct in water and staining in Congo Red but invisible or indistinct in 3\% KOH , containing 8 ascospores in bi- or obliquely uniseriate arrangement. Ascospores (13.8-)15.5-18(-20.7) $\times(3.7-) 4.5-5.7(-7.7) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2.4-) 2.9-3.7(-4.4)(\mathrm{n}=236)$, hyaline to yellowish, oblong to ellipsoid, bicellular with equal or slightly unequal cells, slightly to distinctly constricted at the more or less median septum, multiguttulate or with few large and several small guttules when fresh, with a roundish to triangular or broadly oblong to beak-like and truncate appendage (1.1-) 1.8-3.5(-6.1) $\times(2.2-) 2.5-$ $3.5(-4.2) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(0.4-) 0.6-1.2(-2.1)(\mathrm{n}=140)$ at each end; in $3 \% \mathrm{KOH}$, ascospores wider and more ellipsoid; appendages mostly invisible.

Asexual morph acervular, intermingled with pseudostromata of the sexual morph or more frequently developing separately, usually inconspicuous but sometimes becoming conspicuous due to greyish-brown to dark brown conidial deposits to 2.7 mm diam., sometimes confluent from 2 conidiomata and then up to 7 mm long. First white to yellow tissue (central column) forming within the bark, becoming visible by pustulate bark and narrow whitish to yellowish or brownish slit-like discs emerging through bark cracks, usually first followed by the production of β-conidia in olivaceous chambers, followed by fusion of the chambers and production of α-conidia on the same or similar conidiophores, turning the cavity brown and oozing out from ends of the discs or perithecia of the sexual morph formed beneath. Conidiomata ca. $0.9-3 \mathrm{~mm}$ long or diam., pulvinate, more or less circular in outline, scattered or aggregated in lines. Covering discs $0.3-0.7 \mathrm{~mm}$ long or diam., narrowly fusoid or longish to circular, plane to convex, white-yellowish-brownish, becoming covered and obscured by conidial deposits; discs and pulvinate or conical columns beneath consisting of compact textura intricata of hyaline hyphae and numerous colourless crystals. Conidiophores emerging around the central column from a textura intricata, fasciculate, filiform, branched near the base or sometimes $1-2$ fold asymmetrically at higher levels, hyaline, turning brown from their tips; terminal conidiogenous cells (10-)13.5-23(-31) $\times(1.7-) 2-3(-$ 3.5) $\mu \mathrm{m}(\mathrm{n}=68)$, cylindrical and often widened in the middle or towards the base and at the funnel-shaped tips beyond its width, annellidic, producing α - and/or β-conidia. Conidia dimorphic, α-conidia (9-) 10.5-13.3(-16.8) $\times(3.8-) 4.5-5.3(-6) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (1.7-)2-2.8(-3.9) $(\mathrm{n}=171)$, first hyaline, soon turning light to medium brown, unicellular, mostly fusoid, but also oblong, oval, citriform or ellipsoid, straight or slightly curved to sigmoid, upper end often subacute, lower end narrowly truncate, containing several guttules or eguttulate, smooth; β-conidia ($6-$) $8-10.5(-12.2) \times(1.7-) 2.2-$ $2.8(-3) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2.4-) 3-4.6(-6.4)(\mathrm{n}=46)$, hyaline to dilute brownish, unicellular, oblong to cylindrical, sometimes reniform, straight or curved, thick-walled in water, with few guttules to eguttulate, smooth.

Figure 8. Melanconis marginalis subsp. marginalis. Sexual morph a pseudostroma in face view b-d ectostromatic discs (note conical to bristle-like ostiolar necks in \mathbf{c} discoid in d; e vertical section showing central column and perithecia $\mathbf{f - i}, \mathbf{p}-\mathbf{u}$ asci $\mathbf{j}-\mathbf{o}, \mathbf{v}-\mathbf{y}$ ascospores $\mathbf{t}, \mathbf{u}, \mathbf{y}$ in aqueous Congo $\operatorname{Red} \mathbf{x}$ in 3% KOH a,f BPI $614844 \mathbf{b}, \mathbf{g}, \mathbf{h}, \mathbf{t}$ holotype NYSf $1859 \mathbf{c}, \mathbf{k}, \mathbf{j}$ BPI $748233 \mathbf{d}, \mathbf{e}, \mathbf{n}, \mathbf{o}, \mathbf{q}-\mathbf{s}, \mathbf{v}, \mathbf{w}, \mathbf{y}$ epitype WU 37850 i, u DAOM 227767 I, m DAOM 202917 p BPI 614977 x DAOM 86074. Scale bars: $500 \mu \mathrm{~m}(\mathbf{a}-\mathbf{e}), 10 \mu \mathrm{~m}(\mathbf{f} \mathbf{- i}, \mathbf{q} \mathbf{- u}), 7 \mu \mathrm{~m}(\mathbf{j} \mathbf{- p}, \mathbf{v}-\mathbf{y})$.

Culture: Colony on CMD at $22^{\circ} \mathrm{C}$ circular with slightly uneven margin, hyaline to whitish, forming a broad inner white zone with tooth-like margin and narrow hyaline outer zones; on MEA at room temperature circular, first hyaline to white, margin becoming diffuse, narrow or coarse concentric zones formed, turning brown from the margins, aerial hyphae short, dense, surface sometimes becoming imbricate, sometimes growth limited and ceasing after a few weeks.

Figure 9. Melanconis marginalis subsp. marginalis. Asexual morph a early stage of covering disc b, conidiomata and conidial deposits in face view \mathbf{d}, \mathbf{e} conidiomata in cross section (\mathbf{d} with β-conidia, \mathbf{e} with α-conidia) \mathbf{f} conidioma with α-conidia in vertical section $\mathbf{g}-\mathbf{k}$ conidiophores and conidiogenous cells (producing α-conidia in $\mathbf{g}, \mathbf{h} \beta$-conidia in $\mathbf{i}-\mathbf{k}$) $\mathbf{l} \mathbf{- w} \alpha$-conidia \mathbf{x}-el β-conidia \mathbf{g}-el in $3 \% \mathrm{KOH} \mathbf{a}, \mathbf{b}, \mathbf{d}-\mathbf{g}, \mathbf{i}-\mathbf{k}, \mathbf{n}-\mathbf{s}$, $\mathbf{x - b l}$ epitype WU $37850=$ D321 c, t-w, cl-el DAOM $227767 \mathbf{h}, \mathbf{I}, \mathbf{m}$ BPI 614844. Scale bars: $300 \mu \mathrm{~m}$ $(\mathbf{a}, \mathbf{e}, \mathbf{f}), 500 \mu \mathrm{~m}(\mathbf{b}, \mathbf{d}), 1 \mathrm{~mm}(\mathbf{c}), 10 \mu \mathrm{~m}(\mathbf{g}, \mathbf{h}), 7 \mu \mathrm{~m}(\mathbf{i}, \mathbf{t}-\mathbf{v}), 5 \mu \mathrm{~m}(\mathbf{j}-\mathbf{l}, \mathbf{n}, \mathbf{s}, \mathbf{w}, \mathbf{y}-\mathbf{e l}), 3 \mu \mathrm{~m}(\mathbf{m}, \mathbf{o}-\mathbf{r}, \mathbf{x})$.

Distribution and ecology. Widespread in North America and also occurring in Japan and eastern Russia on various subspecies of Alnus alnobetula and A. incana; recorded also from A. rubra (Sieber et al. 1991; see also material cited below).

Additional material examined. Canada, British Columbia, Kelowna, June Springs road, June Springs trail, on Alnus incana, 18 Jul 1999, J. Ginns 10834 (DAOM 227767; measurements separately given, see below under Notes); Nelson, on Alnus incana subsp. tenuifolia, soc. Cryptosporella sp., 26 Jun 1930, G.G. Hedgcock (BPI 614844, F.P. 50704); Victoria, Lake Cowichan, Mesachie Lake, 48.7942N 124.1573W, on Alnus rubra, 14 Sep 1988, C. Dorworth (DAVFP 24976, dried culture PFC-051 only); Victoria, Ucluelet, Kennedy Lake, 49.0416N 125.5315W, on Alnus rubra, 16 May 1987, C. Dorworth (DAVFP 24972, dried culture PFC-025 only); Manitoba, W Hawk Lake, on Alnus sp., 5 Jun 1932, G.R. Bisby 4593 (DAOM 202917); Nova Scotia, Kings Co., Glenmont, on Alnus alnobetula subsp. crispa (as Alnus crispa var. mollis), 25 Jul 1936, I.L. Conners (Ottawa 3798 (DAOM)); Kentville, on Alnus alnobetula subsp. crispa, 11 May 1953, D. Creelman (DAOM 54346); Ontario, District of Nipissing, Temagami Forest Reserve, Lake Temagami, Bear Island, on Alnus alnobetula subsp. crispa (as Alnus viridis var. mollis), 19 Jun 1933, R.F. Cain 2686 (DAOM 86075); trail at Matagama Point, on Alnus alnobetula subsp. crispa (as Alnus crispa var. mollis), 23 Jun 1933, R.F. Cain 2687 (DAOM 86074); Sharp Rock Inlet, on Alnus alnobetula subsp. crispa (as Alnus crispa var. mollis), 29 Jun 1933, R.F. Cain (BPI 614977, F.P. 69748). Japan, Hokkaido, Shirikinai, on Alnus alnobetula subsp. maximowiczii, 1 Sept 1967, T. Oguchi (TFM FPH3290; culture MAFF 410218 = M4-6, ME9). RUSSIA, Sakhalin Island, Lake Dvoynoe, on Alnus alnobetula subsp. maximowiczii, 3 Aug 2000, A. Bogachova, comm. L. Vasilyeva (BPI 748233; culture CBS 109496 = A.R. 3529, ME2). USA, Alaska, Fairbanks, Large Animal Research Station, on Alnus alnobetula, 5 Aug 2011, L. Mejia (BPI 884096; culture A.R. 4864, ME5); same area, on Alnus alnobetula (given as Betula neoalaskana), 5 Aug 2011, L. Mejia (BPI 884097; culture CBS 133346 = A.R. 4865, ME6); Juneau, on Alnus alnobetula subsp. sinuata, 6 Sep 1936, D.V. Baxter (BPI 615125).

Notes. The asexual morph of Melanconis marginalis subsp. marginalis is inconspicuous with usually only thin greyish patches of α-conidia. The two types of conidia may be present at the same time or only one is present; acervuli containing α-conidia are sometimes present in pseudostromata of the sexual morph. The specimen DAOM 227767 from Alnus incana differs from all others by very large and conspicuous conidial deposits (Fig. 9c), slightly larger α-conidia, (13-)14.5-16.5(-17.5) $\times(5-) 5.8-$ $7(-8) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.8-) 2.1-2.8(-3.4)(\mathrm{n}=70)$ and longer and more slender β-conidia, $(7.5-) 12.5-16(-17.3) \times(1.7-) 2.2-3(-3.5) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(4-) 4.6-6.7(-9)(\mathrm{n}=35)$ and also by slightly larger asci, (68-)74-88(-95.5) $\times(10-) 12-15.5(-18.2) \mu \mathrm{m}(\mathrm{n}=26)$, which approach the European subspecies. Although Jensen (1984) gave a range of $9-17 \times$ $3-7 \mu \mathrm{~m}$ for α-conidia and $10-18 \times 2-3 \mu \mathrm{~m}$ for β-conidia of M. marginalis, it is unclear, whether all examined specimens, including DAOM 227767, phylogenetically belong to M. marginalis subsp. marginalis or a different subspecies or even species. Jensen
(1984) reported exceptionally long ascospores (19-32 $\mu \mathrm{m}$) for four of his collections from Idaho, which also differed in their colony characters; due to lack of DNA data, the taxonomic status of these collections is unclear. While all our North American and Eastern Asian accessions of M. marginalis subsp. marginalis sequences originated from various subspecies of Alnus alnobetula, the accessions investigated by Jensen (1984) originated from Alnus incana subsp. tenuifolia. Sieber et al. (1991), who investigated M. marginalis from British Columbia, recorded mean conidial sizes of $11.2-11.8 \times$ 4.4-4.7 $\mu \mathrm{m}$ for two isolates from A. rubra, while those from three isolates of Alnus alnobetula were slightly larger $(13.6-14 \times 5.6-5.9 \mu \mathrm{~m})$. These data demonstrate the need of additional detailed investigations of the M. marginalis complex in western North America. Kobayashi (1970) determined the following sizes for Japanese collections of M. marginalis: asci $70-93 \times 10-15 \mu \mathrm{~m}$, ascospores $15-23 \times 4-6.5 \mu \mathrm{~m}$, mostly $17-20 \times 4.5-5.5 \mu \mathrm{~m}$, α-conidia $11.5-15 \times 4-6.5 \mu \mathrm{~m}, \beta$-conidia $7.5-12.5 \times$ $1.5-2.5 \mu \mathrm{~m}$. He also mentioned that the Japanese collections usually lacked ascospore appendages, which, however, may be due to the use of a mounting medium instead of water in his microscope mounts. This is supported by the fact that he also reported a lack of appendages in his M. pterocaryae, which was disproved by re-investigation of the type (Voglmayr et al. 2017).

Sizes of asci depend on the age of the material. They shrink with time and in specimens, which are 20 or more years old, they are smaller and do not obtain the original size even in KOH ; also, it is very difficult to release ascospores from asci. In fresher specimens, asci are easily separable and ascospores are readily released. Vital asci open readily in mounts. Nonetheless, fresh asci of the epitype of subsp. marginalis were distinctly smaller than fresh asci of subsp. europaea.

Poor representation of the asexual morph in fungarium specimens may be due to the fact that the sexual morph is usually abundant, with numerous white ectostromatic discs; thus, the asexual morph may have been neglected during collecting or even discarded. β-conidia are often absent or scant and old amongst α-conidia in dark conidial deposits, hence they are either not formed or produced before α-conidia.

Melanconis marginalis subsp. tirolensis Jaklitsch \& Voglmayr, subsp. nov.
 MycoBank No: 834111

Figures 10, 11
Diagnosis. This subspecies differs from Melanconis marginalis subsp. europaea and subsp. marginalis phylogenetically and by slightly larger α-conidia, asci, ascospores and ascospore appendages.

Type material. Holotype: Austria, Tirol, Osttirol, Prägraten am Großvenediger, Umbalfälle, grid square 8939/4, on Alnus alnobetula, 10 Sep 2001, W. Jaklitsch W.J. 1796 (BPI 872035; ex-type culture CBS 122310 = A.R. 3748 = ME4; part preserved as isotype WU 31892, asexual morph only present in the latter).

Etymology. Named after its occurrence in Tirol, Austria.

Figure 10. Melanconis marginalis subsp. tirolensis. Sexual morph a, b pseudostromata with ectostromatic discs \mathbf{c} conical ostioles \mathbf{d} vertical section showing central column and two perithecia e ectostromatic disc with subglobose ostiolar tips \mathbf{f} cross section showing central column, marginal ostioles and upper parts of perithecia $\mathbf{g - j}$ asci (compressed in $\mathbf{j}) \mathbf{k}-\mathbf{p}$ ascospores; $\mathbf{i}, \mathbf{j}, \mathbf{o}, \mathbf{p}$ in aqueous Congo Red $\mathbf{a}, \mathbf{c}, \mathbf{k}-\mathbf{p}$ holotype BPI 872035 b, d-j isotype WU 31892. Scale bars: $500 \mu \mathrm{~m}(\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{f}), 150 \mu \mathrm{~m}(\mathbf{c}), 300 \mu \mathrm{~m}(\mathbf{e}), 10 \mu \mathrm{~m}(\mathbf{g}-\mathbf{p})$.

Description. Sexual morph: Pseudostromata $1.3-5.5 \mathrm{~mm}$ diam., conspicuous and numerous, scattered to aggregated, pulvinate, circular to elliptical in outline, elevated beyond bark surface forming pustules; consisting of an ectostromatic disc and perithecia embedded in an entostroma around a central column. Ectostromatic discs $0.35-1.55 \mathrm{~mm}(\mathrm{n}=43)$ diam. or long, bright white to yellowish, turning brownish with age, mostly fusoid, also elliptic or circular in outline, mostly flat, crumbly, distinctly projecting up to 1.3 mm , including projecting part of the pseudostroma; central column beneath disc white to yellowish, consisting of hyaline hyphae and colourless crystals. Ostiolar necks cylindrical, laterally or centrally attached on perithecia,

Figure II. Melanconis marginalis subsp. tirolensis (isotype WU 31892). Asexual morph a, b conidiomata showing covering discs in face view \mathbf{c}, \mathbf{d} conidiomata in cross section (\mathbf{c} with β-conidia \mathbf{d} with α-conidia) \mathbf{e} conidioma with α-conidia in vertical section $\mathbf{f} \mathbf{- I}$ conidiophores and conidiogenous cells (\mathbf{k}, \mathbf{I} producing β-conidia) m-r α-conidia s-y β-conidia $\mathbf{f - y}$ in $3 \% \mathrm{KOH}$. Scale bars: $500 \mu \mathrm{~m}(\mathbf{a}-\mathbf{e}), 15 \mu \mathrm{~m}(\mathbf{f}), 10 \mu \mathrm{~m}$ (g-I), $5 \mu \mathrm{~m}(\mathbf{m}-\mathbf{y})$.
convergent in the disc margin or crowded at the ends of fusoid discs, $1-15$ per disc. Visible part of the ostiolar necks (53-)85-180(-240) $\mu \mathrm{m}(\mathrm{n}=56)$ diam., black, often with olivaceous tips, frequently conical to bristle-like and projecting to 0.4 mm , but also papillate, resembling minute perithecia or discoid with depressed centre. Entostroma bark coloured, not or only slightly paler than the surrounding bark, consisting of bark cells and some light-coloured hyphae. Perithecia (510-)570-780(-900) $\mu \mathrm{m}$ ($\mathrm{n}=36$) diam., arranged in valsoid configuration around and below central column, globose to subglobose, collapsing up- or laterally inwards upon drying. Peridium pseudoparenchymatous, consisting of a dark brown small-celled outer and a hyaline to brownish, large-celled inner layer. Hamathecium absent at maturity. Asci floating free at maturity, $(74-) 86-102(-115) \times(11.3-) 13-20(-25) \mu \mathrm{m}(\mathrm{n}=61)$, fusoid to oblong or clavate, short-stipitate prior to full maturation, with an apical ring distinct in
water and staining in Congo Red, but invisible or indistinct in $3 \% \mathrm{KOH}$, containing 8 biseriate or obliquely uniseriate ascospores. Ascospores (15.8-)17.8-21.2(-24) \times $(4.5-) 5.5-7(-8) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2.5-) 2.8-3.5(-4)(\mathrm{n}=123)$, hyaline, turning pale brown with age, oblong to ellipsoid, symmetric to slightly inequilateral with nearly equal cells, slightly or strongly constricted at the median septum, multiguttulate or with 1-2 large and several small guttules when fresh, with a short and broad, rounded, parabolic or vesicular, sometimes tapering but typically terminally broadly truncate appendage $(2-) 3.8-6.2(-9.5) \times(3-) 4-5.7(-7.2) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(0.4-) 0.8-1.4(-2)(\mathrm{n}=104)$ at each end, after release becoming invisible in $3 \% \mathrm{KOH}$, but partly persistent in Congo Red.

Asexual morph acervular, intermingled with pseudostromata of the sexual morph or developing separately, inconspicuous. First white to yellowish tissue (central column) forming within the bark, becoming visible by slightly pustulate bark and narrow whitish to yellowish discs emerging through bark cracks, usually first followed by the production of β-conidia in olivaceous chambers and later α-conidia or both more or less simultaneously on the same or similar conidiophores, chambers fusing into a single locule, turning brown and dark conidial patches $0.5-1.5 \mathrm{~mm}$ diam. or perithecia of the sexual morph forming. Conidiomata $1.2-3.2 \mathrm{~mm}$ diam., pulvinate, more or less circular in outline, scattered or crowded. Covering discs $0.2-1.5 \mathrm{~mm}(\mathrm{n}=14)$ diam. or long, narrowly fusoid or longish to circular, flat to convex, whitish, yellowish to brownish; discs and pulvinate or conical columns beneath consisting of compact textura intricata of hyaline hyphae and numerous colourless crystals, becoming brittle with age. Conidiophores emerging around the central column in dense palisades, up to ca. $65 \mu \mathrm{~m}$ long, filiform, branched near the base and usually $1-3$ fold asymmetrically at higher levels, first hyaline, turning brown from their tips; terminal conidiogenous cells (9-)15-25(-28) $\times(1.7-) 2.3-3.2(-$ 3.7) $\mu \mathrm{m}(\mathrm{n}=63)$, cylindrical and often widened towards base, even wider at the funnelshaped tips, with up to 3 annellations, proliferating and producing α - or β-conidia. Conidia dimorphic, α-conidia (10-)11.5-16.3(-21.8) $\times(2.5-) 4.5-6.3(-7.5) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (1.8-)2.1-3.2(-5.3) ($\mathrm{n}=70$), first hyaline, soon turning light to medium brown, mostly fusoid, also oblong, oval or ellipsoid, straight or slightly curved, upper end usually subacute and sometimes elongated, lower end narrowly truncate, containing several guttules, smooth; β-conidia (7.3-)8.8-12(-16.5) $\times(2-) 2.2-2.7(-3.4) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(2.6-) 3.3-5.3(-$ 8.9) $(\mathrm{n}=104)$, hyaline, dilute brownish with age, sometimes turning rosy in $3 \% \mathrm{KOH}$, oblong to cylindrical, straight or curved or sigmoid, thick-walled in water, smooth, with truncate basal scar and minute guttules to eguttulate.

Culture: Colony on MEA dense, first hyaline to white, with restricted growth, forming brown radial portions mostly submerged in the agar. Odour unpleasant.

Distribution and ecology. Co-occurring with Melanconis marginalis subsp. europaea in a subalpine area of eastern Tyrol, Austria, Europe, on Alnus alnobetula.

Additional material examined. Austria, Tirol, Osttirol, Virgental, Prägraten am Großvenediger, Lasörling, Zopatnitzen on path between Wetterkreuz and Berger See, 2100 m a.s.l., on Alnus alnobetula, 26 Oct 2019, H. Voglmayr \& C.M. Botoaca (WU 37851; culture D322a (from α-conidia)).

Notes. As this subspecies differs morphologically only subtly from the other varieties of M. marginalis, we prefer to classify it as a subspecies rather than a separate species. While the ITS sequences of Melanconis marginalis subsp. tirolensis differs from Melanconis marginalis subsp. europaea in only a single base pair, the differences are substantial in all other markers included, particularly tef1 and tub2.

Melanconis pacifica Jaklitsch \& Voglmayr, sp. nov.

MycoBank No: 834112
Fig. 12
Diagnosis. This species is characterised by its occurrence on Alnus rubra and α-conidia, which are wider and darker than those of M. marginalis and differ by a different shape and absence of a light band from those of M. alni.

Type material. Holotype. Canada, British Columbia, Sidney, off Jura, on Alnus rubra, 26 May 2000, M.E. Barr 1021A (DAOM 230637; ex-type culture CBS 109744; isotype BPI 748446).

Etymology. For its occurrence in the Pacific region of western North America.
Description. Asexual morph: Conidiomata $0.7-2.1 \mathrm{~mm}$ diam., visible as dark brown to blackish spots, acervular, subperidermal, scattered, discrete, rarely two confluent, pulvinate to conical, consisting of an erumpent central or eccentric, circular or elliptic to fusoid, flat or convex disc $0.2-1.3 \mathrm{~mm}$ diam., whitish, yellowish to reddishorange when young, becoming concealed by ejected conidia and internally a narrow central or eccentric, whitish to yellowish stromatic column sometimes fraying out laterally and a dark ring-like periphery containing conidia. Conidia becoming discharged through a mostly slit-like rupture of the disc, forming dark brown to black, up to 0.7 mm high masses or tendrils. Conidiophores densely aggregated forming palisades, up to ca. $50 \mu \mathrm{~m}$ long, arising from a yellowish, nearly pseudoparenchymatous tissue of compacted hyphae, either consisting solely of conidiogenous cells or of a stout main axis with few side branches and a terminal whorl of 2-4 more or less vertical conidiogenous cells, hyaline to yellowish. Conidiogenous cells mostly $11-32 \times(2-) 2.5-3.3(-3.5) \mu \mathrm{m}$, annellidic, more or less cylindrical, hyaline, turning brown with age, forming simultaneously two types of conidia on top. Conidia dimorphic, α-conidia (8.8-)10.5-12.5($15.5) \times(5-) 6.5-7.7(-8.8) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.2-) 1.4-1.8(-2.7)(\mathrm{n}=615)$, oval to ellipsoid, dark brown, with a distinct basal abscission scar; β-conidia (6.2-)8.2-12.5(-18.5) \times (2-)2.3-3(-3.6) $\mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.7-) 3-4.9(-7.6)(\mathrm{n}=103)$, oblong to cylindrical, straight or curved, sometimes sigmoid or kidney-shaped to subellipsoid, hyaline, turning dilute brownish with age, typically containing two subterminal groups of minute guttules, with a distinct basal abscission scar.

Culture: Colony on MEA circular, first hyaline, turning white and later brownish in spots or patches, with stellate margin and radial stripes; black conidiomata forming along the stripes. Odour indistinct.

Figure 12. Melanconis pacifica. Asexual morph a-d conidiomata in face view \mathbf{e} conidioma in cross section \mathbf{f} conidioma in vertical section $\mathbf{g}-\mathbf{k}$ conidiophores (\mathbf{g} with both conidial types, note annellations in right conidiophore in \mathbf{k}) $\mathbf{l}-\mathbf{r} \alpha$-conidia s-z β-conidia a-k, n-p,z DAOM $220988 \mathbf{I}, \mathbf{m}, \mathbf{r}-\mathbf{y}$ holotype DAOM 230637 q isotype BPI $748446 \mathbf{g - o , r - z}$ in $3 \% \mathrm{KOH}$. Scale bars: $300 \mu \mathrm{~m}(\mathbf{a} \mathbf{- f}), 30 \mu \mathrm{~m}(\mathbf{g}), 10 \mu \mathrm{~m}(\mathbf{h}-\mathbf{k}), 5 \mu \mathrm{~m}(\mathbf{l} \mathbf{- z})$.

Additional materials examined (all on/from Alnus rubra). Canada, British Columbia, Sidney, Bazan Bay, 28 May 1995, M.E. Barr (DAOM 220988); Victoria, 26 km N of Campbell River, 50.1262N, 125.3084W, 2 Jan 1989, T.N. Sieber
(DAVFP 24981, dried culture PFC-071 only); Caycuse, W shore of Cowichan Lake, 48.8810N, 124.4321W, 24 Oct 1988, T.N. Sieber (DAVFP 24980, dried culture PFC-068 only); Gordon Head, C. Dorworth's property, 48.4396N, 123.3380W, 4 Jun 1988, C. Dorworth (DAVFP 24973, dried culture PFC-043 only); East Sooke, 48.4377N, 123.7436W, 29 Jun 1948, W.G. Ziller (DAVFP 3092); Nanaimo, DeCourcy Island, 49.0641 N, $123.7732 \mathrm{~W}, 1$ Jun 1988, C. Dorworth (DAVFP 24974 , dried culture PFC-047 only); Parksville, NW Bay, 3.1 km W of M\&B office, $49.3238 \mathrm{~N}, 124.1479 \mathrm{~W}, 13 \mathrm{Jul}$ 1988, C. Dorworth (DAVFP 24975, dried culture PFC-050 only); Port Renfrew, Sombrio Beach, 48.5229N, 124.2866W, 4 Nov 1988, C. Dorworth (DAVFP 24977, dried culture PFC-053 only); Revelstoke, Jordan River, gravel pit S of the river, $48.4356 \mathrm{~N}, 124.0140 \mathrm{~W}, 24$ Oct 1988, C. Dorworth (DAVFP 24978, dried culture PFC-055 only); ibid., 24 Oct 1988, T.N. Sieber (DAVFP 24979, dried culture PFC-067 only); Sooke, East Sooke Park, Babbington Trail, 48.3485N, 123.6073W, 9 Sep 1988, C. Dorworth (DAVFP 25029, dried culture PFC-054).

Notes. The description is largely based on DAOM 220988 due to good development of conidiomata. However, we select DAOM 230637 as the holotype, because DNA data are only available for this specimen. Microscopic data of the two specimens are identical. This species is currently only known as an asexual morph. One specimen from Victoria (DAVFP 3092) contains also an immature sexual morph, which corresponds to Melanconis alni superficially. Barr apparently identified her collections as M. marginalis because the latter was, at that time, considered to be the only alnicolous species occurring in North America (Jensen 1984), which also occurs on A. rubra (Sieber et al. 1991). However, the conidia of the latter species are longer, more fusoid, have a larger $1 / \mathrm{w}$ ratio and are lighter in colour than those of M. pacifica. α-conidia of M. pacifica and M. alni are virtually identical in size. Those of the latter, however, have a different shape, a median light band and a more greyish-brown colour. Remarkably, Wehmeyer (1941) mentioned a collection from the American Pacific region (Oregon) which had conidia resembling Melanconium sphaeroideum, a synonym of M. alni. Sieber et al. (1991) included 10 isolates from Alnus rubra, sampled in British Columbia, that they identified as Melanconium apiocarpum, another synonym of M. alni (see above), based on conidial size and shape. Their measurements and, in particular, their illustration (fig. 2a) of α-conidia fully agree with M. pacifica. The isozyme patterns of Sieber et al. (1991) revealed high similarities, but also diagnostic differences between the isolates from European A. glutinosa and Cana$\operatorname{dian} A$. rubra, which is in agreement with the close phylogenetic relationship between M. alni and M. pacifica. Our morphological re-investigations of the isolates of Sieber et al. (1991), which are kept as dried cultures at DAVFP (see specimens cited above), confirmed that they represent M. pacifica.

In DAOM, two additional specimens, labelled Melanconis marginalis collected by Barr in the same area, are extant, DAOM 227727 and DAOM 227345. These specimens, however, do not contain M. pacifica, but the sexual morph of a Diaporthe sp.

Melanconis stilbostoma (Fr. : Fr.) Tul. \& C. Tul., Select. fung. carpol. (Paris) 2: 115 (1863).

Figure 13
三Sphaeria stilbostoma Fr. : Fr., K. svenska Vetensk-Akad. Handl., ser. 3, 39: 102 (1818) (Basionym)
\equiv Melanconis stilbostoma (Fr. : Fr.) Tul., Annls Sci. Nat., Bot., sér. 4, 5: 109 (1856). (Nom. inval., Art. 35.1).
?= Melanconium bicolor Nees : Fr., Syst. Pilze (Würzburg): 32 (1816) [1816-17].
= Melanconium betulinum J.C. Schmidt \& Kunze, Deutschl. Schwämme, Neunte Lieferung: 3 (1819).
= Melanconium elevatum Corda, Icon. fung. (Prague) 3: 22 (1839).

Type material. Lectotype. Sweden, without data, Fries, Scleromyc. Suec. no. 145, as Sphaeria stilbostoma (UPS:BOT:F-117590, lectotype here designated; MBT390467)). Epitype, here designated: Austria, Tirol, Prägraten, Umbalfälle, grid square 8939/4, on Betula pendula, 28 Aug 2000, W. Jaklitsch W.J. 1543 (BPI 748447; ex-epitype culture CBS 109778 = A.R. 3501 = ME11; AFTOL-ID 936; MBT390383; iso-epitype WU 31897).

Description. Sexual morph: Pseudostromata 1.3-3.6(-4.5) mm diam., scattered to aggregated, slightly or distinctly projecting from bark surface, pulvinate with bluntly conical centre (projecting disc), circular to elliptical in outline; consisting of an ectostromatic disc and perithecia embedded in an entostroma around a central column and often chambers filled with conidia. Ectostromatic discs $0.4-2.4(-2.7) \mathrm{mm}$ diam. or length, fusoid to circular, projecting from the bark surface to 0.5 mm , less commonly 1 mm including pseudostroma, white or yellow, brown when old, flat, concave or convex, often completely filled by tips of ostiolar necks; central column beneath disc brightly white to yellow, consisting of hyaline hyphae and colourless crystals. Ostiolar necks cylindrical, laterally or centrally attached on perithecia, convergent and densely and irregularly or evenly disposed in the disc or around the margin; visible part in the discs (106-)139-231 (-283) $\mu \mathrm{m}(\mathrm{n}=68)$ diam., $1-25$ per disc, shiny black, convex papillate, discoid with depressed centre or conical to cylindrical and projecting to $300 \mu \mathrm{~m}$. Entostroma paler than surrounding inner bark, consisting of hyaline to white hyphae and bark cells, sometimes forming white patches. Perithecia (450-)540-700(-780) $\mu \mathrm{m}(\mathrm{n}=45)$ diam., arranged in valsoid configuration around and below central column, globose to subglobose, collapsing upon drying. Peridium pseudoparenchymatous, consisting of a dark brown small-celled outer and a hyaline to brownish, large-celled inner layer. Hamathecium absent at maturity. Asci floating free at maturity, $(69-) 80-123(-141) \times(10-) 13-18(-21) \mu \mathrm{m}(\mathrm{n}=64)$, fusoid to oblong or narrowly clavate, with an apical ring distinct in water and staining in Congo Red but invisible or indistinct in $3 \% \mathrm{KOH}$, containing 4-8 biseriate or obliquely uniseriate ascospores. Ascospores (13.7-)16-19(-23) $\times(4.7-) 6.5-8.5(-9.7) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(1.9-) 2.1-$ $2.7(-3.6)(\mathrm{n}=186)$, first narrow, fusoid or oblong and with small roundish appendages $(1.5-) 2-5(-7.3) \times(2.2-) 3.3-5.5(-6.8) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}(0.3-) 0.5-1.1(-1.7)(\mathrm{n}=60)$ within

Figure 13. Melanconis stilbostoma. a-r Sexual morph a-d pseudostromata with ectostromatic discs in face view \mathbf{e} cross section through 2 adjacent pseudostromata \mathbf{f} vertical section showing 2 perithecia, ostiolar necks and central column $\mathbf{g - k}$ asci $\mathbf{l}-\mathbf{r}$ ascospores \mathbf{j}, \mathbf{k} in aqueous Congo Red s-bl Asexual morph \mathbf{s}, \mathbf{t} conidiomata in face view \mathbf{u} conidioma in cross section $\mathbf{v}-\mathbf{x}$ conidiophores and conidiogenous cells $\mathbf{y - b l} \alpha$-conidia v-bllin $3 \% \mathrm{KOH} \mathbf{a ,} \mathbf{j}, \mathbf{s}, \mathbf{v}-\mathbf{x}$ iso-epitype WU $31897=$ W.J. $1543 \mathbf{b}-\mathbf{d}$ WU $31896 \mathbf{e - g}$, $\mathbf{i}, \mathbf{k}, \mathbf{o}$ WU $38241 \mathbf{h , ~ p , ~ q ~ W U ~} 36779$ I-n, al WU31899 r WU 37048 t WU 31894 u WU 15266 y M. betulinum B700016529 z M. betulinum B700016528 al WU31899 bl WU $35970=$ D143. Scale bars: $1 \mathrm{~mm}(\mathbf{a}, \mathbf{b}), 300 \mu \mathrm{~m}(\mathbf{c}, \mathbf{d}), 500 \mu \mathrm{~m}(\mathbf{e}, \mathbf{f}, \mathbf{t}, \mathbf{u}), 15 \mu \mathrm{~m}(\mathbf{g}-\mathbf{k}), 5 \mu \mathrm{~m}(\mathbf{l}-\mathbf{r}, \mathbf{y}-\mathbf{b} \mathbf{I}), 2 \mathrm{~mm}(\mathbf{s}), 10 \mu \mathrm{~m}(\mathbf{v}-\mathbf{x})$.
asci, later becoming broadly ellipsoid with rounded ends, symmetric or inequilateral, slightly constricted at the central to slightly eccentric septum, hyaline, thick-walled, smooth; appendages fugaceous and absent on released ascospores.

Asexual morph acervular, intermingled with pseudostromata of the sexual morph or developing separately, conspicuous. First white tissue (central column) forming within the bark, becoming surrounded by sterile yellow margin and narrow discs rupturing bark epidermis, followed by the production of conidia in olivaceous to black chambers containing black conidial masses translucent though bark. Conidiomata $0.9-3.2 \mathrm{~mm}$ diam., subconical or pulvinate, more or less circular in outline, scattered or crowded.

Covering discs $0.3-1.2 \mathrm{~mm}$ long, slit-like to circular, flat to convex, shiny white to yellowish, becoming obscured by dark olivaceous brown to black conidial deposits forming patches to 2.7 mm diam., sometimes confluent to 1 cm ; discs and pulvinate or conical columns beneath, consisting of dense textura intricata of hyaline hyphae and numerous colourless crystals, becoming brittle with age. Conidiophores emerging around the central column from a pseudoparenchymatous base, filiform, branched near the base and usually $1-3$ fold asymmetrically at higher levels, first hyaline, turning brown from their tips; terminal conidiogenous cells (11.5-)18-33(-42.5) $\times(2-) 2.5-3.5(-4.5) \mu \mathrm{m}(\mathrm{n}=$ 47), more or less cylindrical, with up to 5 or 6 annellations, densely arranged, repetitive, producing α-conidia. Conidia (10.5-)12.5-15(-17.5) $\times(6.2-) 7.2-8.5(-9.5) \mu \mathrm{m}, \mathrm{l} / \mathrm{w}$ (1.3-)1.6-2(-2.7) ($\mathrm{n}=260$), oval, ellipsoid or subglobose, 1-celled, dark brown, thickwalled, smooth, with a few drops and a small scar. No β-conidia detected.

Culture: Colony on CMD at $16^{\circ} \mathrm{C}$ forming irregular white and brown to ochre zones partly covered by aerial hyphae or hyaline, undifferentiated, forming brown spots and irregularly disposed conidiomata; on MEA at room temperature first white, later with broad white and brown zones with undulating margin and conidiomata forming mostly on the outer margin. Odour indistinct to fruity.

Distribution and ecology. Melanconis stilbostoma occurs frequently on Betula spp. on the northern Hemisphere in Asia, Europe and North America (Barr 1978; Fan et al. 2016, 2018; Kobayashi 1970; Sogonov et al. 2008).

Other material examined. (all on twigs of Betula pendula except where noted): Austria, Kärnten, Gallizien, near Wildensteiner Wasserfall, grid square 9453/3, 11 Jul 2007, W. Jaklitsch (WU 31896); St. Margareten im Rosental, village area, grid square 9452/4, 27 May 1992, W. Jaklitsch (WU 15266); Trieblach, below Cihuc, grid square 9452/2, 14 Apr 2001, W. Jaklitsch W.J. 1740 (WU 31895, BPI 872036; culture A.R. 3637); Wograda, grid square 9452/3, 27 May 1997, W. Jaklitsch W.J. 1080 (WU 31894); same area and host, 31 May 2000, W. Jaklitsch W.J. 1474 (BPI 871332); Zabrde, grid square 9452/4, 7 Aug 1993, W. Jaklitsch (WU 15191); Niederösterreich, AspangbergSt. Peter, Außerneuwald, Höllergraben, grid square 8462/1, 24 May 2015, G. Koller (WU 36779); Edlitz, Königsberg, grid square 8562/2, 14 Jul 2007, W. Jaklitsch W.J. 3125 (specimen lost; culture MS = CBS 121894); Friedersbach, S and SO from the village, grid square 7457/2, 19 Aug 2001, W. Jaklitsch W.J. 1775 (BPI 872038; culture A.R. 3725); Neunkirchen, Gloggnitz, Saloder, village area, grid square 8361/2, 10 May 2015, G. Koller (WU 36752); Grimmenstein, between Eben and the Kulmriegel, grid
square 8362/4, 14 May 2015, G. Koller (WU 36812); Thaures, grid square 7156/1, 21 Sep 1997, W. Jaklitsch W.J. 1109 (WU 37048); Weidlingbach, grid square 7763/1, 27 Jun 1999, W. Jaklitsch W.J. 1329 (WU 37049); Oberösterreich, Schärding, Raab, Rothmayrberg, Rothmayr, 10 Mar 2012, H. Voglmayr (WU 38241); St. Willibald, Großer Salletwald, at the road B 129 to Peuerbach, grid square 7648/1, 31 Dec 2011, H. Voglmayr (WU 31899); Vienna, Alsergrund, at the hospital AKH, grid square 7764/3, 23 Jul 1993, W. Jaklitsch (WU 15537); Favoriten, Rothneusiedl, grid square 7864/3, 4 Sep 1993, W. Jaklitsch (WU 15758); ibidem, 22 Jan 1994, W. Jaklitsch (WU 15559). Czech Republic, Bohemia, Malonty, Hodonický potok, grid square 7253/3, 25 Sep 2003, W. Jaklitsch W.J. 2427 (WU 31898). Germany, no collection data (type material B 700016528 and B 700016529 of Melanconium betulinum from B). Italy, Sicily, Etna, SW Linguaglossa, near I Due Monti, on Betula aetnensis, 18 Jun 2016, H. Voglmayr \& W. Jaklitsch (WU 37047; culture D258). Japan, Nagano, Karuizawa, Mt. Asama, on Betula platyphylla Sukachev var. japonica (Miq.) Hara, 21 Sep 1965, T. Kobayashi (TFM FPH2710; culture MAFF 410225 = M3-9 = ME12). Poland, Narewka, NE Nowa Lewkowo, 27 Jul 2015, H. Voglmayr (WU 35970; culture D143).

Notes. Melanconis stilbostoma and its basionym Sphaeria stilbostoma (α papula) were mentioned by Tulasne (1856), but the combination was invalid due to the lack of a generic diagnosis; it was, however, validated in Tulasne and Tulasne (1863). According to Ibai Olariaga, who examined the type in UPS, there are 3 scalps of Betula bark containing many clustered perithecia with black ostiolar necks erumpent through a white disc; neither asci nor spores were found, but brown α-conidia are present abundantly. As the type collection was distributed in Fries' Scleromyceti Sueciae no. 145, we here lectotypify the species with the copy preserved in UPS, which we epitypify with a recent well-developed collection for which a culture and sequence data are available.

Several asexual morph names have been linked with Melanconis stilbostoma: Melanconium bicolor predates Melanconis stilbostoma, but there is no material extant in B, thus it cannot be checked; also Quercus but not Betula was given as host in the protologue. In addition, Melanconis stilbostoma is a well-known and well-defined name for the generic type of Melanconis. The second name is Melanconium betulinum, which is clearly a later synonym upon our examination of type material. Melanconium elevatum is another synonym. We have, however, not seen type material of this taxon, but the description and illustrations in Corda (1839) are conclusive. Melanconis stilbostoma is a very common fungus on birch throughout the northern hemisphere and likely the most conspicuous species of Melanconis due to the shiny white discs of both morphs, contrasting the dark conidial deposits. In older specimens, the latter may have olivaceous tones, but much less conspicuously than with M. larissae. The latter species differs also in a broad light zone present on its conidia. Melanconis stilbostoma was already cultured by Wehmeyer (1926b) on birch twigs from material, whose ascospore measurements were (13-)15$18 \times 5-8 \mu \mathrm{~m}$, corresponding to those of Barr (1978: $12-18.5 \times 6.5-8(-9) \mu \mathrm{m})$. Wehmeyer (1941) gave (13-) $15-19(-23) \times(5-) 6-7.5(-9) \mu \mathrm{m}$ for ascospores, which is in accordance with our measurements ((13.7-)16-19(-23) $\times(4.7-) 6.5-8.5(-9.7) \mu \mathrm{m})$; Kobayashi (1970) measured 13-25 $\times 4-7.5 \mu \mathrm{~m}$, mostly $15-20 \times 5-7 \mu \mathrm{~m}$ and Fan et
al. (2016) gave (19-)21.5-23.5(-25) $\times(6-) 7-8 \mu \mathrm{~m}$, which is slightly larger. Wehmeyer (1941) noted for α-conidia from culture and exsiccata mostly $10-16 \times 5.5-7.5 \mu \mathrm{~m}$ and $6.5-12 \times 2-2.5$ for β-conidia in culture; Barr (1978) found only α-conidia and measured $9-16.5 \times 5-7.5 \mu \mathrm{~m}$, which is in accordance with our observations from Europe (see above). Asian authors gave 9-16.5 $\times 5-7.5 \mu \mathrm{~m}$ (Kobayashi 1970) and (8.5-)9-$14.5(-16) \times(4.5-) 5-6(-6.5) \mu \mathrm{m}$ (Fan et al. 2016) for α-conidia, but, in some collections, they also found cylindrical to allantoid, unicellular, hyaline β-conidia, $9-11.5 \times$ $1.5-2.5 \mu \mathrm{~m}$ (Kobayashi 1970) or (9-)10-11(-12.5) $\times(2-) 2.5-3 \mu \mathrm{~m}$ (Fan et al. 2016).

Validation of neotypification

Here we also validate the neotypification of Melanconium pterocaryae, the basionym of Juglanconis pterocaryae by Voglmayr et al. (2019), where the new requirement to explicitly state the MBT number in the typification proposal was missing:

Juglanconis pterocaryae (Kuschke) Voglmayr \& Jaklitsch, in Voglmayr, Castlebury \& Jaklitsch, Persoonia 38: 150 (2017).

三 Melanconium pterocaryae Kuschke, Trudy Tiflissk. Bot. Sada 28: 25 (1913) (Basionym).
Typification. Austria, Oberösterreich, Bad Hall, Kurpark, on corticated twigs of Pterocarya fraxinifolia, 20 Oct 2017, W. Jaklitsch (WU 39981, neotype of Melanconium pterocaryae here proposed; ex neotype culture D272 = CBS 144326; MBT 389379).

Discussion

Circumscription of the genus Melanconis, morphology and delimitation from morphologically similar genera

As already mentioned in the Introduction, the genus Melanconis historically has been considered a large, heterogeneous genus. Many species were removed to other genera in the past on morphological grounds or due to different associated asexual morphs: Chapeckia (Barr 1978), Caudospora (Starbäck 1889), Hapalocystis (Fuckel 1863), Macrodiaporthe (Petrak 1920), Massariovalsa (Saccardo 1882; Barr 1978), Phaeodiaporthe (Petrak 1920), Pseudovalsa (Ces and De Not 1863) and Pseudovalsella (Höhnel 1918). Only recently, species were relegated to other genera and families based on molecular phylogenetic analyses: Alnecium (Voglmayr and Jaklitsch 2014), Caudospora (Voglmayr and Mehrabi 2018), Coryneum/ Pseudovalsa (De Silva et al. 2009), Hapalocystis (Jaklitsch and Voglmayr 2004), Juglanconis (Voglmayr et al. 2017, 2019), Lamproconium (Norphanphoun et al. 2016), Melanconiella (Voglmayr et al. 2012), Phaeo-
diaporthe (Voglmayr and Jaklitsch 2014), Stilbosporal Prosthecium (Voglmayr and Jaklitsch 2008, 2014).

All melanconis-like species form their fructifications in bark and lack black zones, which delimit the pseudostromata from surrounding bark tissue in genera like Diaporthe. The sexual morph in Melanconis sensu stricto is characterised by distinctly projecting white to yellowish ectostromatic discs, which continue as stromatic central columns downwards, by entostroma, which is optically scarcely different from internal bark tissue, by long cylindrical ostiolar necks, which converge in the disc, by hyaline bicellular ascospores with or without appendages, by absence of paraphyses at maturity and asci, which have an apical ring and are released from the subhymenium at maturity. Conidiomata of the asexual morph are acervular. They commonly produce two types of conidia, melanconium-like brown α-conidia and narrow hyaline to brownish β-conidia. Species of Dendrostoma in the Erythrogloeaceae (Jaklitsch and Voglmayr 2019; Jiang et al. 2019) also produce two types of conidia on the same conidiophores, but both are hyaline. Acervuli of Melanconis, however, particularly in M. marginalis, form chambers, in which first β-conidia are produced. Such chambers are still present when α-conidia are produced, but in the latest stages of maturation, the entire fertile region around the central column is filled with α-conidia and appears as a single locule. In species of the morphologically most similar genera Melanconiella (Voglmayr et al. 2012) and Juglanconis (Voglmayr et al. 2017, 2019), pseudostromata are less conspicuous and project to a lesser degree from the bark surface than in Melanconis. The central column in Melanconiella is usually grey, dull yellow to greenish, only rarely white and often poorly developed and ascospores may be hyaline or brown. The most striking difference between Melanconis and Melanconiella lies in the asexual morph. In Melanconis, each species produces α - and β-conidia in the same conidiomata, whereas each species of Melanconiella only produces a single type of conidia, either brown melanconiumlike (corresponding to α-conidia) or hyaline discosporina-like conidia (corresponding to β-conidia). Species of Juglanconis only produce melanconium-like conidia, which have a gelatinous sheath (also present in a few Melanconiella spp.) and differ from the other genera by the presence of verrucae on the inner surface of the conidial wall.

Molecular phylogeny, species numbers, concept and delimitation

In Melanconiella, 15 species have been recognised (Voglmayr et al. 2012; Fan et al. 2018) and five in Juglanconis (Voglmayr et al. 2017, 2019). Fan et al. $(2016,2018)$ included five species of Melanconis sensu stricto in their phylogenetic trees. Here we add three species, of which two are new. While all betulicolous species, except for the basal M. betulae, formed a highly supported clade, those on Alnus were scattered in between, so no general evolutionary pattern in host association could be revealed. Remarkably, within species, a commonly high genetic divergence and variability was observed (e.g. within M. groenlandica, M. itoana, M. marginalis and M. stilbostoma; see Fig. 1), contrary to Melanconiella and Juglanconis, where the species clades were
genetically rather homogeneous (Voglmayr et al. 2012, 2017, 2019; Fan et al. 2018). This may, in part, be attributed to the wider geographic distribution and host range of these Melanconis species, but it may also indicate that they are within the process of evolutionary radiation and speciation. Although the species concept in Melanconis is primarily based on phylogenetic analyses, we consider morphological and ecological evidence as important criteria for taxonomic conclusions. The taxa on Betula spp. may be more or less easily distinguished by differences in the morphology of α-conidia and by ecology: α-conidia of M. larissae have a large light-coloured zone, those of M. itoana have a $1 / \mathrm{w}$ ratio of >3 and those of M. betulae and M. groenlandica, as given by the respective authors, are shorter than those of the other species, albeit similar. However, the latter two species occur on different host species: M. betulae on Betula albosinensis, M. groenlandica on Betula maximowicziana, B. nana and B. papyrifera.

Taxa on Alnus spp. may pose difficulties in differentiation. Ascospores of M. alni and M. marginalis differ in shape, size and particularly in appendages from each other. Nonetheless, all features are overlapping and, for example, ascospore appendages of M. alni are not always long and pointed, particularly in old fungarium specimens, but show some similarities with those of M. marginalis. In such cases, it is important to have the asexual morph in order to study its conidia, which are strikingly different from those of M. marginalis. The same applies to Melanconis accessions from the western North American Alnus rubra, where the co-occurring M. pacifica and M. marginalis can be reliably distinguished by their conidia (see, for example, also fig. 2 in Sieber et al. 1991).

The situation is particularly complex within M. marginalis, which splits up into four subclades in our phylogenetic analyses. Morphology amongst those subclades is very similar, measurements are heavily overlapping and only subtle differences or tendencies are recognisable. In addition to the lack of distinctive morphological characters, there is also a substantial amount of genetic variation within the two of the four subclades, for which several accessions are available, particularly within M. marginalis sensu stricto, which will certainly increase if more accessions from additional geographic areas and Alnus species and subspecies are added. Only a small part of the distribution area of M. marginalis is yet sampled. We, therefore, do not think that these subclades should be interpreted as different species, but as a single variable species. Acknowledging the geographical and genetic differentiaton, we decided to classify them as subspecies that may be within the process of speciation. Vicariant speciation may be the reason for splitting of the M. marginalis clade into two main clades, but the residual two clades that are only based on a single and two specimens, were gathered within a small restricted region in Austria and northern Italy. The internal structure of the whole clade may therefore change, in particular, if isolates from additional specimens collected in western and central Russia were added to the phylogenetic analyses and if sequences of all phylogenetic markers of Melanconis marginalis subsp. italica were included.

Misidentification of M. alni and M. marginalis is also prominent in GenBank sequences that were used in all published phylogenetic analyses including these species,
resulting in an interchanged application of the names. Based on, as we now know, incorrect assumptions purported in the literature (e.g. Wehmeyer 1941) that M. marginalis is a North American and M. alni a European species, Central European accessions of M. marginalis were misidentified as M. alni. Vice versa, M.E. Barr misidentified her Canadian isolate from Alnus rubra, that is closely related to M. alni and here described as M. pacifica, as M. marginalis. Therefore, all sequences currently deposited in GenBank as M. alni actually represent M. marginalis, while those of M. marginalis belong to M. pacifica.

Hosts

While Juglanconis is confined to the Juglandaceae, subtribus Juglandinae (Voglmayr et al. 2017, 2019), both Melanconiella and Melanconis occur on the Betulaceae. So far, species of Melanconiella primarily occur on the subfamily Coryloideae with the exception of M. betulae and M. decorahensis, which inhabit Betula (Voglmayr et al. 2012; Fan et al. 2018). In contrast, Melanconis is confined to Alnus and Betula, the sole genera of the subfamily Betuloideae. While all known Melanconis species are highly host specific on the generic level (i.e. no Melanconis species occurs on Alnus as well as Betula hosts), host specificity is less expressed and variable concerning their host species range. In addition, the same host species is commonly used by more than one Melanconis species. For instance, the widely distributed M. stilbostoma has been recorded from various species of Betula, which is likewise true for M. groenlandica (for confirmed hosts, see Table 1). Conversely, M. betulae is so far only known from a single host, B. albosinensis, which, however, is also host for M. itoana (Fan et al. 2016, 2018). For Melanconis species on Alnus, M. alni and M. marginalis show some host specificity but are not strictly host specific; while A. glutinosa and A. alnobetula are apparently only colonised by M. alni and M. marginalis, respectively, both species occur on A. incana. Melanconis pacifica, here described as a new species, seems to be host specific on A. rubra, which, however, also harbours M. marginalis. Therefore, the host species are of limited use for species identification and additional investigations are required to elucidate the host range of the various Melanconis species.

Acknowledgments

We thank David Malloch for fresh material of Melanconis marginalis subsp. marginalis, Amy Rossman for providing Melanconis cultures, Ibai Olariaga for studying and Åsa Kruys for providing information on the type of Sphaeria stilbostoma in UPS, Paul Kirk for nomenclatural information, the curators of B, BPI, DAOM, DAVFP, NYS, PC and TFM for loan of herbarium material and Irmgard Greilhuber and Walter Till (WU) for incorporating the specimens in the herbarium. The financial support by the Austrian Science Fund (FWF; project P27645-B16) to HV is gratefully acknowledged.

References

Barr ME (1978) The Diaporthales of North America. Mycologia Memoirs 7: 1-232.
Bohn M (1993) Myrothecium groenlandicum sp. nov., a presumed endophytic fungus of Betula nana. Mycotaxon 46: 335-341.
Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1 999.12061051

Castlebury LA, Rossman AY, Jaklitsch WM, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94: 1017-1031. https://doi.org/10.1080/15572536.2003.11833157
Cesati V de, Notaris G de (1863) Schema di classificazione degli sferiacei Italici aschigeri piu o meno appartenenti al genere Sphaeria nell'antico significato attribuitogli de Persoon. Commentario della Società Crittogamologica Italiana 1(4): 177-240.
Corda, ACJ (1839) Icones Fungorum hucusque Cognitorum 3: i-vi, 1-55, plates 1-9. J.G. Calve, Prague.
De Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41: 183-189. https://doi.org/10.1111/j.14390507.1998.tb00321.x

De Silva H, Castlebury LA, Green S, Stone JK (2009) Characterisation and phylogenetic relationships of Anisogramma virgultorum and A. anomala in the Diaporthales (Ascomycota). Mycological Research 113: 73-81. https://doi.org/10.1016/j.mycres.2008.08.008
Fan XL, Du Z, Liang Y, Tian CM (2016) Melanconis (Melanconidaceae) associated with Betula spp. in China. Mycological Progress 15: 40. https://doi.org/10.1007/s11557-016-1163-2
Fan XL, Du Z, Bezerra JDP, Tian CM (2018) Taxonomic circumscription of melanconis-like fungi causing canker disease in China. MycoKeys 42: 89-124. https://doi.org/10.3897/ mycokeys.42.29634
Fuckel L (1863) Fungi rhenani exsiccati, fasc. 6: no. 585 (in sched.)
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Höhnel F von (1918) Mycologische Fragmente. Annales Mycologici 16: 35-174.
Jaap O (1917) Weitere Beiträge zur Pilzflora der Schweiz. Annales Mycologici 15: 97-124.
Jaklitsch WM (2009) European species of Hypocrea - Part I. The green-spored species. Studies in Mycology 63: 1-91. https://doi.org/10.3114/sim.2009.63.01
Jaklitsch WM, Baral HO, Lücking R, Lumbsch HT, Frey W (2016) Syllabus of plant families - A. Engler's Syllabus der Pflanzenfamilien Part 1/2: Ascomycota. $13^{\text {th }}$ edn. Borntraeger, Berlin.
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocreal Trichoderma. Mycologia 97: 1365-1378. https://doi.org/10.1080/15572536.2006.11832743
Jaklitsch WM, Stadler M, Voglmayr H (2012) Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 104: 925-941. https://doi. org/10.3852/11-327

Jaklitsch WM, Voglmayr H (2004) Hapalocystis occidentalis - a new species of Diaporthales from North America and a key to the species of Hapalocystis. Studies in Mycology 50: 229-234. Jaklitsch WM, Voglmayr H (2019) European species of Dendrostoma (Diaporthales). MycoKeys 59: 1-26. https://doi.org/10.3897/mycokeys.59.37966
Jensen JD (1984) Melanconis marginalis from Northern Idaho. Mycotaxon 20: 275-281.
Jiang N, Fan X-L, Crous PW, Tian C-M (2019) Species of Dendrostoma (Erythrogloeaceae, Diaporthales) associated with chestnut and oak canker diseases in China. MycoKeys 48: 67-96. https://doi.org/10.3897/mycokeys.48.31715
Kobayashi T (1968) Notes on Japanese species of the genus Melanconium. Transactions of the Mycological Society of Japan 9: 1-11.
Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with special reference to their life-histories. Bulletin of the Government Forest Experimental Station Meguro 226: 1-242.
Link HF (1825) Melanconium. In: Willdenow CF (Ed.) Caroli a Linné Species plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas, editio 4, 6(2): 89-93.
Kowalski T, Kehr RD (1992). Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44: 137-168.
Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799-1808.
Müller K (2004) PRAP - computation of Bremer support for large data sets. Molecular Phylogenetics and Evolution 31: 780-782. https://doi.org/10.1016/j.ympev.2003.12.006
Norphanphoun C, Hongsanan S, Doilom M, Bhat DJ, Wen TC, Senanayake IC, Bulgakov TS, Hyde KD (2016) Lamproconiaceae fam. nov. to accommodate Lamproconium desmazieri. Phytotaxa 270: 89-102. https://doi.org/10.11646/phytotaxa.270.2.2
O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103-116. https://doi.org/10.1006/mpev.1996.0376
Petrak F (1920) [1919] Mykologische Notizen. I. Annales Mycologici 17: 59-100.
Petrak F (1941) Mykologische Notizen. Annales Mycologici 39: 251-349.
Petrini O, Fisher PJ (1988) A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Transactions of the British Mycological Society 91: 233-238. https://doi.org/10.1016/S0007-1536(88)80210-9
Podlahová R (1973) Über einige Pyrenomyceten auf Alnus viridis (Chaix) Lam. et DC. aus Südböhmen. Ceska Mykologie 27: 84-97.
Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW, Gryzenhout M, Jaklitsch WM, Mejia LC, Stoykov D, Udayanga D, Voglmayr H, Walker DM (2015) Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 6: 145-154. https://doi.org/10.5598/imafungus.2015.06.01.09
Saccardo PA (1882) Fungi boreali-Americani. Michelia 2(8): 564-582.
Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SSN, Jeewon R, Phillips AJL, Bhat JD, Perera RH, Li QR, Li WJ, Tangthirasunun N, Norphanphoun C, Karunar-
athna SC, Camporesi E, Manawasighe IS, Al-Sadi AM, Hyde KD (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86: 217-296. https://doi.org/10.1016/j.simyco.2017.07.003
Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN, Norphanphoun C, Karunarathna A, Pem D, Perera RH, Camporesi E, McKenzie EHC, Hyde KD, Karunarathna SC (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Diversity 93: 241-443. https://doi.org/10.1007/s13225-018-0410-z
Sieber TN, Sieber-Canavesi F, Petrini O, Ekramoddoullah AKM, Dorworth CE (1991) Characterization of Canadian and European Melanconium from some Alnus species by morphological, cultural and biochemical studies. Canadian Journal of Botany 69: 2170-2176. https://doi.org/10.1139/b91-272
Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity \& Evolution 12: 335-337. https://doi.org/10.1007/s13127-011-0056-0
Sogonov MV, Castlebury LA, Rossman AY, et al. (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Studies in Mycology 62: 1-79. https://doi.org/10.3114/sim.2008.62.01
Stamatakis E (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. https://doi. org/10.1093/bioinformatics/btl446
Starbäck K (1889) Ascomyceter från Öland och Östergötland. Bihang till Kungliga Svenska Vetenskaps-Akademiens Handlingar 15: 1-28.
Sutton BC (1964) Melanconium Link ex Fries. Persoonia 3: 193-198.
Swofford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
Szász E (1966) Ciuperci parazite şi saprofite pe Alnus viridis (Chaix) Lam. et DC. Contribuţii Botanice Cluj 2: 27-34.
Thiers B (2019) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/
Tulasne LR (1856) Note sur l`appareil reproducteur multiple des Hypoxylées (DC.) ou Pyrénomycètes (Fr.). Annales des Sciences Naturelles, Botanique, sér. 4, 5: 107-118.
Tulasne LR, Tulasne C (1863) Selecta Fungorum Carpologia: Xylariei-Valsei-Sphaeriei. 2. Imperial Typograph, Paris.
Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten. https:// doi.org/10.12705/Code. 2018
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

Voglmayr H, Akulov OY, Jaklitsch WM (2016) Reassessment of Allantonectria, phylogenetic position of Thyronectroidea, and Thyronectria caraganae sp. nov. Mycological Progress 15: 921. https://doi.org/10.1007/s11557-016-1218-4

Voglmayr H, Castlebury LA, Jaklitsch W (2017) Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales). Persoonia 38: 136-155. https://doi. org/10.3767/003158517X694768
Voglmayr H, Jaklitsch WM (2008) Prosthecium species with Stegonsporium anamorphs on Acer. Mycological Research 112: 885-905. https://doi.org/10.1016/j.mycres.2008.01.020
Voglmayr H, Jaklitsch WM (2011) Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae). Fungal Diversity 46: 133-170. https://doi.org/10.1007/s13225-010-0078-5
Voglmayr H, Jaklitsch WM (2014) Stilbosporaceae resurrected: generic reclassification and speciation. Persoonia 33: 61-82. https://doi.org/10.3767/003158514X684212
Voglmayr H, Jaklitsch WM (2017) Corynespora, Exosporium and Helminthosporium revisited - new species and generic reclassification. Studies in Mycology 87: 43-76. https://doi. org/10.1016/j.simyco.2017.05.001
Voglmayr H, Jaklitsch WM, Mohammadi H, Kazemzadeh Chakusary M (2019) The genus Juglanconis (Diaporthales) on Pterocarya. Mycological Progress 18: 425-437. https://doi. org/10.1007/s11557-018-01464-0
Voglmayr H, Mehrabi M (2018) Molecular phylogeny and a new Iranian species of Caudospora (Sydowiellaceae, Diaporthales). Sydowia 70: 67-80.
Voglmayr H, Rossman AY, Castlebury LA, Jaklitsch WM (2012) Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). Fungal Diversity 57: 1-44. https:// doi.org/10.1007/s13225-012-0175-8
Walker DM, Castlebury LA, Rossman AY, White Jr JF (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Molecular Phylogenetics and Evolution 64: 500-512. https://doi.org/10.1016/j. ympev.2012.05.005
Wehmeyer LE (1926a) Cultural life-histories of Diaporthe. I. Papers from the Michigan Academy of Science, Arts and Letters 6: 377-396.
Wehmeyer LE (1926b) Cultural life histories of Melanconis and Pseudovalsa. Mycologia 18: 257-273. https://doi.org/10.1080/00275514.1926.12020516
Wehmeyer LE (1941) A Revision of Melanconis, Pseudovalsa, Prosthecium, and Titania. University of Michigan Studies, Scientific Series 14: 1-161. [repr. Bibliotheca Mycologica 41 (1973), Cramer, Lehre]

Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 43544355. https://doi.org/10.1093/nar/22.20.4354

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. (Eds) PCR protocols: A guide to methods and applications: 315-322. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Arboricolonus simplex gen. et sp. nov. and novelties in Cadophora, Minutiella and Proliferodiscus from Prunus wood in Germany

Steffen Bien', Ulrike Damm ${ }^{1,2}$
I Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 2 International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
Corresponding author: Ulrike Damm (ulrike.damm@senckenberg.de)

Abstract

Academic editor: D. Haelewaters | Received 25 September 2019 | Accepted 3 December 2019 | Published 2 March 2020 Citation: Bien S, Damm U (2020) Arboricolonus simplex gen. et sp. nov. and novelties in Cadophora, Minutiella and Proliferodiscus from Prunus wood in Germany. MycoKeys 63: 119-161. https://doi.org/10.3897/mycokeys.63.46836

Abstract

During a survey on fungi associated with wood necroses of Prunus trees in Germany, strains belonging to the Leotiomycetes and Eurotiomycetes were detected by preliminary analyses of ITS sequences. Multilocus phylogenetic analyses (LSU, ITS, TUB, EF-1a, depending on genus) of 31 of the 45 strains from Prunus and reference strains revealed several new taxa, including Arboricolonus gen. nov., a new genus in the Helotiales (Leotiomycetes) with a collophorina-like asexual morph. Seven Cadophora species (Helotiales, Leotiomycetes) were treated. The 29 strains from Prunus belonged to five species, of which C. luteoolivacea and C. novi-eboraci were dominating; C. africana sp. nov., C. prunicola sp. nov. and C. ramosa sp. nov. were revealed as new species. The genus Cadophora was reported from Prunus for the first time. Phialophora bubakii was combined in Cadophora and differentiated from C. obscura, which was resurrected. Asexual morphs of two Proliferodiscus species (Helotiales, Leotiomycetes) were described, including one new species, Pr. ingens sp. nov. Two Minutiella species (Phaeomoniellales, Eurotiomycetes) were detected, including the new species M. pruni-avium sp. nov. Prunus avium and P. domestica are reported as host plants of Minutiella.

Keywords

Ascomycota, Eurotiomycetes, Leotiomycetes, new taxa, phylogeny, systematics

Introduction

In order to study the mycobiome of wood necroses of economically important Prunus species in Germany, a survey has been conducted using isolation techniques. Based on preliminary analyses of generated ITS sequences, several strains belonging to the Leotiomycetes and Eurotiomycetes were detected. Some of them were recently identified as species of Collophorina and related genera (Bien et al. 2020). Further strains showed morphological or genetical affiliation to the genera Cadophora, Proliferodiscus (Leotiomycetes) and Minutiella (Eurotiomycetes).

Leotiomycetes and Eurotiomycetes are both ecologically and morphologically highly diverse classes (Geiser et al. 2006, 2015; Wang et al. 2006b; LoBuglio and Pfister 2010; Johnston et al. 2019). Members of the Leotiomycetes have been described as plant pathogens, especially wood rot fungi, endophytes, nematode-trapping and my-corrhiza-forming fungi, as well as terrestrial and aquatic saprobes (Wang et al. 2006a; Hustad and Miller 2011). Eurotiomycetes are commonly known as saprotrophs and parasites of plants and animals; however, the number of pathogens is relatively low, compared to Sordariomycetes or Dothideomycetes (Geiser et al. 2006, 2015).

The genus Cadophora (Ploettnerulaceae, Helotiales, Leotiomycetes) was established in 1927 based on C. fastigiata (Lagerberg et al. 1927). Melin and Nannfeldt (1934) added five new species to Cadophora, while Davidson (1935) described two additional species that were isolated from stained wood or pulpwood products. Subsequently, Conant (1937) determined that Phialophora and Cadophora were congeneric and transferred the eight species of Cadophora to Phialophora. In the monograph of Phialophora, Schol-Schwarz (1970) included C. fastigiata and C. malorum, as well as Margarinomyces bubakii in Phialophora. Gams (2000) reinstated the genus Cadophora for phialophora-like species with more or less pigmented hyphae and pale phialides (C. fastigiata, C. melinii, C. malorum, C. repens). For some of these, a relationship with sexual morphs in some discomycete genera, such as Mollisia and Pyrenopeziza, has been demonstrated (Le Gal and Mangenot 1960, 1961). This connection was confirmed by LSU sequence analysis by Harrington and McNew (2003). However, to date, the type species of none of the genera has been epitypified. Currently, the genus Cadophora comprises 17 species. Species of Cadophora have been isolated from plants (e.g. Di Marco et al. 2004; Gramaje et al. 2011; Crous et al. 2015; Travadon et al. 2015; Walsh et al. 2018), soil (Kerry 1990; Hujslová et al. 2010; Agustí-Brisach et al. 2013) and decaying wood (Nilsson 1973; Blanchette et al. 2004, 2010).

Haines and Dumont (1983) compared specimens of Dasyscyphus inspersus (syn. Peziza inspersa) with the type species of the genera Dasyscyphus and Lachnum and revealed this species not to be congeneric with either of them. Based on spore, hair, paraphysis and subiculum morphology, they erected the new genus Proliferodiscus within the family Hyaloscyphaceae (Helotiales, Leotiomycetes). Today, the genus Proliferodiscus comprises eight species and is known from woody hosts in tropical and temperate regions worldwide (Haines and Dumont 1983; Spooner 1987; Cantrell and Hanlin 1997; McKenzie et al. 2000; Hofton et al. 2009; Han et al. 2014a; Haelewaters et al. 2018; Ekanayaka et al. 2019).

Crous and Gams (2000) described the genus Phaeomoniella (Celotheliaceae, Phaeomoniellales, Eurotiomycetes) based on Pa. chlamydospora, the causal agent of Esca disease of grapevine wood (Bertsch et al. 2013; Fontaine et al. 2016; Gramaje et al. 2018). Damm et al. (2010) discovered several new Phaeomoniella species from Prunus wood in South Africa that were combined in new genera by Crous et al. (2015). One of them, Minutiella tardicola (syn. Pa. tardicola), was characterised by the very slow growth of the cultures and minute pycnidia (Damm et al. 2010). Most members of Celotheliaceae have been found on Prunus (Damm et al. 2010) or other woody hosts from angiosperms and gymnosperms (Crous and Gams 2000; Nordén et al. 2005; Lee et al. 2006; Crous et al. 2008, 2009, 2015, 2016; Zhang et al. 2012; Úrbez-Torres et al. 2013; Yurkewich et al. 2017).

In this study, we aim to (1) systematically place strains isolated from necrotic wood of Prunus trees in Germany, as well as some additional strains tentatively identified as Cadophora within Leotiomycetes and Eurotiomycetes and (2) formally describe new taxa.

Methods

Sampling and fungal isolation

Branches with wood symptoms (e.g. canker, necroses, wood streaking, gummosis) were sampled from plum (Prunus domestica), sour cherry (P. cerasus) and sweet cherry (P. avium) orchards in Saxony, Lower Saxony and Baden-Württemberg, Germany, in 2015 and 2016. Additionally, a wood sample from a sour cherry tree located in a garden in Bavaria, as well as three strains previously isolated from wood of P. salicina in South Africa and two Phialophora bubakii strains, all tentatively identified as Cadophora spp. in preliminary analyses, were included. Wood pieces ($5 \times 5 \times 5 \mathrm{~mm}$) from the transition zone of symptomatic to non-symptomatic wood tissue, as well as pieces of the same size from non-symptomatic wood of the same branch, were surface sterilised (30 s in 70% ethanol, 1 min in $3.5 \% \mathrm{NaOCl}, 30 \mathrm{~s}$ in 70% ethanol), washed for 1 min in sterilised water and placed on synthetic nutrient-poor agar medium (SNA; Nirenberg 1976), as well as oatmeal agar medium (OA; Crous et al. 2019), both supplemented with $100 \mathrm{mg} / \mathrm{l}$ penicillin, $50 \mathrm{mg} / \mathrm{l}$ streptomycin sulphate and $1 \mathrm{mg} / \mathrm{l}$ chloramphenicol. After incubation for several days at $25^{\circ} \mathrm{C}$, hyphal tips of developing fungi were transferred to SNA medium with a sterilised needle. Single-conidial isolates were obtained from the strains for further study. Sampling and isolation of the strains from South Africa was similar (Damm et al. 2007).

The strains are maintained in the culture collections of the Senckenberg Museum of Natural History Görlitz, Germany (GLMC), the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands (CBS) and the German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany (DSMZ). Specimens (dried cultures), including type specimens were deposited in the fungarium of the Senckenberg Mu seum of Natural History Görlitz (GLMC).

Morphological analysis

To enhance sporulation, autoclaved filter paper and double-autoclaved pine needles were placed on the surface of the SNA medium. The cultures were incubated in the dark at $25^{\circ} \mathrm{C}$. Colony growth and characters on SNA and OA, for some strains additionally on potato dextrose agar (PDA; Crous et al. 2019) and malt extract agar (MEA; Oxoid Ltd., England; 1.5% agar, Difco, USA), were noted after 2 and 4 wk . Colony colours were rated according to Rayner (1970). After 2 or 4 wk , microscopic preparations were made in clear lactic acid and observations and measurements (30 measurements per structure) were made with a Nikon SMZ18 stereomicroscope (SM) or with a Nikon Eclipse Ni-U light microscope with differential interference contrast (LM). Photographic images were captured with Nikon Digital Sight DS-Fi2 cameras installed on the above-mentioned microscopes, making use of the Nikon NIS-Elements software (v.4.30).

DNA extraction, PCR amplification and sequencing

Of the forty-two strains isolated from Prunus wood in Germany, three strains from Prunus wood in South Africa, as well as two strains of Phialophora bubakii that were included in this study, 34, 4 and 8 strains had been identified as species of Cadophora, Minutiella and Proliferodiscus, respectively, in preliminary analyses based on ITS sequences. Twentytwo Cadophora strains, six Proliferodiscus strains, all Minutiella strains as well as an unidentified Leotiomycete strain were selected for phylogenetic analyses (Table 1).

Genomic DNA of the isolates was extracted using the method of Damm et al. (2008). A partial sequence of the 28 S nrDNA (LSU) and the 5.8 S nuclear ribosomal gene with the two flanking internal transcribed spacers ITS1 and ITS2 (ITS) were amplified and sequenced using the primer pairs LR0R (Rehner and Samuels 1994) + LR5 (Vilgalys and Hester 1990) and ITS1F (Gardens and Bruns 1993) + ITS-4 (White et al. 1990), respectively. Additionally, partial sequence of the β-tubulin gene (TUB) and the translation elongation factor $1 \alpha(E F-1 a)$ of strains belonging to the genus Cadophora were generated using the primer pairs BTCadF + BTCadR (Travadon et al. 2015) and EF1-688F + EF1-1251R (Alves et al. 2008), respectively. The β-tubulin gene of the genus Minutiella was sequenced using the primer pair $\mathrm{Bt} 2 \mathrm{a}+\mathrm{Bt} 2 \mathrm{~b}$ (Glass and Donaldson 1995).

The PCR reaction mixture contained $1 \mu \mathrm{l}$ of 1:10 DNA template, $2.5 \mu \mathrm{l} 10 \mathrm{X}$ buffer (Peqlab, Erlangen, Germany), 1μ l of each primer (10 mM), $2.5 \mu \mathrm{MgCl}_{2}(25 \mathrm{mM})$, $0.1 \mu \mathrm{l}$ Taq polymerase (0.5 U , Peqlab, Erlangen, Germany) and $2.5 \mu \mathrm{l}$ of 2 mM dNTPs. Each reaction was made up to a final volume of $20 \mu \mathrm{l}$ with sterile water. DNA amplifications were carried out in a Mastercycler pro S (Eppendorf, Hamburg, Germany). The amplification conditions for ITS and $E F-1 a$ were: initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min ; followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $51^{\circ} \mathrm{C}$ for 30 s and extension at $72^{\circ} \mathrm{C}$ for 60 s ; and a final extension step at $72^{\circ} \mathrm{C}$ for 3 min . The amplification conditions for the primer pair $\mathrm{Bt} 2 \mathrm{a}+\mathrm{Bt} 2 \mathrm{~b}$ were: initial denaturation at
$94^{\circ} \mathrm{C}$ for 4 min ; followed by 38 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 60 s , annealing at $61^{\circ} \mathrm{C}$ for 60 s and extension at $72^{\circ} \mathrm{C}$ for 45 s ; and a final extension step of 5 min at $72{ }^{\circ} \mathrm{C}$. For amplifications of LSU and $T U B$ with the primer pair BTCadF + BTCadR, the PCR conditions were set according to Paulin and Harrington (2000) and Travadon et al. (2015), respectively.

The PCR products were visualised on a 1% agarose gel and sequenced using the same primers by the Senckenberg Biodiversity and Climate Research Centre (BiK-F) laboratory (Frankfurt, Germany). The forward and reverse sequences were assembled by using BioEdit Sequence Alignment Editor (v. 7.2.5; Hall 1999).

Phylogenetic analysis

For the phylogenetic analyses, sequences, especially those of ex-type strains, were downloaded from GenBank and added to the sequences generated in this study and those of the appropriate outgroup sequences in four datasets. In order to determine the generic placement of strain GLMC 459, sequences of close matches from blastn searches with its LSU and ITS sequences were combined with sequences of the phylogenetic reassessment of Hyaloscyphaceae by Han et al. (2014b) (dataset 1). Three datasets were generated to determine the systematic position of strains of the genera Cadophora (ITS, TUB, EF-1a; dataset 2), Minutiella (LSU, ITS, TUB; dataset 3) and Proliferodiscus (LSU, ITS; dataset 4). The datasets were aligned automatically using MAFFT v. 7.308 (Katoh et al. 2002, Katoh and Standley 2013) and manually adjusted where necessary.

The phylogenetical analyses were conducted using Bayesian Inference (BI), Maximum Likelihood (ML) and Maximum Parsimony (MP). For BI analyses, the best fit model of evolution for each partition was estimated by MEGA7 (Kumar et al. 2016). Posterior probabilities were determined by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.2.6 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) as implemented in Geneious v. 10.2.2 (Kearse et al. 2012), using the estimated models of evolution. For each dataset, four simultaneous Markov chains were run for 1 million generations and trees were sampled every $100^{\text {th }}$ generation. The first 2000 trees, which represent the burn-in phase of the analyses, were discarded and the remaining 8000 trees were used to calculate posterior probabilities in the majority rule consensus trees. The ML analyses were performed by RAxML v. 8.2.11 (Stamatakis 2006, 2014) as implemented in Geneious v. 10.2.2 (Kearse et al. 2012), using the GTRGAMMA model with the rapid bootstrapping and search for best scoring ML tree algorithm, including 1000 bootstrap replicates. The MP analyses were performed with MEGA7 (Kumar et al. 2016) using tree-bisection-reconnection (TBR) as the branch-swapping algorithm. The robustness of the trees was evaluated by 1000 bootstrap replicates and 10 random sequence additions. Tree length, consistency index, retention index and composite index of the resulting trees were calculated. The DNA sequences generated in this study were deposited in GenBank (Table 1), the alignments in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S24703).

Table I. List of strains analysed in this study, with collection details and GenBank accession numbers.

Species	Accession no. ${ }^{1}$	Host/ substrate	Country	GenBank no. ${ }^{2}$			
				LSU	ITS	TUB	EF1-a
Arboricolonus simplex	GLMC 459 ${ }^{\text {T }}$	Prunus domestica	Germany	MN232924	MN232935	-	-
Cadophora africana	CBS $120890{ }^{\text {T }}$	Prunus salicina	South Africa	-	MN232936	MN232967	MN232988
Cadophora bubakii (as Phialophora bubakii)	CBS 198.30 ${ }^{\text {T }}$	margarine	Czech Republic	-	MH855111	-	MN232989
Cadophora luteo-olivacea	GLMC 517	Prunus domestica	Germany	-	MN232937	MN232968	MN233003
	GLMC 1264	Prunus domestica	Germany	-	MN232938	MN232969	MN233004
	GLMC 1310	Prunus domestica	Germany	-	MN232939	MN232970	MN233005
	GLMC 1517	Prunus domestica	Germany	-	MN232940	MN232971	MN233006
	GLMC 1545	Prunus domestica	Germany	-	MN232941	MN232972	MN233007
Cadophora novi-eboraci	GLMC 239	Prunus cerasus	Germany	-	MN232942	MN232973	MN232990
	GLMC 273	Prunus cerasus	Germany	-	MN232943	MN232974	MN232991
	GLMC 274	Prunus cerasus	Germany	-	MN232944	MN232975	MN232992
	GLMC 342	Prunus cerasus	Germany	-	MN232945	MN232976	MN232993
	GLMC 688	Prunus cerasus	Germany	-	MN232946	MN232977	MN232994
	GLMC 1472	Prunus cerasus	Germany	-	MN232947	MN232978	MN232995
Cadophora obscura (as Phialophora bubakii)	CBS 269.33	fresh water	Sweden	-	MN232948	-	MN232996
Cadophora prunicola	CBS $120891^{\text {T }}$	Prunus salicina	South Africa	-	MN232949	MN232979	MN232997
	STEU 6103	Prunus salicina	South Africa	-	MN232950	-	-
	GLMC 276	Prunus cerasus	Germany	-	MN232951	MN232980	MN232998
	GLMC 362	Prunus domestica	Germany	-	MN232952	-	-
	GLMC 735	Prunus cerasus	Germany	-	MN232953	MN232981	MN232999
	GLMC 1574	Prunus domestica	Germany	-	MN232954	MN232982	MN233000
	GLMC 1633	Prunus domestica	Germany	-	MN232955	MN232983	MN233001
Cadophora ramosa	GLMC $377{ }^{\text {T }}$	Prunus cerasus	Germany	-	MN232956	MN232984	MN233002
Minutiella pruni-avium	GLMC $1624^{\text {T }}$	Prunus avium	Germany	MN232925	MN232957	MN232985	-
	GLMC 1667	Prunus avium	Germany	MN232926	MN232958	MN232986	-
Minutiella sp.	GLMC 1636	Prunus domestica	Germany	MN232927	MN232959	-	-
	GLMC 1687	Prunus domestica	Germany	MN232928	MN232960	MN232987	-
Proliferodiscus ingens	GLMC $1751^{\text {T }}$	Prunus avium	Germany	MN232929	MN232961	-	-
Proliferodiscus sp.	GLMC 460	Prunus domestica	Germany	MN232930	MN232962	-	-
	GLMC 470	Prunus domestica	Germany	MN232931	MN232963	-	-
	GLMC 502	Prunus domestica	Germany	MN232932	MN232964	-	-
	GLMC 1301	Prunus domestica	Germany	MN232933	MN232965	-	-
	GLMC 1761	Prunus avium	Germany	MN232934	MN232966	-	-

${ }^{1}$ CBS: Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; GLMC: Culture collection of Senckenberg Museum of Natural History Görlitz, Görlitz, Germany; STEU: University of Stellenbosch, Stellenbosch, South Africa.
${ }^{2}$ LSU: nuclear large subunit ribosomal DNA; ITS: internal transcribed spacers and intervening 5.8 S nrDNA; TUB: β-tubulin gene; EF1-a: translation elongation factor $1-\alpha$ gene.
Sequences generated in this study are emphasised in bold face. ${ }^{\mathrm{T}}$ ex-type cultures.

Results

Phylogenetic analyses

The combined sequence dataset 1 consisted of 59 isolates including the outgroup Geoglossum nigritum strain AFTOL-ID 56 and comprised 1540 characters, of which 436 characters were parsimony-informative, 578 variable and 885 constant. The gene boundaries on the LSU-ITS multi-locus alignment were as follows: LSU: 1-890 and ITS: 891-1540. The final ML optimisation likelihood of ML analysis was: $\operatorname{lnL}=$ -15669.074659. One most parsimonious tree was generated by MP analysis with tree length: 693 steps, consistency index: 0.298780 , retention index: 0.555126 and composite index: 0.186644 and 0.165861 for all sites and parsimony informative sites, respectively. The BI phylogeny, including BI posterior probability values as well as ML and MP bootstrap support values, is shown in Fig. 1.

The clades in Fig. 1 represent all clades of the multi-locus phylogeny of the "Hyaloscyphaceae" by Han et al. (2014b) as well as clades formed by sequences of the closest matches from blastn searches with the ITS and LSU sequences of strain GLMC 459 in GenBank. Strain GLMC 459 from P. domestica in Germany forms a long single-strain clade that does not belong to any of the above-mentioned clades and is located close to Polydesmia pruinosa TNS-F-12764, strains belonging to Clade 9 in Han et al. (2014b) and a clade formed by three strains of Polyphilus. The clade, formed by GLMC 459 and these taxa, is not supported.

The combined sequence dataset 2 of Cadophora consisted of 70 isolates including the outgroup Hyaloscypha finlandica CBS 444.86 and comprised 1594 characters, of which 498 characters were parsimony-informative, 692 variable and 859 constant. The gene boundaries in the multi-locus alignment were as follows: ITS: $1-575$, TUB: 576-1133 and EF-1a: 1134-1594. Five most parsimonious trees were generated by MP analysis with tree length: 205 steps, consistency index: 0.536145 , retention index: 0.931189 and composite index: 0.581425 and 0.499252 for all sites and parsimony informative sites, respectively. The BI phylogeny, including BI posterior probability values as well as ML $(\operatorname{lnL}=-9335.686864)$ and MP bootstrap support values, is shown in Fig. 2.

The phylogeny consists of two main clades belonging to 21 clades representing different Cadophora species. The two main clades are formed by BI and ML analyses; both are supported by BI (100\%); however, only the second clade is supported by ML and MP analyses (100% and 74%, respectively). In the first main clade, six strains isolated from P. cerasus in Saxony and Bavaria form a well-supported clade (100/100/83\% BI posterior probability, ML and MP bootstrap support values, respectively) with strains of C. novi-eboraci including its ex-type strain. A further five strains from P. cerasus and P. domestica in Saxony and Baden-Württemberg and two strains from P. salicina in South Africa form a well-supported clade (100/99/78\%) that does not include any previously described species. One strain isolated from P. salicina in South Africa (CBS 120890) and a strain referred to as C. "novi-eboraci" (CBS 101359) form single-strain clades and belong to a well-supported clade with C. novieboraci and C. prunicola (100/81/99\%). One strain isolated from P. cerasus in Saxony (GLMC 377) forms a well-supported clade (100/100/94\%) with four strains referred to as C. "spadicis". Within the second main clade, five strains isolated from P. domestica in all three sampling areas in Germany form a well-supported clade (100/94/-\%) with 16 strains of C. luteo-olivacea including its ex-type strain. Two strains of Phialophora bubakii CBS 198.30 and CBS 837.69, both originating from margarine, form a well-supported clade (100/100/99\%) sister to a third strain (CBS 269.33) from fresh water in Sweden that forms a single-strain clade. The clade formed by all three strains is well-supported (100/93/-\%) as well.

The combined sequence dataset 3 consisted of 29 isolates of the Celotheliaceae and the outgroup Capronia fungicola CBS 614.96 and comprised 1904 characters, of which 486 characters were parsimony-informative, 685 variable and 1182 constant. The gene boundaries in the multi-locus alignment were as follows: LSU: 1-840 and ITS: 841-1482, TUB: 1483-1904. One most parsimonious tree was generated by MP analysis with tree length: 384 steps, consistency index: 0.558989 , retention in-

Figure I. Phylogeny of dataset 1 obtained by Bayesian Inference analysis of the combined LSU and ITS sequence alignment for generic placement of strain GLMC 459. Geoglossum nigritum strain AFTOL-ID 56 is used as outgroup. BI posterior probability support values above 90% (bold) and ML and MP bootstrap support values above 70% are shown at the nodes. The strain, analysed in this study, is emphasised in bold. Green backgrounds indicate sequences included in the analyses of Han et al. (2014b). Blue backgrounds indicate close matches of GLMC 459 in blastn searches. Clades $1-10$ of Hyaloscyphaceae, according to the analyses of Han et al. (2014b), are listed to the right. Family names are listed to the right, according to Han et al. (2014b, superscript H), Ekanayaka et al. (2019, superscript E) and Johnston et al. (2019, superscript J). Branches that are crossed by diagonal lines are shortened by 50%.

Figure 2. Phylogeny of dataset 2 obtained by Bayesian Inference analysis of the combined ITS, TUB, EF-1a sequence alignment of Cadophora. Hyaloscypha finlandica strain CBS 444.86 is used as outgroup. Host plant or substrate and country of isolation are given for every strain. For strains isolated from Prunus spp. in Germany, the German Federal State is given in abbreviation as location. Species names are listed to the right. BI posterior probability support values above 90% (bold), ML and MP bootstrap support values above 70% are shown at the nodes. The strains, analysed in this study, are emphasised in bold. Numbers of ex-type and ex-isotype strains are emphasised with a superscript T. Branches that are crossed by diagonal lines are shortened by 50%. B: Bavaria; BW: Baden-Württemberg; LS: Lower Saxony; S: Saxony.

Figure 3. Phylogeny of dataset 3 obtained by Bayesian Inference analysis of the combined LSU, ITS, TUB sequence alignment of Phaeomoniellales, including Minutiella. Capronia fungicola strain CBS 614.96 is used as outgroup. BI posterior probability support values above 90% (bold), ML and MP bootstrap support values above 70% are shown at the nodes. The strains analysed in this study are emphasised in bold. Numbers of ex-type strains are emphasised with a superscript T. Branches that are crossed by diagonal lines are shortened by 50%.
dex: 0.779804 and composite index: 0.458467 and 0.435901 for all sites and parsimony informative sites, respectively. The BI phylogeny, including BI posterior probability values as well as ML ($\operatorname{lnL}=-9719.124620$) and MP bootstrap support values, is shown in Fig. 3.

The 12 main clades of the phylogeny represent genera of the Celotheliaceae; all species for which sequences are available, are included. Four isolates from this study group in a well-supported clade (100/100/100\%) with Minutiella tardicola. Two of the strains isolated from P. domestica form a well-supported sister clade (98/99/77 \%) to the single-strain clade formed by the ex-type strain of M. tardicola. A further two strains isolated from P. avium form a well-supported clade (100/100/-\%), sister to the clade consisting of M. tardicola and Minutiella sp.

Figure 4. Phylogeny of dataset 4 obtained by Bayesian Inference analysis of the combined LSU, ITS sequence alignment of Proliferodiscus and close relatives. Perrotia flammea strain JHH4497 is used as outgroup. BI posterior probability support values above 90% (bold), ML and MP bootstrap support values above 70% are shown at the nodes. The strains, analysed in this study, are emphasised in bold. Numbers of ex-type strains are emphasised with a superscript T.

The combined sequence dataset 4 consisted of 29 isolates of Proliferodiscus and closely related genera including the outgroup Perrotia flammea JHH4497 and comprised 1385 characters, of which 152 characters were parsimony-informative, 204 variable and 1174 constant. The gene boundaries in the multi-locus alignment were as follows: LSU: 1-854 and ITS: 855-1385. Seven most parsimonious trees were generated by MP analysis with tree length: 263 steps, consistency index: 0.651341 , retention index: 0.807611 and composite index: 0.526030 and 0.482422 for all sites and parsimony informative sites, respectively. The BI phylogeny obtained by Bayesian Inference, including BI posterior probability values as well as ML ($\operatorname{lnL}=-4019.800817$) and MP bootstrap support values, is shown in Fig. 4.

The main clades represent closely related genera. Six strains from Prunus wood in Germany group in the Proliferodiscus clade. Five of them, from P. avium and P. domestica, cluster with seven ambiguously identified strains and the type strain of Pr. chiangraiensis in a well-supported clade (100/100/99\%). Strain GLMC 1751 forms a single-strain clade sister to "Hyaloscyphaceae sp. 2" ICMP 18979.

Taxonomy

Based on DNA sequence data and morphology, the 33 strains studied (Table 1) are assigned to four genera, of which seven species belong to Cadophora, two species to Minutiella and two species to Proliferodiscus, including 5 species that proved to be new to science and are described. Two strains, referred to as Phialophora bubakii, proved to belong to two distinct species within Cadophora. Strain GLMC 459 could not be assigned to any known genus and is therefore described as new genus. All species studied in culture are characterised below.

Arboricolonus S.Bien \& Damm, gen. nov.

MycoBank No: 832106

Type species. Arboricolonus simplex S.Bien \& Damm.
Etymology. Referring to the life inside tree wood (arbor Lat. $=$ tree + colonus $=$ settler).

Description. Colonies slow-growing, moist, white or buff colours on oatmeal agar medium, lacking aerial mycelium. Sporulation conidia formed on hyphal cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells enteroblastic, intercalary, reduced to short discrete phialides or, more often, collarettes formed directly on hyphal cells, collarettes short tubular to funnel-shaped. Conidia aggregated around the hyphae, small, hyaline, 1-celled, cylindrical, ovoidal to allantoid. Vegetative hyphae and phialides hyaline, smooth-walled, septate, branched.

Arboricolonus simplex S.Bien \& Damm, sp. nov.

MycoBank No: 832107
Figures 5A, 6

Type. Germany, Saxony, orchard north of Wölkau, $50^{\circ} 58^{\prime} 42.3^{\prime \prime} \mathrm{N}, 13^{\circ} 49^{\prime} 40.0^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of Prunus domestica, 16 Jan 2015, S. Bien leg., GLM-F106309 - holotype; GLMC 459 = CBS 145520 = DSM 109147 - culture ex-type.

Etymology. Named after the simple, reduced conidiophores.
Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, $1-3 \mu \mathrm{~m}$ wide, sometimes hyphal cells inflated and constricted at the septa, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells enteroblastic, hyaline, smooth-walled, integrated or terminal, discrete phialides, ampulliform to navicular, $4-7 \times 2-3 \mu \mathrm{~m}$, often reduced to small necks or openings on hyphae, opening $0.5-1 \mu \mathrm{~m}$ wide, collarettes short tubular to funnel-shaped, $0.5-1 \mu \mathrm{~m}$ long, periclinal thickening sometimes visible. Conidia aggregated in heads or slimy masses around hyphae, hyaline, smooth-walled, aseptate, straight to \pm curved, cylindrical,

Figure 5. Colony surface of analysed strains on OA medium. A Arboricolonus simplex GLMC 459^{T} B Cadophora africana CBS 120890^{T} C C. bubakii CBS 198.30^{T} D C. luteo-olivacea GLMC 1264 E C. no-vi-eboraci GLMC 1472 F C. obscura CBS 269.33 G C. prunicola CBS 120891^{T} H C. prunicola GLMC 1633 I C. ramosa GLMC 377^{T} J Minutiella pruni-avium GLMC 1624^{T} K Proliferodiscus ingens GLMC $1751^{\mathrm{T}} \mathbf{L}$ Proliferodiscus sp. GLMC 460 . Cultures A, J-L after 4 wk. Cultures B-I after 2 wk. Strains with a superscript T are ex-type cultures.
elongate ovoidal to allantoid, with one end rounded, the other end rounded to truncate, $3-4(-4.5) \times 1-1.5(-2) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=3.6 \pm 0.6 \times 1.3 \pm 0.2 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.8$.

Culture characteristics. Colonies on $O A$ flat to slightly raised with an entire to undulate margin, hyaline, whitish to buff, lacking aerial mycelium, reverse same colours, $2-4 \mathrm{~mm}$ diam. in $2 \mathrm{wk}, 6-10 \mathrm{~mm}$ diam. in 4 wk ; on SNA flat to slightly raised with an entire to undulate margin, hyaline to whitish, lacking aerial mycelium, reverse same colours, $1-2 \mathrm{~mm}$ diam. in $2 \mathrm{wk}, 3-6 \mathrm{~mm}$ diam. in 4 wk .

Notes. The morphology of Arboricolonus simplex is reminiscent of collophorinalike species regarding the colonies that are slow growing, the lack of aerial mycelium and the conidiogenous cells that are mostly reduced to short necks or openings with collarettes on hyphae (Damm et al. 2010; Bien et al. 2020). In contrast to these genera, microcyclic conidiation has not been observed in Arboricolonus. This genus belongs to the Leotiomycetes as well; however, it is not closely related to Collophorina and collophorina-like genera (Phacidiales) treated by Bien et al. (2020). A class-wide phylogenetic analysis of LSU-ITS places it within the order Helotiales (data not shown).

A blastn search with the ITS sequence of A. simplex in GenBank resulted in uncultured and unidentified strains with $\leq 92 \%$ identity, for example, an uncultured Helotiales clone from soil in the USA (HQ021771, JH Vineis et al., unpubl. data), while the closest matches with strains, identified at least to the genus level, were strains of Glutinomyces vulgaris with 90% identity (e.g. LC218288; Nakamura et al. 2018). The closest matches in a blastn search with the LSU sequence were, with $\leq 97 \%$ identity, the ex-type strain of Hyalodendriella betulae (EU040232; Crous et al. 2007), a strain identified as Chalara aurea (MH872551; Vu et al. 2019) and strains belonging to Polyphilus sieberi (e.g. MG719708; Ashrafi et al. 2018).

Cadophora africana Damm \& S.Bien, sp. nov.
 MycoBank No: 832108

Figures 5B, 7

Type. South Africa, Western Cape Province, Franschhoek, from necrosis in wood of Prunus salicina close to old pruning wound, 10 June 2004, U. Damm leg., CBS H-19984 - bolotype; GLM-F117479 - isotype; CBS 120890 = STE-U 6203 = GLMC 1892 - culture ex-type.

Etymology. Named after the continent of origin, Africa.
Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, $1-3 \mu \mathrm{~m}$ wide, hyphal cells sometimes inflated and constricted at the septa, sometimes becoming brown with age, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, smooth-walled, mesotonously branched, occasionally with acropleurogenous branching, up to $35 \mu \mathrm{~m}$ long. Conidiogenous cells enteroblastic, hyaline, smooth-walled, discrete conidiogenous cells cylindrical to navicular, often constricted and sometimes widened at the base, $8-18 \times 1.5-3 \mu \mathrm{~m}$, necks cylindrical, $1-2 \times 1-1.5 \mu \mathrm{~m}$, collarettes

Figure 6. Arboricolonus simplex gen. et sp. nov. A-J conidiogenous cells (arrows indicate conidiogenous openings or short necks) \mathbf{K} conidia $\mathbf{A}-\mathbf{K}$ from SNA A-K LM. Scale bar: $5 \mu \mathrm{~m}$ (\mathbf{A} applies to $\mathbf{B}-\mathbf{K}$).
distinct, cylindrical to narrowly funnel-shaped, $0.5-1.5 \mu \mathrm{~m}$ long, $1-1.5 \mu \mathrm{~m}$ wide at the upper edge, opening $1-1.5 \mu \mathrm{~m}$ wide, periclinal thickening observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, mostly globose to subglobose or obovoid to tear-shaped, sometimes ellipsoidal, (2-)2.5-4(-4.5) $\times(1.5-) 2-2.5(-3) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=3 \pm 0.5 \times 2.1 \pm 0.2 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=1.4$.

Culture characteristics. Colonies on SNA flat with an entire to undulate margin, white to buff, sometimes grey olivaceous to olivaceous, lacking aerial mycelium, reverse same colours, $6-14 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark); Colonies on OA flat with an entire to undulate margin, primrose to amber, grey olivaceous to olivaceous black, often with a white margin, partly covered by floccose white aerial mycelium, reverse buff to grey olivaceous, 22-30 mm diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark); Colonies on PDA flat to raised, entire edge, short aerial mycelium, pale buff, after $>2 \mathrm{wk}$ with pale olivaceous to pale olivaceous grey patches or sectors, reverse same colours, 30 mm diam. in $2 \mathrm{wk}\left(20^{\circ} \mathrm{C}\right)$. Colonies on MEA flat to low umbonate, with entire edge, abundant velvety aerial mycelium, mycelium and surface white to very pale smoke-grey; reverse very pale luteous, ochreous to buff, in diffuse daylight with concentric oliveceous-grey rings, 30 mm diam. in $2 \mathrm{wk}\left(20^{\circ} \mathrm{C}\right)$.

Notes. Cadophora africana was isolated once from P. salicina in South Africa. Cadophora africana, as well as C. bubakii and C. ramosa, form subglobose conidia. However, conidia of C. africana are mostly globose to subglobose, sometimes even tear-shaped, while those of C. ramosa are often ellipsoidal, elongate-ellipsoidal to cylindrical and the portion of subglobose conidia in C. bubakii is comparatively low. Therefore, conidia of both species are on average longer ($4.9 \mu \mathrm{~m}$ and $3.6 \mu \mathrm{~m}$, respectively) than those of C. africana $(3 \mu \mathrm{~m})$ and with a larger L / W ratio (2.2 and 2.1, respectively; C. africana: 1.4).

The ITS sequence of C. africana strain CBS 120890 differs in eleven nucleotides from the ex-type strain of C. prunicola and in nine nucleotides, both from the ex-type strain of C. novi-eboraci NYC14 and from strain CBS 101359. The differences to these

Figure 7. Cadophora africana sp. nov. A-G conidiophores and conidiogenous cells (arrow indicates a short neck) \mathbf{H} conidia $\mathbf{A}-\mathbf{H}$ from SNA $\mathbf{A}-\mathbf{H}$ LM. Scale bar: $5 \mu \mathrm{~m}(\mathbf{A}$ applies to $\mathbf{B}-\mathbf{H})$.
strains exceed 30 and 18 nucleotides in the $T U B$ and $E F-1 a$ sequences, respectively. The closest match in a blastn search with the ITS sequence of C. africana is strain NYC13 of C. novi-eboraci (identity 98.48\%), which is included in our phylogeny.

Cadophora bubakii (Laxa) Damm \& S.Bien, comb. nov.

Figures 5C, 8
Margarinomyces bubakii Laxa, Zentbl. Bakt. ParasitKde, Abt. II 81: 392. 1930. (Basionym)三 Phialophora bubakii (Laxa) Schol-Schwarz, Persoonia 6 (1): 66. 1970.

Type. Czech Republic, Prague, from a margarine factory, margarine, O. Laxa leg., collection date unknown (isolated by O. Laxa, deposited in CBS collection by O. Laxa probably 1930), CBS H-491, CBS H-7316, GLM-F117482 - isotypes; CBS $198.30=$ IMI 24000 $=$ NCTC $3273=$ VKM F-162 $=$ LM $288=$ LM $793=$ GLMC 1895 - culture ex-isotype.

Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, $1-3 \mu \mathrm{~m}$ wide, sometimes becoming brown with age, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, smooth-walled, occasionally with acropleurogenous branching, up to $26 \mu \mathrm{~m}$ long. Conidiogenous cells enteroblastic, hyaline, smoothwalled, discrete conidiogenous cells cylindrical to navicular, often slightly inflated having a flask-shaped appearance, often constricted at the base, $3-12 \times 1.5-3.5 \mu \mathrm{~m}$, necks cylindrical, $1-2.5 \times 1-2 \mu \mathrm{~m}$, collarettes distinct, cylindrical to funnel-shaped, $0.5-1$ $\mu \mathrm{m}$ long, $1-1.5 \mu \mathrm{~m}$ wide at the upper edge, opening $1-1.5 \mu \mathrm{~m}$ wide, periclinal thickening observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, subglobose to ellipsoidal or cylindrical with both ends rounded, straight or slightly curved, $(2-) 2.5-4.5(-6) \times 1.5-2 \mu \mathrm{~m}$, mean $\pm \mathrm{SD}=3.6 \pm 0.9 \times 1.7 \pm 0.2 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.1$.

Figure 8. Cadophora bubakii comb. nov. A-H conidiophores and conidiogenous cells (arrows indicate short necks) I conidia A-I from SNA A-I LM. Scale bar: $5 \mu \mathrm{~m}$ (\mathbf{A} applies to $\mathbf{H}-\mathbf{I}$).

Culture characteristics. Colonies on SNA flat with an entire to undulate margin, white, lacking aerial mycelium, reverse same colour, $36-56 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark); Colonies on $O A$ flat with an entire to undulate margin, olivaceous to olivaceous black, sometimes covered by floccose aerial mycelium, olivaceous grey, reverse same colours, $24-27 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark).

Notes. The genus Margarinomyces was described 1930 with Ma. bubakii as type species after causing problems in a margarine factory in Czech Republic by forming greenish-black spots on and in margarine cubes that smelled like bitter-almond (benzaldehyde) (Laxa 1930). The fungus was shown to survive 20 min at $60^{\circ} \mathrm{C}$ and to be resistant to organic preservatives such as sodium benzoate that was, however, only tolerated in margarine up to a concentration of 0.2% (Laxa 1930). According to the CBS website, strain CBS 198.30 is ex-isotype of Ma. bubakii. Schol-Schwarz (1970) included Ma. bubakii in Phialophora and considered C. obscura as a synonym. The genus Margarinomyces had been included in Phialophora by Gams and McGinnis (1983), though excluded by Cole and Kendrick (1973), but Ma. bubakii has never been considered as a species of Cadophora before. All nine Margarinomyces species had been combined in other genera, most of them in Coniochaeta (http:// www.indexfungorum.org).

Cadophora bubakii (strain CBS 198.30) differs from C. obscura (strain CBS 269.33) by forming conidiogenous cells that are often slightly inflated and therefore flask-shaped, while those of CBS 269.33 are mostly narrow cylindrical. Conidia of strain CBS 198.30 are sometimes subglobose and, on average, distinctly shorter than the ellipsoidal to cylindrical conidia of CBS 269.33. Moreover, colonies of CBS 198.30 grow faster. Van Beyma (1943) compared Ma. bubakii and Ph. obscura and mentioned flask-shaped conidiogenous cells and a faster colony growth rate of Ma. bubakii and narrow phialides of Ph. obscura as well. However, the conidia shape of both species was described and illustrated as rod-shaped.

The ITS sequences of the two C. bubakii strains included in the phylogeny of this study, CBS 198.30 and CBS 837.69, are identical but differ both in 19 nucleotides from that of the C. obscura strain CBS 269.33. The EF-1a sequence of the two species differs in 31 nucleotides. The TUB sequences of CBS 198.30 and CBS 269.33 were not able to be aligned with each other and the rest of the dataset and therefore excluded from the phylogeny.

A blastn search with the ITS sequence of CBS 198.30 resulted in high similarities (99.82% and 99.64%) with "Ph. bubakii" strains CBS 837.69 (included in our analysis) and CBS 836.69, both isolated from margarine, as well as CBS 834.69, isolated from wood pulp of Populus tremula (Vu et al. 2019).

Cadophora luteo-olivacea (J.F.H.Beyma) T.C.Harr. \& McNew

Figures 5D, 9

Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, $1-10 \mu \mathrm{~m}$ wide, hyphal cells often, sometimes very strongly inflated and constricted at the septa, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, smoothwalled, simple or septate and branched, up to $40 \mu \mathrm{~m}$ long. Conidiogenous cells enteroblastic, hyaline, smooth-walled, cylindrical to \pm inflated, $3-14 \times 1.5-4 \mu \mathrm{~m}$, sometimes integrated, necks cylindrical, $0.5-3 \mu \mathrm{~m}$ long, collarettes funnel-shaped, $1-1.5 \mu \mathrm{~m}$ long, $1-2 \mu \mathrm{~m}$ wide at the upper edge, opening $1-1.5 \mu \mathrm{~m}$ wide, periclinal thickening not observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, cylindrical, rarely ellipsoidal, straight, sometimes slightly curved, both ends rounded, conidia of strain GLMC 1310 measure $(2-) 4-7(-8) \times 1.5-2.5 \mu \mathrm{~m}$, mean $\pm \mathrm{SD}=5.3 \pm 1.4$ $\times 2.0 \pm 0.3 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.7$, while those of GLMC 1264 are longer, measuring $(3-) 5-8(-10) \times 1.5-2 \mu \mathrm{~m}$, mean $\pm \mathrm{SD}=6.4 \pm 1.6 \times 1.8 \pm 0.2 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=3.5$.

Culture characteristics. Colonies on SNA flat with an entire margin, hyaline, sometimes filter paper partly pale olivaceous to olivaceous, lacking aerial mycelium, reverse same colours, strains GLMC 1264 and GLMC $13105-15 \mathrm{~mm}$ diam., strains GLMC 517 and GLMC $150132-43 \mathrm{~mm}$ diam. in 2 wk ($25^{\circ} \mathrm{C}$ in the dark); Colonies on $O A$ flat with an entire margin, buff, olivaceous buff, olivaceous to olivaceous black, lacking aerial mycelium or partly covered by pale grey aerial mycelium, reverse same colours, $28-44 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark).

Notes. In total, 12 strains of C. luteo-olivacea were isolated from Prunus domestica in Baden-Württemberg (3), Lower Saxony (8) and Saxony (1). Two strains from Baden-Württemberg, two strains from Lower Saxony and the strain from Saxony had been selected for the phylogenetic analyses. The complete sequence dataset of C. lu-teo-olivacea, including reference strains, exhibits a variation of up to five nucleotides within ITS, up to nine nucleotides within TUB and up to 16 nucleotides within $E F-1$ a sequences. The ITS sequences of the strains from this study are identical with those of the ex-type strain, except for GLMC 1517, which differs in five nucleotides, while

Figure 9. Cadophora luteo-olivacea. A-F conidiophores and conidiogenous cells (arrow indicates a short neck) \mathbf{G} conidia $\mathbf{A} \mathbf{- G}$ from SNA $\mathbf{A}-\mathbf{G}$ LM. Scale bar: $5 \mu \mathrm{~m}$ (\mathbf{A} applies to $\mathbf{B}-\mathbf{G}$).
all $T U B$ sequences of our isolates differ in eight to nine nucleotides from the ex-type strain. The $E F-1$ a sequence of all strains from this study differs in five nucleotides from the ex-type strain, except for GLMC 1264 with no differences.

Material examined. Germany, Lower Saxony, Hollern-Twielenfleth, orchard, $53^{\circ} 36^{\prime} 13.6^{\prime \prime} \mathrm{N}, 9^{\circ} 31^{\prime} 50.8^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of Prunus domestica, 8 Oct. 2015, S. Bien leg., GLM-F107114, culture GLMC 1264 = CBS 145524 = DSM 109143; Lower Saxony, Hollern-Twielenfleth, orchard, $53^{\circ} 36^{\prime} 13.6^{\prime \prime}$ N, $9^{\circ} 31^{\prime} 50.8^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of P. domestica, 8 Oct 2015, S. Bien leg., GLM-F107160, culture GLMC $1310=$ CBS $145525=$ DSM 109142 ; Saxony, in orchard north of Wölkau, $50^{\circ} 58^{\prime} 42.3^{\prime \prime} \mathrm{N}, 13^{\circ} 49^{\prime} 40.0^{\prime \prime} \mathrm{E}$, from brown wedgeshaped necrosis in wood of P. domestica, 16 Jan 2015, S. Bien leg., GLM-F106367, culture GLMC 517; Baden-Württemberg, orchard west of Nussbach, $48^{\circ} 31^{\prime} 55.8^{\prime \prime} \mathrm{N}$, $8^{\circ} 00^{\prime} 52.4^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of P. domestica, 23 Aug 2016, S. Bien leg., GLM-F110581, culture GLMC 1501; Baden-Württemberg, orchard east of Nussbach, $48^{\circ} 31^{\prime} 57.3^{\prime \prime} \mathrm{N}, 8^{\circ} 01^{\prime} 49.6^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of P. domestica, 23 Aug 2016, S. Bien leg., GLM-F110597, culture GLMC $1517=$ CBS $145526=$ DSM 109141.

Cadophora novi-eboraci Travadon, D.P.Lawr., Roon.-Lath., Gubler, W.F.Wilcox, Rolsh. \& K.Baumgartner

Figures 5E, 10
Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, 1-4 $\mu \mathrm{m}$ wide, sometimes hyphae inflated and constricted at the septa, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, smooth-walled, mostly simple, rarely

Figure 10. Cadophora novi-eboraci $\mathbf{A - G}$ conidiophores and conidiogenous \mathbf{H} conidia $\mathbf{A}-\mathbf{H}$ from SNA A-H LM. Scale bar: $5 \mu \mathrm{~m}$ (\mathbf{A} applies to $\mathbf{B}-\mathbf{H}$).
septate and branched, up to $20 \mu \mathrm{~m}$. Conidiogenous cells enteroblastic, hyaline, smoothwalled, often integrated, discrete conidiogenous cells ampulliform, ellongate-ampulliform to navicular, $7-17 \times 1.5-3 \mu \mathrm{~m}$, necks cylindrical, $1-1.5 \times 1.5-5.5 \mu \mathrm{~m}$, collarettes cylindrical to narrowly funnel-shaped, $1.5-2 \mu \mathrm{~m}$ long, $0.5-1.5 \mu \mathrm{~m}$ wide at the upper edge, opening $0.5-1 \mu \mathrm{~m}$, periclinal thickening sometimes observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, cylindrical, elongate-ellipsoidal to ellipsoidal, straight, rarely slightly curved, with both ends rounded, (3-)4.5-6.5(-8.5) $\times 1.5-2(-2.5) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=5.4 \pm 1.1 \times 1.8 \pm 0.4 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.9$.

Culture characteristics. Colonies on SNA flat with an entire to undulate margin, hyaline to pale smoke grey, filter paper partly pale luteous to very pale smoke grey, lacking aerial mycelium, reverse same colours, 5-7 mm diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark); Colonies on $O A$ flat with an entire to undulate margin, fawn to umber with a pale luteous to luteous margin, partly covered by floccose white aerial mycelium, reverse fawn, pale olivaceous to pale luteous, 18 mm diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark).

Notes. In total, eight strains of C. novi-eboraci were isolated from Prunus cerasus in Saxony (7) and Bavaria (1). Five of the strains from Saxony and the strain from Bavaria had been selected for the phylogenetic analyses. The complete sequence dataset of C. novi-eboraci exhibits a certain amount of variation in the loci analysed. The ITS and $E F-1 a$ sequences exhibited a maximum of one and two nucleotide differences to those of the ex-type strain NYC14, respectively. The TUB sequences were more variable; the $T U B$ sequence of strain NYC13 differs in 15 nucleotides from that of NYC14. The TUB sequences of the strains from this study only differ with a maximum of two nucleotides from the ex-type strain.

Material examined. Germany, Bavaria, in garden east of Wolferszell, $48^{\circ} 57^{\prime} 38.8^{\prime \prime} \mathrm{N}$, $12^{\circ} 38^{\prime} 24.9^{\prime \prime} \mathrm{E}$, from non-symptomatic wood of Prunus cerasus, 2 Oct 2016, J. Simmel leg., GLM-F110552, culture GLMC 1472 = CBS 145758 = DSM 109145.

Cadophora obscura Nannf., Svenska Skogsvårdsföreningens Tidskrift 50: 418 (1934)

Figures 5F, 11
三 Phialophora obscura (Nannf.) Conant, Mycologia 29(5): 598 (1937)

Type. Sweden, Umeå, Sofiehem, Sofiehems trämassefabrik, from fresh water, E Melin leg., collection date unknown, UPS F-153532 - bolotype (not seen); unknown source, E Melin, collection date unknown (isolated by E Melin and JA Nannfeldt No. 389:11, deposited in CBS collection by E Melin probably 1933), CBS H-7589, CBS H-7590, GLM-F117483 - isotypes; CBS 269.33 = GLMC 1896 - culture ex-isotype.

Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, 1-3.5 $\mu \mathrm{m}$ wide, sometimes becoming brown with age, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells enteroblastic, hyaline, smooth-walled, discrete conidiogenous cells cylindrical to navicular, often bent, sometimes constricted at the base, 3-19 \times $2-3 \mu \mathrm{~m}$, necks cylindrical, $1-3.5 \times 1.5-2 \mu \mathrm{~m}$, collarettes distinct, cylindrical to funnel-shaped, $0.5-1.5 \mu \mathrm{~m}$ long, $1-1.5 \mu \mathrm{~m}$ wide at the upper edge, opening $1-1.5$ $\mu \mathrm{m}$ wide, periclinal thickening observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, ellipsoidal to cylindrical, mostly slightly curved, with both ends rounded, (3-)3.5-6(-7) $\times 1.5-2(-2.5) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=4.8 \pm 1.2 \times$ $1.7 \pm 0.3 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.8$.

Culture characteristics. Colonies on SNA flat with an entire to fimbriate margin, white to cinnamon, filter paper buff to olivaceous, lacking aerial mycelium, reverse same colours, $14-16 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark); Colonies on $O A$ flat with an entire margin, olivaceous black to greenish-black, with honey to white margin, sometimes covered by floccose, olivaceous grey aerial mycelium, reverse same colours, $14-20 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark).

Notes. Cadophora obscura was originally described by Melin and Nannfeldt (1934) from freshwater in Sweden. According to the CBS website, strain CBS 269.33 is an "ex-isotype" culture. However, as Melin and Nannfeldt (1934) only isolated this species once and stated that they handed the strains from their study over to the Centraalbureau voor Schimmelcultures in Baarn now Westerdijk Fungal Biodiversity Institute, this can only be the ex-holotype strain. However, we were not able to allocate this strain to the holotype without doubt.

This species had previously been regarded as belonging to the genus Phialophora (Medlar 1915) and as a synonym of Phialophora bubakii (Schol-Schwarz 1970). However, based on the phylogeny of this study, both species are distinct species of the genus Cadophora. Cadophora obscura (CBS 269.33) differs from C. bubakii (CBS 198.30) by forming conidiogenous cells that are mostly narrow cylindrical, while those of CBS 198.30 are often flask-shaped. Conidia of C. obscura are distinctly longer than those of C. bubakii; subglo-bose-shaped conidia were not observed. Colony growth is slower compared to C. bubakii.

Figure II. Cadophora obscura A-J conidiophores and conidiogenous cells (arrows indicate short necks) \mathbf{K} conidia $\mathbf{A}-\mathbf{K}$ from SNA $\mathbf{A}-\mathbf{K}$ LM. Scale bar: $5 \mu \mathrm{~m}(\mathbf{A}$ applies to $\mathbf{B}-\mathbf{K})$.

The ITS and EF-1a sequences of the ex-type strains of C. bubakii and C. obscura differ in 19 and 31 nucleotides, respectively. The $T U B$ sequences of the two species were excluded from the analyses (see Notes of C. bubakii).

The ITS sequence of CBS 269.33 is 100% identical with three strains isolated from archaeological wood in Greenland (586-C, 592-B, 588-A, NB Pedersen et al., unpubl. data).

Cadophora prunicola Damm \& S.Bien, sp. nov.

MycoBank No: 832109
Figures 5G, H, 12

Type. South Africa, Western Cape province, Franschhoek, from reddish-brown necrosis in wood of Prunus salicina close to an old pruning wound, 10 June 2004, U. Damm leg., CBS H-19985 - bolotype; GLM-F117487 - isotype; CBS 120891 = STE-U 6202 = GLMC 1902 - culture ex-type.

Etymology. Named after its host genus, Prunus + suffix -cola (dweller).
Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, septation hardly visible, branched, $1-3 \mu \mathrm{~m}$ wide, sometimes becoming brown with age, chlamydospores absent, hyphae of strain GLMC 735 in some parts inflated and restricted at the septae and up to $5 \mu \mathrm{~m}$ wide. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, simple or septate and branched, up to $50 \mu \mathrm{~m}$ long. Conidiogenous cells enteroblastic, hyaline, smooth-walled, cylindrical, often inflated and bent in the upper part or attenuated at the base, delicate (disintegrating quickly), $4-15 \times 1.5-2 \mu \mathrm{~m}$, in strains GLMC 735 and GLMC 1574 sometimes integrated, necks cylindrical, 3-3.5 $\times 1 \mu \mathrm{~m}$, collarettes distinct, funnel-shaped, cylindrical, $1-3 \mu \mathrm{~m}$ long, $1-2 \mu \mathrm{~m}$ wide at the upper edge, opening $1-1.5 \mu \mathrm{~m}$ wide, periclinal thickening sometimes observed. Conidia aggregated in heads, hyaline, smooth-

Figure 12. Cadophora prunicola sp. nov. A-G conidiophores and conidiogenous cells \mathbf{H} conidia $\mathbf{A}-\mathbf{H}$ from SNA $\mathbf{A}-\mathbf{H}$ LM. Scale bar: $5 \mu \mathrm{~m}(\mathbf{A}$ applies to $\mathbf{B}-\mathbf{H})$.
walled, aseptate, ellipsoidal, cylindrical to ovoidal, straight, rarely slightly curved, both ends rounded, $(2.5-) 3-6.5(-9) \times 1.5-2 \mu \mathrm{~m}$, mean $\pm \mathrm{SD}=4.9 \pm 1.8 \times 1.7 \pm 0.3 \mu \mathrm{~m}$, L/W ratio $=2.8$, conidia of strain GLMC 1574 smaller, measuring (2.5-)3.5-5(-6.5) $\times 1.5-2.5(-3) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=4.2 \pm 0.7 \times 1.4 \pm 0.4 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.1$.

Culture characteristics. Colonies on SNA (strains GLMC 735, GLMC 1574 and GLMC 1633) flat with an entire to undulate margin, whitish, lacking aerial mycelium, reverse same colours, $18-27 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark). Colonies on $O A$ (strains GLMC 735, GLMC 1574 and GLMC 1633) flat with an entire margin to undulate margin, buff, very pale luteus to cinnamon, lacking aerial mycelium, except for strain GLMC 1574 that was partly covered by white woolly aerial mycelium, reverse buff to fawn, $20-27 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark). Colonies on PDA (CBS 120891) flat to raised, entire margin, mycelium and surface white to very pale smokegrey, with age turning isabelline to olivaceous in the centre, abundant velvety aerial mycelium, reverse straw to pure yellow, 18 mm diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right)$. Colonies on MEA (CBS 120891) raised with entire margin, mycelium and surface white to very pale luteous, with age turning isabelline, abundant velvety aerial mycelium, reverse buff, honey to salmon, in diffuse daylight with a concentric apricot ring between centre and margin, 24 mm diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right)$.

Notes. Cadophora prunicola was isolated from Prunus salicina (2) in the Western Cape Province of South Africa, from P. cerasus (3) and P. domestica (2) in Saxony and P. domestica (3) in Baden-Württemberg, Germany. The strains from South Africa, as well as three strains from both hosts from Saxony and two strains from Baden-Württemberg, were selected for the phylogenetic analyses. This species is similar to C. novieboraci and C. africana, but differs by forming conidiophores of up to $50 \mu \mathrm{~m}$ length and conidiogenous cells that are often inflated. Subglobose or tear-shaped conidia as in C. africana have not been observed. The ITS, TUB and $E F$-1a sequences of C. prunicola differ in 8, 29 and 9 nucleotides, respectively, from C. novi-eboraci and in 11, 30 and 20 nucleotides, respectively, from C. africana.

A blastn search with the ITS sequence of C. prunicola in GenBank showed a 100\% identity with an uncultured Cadophora from dead wood of Fagus sylvatica in Germany (LC015696, Floren et al. 2015).

Additional material examined. Germany, Saxony, orchard east of Lungkwitz, $50^{\circ} 56^{\prime} 12.4^{\prime \prime} \mathrm{N}, 13^{\circ} 47^{\prime} 36.6^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of Prunus cerasus, 11 Aug 2015, S. Bien leg., GLM-F106569, culture GLMC 735 = CBS $145521=$ DSM 109135; Baden-Württemberg, orchard west of Nussbach, $48^{\circ} 31^{\prime} 55.8^{\prime \prime} \mathrm{N}, 8^{\circ} 00^{\prime} 52.4^{\prime \prime} \mathrm{E}$, from brown necrosis in wood of P. domestica, 23 Aug 2016, S. Bien leg., GLM-F110714, culture GLMC 1633 = CBS 145522 = DSM 109146; Baden-Württemberg, orchard east of Nussbach, $48^{\circ} 31^{\prime} 57.3^{\prime \prime} \mathrm{N}, 8^{\circ} 01^{\prime} 49.6^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of P. domestica, 23 Aug 2016, S. Bien leg., GLM-F110654, culture GLMC 1574; South Africa, Western Cape province, Franschhoek, from necrosis in wood of P. salicina close to old pruning wound, 10 June 2004, U. Damm leg., STE-U 6103.

Cadophora ramosa S.Bien \& Damm, sp. nov.
 MycoBank No: 832110
 Figures 5I, 13

Cadophora spadicis Travadon, D.P.Lawr., Roon.-Lath., Gubler, W.F.Wilcox, Rolsh. \& K.Baumgartner, Fungal Biology 119(1): 62 (2015). nom. inval., Art. 40.6 (Shenzhen)(Synonym).

Type. Germany, Saxony, orchard north of Kunnerwitz, $51^{\circ} 07^{\prime} 27.5^{\prime \prime N}$ N, $14^{\circ} 56^{\prime} 36.3^{\prime \prime} \mathrm{E}$, from dark brown necrosis in wood of Prunus cerasus, 15 Jan 2015, S. Bien leg., GLMF106227 - holotype; GLMC 377 = CBS 145523 = DSM 109144 - culture ex-type.

Etymology. Named after the often densely branched conidiophores (ramosus Lat. = branching).

Description. Sexual morph not observed. Asexual morph on SNA. Vegetative mycelium hyaline, smooth-walled, septate, branched, $1-5 \mu \mathrm{~m}$ wide, chlamydospores absent. Sporulation abundant, conidia formed on hyphal cells. Conidiophores hyaline, smooth-walled, septate, often densely branched, up to $50 \mu \mathrm{~m}$ long. Conidiogenous cells enteroblastic, hyaline, smooth-walled, flask-shaped, 4.5-11.5 $\times 2.5-3.5$ $\mu \mathrm{m} \mu \mathrm{m}$, collarettes narrowly funnel-shaped, $1.5-2 \mu \mathrm{~m}$ long, $1-1.5 \mu \mathrm{~m}$ wide at the upper edge, opening $0.5-1 \mu \mathrm{~m}$, periclinal thickening sometimes observed. Conidia aggregated in heads, hyaline, smooth-walled, aseptate, subglobose, ovoidal, ellipsoidal to elongate-ellipsoidal, straight, with both ends rounded, different spore-shapes formed from the same conidiogenous cells, sporulation often inside the medium, (3.5-)4-6(-9) $\times 2-2.5(-3) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=4.9 \pm 1.2 \times 2.2 \pm 0.3 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.2$, rarely up to $15 \times 2.5 \mu \mathrm{~m}$.

Culture characteristics. Colonies on SNA flat with an entire margin, hyaline, filter paper partly pale olivaceous to olivaceous, lacking aerial mycelium, reverse same col-

Figure 13. Cadophora ramosa sp. nov. A-D conidiophores and conidiogenous cells \mathbf{E} conidia $\mathbf{A}-\mathbf{E}$ from SNA A-E LM. Scale bar: $5 \mu \mathrm{~m}$ (\mathbf{A} applies to $\mathbf{B}-\mathbf{E}$).
ours, $32-40 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark). Colonies on $O A$ flat with an entire margin, pale cinnamon, with an umber inner and pale luteous outer margin, partly covered by woolly white to grey aerial mycelium, reverse pale cinnamon, with a citrine inner and pale luteous outer margin, $24-28 \mathrm{~mm}$ diam. in $2 \mathrm{wk}\left(25^{\circ} \mathrm{C}\right.$ in the dark).

Notes. Cadophora ramosa was previously described from grapevine in North America as C. spadicis (Travadon et al. 2015). Although Travadon et al. (2015) indicated C. spadicis as a new species, they listed a basionym and added the authorities of that basionym in brackets with the new name, as if they would combine an already existing species in a new genus, which was not the case. As Travadon et al. (2015) described C. spadicis as a new species, they should have listed a holotype (Art. 40.6, Art. 9.1, Turland et al. 2018); however, they listed a neotype, although original material was available (Art. 9.8). Therefore, the name C. spadicis is invalid. Moreover, the "neotype" listed is a living strain and not a (metabolically inactive) specimen. The species listed as "basionym" of C. spadicis by Travadon et al. (2015), C. melinii, was based on a wrong identification of strain CBS 111743 by Prodi et al. (2008), the strain that was listed as "neotype" of C. spadicis. However, the ex-type strain of C. melinii, CBS 268.33, was included in the study of Travadon et al. (2015) and belonged to a different clade in the phylogeny of that publication. Moreover, the authors listed as authorities of the "basionym" are the authors of the publication in which strain CBS 111743 was wrongly identified (Prodi et al. 2008) and not the authorities of C. melinii. Finally, although probably not intended as the whole name, prior to the authorities and "sp. nov.", Travadon et al. (2015) listed "Cadophora spadicis CBS 111743", which could be interpreted as not being a binary combination consisting of the name of the genus followed by a single specific epithet (Art. 23.1).

As the name C. spadicis is invalid, we described the species newly as C. ramosa on the basis of a specimen from Prunus cerasus in Saxony, Germany, collected in this study. The morphology of the ex-type strain of C. ramosa shows a high morphological
concordance with the strains described as C. spadicis by Travadon et al. (2015). Conidiophores, conidiogenous cells, conidia and collarettes have similar shapes and sizes. The ITS, TUB and EF-1 a sequences of C. ramosa differ at most in two, four and two nucleotides, respectively, which is a lower genetic variation than in C. luteo-olivacea and C. novi-eboraci.

Minutiella pruni-avium S.Bien \& Damm, sp. nov.

MycoBank No: 832111
Figures 5J, 14

Type. Germany, Baden-Württemberg, orchard west of Nussbach, $48^{\circ} 31^{\prime} 55.8^{\prime \prime} \mathrm{N}$, $8^{\circ} 00^{\prime} 52.4^{\prime \prime} \mathrm{E}$, from brown necrosis in wood of Prunus avium, 23 Aug 2016, S. Bien leg., GLM-F110704 - bolotype; GLMC $1624=$ CBS 145513 = DSM 109150 - culture ex-type.

Etymology. Name refers to the host species, Prunus avium.
Description. Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae hyaline, smooth-walled, septate, branched, $1-3 \mu \mathrm{~m}$ wide, lacking chlamydospores. Sporulation abundant, conidia formed directly on hyphal cells, in conidiomata and by microcyclic conidiation. Conidiophores on hyphae reduced to conidiogenous cells, conidiogenous loci formed terminally. Conidiogenous cells enteroblastic, hyaline, smoothwalled, mostly reduced to mere openings with collarettes formed directly on hyphal cells, discrete phialides rare, navicular, constricted at the base, $5.5-14.5 \times 1.5-2.5$ $\mu \mathrm{m}$; collarettes rarely visible or flaring, $<0.5-3 \mu \mathrm{~m}$ long, opening $0.5-1.5 \mu \mathrm{~m}$, periclinal thickening sometimes visible. Conidia aggregated in masses around the hyphae, hyaline, smooth-walled, aseptate, oblong to ellipsoidal, mostly straight, sometimes slightly curved, with both ends rounded, sometimes with a prominent scar on one end, $(2.5-) 3-5(-6) \times 1-1.5(-2) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=3.9 \pm 0.9 \times 1.4 \pm 0.2 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.8$. Conidiomata produced on OA in $2-4 \mathrm{wk}$; solitary or aggregated, globose to subglobose, unilocular, immersed to superficial, 50-340 $\mu \mathrm{m}$ wide, olivaceous to black, mostly glabrous, sometimes with a few hairs, opening with an irregular rupture. Conidiophores reduced to conidiogenous cells. Conidiogenus cells enteroblastic, hyaline, smooth-walled, conidiogenous loci formed terminally, discrete phialides, globose to ampulliform or navicular, $3.5-7.5 \times 2-3.5 \mu \mathrm{~m}$, opening $0.5-1 \mu \mathrm{~m}$, periclinal thickening sometimes visible. Conidia hyaline, smooth-walled, cylindrical to ellipsoidal, sometimes slightly curved, with both ends rounded, $(2.5-) 3-4.5(-6) \times(1-) 1.5-2(-3)$ $\mu \mathrm{m}$, mean $\pm \mathrm{SD}=3.8 \pm 0.8 \times 1.7 \pm 0.4 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.2$. Microcyclic conidiation occurs from minute collarettes at one or both ends of primary conidia that develop into swollen mother cells, often thick-walled, sometimes septate, > $5 \mu \mathrm{~m}$ long, $2-3.5$ $\mu \mathrm{m}$ wide.

Culture characteristics. Colonies on $O A$ flat with entire margin, white to saffron, with scattered umber spots due to conidiomata formation, aerial mycelium lacking, spore masses oozing from conidiomata buff, reverse white to buff, $4-8 \mathrm{~mm}$ diam. in 2

Figure 14. Minutiella pruni-avium sp. nov. A,B conidiomata $\mathbf{C - F}$ conidiogenous cells lining the inner wall of a conidioma \mathbf{G} conidia formed in conidiomata $\mathbf{H}-\mathbf{K}, \mathbf{P}-\mathbf{V}$ conidiogenous cells formed on hyphal cells (arrows indicate conidiogenous openings) L-O mother cells \mathbf{W} conidia formed on hyphal cells $\mathbf{A}-\mathbf{G}$ from OA H-W from SNA A, B SM, C-W LM. Scale bars: $200 \mu \mathrm{~m}(\mathbf{A}$ applies to $\mathbf{B}), 5 \mu \mathrm{~m}(\mathbf{C}$ applies to D-W).
wk, $6-10 \mathrm{~mm}$ diam. in 4 wk . Colonies on SNA flat with entire margin, white, lacking aerial mycelium, reverse same colour; < $1-2 \mathrm{~mm}$ diam. in $2 \mathrm{wk}, 6-8 \mathrm{~mm}$ diam. in 4 wk .

Notes. Two strains of Minutiella pruni-avium were isolated from wood of Prunus avium. The LSU sequences of these strains differ in three and one nucleotides from those of M. tardicola and Minutiella sp., respectively. The ITS region shows 11 differences to M. tardicola and 9 differences to Minutiella sp. The TUB sequence of M. tardicola and Minutiella sp. differ in one nucleotide, however, in 35 and 33 nucleotides compared to M. pruni-avium. Minutiella pruni-avium differs from Minutiella tardicola and the strains of Minutiella sp. by forming larger conidiomata, longer discrete phialides and flaring collarettes of up to $3 \mu \mathrm{~m}$.

The closest match in a blastn search with the ITS sequence of strain GLMC 1624 is the type strain of Minutiella tardicola CBS 121757 with 97.9% identity (NR132006, Damm et al. 2010).

Additional material examined. Germany, Baden-Württemberg, orchard west of Nussbach, $48^{\circ} 32^{\prime} 11.3^{\prime \prime} \mathrm{N}, 8^{\circ} 01^{\prime} 01.3^{\prime \prime} \mathrm{E}$, from brown necrosis in wood of Prunus avium, 23 Aug 2016, S. Bien leg., GLM-F110750, culture GLMC 1667 = CBS 145514 = DSM 109149.

Proliferodiscus ingens S.Bien \& Damm, sp. nov.

MycoBank No: 832112
Figures 5K, 15
Type. Germany, Baden-Württemberg, orchard south of Oppenau, on a hill, $48^{\circ} 27^{\prime} 57.6^{\prime \prime} \mathrm{N}, 8^{\circ} 09^{\prime} 11.0^{\prime \prime} \mathrm{E}$, from necrotic wood of Prunus avium, 24 Aug 2016, S. Bien leg., GLM-F110834 - bolotype; GLMC 1751 = CBS 145519 = DSM 109148 - culture ex-type.

Etymology. Named after the comparatively huge conidiomata (ingens Lat. = huge).
Description. Sexual morph not observed. Asexual morph on OA. Vegetative hyphae hyaline, smooth-walled, septate, branched, $1.5-3 \mu \mathrm{~m}$ wide, lacking chlamydospores. Sporulation abundant, conidia formed in conidiomata. Conidiomata produced on OA in 2-4 wk, solitary or aggregated, subglobose, unilocular, superficial, $250-1000 \mu \mathrm{~m}$ wide, dull green to grey olivaceous, almost glabrous to completely covered with hairs, opening with an irregular rupture. Conidiophores hyaline, smooth-walled, septate, sometimes branched at the base and above, conidiogenous loci formed terminally. Conidiogenus cells enteroblastic, hyaline, smooth-walled, navicular to subulate, tapering towards apices, $8-15 \times 1-2 \mu \mathrm{~m}$; collarettes hardly visible, cylindrical, $<1 \mu \mathrm{~m}$ long, opening $0.5-1 \mu \mathrm{~m}$, periclinal thickening sometimes visible. Conidia hyaline, smoothwalled, aseptate, cylindrical to ellipsoidal, straight, with both ends rounded, 2.5-3($3.5) \times 1-1.5 \mu \mathrm{~m}$, mean $\pm \mathrm{SD}=2.9 \pm 0.2 \times 1.4 \pm 0.1 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=2.1$.

Culture characteristics. Colonies on $O A$ raised with entire to crenated margin, buff to pale olivaceous grey, white at the margin, with umber to black spots due to conidiomata, aerial mycelium sparse, white, reverse buff to cinnamon, $1-2 \mathrm{~mm}$ diam. in $2 \mathrm{wk}, 2-3 \mathrm{~mm}$ diam. in 4 wk . Colonies on SNA flat to very low convex with entire to fimbriate margin, white, lacking aerial mycelium, reverse same colour; $1-2 \mathrm{~mm}$ diam. in $2 \mathrm{wk}, 2-3 \mathrm{~mm}$ diam. in 4 wk .

Notes. Strain GLMC 1751, described here as Proliferodiscus ingens, was isolated from Prunus avium in Baden-Württemberg. Only the asexual morph of this fungus was observed. Asexual morphs have previously rarely been observed in the genus Proliferodiscus and no complete description is available. However, Baral and Kriegelsteiner (1985) and Dennis (1949) mention an asexual morph of Pr. pulveraceus. Dennis (1949) observed multilocular pycnidia with slender conidiophores ($10-12 \mu \mathrm{~m}$ long) and spherical conidia ($1 \mu \mathrm{~m}$ diam.), whereas Baral and Krieglsteiner (1985) described oval conidia, measuring $1.5-1.7 \times 1.2-1.4 \mu \mathrm{~m}$, produced on verticillately branched conidiophores. In contrast to the description of Dennis (1949), the strains observed here produce unilocular pycnidia. Conidia of Pr. ingens are larger than conidia of Pr. pulveraceus in both descriptions. The asexual morph of Pr. ingens differs from that of the other Proliferodiscus strains observed in this study by producing larger, darker conidiomata, a different conidial shape and a lower growth rate.

The closest match in a blastn search with the ITS sequence of strain GLMC 1751 with 97.7% identity is "Hyaloscyphaceae sp. 2" strain ICMP 18979 from symptomless leaves of Nothofagus fusca in New Zealand (JN225935, Johnston et al. 2012).

Figure 15. Proliferodiscus ingens sp. nov. A conidiomata \mathbf{B} conidia formed in conidiomata $\mathbf{C}-\mathbf{E}, \mathbf{H}$, I conidiogenous cells lining the inner wall of a conidioma \mathbf{F}, \mathbf{G} detached conidiogenous cells $\mathbf{A}-\mathbf{I}$ from OA A SM B-I LM. Scale bars: $300 \mu \mathrm{~m}(\mathbf{A}), 5 \mu \mathrm{~m}(\mathbf{B}$ applies to $\mathbf{C} \mathbf{I})$.

Proliferodiscus sp.

Figures 5L, 16
Description. Sexual morph not observed. Asexual morph on OA. Vegetative hyphae hyaline, smooth-walled, septate, branched, 1.5-3 $\mu \mathrm{m}$ wide, lacking chlamydospores. Sporulation abundant, conidia formed in conidiomata. Conidiomata produced on OA, SNA and pine needles in 2-4 wk, solitary or aggregated, subglobose, unilocular, superficial, 125-500 $\mu \mathrm{m}$ wide, luteous, almost glabrous to completely covered with hairs, opening with an irregular rupture. Conidiophores hyaline, smooth-walled, septate, simple or branched, conidiogenous loci formed terminally. Conidiogenus cells enteroblastic, hyaline, smooth-walled, navicular to subulate, tapering towards apices, $9-14 \times 1-2 \mu \mathrm{~m}$, collarettes cylindrical, $<1 \mu \mathrm{~m}$ long, opening $0.5-1 \mu \mathrm{~m}$, periclinal thickening sometimes visible, conidiogenous cells often extend to form new conidiogenous openings, extensions flask-shaped to navicular. Conidia hyaline, smooth-walled, aseptate, mostly globose to obovoid, sometimes cylindrical to ellipsoidal, straight, with both ends rounded, $1.5-2(-3) \times 1.5(-2) \mu \mathrm{m}$, mean $\pm \mathrm{SD}=1.9 \pm 0.3 \times 1.5 \pm 0.1 \mu \mathrm{~m}, \mathrm{~L} / \mathrm{W}$ ratio $=1.2$.

Culture characteristics. Colonies on $O A$ flat to effuse with entire to fimbriate margin, white to buff, cinnamon to sienna at the margin, aerial mycelium sparse, white, reverse buff, cinnamon to sienna; 6-14 mm diam. in $2 \mathrm{wk}, 16-32 \mathrm{~mm}$ diam. in 4 wk . Colonies on SNA flat to effuse with entire to fimbriate margin, white, lacking aerial mycelium, reverse same colour; 6-18 mm diam. in $2 \mathrm{wk}, 20-34 \mathrm{~mm}$ diam. in 4 wk .

Notes. In total, five strains of Proliferodiscus sp. have been isolated from wood of Prunus domestica in Saxony (3) and Lower Saxony (1) as well as P. avium in BadenWürttemberg (1). Two subclades are formed by these strains, which differ in one and four nucleotides in the LSU and ITS sequences, respectively. No morphological differences were noticed between strains of the two subclades. They form a well-supported clade (100/100/99\%) with eight strains retrieved from GenBank, including the ex-type

Figure 16. Proliferodiscus sp. A conidiomata \mathbf{B} conidia formed in conidiomata C-F, I-J conidiogenous cells lining the inner wall of a conidioma \mathbf{G}, \mathbf{H} detached conidiogenous cells $\mathbf{H} \mathbf{J}$ extensions on conidiogenous cells A-J from OA A SM B-J LM. Scale bars: $300 \mu \mathrm{~m}(\mathbf{A}), 5 \mu \mathrm{~m}$ (B applies to C-J).
strain of the recently described Pr. chiangraiensis. The conidial shape of these strains is similar to that of the asexual morph of Pr. pulveraceus observed by Baral and Krieglsteiner (1985); the conidia are slightly larger, but the measurements overlap. However, we cannot link these strains to Pr. pulveraceus on this basis, because the species was described based on its sexual morph and no sequences of type material are available. Moreover, a recently published sequence, designated as Pr. pulveraceus (MN066320, G Marson unpubl.), belongs to a different clade in our phylogeny.

One striking feature was observed in our collections: new conidiogenous cells grow out of conidiogenous openings (Fig. 16H-J). This feature has previously been observed in species of other genera, for example, Fusarium graminearum (Domsch et al. 2007) and several Colletotrichum species (Damm et al. 2012, 2019).

The anamorphic states of the observed strains of Proliferodiscus sp. differ from Pr. ingens (strain GLMC 1751, this study) by the colour and the smaller size of conidiomata, faster culture growth rate on OA and SNA and the shape of the conidia.

Material examined. Germany, Saxony, in orchard north of Wölkau, $50^{\circ} 58^{\prime} 42.3^{\prime \prime N} \mathrm{~N}$, $13^{\circ} 49^{\prime} 40.0^{\prime \prime} \mathrm{E}$, from brown necrosis in wood of Prunus domestica, 16 Jan 2015, S. Bien leg., GLM-F106310, culture GLMC $460=$ CBS $145517=$ DSM 109138; BadenWürttemberg, orchard west of Nussbach, $48^{\circ} 31^{\prime} 55.8^{\prime \prime} \mathrm{N} 8^{\circ} 00^{\prime} 52.4^{\prime \prime} \mathrm{E}$, from necrotic wood of P. avium, 23 Aug 2016, S. Bien leg., GLM-F110844, culture GLMC 1761 = CBS 145518 = DSM 109137; Saxony, in orchard north of Wölkau, 5058'42.3"N, $13^{\circ} 49^{\prime} 40.0$ " E , from brown necrosis in wood of P. domestica, 16 Jan 2015, S. Bien leg., GLM-F106320, culture GLMC 470; Lower Saxony, Hollern-Twielenfleth, orchard, $53^{\circ} 36^{\prime} 13.6^{\prime \prime} \mathrm{N}, 9^{\circ} 31^{\prime} 50.8^{\prime \prime} \mathrm{E}$, from brown wedge-shaped necrosis in wood of P. domestica, 8 Oct 2015, S. Bien leg., GLM-F107151, culture GLMC 1301; Saxony, in orchard north of Wölkau, $50^{\circ} 58^{\prime} 42.3^{\prime \prime} \mathrm{N}, 13^{\circ} 49^{\prime} 40.0^{\prime \prime} \mathrm{E}$, from brown necrosis in wood of P. domestica, 16 Jan 2015, S. Bien leg., GLM-F106352, culture GLMC 502.

Discussion

The new genus Arboricolonus is described, based on one strain, GLMC 459, that could not be assigned to any known genus. Closest matches of ITS (90\% identity) and LSU (97% identity) sequences of this fungus with strains identified at least to the genus level were strains of Glutinomyces vulgaris, Chalara aurea, Hyalodendriella betulae and Polyphilus sieberi; (Ashrafi et al. 2018; Crous et al. 2007; Nakamura et al. 2018; Vu et al. 2019). The asexual morph of Arboricolonus simplex clearly differs from these genera. The monotypic genus Hyalodendriella forms pigmented micro- and macroconidiophores directly on hyphae as well as pigmented limoniform to ellipsoid and prominently apiculate conidia (Crous et al. 2007), while Chalara is characterised by forming sessile or stalked phialides with basal ventres, long collarettes and deep-seated conidiogenous loci; conidia are cylindrical and often produced in basipetal chains (Holubová-Jechová 1984; Kowalski 2006). However, Chalara, is highly polyphyletic; species have been placed in different classes of Ascomycota (Paulin and Harrington 2000; Koukol 2011). As the type species belongs to the Sordariomycetes (Chalara fusidioides), strain CBS 880.73 probably does not even belong in Chalara s. str. The genera Polyphilus and Glutinomyces were described, based on sequence data and colony morphology only (Ashrafi et al. 2018; Crous et al. 2017; Nakamura et al. 2018); no asexual morphs are available that could be compared to Arboricolonus.

For systematic placement of the genus on order level, we conducted a class-wide phylogenetic analysis of LSU-ITS with reference sequences of Leotiomycetes which clearly places it in the order Helotiales (data not shown). The closest matches from LSU and ITS blastn searches indicate the relationship of this new genus to the Hyaloscyphaceae, the largest family of the Helotiales that is mainly circumscribed by features of sexual morphs (Jaklitsch et al. 2016). Han et al. (2014b) and Johnston et al. (2019) demonstrated the polyphyly of the family. For the placement of the new genus on family level, we included LSU and ITS sequences of selected sequences from all clades of Hyaloscyphaceae and closely related families recognised by Han et al. (2014b) in their multi-locus ML analyses, as well as the closest matches from the blastn searches. The clades in our phylogeny are mostly well-supported and in agreement with the clades in Han et al. (2014b). However, most of these clades are placed on a polytomous branch. Due to the lack of a stable backbone, the exact placement of clades in relation to each other shown by the ML analyses of Han et al. (2014b) could not be confirmed and remains inconclusive. Furthermore, as shown in Fig. 1, family designation of the included strains according to Han et al. (2014b), Johnston et al. (2019) and Ekanayaka et al. (2019) is highly problematic.

The new genus Arboricolonus clusters in our phylogeny with sequences of Polyphilus, Cistella, Rodwayella and Polydesmia, however, on short branches, they lack posterior probability or bootstrap support. Therefore, we consider the placement of the genus as of uncertain taxonomic position on family level (Helotiales, incertae sedis). We did not find any record of asexual morphs of Cistella and Rodwayella for morphological comparison with the new genus. In contrast to Arboricolonus simplex, Polydesmia pruinosa
(asexual morph: Brefeldochium priinosum) produces septate falcate conidia in sporodochia (Verkley 2005).

Except for the lack of microcyclic conidiation, the genus Arboricolonus morphologically resembles Collophorina and related genera by forming slow growing cultures, conidiophores that are reduced to short phialides or openings on hyphae with minute to flaring collarettes and cylindrical to ellipsoid conidia with obtuse ends (Bien et al. 2020). A similar morphological appearance could be explained with a similar lifestyle within plant wood and is therefore regarded as a result of convergent evolution. The possibility of morphological adaptation of collophorina-like species to the habitat within the woody plant body has previously been discussed by Bien et al. (2020).

In total, 29 strains of Cadophora have been isolated from wood in Germany, all from Prunus cerasus and P. domestica, of which 17 were included our phylogeny. A further three strains included in the analyses originated from wood of P. salicina in South Africa.

The strains of C. novi-eboraci from this study were all isolated from wood of P. cerasus in Saxony and Bavaria, Germany. Cadophora novi-eboraci was described from decaying wood of Vitis spp. in the USA (Travadon et al. 2015) and recently reported from necrotic wood of Malus domestica in Germany (Gierl and Fischer 2017). To our knowledge, this is the first report of C. novi-eboraci from Prunus wood worldwide.

Strain CBS 101359 from stained wood of Actinidia chinensis in Italy had been referred to as C. malorum by Di Marco et al. (2004) and Prodi et al. (2008). Travadon et al. (2015) identified it as C. novi-eboraci. In our phylogeny, it is placed distantly from both species. We therefore regard this strain as a different taxon.

Cadophora luteo-olivacea was originally isolated from wastewater in Sweden (Van Beyma 1940). This species has been reported mostly from Vitis vinifera and several other woody hosts worldwide (Farr and Rossman 2019), but not from Prunus. Fischer et al. (2016) isolated this species from grapevine nurseries and vineyards in Germany. In this study, C. luteo-olivacea was isolated from Prunus domestica in all three sampling areas. Therefore, this is the first report of C. luteo-olivacea from Prunus wood worldwide. Cadophora luteo-olivacea seems to be not only widely distributed, but also very variable. Gramaje et al. (2011) observed a high variability of colony pigmentation within C. luteo-olivacea, which was also observed by Harrington and McNew (2003), not only in this, but also in other species of the genus. We noticed that the $T U B$ and $E F$-1a sequences of the ex-type strain CBS 141.41 and strain A42, identified as C. luteo-olivacea by Travadon et al. (2015), differed in 8 and 16 nucleotides, respectively. Strains, isolated from Prunus wood in this study, show up to nine and five nucleotide differences in the $T U B$ and $E F$-la sequences, respectively. In the resulting single-locus trees (not shown), subgroups are formed that are, however, not concordant and therefore do not represent independent evolutionary lineages. This phenomenon was previously studied in the highly variable species Colletotrichum siamense (Liu et al. 2016), that had been regarded as species complex, based on single-locus analyses. Except for a small cluster formed by two strains from the study of Travadon et al. (2015), no subgroups are formed in the multi-locus phylogeny.

Three of the Cadophora species we isolated from Prunus wood, namely C. luteo-olivacea, C. novi-eboraci and the newly described C. ramosa (syn. C. spadicis), were previously associated with wood diseases like cankers or Petri disease of Vitis spp., (e.g. Casieri et al. 2009; Halleen et al. 2007; Fischer et al. 2016; Travadon et al. 2015; Pintos et al. 2018). Several other fungal species are reported both from Vitis and fruit trees as well, for example, several species belonging to the Botryosphaeriaceae, Diatrypaceae and the genus Phaeoacremonium (Damm et al. 2007, 2008; Moyo et al. 2018); fruit trees were referred to as alternative hosts of grapevine trunk disease pathogens. Similar to these fungi, Cadophora species could be transferred to grapevine plants from Prunus trees grown in close vicinity to vineyards. To our knowledge, the genus Cadophora has never been reported from Prunus before (Farr and Rossman 2019 as well as all references listed in this study). Moreover, we found new species on this host genus. One of them, C. prunicola, was isolated from three different Prunus species, P. cerasus, P. domestica and P. salicina, both in Germany and South Africa. A second new species, C. africana, is so far only known from P. salicina in South Africa. Based on a blastn search with its ITS sequence, C. prunicola was detected as an uncultured Cadophora in dead wood of Fagus sylvatica in Germany (Floren et al. 2015), but so far, there is no report of any of these two species in Vitis wood.

In addition to the strains isolated from Prunus trees in Germany and South Africa, we included strains of Phialophora bubakii, because we noticed a close affinity to the genus Cadophora by preliminary sequence comparisons (not shown). Phialophora bubakii that was originally described from margarine as Margarinomyces bubakii (Laxa 1930) and combined in Cadophora in this study, had previously been reported from wood of Pinus strobus and Populus sp. (Ellis 1976), where it caused blue stain on timber, from Betula pendula in Poland (Mulenko et al. 2008), further from subcutaneous infections (Porto 1979) and from corneal ulcers (Eiferman et al. 1983), both in humans and dogs in several countries (Hoog et al. 2000). An ITS sequence of a strain from wood pulp of Populus tremula, identical to that of the ex-isotype strain, is available in GenBank (Vu et al. 2019), confirming the occurrence of Ph. bubakii on Populus wood. The remaining reports lack sequence data and are therefore doubtful. Some of the reports could actually refer to other species that could have been confused due to similar morphology. None of the C. bubakii and C. obscura strains, included in this study, originated directly from wood or infections of mammals. However, the ex-isotype strain of C. obscura apparently originates from water in a "trämassefabrik" (trämassa = wood pulp) and therefore possibly from the processed wood itself. An identical ITS sequence from archaeological wood in Greenland (NB Pedersen et al., unpubl. data) suggests the occurrence of C. obscura in wood as well.

The TUB sequences of C. bubakii, C. obscura and C. viticola were excluded from the phylogenetic analyses, because all of them differed tremendously from each other and from the rest of the dataset. Furthermore, sequencing $T U B$ of C. obscura (CBS 269.33), using either the forward or the reverse primer, generated two vastly differing sequences (data not shown). Sequencing TUB of Aspergillus spp. by Peterson (2008) and Hubka and Kolarik (2012) also resulted in different sequences from the same species, which were regarded as possible paralogous gene fragments. Based on the data in this study, we assume a similar situation in Cadophora.

All Cadophora species treated in this study can be distinguished by all single loci analysed (data not shown). Due to the high genetic variation within some of them, the use of more than one locus is recommended for further studies on this genus.

The genus Minutiella was isolated for the first time from wood of Prunus armeniaca in South Africa and described as Phaeomoniella tardicola (= M. tardicola) (Damm et al. 2010). This is the first report of the genus Minutiella and the Phaeomoniellales, in general, from P. avium and P. domestica worldwide. The genus Minutiella is, so far, only known from wood of Prunus trees. More specifically, M. tardicola is known from P. armeniaca in South Africa, the new species M. pruni-avium from P. avium in Germany and Minutiella sp. from P. domestica in Germany (Damm et al. 2010; this study). This genus also forms reduced conidiogenous cells; probably an adaption to the living conditions inside wood like Collophorina and related species and Arboricolonus (Bien et al. 2020; this study).

The two Minutiella strains GLMC 1636 and GLMC 1687 are morphologically indistinguishable from M. tardicola, however, differ in LSU, ITS and TUB sequences from this species. The description of this further new species is in preparation (C. Kraus, pers. comm.).

The LSU-ITS-TUB phylogeny of the Celotheliaceae shows a high similarity to the previously compiled LSU phylogeny in Chen et al. (2015). In this study, we provide the first multi-locus phylogeny of the family. For a conclusive placement of genera within this family, more data is needed, since all phylogenies lack a deep node support (Chen et al. 2015; this study). "Phaeomoniella" pinifoliorum apparently represents a separate genus. A new genus was, however, not described, as no strain and only ITS sequence data were available for characterisation of this genus.

Proliferodiscus has been reported from wood and bark of several woody hosts worldwide (Albertini and Schweinitz 1805; Dennis 1949; Baral and Krieglsteiner 1985; Spooner 1987; Weber and Bresinsky 1992; Haelewaters et al. 2018; Farr and Rossman 2019). Dennis (1949) lists Prunus insititia as one of the hosts of Proliferodiscus pulveraceus. In this study, two Proliferodiscus species have been collected from wood of P. avium and P. domestica.

The species delimitation in the genus Proliferodiscus was previously based on the morphology of the sexual morphs only (e.g. Haines and Dumont 1983; Baral and Krieglsteiner 1985; Spooner 1987; Hofton et al. 2009). Six of the species had been described even before 1900 in other genera and were transferred to this genus later. Only few morphological treatments of Proliferodiscus species contained information on asexual morphs (Dennis 1949; Baral and Krieglsteiner 1985). The genus has not been treated in modern terms yet.

There are sequences of ten strains/specimens identified as Proliferodiscus in GenBank, none of them is ex-type, except for the recently described Pr. chiangraiensis. The available sequences of Proliferodiscus belong to three main clades in our phylogeny. One well-supported clade in our phylogeny contains several apparently closely related strains/specimens, for which different names have been applied.

Most of our strains from Prunus, belonging to two subclades of the same main clade, did not show any morphological differences of the asexual morph and only differed in few nucleotides from each other and from the remaining specimens/sequences
within this clade. Therefore, we refrained from describing two new species in this clade and refer to the strains as Proliferodiscus sp. In order to allow comparison with asexual morphs in this genus in the future, we provided a description of this species, as well as of the newly described species Pr. ingens. In order to provide a solid basis for identifications and detections of new species, Proliferodiscus species need to be epitypified and data of both sexual and asexual morphs, as well as sequence data, need to be provided.

Conclusion

The isolation of fungal strains from necrotic wood of Prunus species in Germany and South Africa revealed several unknown taxa within Leotiomycetes and Eurotiomycetes. Based on morphology and multi-locus molecular analyses, we described one new genus and six new species in four genera. Although previously unknown from wood of Prunus trees, the genus Cadophora was revealed to be a common wood inhabitant of P. cerasus and P. domestica in Germany, but apparently not of P. avium. The genus Minutiella, originally described from P. armeniaca in South Africa, also occurs in Prunus wood in Germany and, thus, belongs to the common genera in Prunus wood as well. Our analyses of the genus Proliferodiscus also contributes to the knowledge of this genus by the first detailed descriptions of asexual morphs of this genus. The results underline the sparse knowledge of several fungal genera from wood and of the wood mycobiome of the economically important host genus Prunus. The morphological data presented here and the up-to date molecular frameworks will provide a basis for further studies on these genera and on wood diseases of Prunus trees.

Acknowledgements

We thank the curator of the culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands (CBS), Dr. Gerard Verkley, for kindly supplying isolates for this study. We also thank Hans-Otto Baral, Tübingen, Germany, for providing valuable information on Proliferodiscus. Furthermore, we thank Prof. Dr. Uwe Braun, Halle (Saale), Germany, for his help with the nomenclature of the newly described taxa. The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

Agustí-Brisach C, Gramaje D, García-Jiménez J, Armengol J (2013) Detection of black-foot and Petri disease pathogens in soils of grapevine nurseries and vineyards using bait plants. Plant and Soil 364: 5-13. https://doi.org/10.1007/s11104-012-1333-1
Albertini JB, Schweinitz LD (1805) Conspectus fungorum in Lusatiae superioris. Sumtibus Kummerianis, Leipzig, Germany.

Alves A, Crous PW, Correia A, Phillips AL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1-13.
Ashrafi S, Knapp DG, Blaudez D, Chalot M, Maciá-Vicente JG, et al. (2018) Inhabiting plant roots, nematodes, and truffles - Polyphilus, a new helotialean genus with two globally distributed species. Mycologia 110: 286-299. https://doi.org/10.1080/00275514.2018.1448167
Baral HO, Kriegelsteiner GJ (1985) Bausteine zu einer Askomyzeten-Flora der Bundesrepublik Deutschland: In Süddeutschland gefundene Inoperculate Discomyzeten mit taxonomischen, ökologischen, chorologischen Hinweisen und einer Farbtafel. Beihefte zur Zeitschrift für Mykologie 6: 1-160.
Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, et al. (2013) Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62: 243-265. https:// doi.org/10.1111/j.1365-3059.2012.02674.x
Bien S, Kraus C, Damm U (2020) Novel collophorina-like genera and species from Prunus trees and vineyards in Germany. Persoonia 45: 46-67. https://doi.org/10.3767/persoonia.2020.45.02
Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, et al. (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Applied and Environmental Microbiology 70: 1328-1335. https://doi.org/10.1128/AEM.70.3.1328-1335.2004
Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, et al. (2010) An Antarctic hot spot for fungi at Shackleton's historic hut on Cape Royds. Microbial Ecology 60: 29-38. https://doi.org/10.1007/s00248-010-9664-z
Cantrell SA, Hanlin RT (1997) Phylogenetic relationships in the family Hyaloscyphaceae inferred from sequences of ITS regions, 5.8 S ribosomal DNA and morphological characters. Mycologia 89: 745-755. https://doi.org/10.1080/00275514.1997.12026841
Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathologia Mediterranea 48: 73-83.
Chen KH, Miadlikowska J, Molnár K, Arnold AE, U’Ren JM, et al. (2015) Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order - Phaeomoniellales. Molecular Phylogenetics and Evolution 85: 117-130. https://doi.org/10.1016/j.ympev.2015.01.008
Cole GT, Kendrick B (1973) Taxonomic studies of Phialophora. Mycologia 65: 661-688. https://doi.org/10.1080/00275514.1973.12019477
Conant NF (1937) The occurrence of a human pathogenic fungus as a saprophyte in nature. Mycologia 29: 597-598. https://doi.org/10.1080/00275514.1937.12017229
Crous PW, Gams W (2000) Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca. Phytopathologia Mediterranea 39: 112-118.
Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Studies in Mycology 58: 33-56. https://doi.org/10.3114/ sim.2007.58.02
Crous PW, Wood AR, Okada G, Groenewald JZ (2008) Foliicolous microfungi occurring on Encephalartos. Persoonia 21: 135-146. https://doi.org/10.3767/003158508X380612
Crous PW, Verkley GJM, Groenewald JZ (2009) Xenocylindrosporium kirstenboschense. Fungal Planet 44. Persoonia 23: 200-201.

Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, et al. (2015) Fungal Planet description sheets: 320-370. Persoonia 34: 167-266. https://doi. org/10.3767/003158515X688433
Crous PW, Wingfield MJ, Burgess TI, Hardy GJ, Crane C, et al. (2016) Fungal Planet description sheets: 469-557. Persoonia 37: 218-403. https://doi.org/10.3767/003158516X694499
Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GJ, et al. (2017) Fungal Planet description sheets: 625-715. Persoonia 39: 270-467. https://doi.org/10.3767/persoonia.2017.39.11
Crous PW, Verkley GJM, Groenewald JZ, Houbraken J (2019) Fungal Biodiversity. CBS Laboratory Manual Series 1. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.
Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99: 664-680. https://doi.org/10.1080/15572536.2007.11832531
Damm U, Mostert L, Crous PW, Fourie PH (2008) Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia 20: 87-102. https://doi. org/10.3767/003158508X324227
Damm U, Fourie PH, Crous PW (2010) Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia 24: 60-80. https://doi.org/10.3767/003158510X500705
Damm U, Cannon PF, Woudenberg JC, Johnston PR, Weir BS, et al. (2012) The Colletotrichum boninense species complex. Studies in Mycology 73: 1-36. https://doi.org/10.3114/ sim0002
Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW (2019) The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology 92: 1-46. https://doi.org/10.1016/j.simyco.2018.04.001
Davidson RW (1935) Fungi-causing stain in logs and lumber in the Southern States, including five new species. Journal of Agricultural Research 50: 789-807.
Day MJ, Hall JC, Currah RS (2012) Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala. Mycologia 104: 371-381. https:// doi.org/10.3852/11-059
Dennis RG (1949) A revision of the British Hyaloscyphaceae with notes on the related european species. Mycological Papers 32: 1-97.
Di Marco S, Calzarano F, Osti F, Mazzullo A (2004) Pathogenicity of fungi associated with a decay of kiwifruit. Australasian Plant Pathology 33: 337-342. https://doi.org/10.1071/ AP04024
Domsch KH, Gams W, Anderson TH (2007) Compendium of Soil Fungi. IHW Verlag, Eching, Germany.
Eiferman RA, Snyder JW, Barbee JW (1983) Corneal chromomycosis. American Journal of Ophthalmology 95: 255-256. https://doi.org/10.1016/0002-9394(83)90024-7
Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EC, Zhao Q, et al. (2019) Preliminary classification of Leotiomycetes. Mycosphere 10: 310-489. https://doi.org/10.5943/mycosphere/10/1/7
Ellis MB (1976) More dematiaceous hyphomycetes. CMI, Kew, England.

Farr DF, Rossman AY (2019) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/
Fischer M, Schneider P, Kraus C, Molnar M, Dubois C, et al. (2016) Grapevine trunk disease in German viticulture: occurrence of lesser known fungi and first report of Phaeoacremonium viticola and P. fraxinopennsylvanicum. Vitis 55: 145-156.
Floren A, Krüger D, Müller T, Dittrich M, Rudloff R, et al. (2015) Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment. PLoS One 10: e0143566. https://doi.org/10.1371/journal.pone. 0143566
Fontaine F, Gramaje D, Armengol J, Smart R, Nagy ZA, et al. (2016) Grapevine trunk diseases. A review. $1^{\text {st }}$ Edition. OIV publications, Paris.
Gams W (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes). VEB Gustav Fischer Verlag, Jena, Germany.
Gams W, McGinnis MR (1983) Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 75: 977-987. https://doi.org/10.1080/0027551 4.1983.12023783

Gams W (2000) Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Studies in Mycology 45: 187-200.
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118. https:// doi.org/10.1111/j.1365-294X.1993.tb00005.x
Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, et al. (2006) Eurotiomycetes: eurotiomycetidae and chaetothyriomycetidae. Mycologia 98: 1053-1064. https://doi.org/ 10.1080/15572536.2006.11832633

Geiser DM, LoBuglio KF, Gueidan C (2015) 5 Pezizomycotina: Eurotiomycetes. In: McLaughlin DJ, Spatafore JW. (Eds.) The Mycota, Systematics and Evolution Part B, $2^{\text {nd }}$. Edition. Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-46011-5_5
Gierl L, Fischer M (2017) Grapevine trunk disease in German viticulture II. Associated fungi occurring on non-Vitis hosts, and first report of Phaeoacremonium angustius. Vitis 56: 103110. https://doi.org/10.5073/vitis.2017.56.103-110

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323-1330.
Gramaje D, Mostert L, Armengol J (2011) Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathologia Mediterranea 50: 112-126.
Gramaje D, Úrbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102: 12-39. https://doi.org/10.1094/PDIS-04-17-0512-FE
Haelewaters D, Dirks AC, Kappler LA, Mitchell JK, Quijada L, et al. (2018) A preliminary checklist of fungi at the Boston Harbor islands. Northeastern Naturalist 25: 45-77. https://doi.org/10.1656/045.025.s904
Haines JH, Dumont KP (1983) Studies in the Hyaloscyphaceae II: Proliferodiscus, a new genus of Arachnopezizoideae. Mycologia 75: 535-543. https://doi.org/10.1080/00275514.198 3.12023717

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Halleen F, Mostert L, Crous PW (2007) Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology 36: 277-285. https://doi.org/10.1071/ AP07019
Han JG, Sung GH, Shin HD (2014a) Proliferodiscus inspersus var. magniascus and Rodwayella citrinula, two unrecorded taxa of Hyaloscyphaceae (tribe Arachnopezizeae) in Korea. Mycobiology 42: 86-91. https://doi.org/10.5941/MYCO.2014.42.1.86
Han JG, Hosoya T, Sung GH, Shin HD (2014b) Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biology 118: 150-167. https://doi.org/10.1016/j.funbio.2013.11.004
Harrington TC, McNew DL (2003) Phylogenetic analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon 87: 141-152.
Hofton TH, Baral HO, Homble K (2009) The ascomycete Proliferodiscus tricolor (Sowerby: Fr.) Baral comb. nov., recollected in Scandinavia after 60 years. Agarica 28: 33-42.
Holubová-Jechová V (1984) Lignicolous Hyphomycetes from Czechoslovakia 7. Chalara, Exochalara, Fusichalara and Dictyochaeta. Folia Geobotanica \& Phytotaxonomica 19: 387438. https://doi.org/10.1007/BF02853179

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000) Atlas of clinical fungi. $2^{\text {th }}$ edition. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.
Hubka V, Kolarik M (2012) β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 29: 1-10. https://doi.org/10.3767/003158512X658123
Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycological Progress 9: 1-15. https://doi.org/10.1007/s11557-009-0611-7
Hustad VP, Miller AN (2011) Phylogenetic placement of four genera within the Leotiomycetes (Ascomycota). North American Fungi 6: 1-13. https://doi.org/10.2509/naf2011.006.009
Jaklitsch W, Baral HO, Lücking R, Lumbsch HT, Frey W (2016) Syllabus of Plant Families Adolf Engler's Syllabus der Pflanzenfamilien, 13. Edition, Part 1/2.
Johnston PR, Johansen RB, Williams AF, Wikie JP, Park D (2012) Patterns of fungal diversity in New Zealand Nothofagus forests. Fungal Biology 116: 401-412. https://doi.org/10.1016/j. funbio.2011.12.010
Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, et al. (2019) A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 10: 1. https://doi. org/10.1186/s43008-019-0002-x
Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066. https://doi.org/10.1093/nar/gkf436

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson Land, Antarctica. Polar Biology 10: 423-430. https://doi.org/10.1007/BF00233690
Koukol O (2011) New species of Chalara occupying coniferous needles. Fungal Diversity 49: 75-91. https://doi.org/10.1007/s13225-011-0092-2
Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology 36: 264-270. https://doi.org/10.1111/j.14390329.2006.00453.x

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.
Lagerberg T, Lundberg G, Melin E (1927) Biological and practical researches into blueing in pine and spruce. Svenska Skogsvårdsföreningens Tidskrift 25: 145-272.
Laxa O (1930) Margarinomyces bubáki - ein Schädling der Margarine. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 81: 392-396.
Lee HB, Park JY, Jung HS, Summerbell RC (2006) Phaeomoniella zymoides and Phaeomoniella pinifoliorum spp. nov., new acid-tolerant epiphytic fungi isolated from pine needles in Korea. Mycologia 98: 598-611. https://doi.org/10.1080/15572536.2006.11832663
Le Gal M, Mangenot MF (1960) Contribution à l'étude de Mollisioidées. III (2e série). Revue de Mycologie 25: 135-214.
Le Gal M, Mangenot MF (1961) Contribution à l'étude de Mollisioidées. IV (3e série). Revue de Mycologie 26: 263-331.
Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evolutionary Biology 16: 81. https://doi. org/10.1186/s12862-016-0649-5
LoBuglio KF, Pfister DH (2010) Placement of Medeolaria farlowii in the Leotiomycetes, and comments on sampling within the class. Mycological Progress 9: 361-368. https://doi. org/10.1007/s11557-009-0644-y
McKenzie EC, Buchanan PK, Johnston PR (2000) Checklist of fungi on Nothofagus species in New Zealand. New Zealand Journal of Botany 38: 635-720. https://doi.org/10.1080/00 28825X.2000.9512711
Medlar EM (1915) A new fungus, Phialophora verrucosa, pathogenic for man. Mycologia 7: 200-203. https://doi.org/10.1080/00275514.1915.12021711
Melin E, Nannfeldt JA (1934) Researches into the blueing of ground woodpulp. Svenska Skogsvårdsföreningens Tidskrift 3-4: 397-616.
Moyo P, Damm U, Mostert L, Halleen F (2018) Eutypa, Eutypella and Cryptovalsa species (Diatrypaceae) associated with Prunus species in South Africa. Plant Disease 102: 1402-1409. https://doi.org/10.1094/PDIS-11-17-1696-RE
Mulenko W, Majewski T, Ruszkiewicz-Michalska M (2008) A preliminary checklist of Micromycetes in Poland. W. Szafer Institute of Botany, Polish Academy of Sciences 9: 1-752.

Nakamura N, Hosoya T, Tanaka C, Takeuchi-Kaneko Y (2018) Detection of a root-associated group of Hyaloscyphaceae (Helotiales) species that commonly colonizes Fagaceae roots and description of three new species in genus Glutinomyces. Mycoscience 59: 397-408. https:// doi.org/10.1016/j.myc.2018.02.010
Nilsson T (1973) Studies on degradation and cellulolytic activity of microfungi. Studia Forestalia Suecica 104. Stockholm, Sweden.
Nirenberg HI (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 169: 1-117.
Nordén B, Sunhede S, Larsson E (2005) New species of Moristroma (Ascomycetes) and phylogenetic position of the genus. Mycological Progress 4: 325-332. https://doi.org/10.1007/ s11557-006-0137-1
Paulin AE, Harrington TC (2000) Phylogenetic placement of anamorphic species of Chalara among Ceratocystis species and other ascomycetes. Studies in Mycology 45: 209-222.
Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205-226. https://doi.org/10.1080/15572536.2008.11832477
Pintos C, Redondo V, Costas D, Aguin O, Mansilla P (2018) Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathologia Mediterranea 57: 407-424.
Porto EC (1979) Phialophora bubakii, isolaments de abscessu subcutaneo, em transplantado renal. Revista do Instituto de Medicina Tropical de Sáo Paulo 21: 106-109.
Prodi A, Sandalo S, Tonti S, Nipoti P, Pisi A (2008) Phialophora-like fungi associated with kiwifruit elephantiasis. Journal of Plant Pathology 90: 487-494.
Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, Kew, UK.
Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625-634. https:// doi.org/10.1016/S0953-7562(09)80409-7
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
Schol-Schwarz MB (1970) Revision of the genus Phialophora (Moniliales). Persoonia 6: 59-94.
Spooner BM (1987) Helotiales of Australasia: Geoglossaceae, Orbiliaceae, Sclerotiniaceae, Hyaloscyphaceae. Bibliotheca Mycologica 116: 1-711.
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. https://doi. org/10.1093/bioinformatics/btl446
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF, et al. (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology 119: 53-66. https://doi.org/10.1016/j.funbio.2014.11.002

Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, et al. (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code. 2018

Úrbez-Torres JR, Peduto F, Vossen PM, Krueger WH, Gubler WD (2013) Olive twig and branch dieback: etiology, incidence, and distribution in California. Plant Disease 97: 231244. https://doi.org/10.1094/PDIS-04-12-0390-RE

Van Beyma FH (1940) Beschreibung einiger neuer Pilzarten aus dem Centraalbureau voor Schimmelcultures, Baarn, Holland. Antonie van Leeuwenhoek 6: 286-288. https://doi. org/10.1007/BF02272771
Van Beyma FH (1943) Beschreibung der im Centraalbureau voor Schimmelcultures vorhandenen Arten der Gattungen Phialophora Thaxter und Margarinomyces Laxa, nebst Schüssel zu ihrer Bestimmung. Antonie van Leeuwenhoek 9: 51-76. https://doi. org/10.1007/BF02293064
Verkley GJ (2005) Brefeldochium pruinosum, gen. et sp. nov., the anamorph of Polydesmia pruinosa (Hyaloscyphaceae, Helotiales, Ascomycota). Nova Hedwigia 80: 503-510. https:// doi.org/10.1127/0029-5035/2005/0080-0503
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, et al. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135-154. https://doi.org/10.1016/j.simyco.2018.05.001
Walsh E, Duan W, Mehdi M, Naphri K, Khiste S, et al. (2018) Cadophora meredithiae and C. interclivum, new species from roots of sedge and spruce in a western Canada subalpine forest. Mycologia 110: 201-214. https://doi.org/10.1080/00275514.2017.1406748
Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, et al. (2006a) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Molecular Phylogenetics and Evolution 41: 295-312. https://doi.org/10.1016/j.ympev.2006.05.031
Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006b) Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98:1065-1075. https://doi.org/10.1080/15572536.2006.11832634
Weber E, Bresinsky A (1992) Polyploidy in discomycetes. Persoonia 14: 553-563.
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Yurkewich JI, Castaño C, Colinas C (2017) Chestnut Red Stain: Identification of the fungi associated with the costly discolouration of Castanea sativa. Forest Pathology 47: e12335. https://doi.org/10.1111/efp. 12335
Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 53: 1-221. https://doi.org/10.1007/s13225-011-0117-x

Supplementary material I

Complete list of strains included in this study, with collection details, GenBank accession numbers and references

Authors: Steffen Bien, Ulrike Damm
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.63.46836.suppl1

Corrigendum: He XL, Horak E, Wang D, Li TH, Peng WH, Gan BC (20I9) Descriptions of five new species in Entoloma subgenus Claudopus from China, with molecular phylogeny of Entoloma s.l. MycoKeys 60: I-26. https://doi.org/I0.3897/mycokeys.6I.46446

Xiao-Lan He', Egon Horak ${ }^{2}$, Di Wang', Tai-Hui Li${ }^{3}$, Wei-Hong Peng', Bing-Cheng Gan ${ }^{1}$
I Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China 2 Schlossfeld 17, A-6020 Innsbruck, Austria 3 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
Corresponding author: Xiao-Lan He (xl_he@qq.com)

[^4]We found that Table 1 "A list of taxa, specimens and GenBank accession numbers of sequences used in this study" had been omitted and figure legends $1-7$ were not the final version after our manuscript was published. Table 1 and revised figure legends $1-7$ are now provided below.
Table I. A list of taxa, specimens and GenBank accession numbers of sequences used in this study.

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
Alboleptonia aff. sericella	MCA1978	-	-	GU384609	GU384632	GU384583
A. stylophora	AST84	-	-	GU384610	GU384633	GU384584
Calocybe carnea	-	-	AF357028	AF223178	DQ367432	AF357097
Claudopus minutoincanus	DLL 9871	Australia	-	HQ731514	HQ731517	HQ731511
C. viscosus	DLL 9788	Australia	-	HQ731516	HQ731518	HQ731513
Clitopilus hirneolus	MEN 199956	Italy	-	GQ289211	GQ289278	GQ289352
E. abortivum	H den Bakker 92	Canada	-	GQ289150	GQ289222	GQ289290
E. albidoquadratum	P. Manimohan 667, holotype	India: Kerala	-	GQ289150	GQ289222	GQ289290
E. albidum	YL 3218	Canada	KC710102	KC710151	-	KC710180
E. albomagnum	Gates E2030	Australia	KC710065	KC710137	-	KC710165
E. alcedicolor	E. Arnolds 02-760276, holotype	The Netherlands	KC710123	GQ289152	GQ289224	GQ289292
E. allochroum	JVG 1060902-1	Spain	KC898376	KC898522	-	KC898488
E. almeriense	LIP JVG 990105I, holotype	Spain: Almer A	KJ001428	-	-	-
E. alpinum	SAAS 774, holotype	China: Sichuan	KJ658969	KJ658972	-	-
E. asterosporum	K479	Japan: Okayama	AB691990	AB692007	AB692017	-
E. atrosericeum	K69-310 G262084, holotype	France	LN850607	-	-	-
E. azureosquamulosum	GDGM 27355	China: Guangdong	JQ410333	JQ410325	-	JQ993073
E. bisporigerum	KK 106/02	Finland	LN850534	-	LN850682	-
E. bloxamii	MEN 200442	Austria, EU	KC710087	GQ289154	GQ289226	GQ289294
E. brunneoumbonatum	CAL 317, holotype	India	KX774266	-	-	-
E. boreale	KK 106/09, holotype	Finland	LN850624	-	LN850697	-
E. byssisedum var. microsporum	SAAS 1160	China: Sichuan	KU312118	KU534231	KU534476	KU534421
E. byssisedum var. microsporum	SAAS 1828	China: Sichuan	KU312120	KU534234	KU534477	KU534433

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
E. caccabus	MEN 200324	Belgium	KC710063	GQ289155	GQ289227	GQ289295
E. caesiolamellatum	Wölfel, 20.2.2000, holotype	Canary Islands	KC710126	KC710157	-	KC710187
E. caespitosum	GDGM 27564	China: Hainan	JQ281477	JQ320130	JQ993078	JQ993070
E. callichroum var. venustum	G. Wölfel, F. Hampe (L, Wö E17/10, holotype E. venustum)	Germany	KC898355	KC898523	-	KС898490
E. callidermum	Stubbe 06252 (GENT)	The Netherlands	KC710115	KC710153	-	KC710183
E. cephalotrichum	C. Ulje 1997-08-01 Netherlands	The Netherlands	-	GQ289157	GQ289229	GQ289297
E. cettoi	Zuccherelli et al. 11.IX.1992, holotype	Italy	LN850560	-	LN850687	-
E. chalybeum	E. Morozova (LE254353)	Russia: Leningrad	KC898445	KC898500	-	KC898465
E. chytrophilum	R.M. Dähncke (L 855, holotype)	Spain: Canary Islands	KC898434	KC898519	-	KC898479
E. clypeatum	MEN 198302	The Netherlands	KC710059	KC710136	-	KC710164
E. cocles	J. Vauras 9770F	Finland	-	GQ289230	GQ289159	GQ289299
E. coelestinum	L. Marina (LE258103)	Russia: Sverdlovsk	KC898362	KC898524	-	KC898494
E. coeruleogracilis	MEN 2004055	Australia: Tasmania	KC710107	GQ289167	GQ289238	GQ289307
E. coeruleoviride	Stubbe 06236	Malaysia	KC710057	KC710134	-	KC710162
E. conchatum	SAAS 1117	China: Sichuan	KU312103	KU534225	KU534463	KU534420
E. conchatum	SAAS 1014	China: Sichuan	KU312105	KU534224	KU534462	KU534418
E. conchatum	SAAS 1712, holotype	China: Sichuan	KU312111	KU534220	KU534459	KU534432
E. conferendum	MEN 200330	Slovakia	KC710055	KC710133	KC710191	KC710161
E. conicosericeum	LIP JVG 1080514, holotype	-	JX454878	-	-	-
E. costatum	G. Immerzeel 2000-10-10	The Netherlands	-	GQ289161	GQ289232	GQ289301
E. crassicystidiatum	GDGM 28821, paratype	China: Guangdong	KC678997	JQ291567	JQ993085	JQ993058
E. cremeoalbum	O300037, holotype	Norway	LN850559	-	LN850686	-
E. crepidotoides	GDGM 43979, holotype	China: Hainan	KJ958982	KJ958983	KJ958984	KJ958985
E. crepidotoides	GDGM 29287	China: Hainan	-	KM581267	KM581269	KM581268
E. cretaceum	G. Gates E 1181, holotype	Australia: Tasmania	KC710064	GQ289162	GQ289233	GQ289302
E. crocotillum	SAAS 255, holotype	China: Sichuan	KC555561	KC555558	KP226185	-

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
E. crocotillum	SAAS 175	China: Sichuan	KC555560	KC555557	-	-
E. cyanostipitum	GDGM 31318, holotype	China: Jilin	NR154977	KY972694	-	-
E. dichroum	LE234260	Russia: Zhiguli	KC898442	KC898528	-	KC898487
E. eminens	KK 417/12, holotype	Finland	LN850584	-	-	-
E. euchroum	LE262995	Russia: Caucasus	KC898417	KC898516	-	KC898483
E. eugenei	E. Popov (LE253771 holotype)	Russia: Primorsky	KC898438	KC898529	-	-
E. excentricum	M. Meusers E 1705	Germany	-	GQ289163	GQ289234	GQ289303
E. fasciculatum	L.R. Hesler 29376, holotype	U.S.A.	LN850614	-	-	-
E. flabellatum	SAAS 1501	China: Guizhou	KU312115	KU534215	KU534471	-
E. flabellatum	SAAS 1080, holotype	China: Guizhou	KU312116	KU534217	KU534470	-
E. flavifolium	Y. Lamoureux 2846 (CMMF)	Canada, Québec	KC710097	KC710150	-	KC710179
E. flocculosum	JVG 1080920-20	Spain: Barcelona	KJ001438	KJ001463	-	-
E. fumosobrunneum	MEN2005120, holotype	Canada, Newfoundland	KC710125	KC710156	-	KC710186
E. furfuraceum	GDGM 28818, holotype	China: Jinlin	JX975293	JQ993094	JQ993084	JQ993062
E. fuscohebes	LIP JVG 960127, holotype	-	JX454908	-	-	-
E. gelatinosum	G. Gates E792	Australia: Tasmania	KC710103	GQ289165	GQ289236	GQ289305
E. gracilior	G. Gates E1220	Australia: Tasmania	KC710112	GQ289169	GQ289240	GQ289309
E. graphitipes	JVG 1071208-10	Spain: Bizkaia	KJ001449	KJ001458	-	-
E. gregarium	SAAS 1220, holotype	China: Yunnan	KU312122	KU534237	KU534474	KU534423
E. gregarium	SAAS 1493	China: Yunnan	KU312125	KU534238	KU534475	KU534430
E. griseocarpum	SAAS 1230, holotype	China: Tibet	MH020753	KU534253	KU534500	KU534438
E. griseocyaneum	O. Morozova (LE254351)	Russia: Caucasus	KC898444	KC898498	-	KC898463
E. griseolazulinum	P. Manimohan 738, holotype	India: Kerala	-	GQ289166	GQ289237	GQ289306
E. griseopruinatum	JLC030924-8, isotype	France	LN850556	-	-	-
E. haastii	ME Noordeloos 2004055	Australia: Tasmania	-	GQ289167	GQ289238	GQ289307
E. halophilum	LIP JVG 961228H, holotype	Spain: Almer A	KJ001441	KJ001461	-	-
E. hebes	E. Hartman 1992-10-28	Netherlands	-	GQ289170	GQ289241	GQ289310

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
E. henricii	HKAS 63414	China: Henan	-	JQ410332	JQ993076	JQ993069
E. hirtipes	JVG 990510-2	-	JX454935	-	-	-
E. hypogaeum	K382, holotype	Japan: Oita	AB692001	AB692009	AB692019	-
E. incanum	HKAS 54614	China: Yunnan	JQ281488	JQ320127	-	-
E. indigoticoumbrinum	ME Noordeloos 200406 3, holotype	Australia: Tasmania	-	GQ289242	GQ289171	GQ289311
E. indoviolaceum	P. Manimohan 700, holotype	India: Kerala	-	GQ289172	GQ289243	GQ289312
E. indutoides	O. Morozova (LE254354)	Russia: Leningrad	KC898451	KC898503	-	KC898468
E. infundibuliforme	TENN:013964, holotype	USA: Tennessee	HQ179671	HQ179671	-	-
E. juncinum	JC-19981012.5a (Ex-1004)	-	JX454902	-	-	-
E. kermandii	G. Gates E227, holotype	Australia: Tasmania	-	GQ289173	GQ289244	GQ289313
E. kerocarpus	WU18878, holotype	Austria	LN850576	-	LN850688	-
E. lampropus	UPS: BOT: F-176490, neotype	Sweden	KC898377	KC898471	-	KC898506
E. aff. Luteum	GDGM 28991	China	-	JQ993093	JQ993075	-
E. lepidissimum	E. Popov (LE254871)	Russia: Novgorod	KC898363	KC898531	-	KC898493
E. lupinum	KK 13/14 \& J. Vauras, holotype	Finland	LN850570	-	LN850695	-
E. luteodiscum	CAL 132, holotype	India	KX774267	-	-	-
E. luridum	MEN 2005108	Italy	KC710091	KC710146	KC710192	KC710175
E. majaloides	KK 782/12	Finland	LN850478	-	LN850654	-
E. malenconii	JVG 1111118-1	-	JX454946	-	-	-
E. manganaense	G. Gates E369, isotype	Australia: Tasmania	KC710085	KC710143	-	KC710172
E. mastoideum	GDGM 26597, holotype	China: Guangdong	JQ291564	JQ320126	-	-
E. mirum	KK 99/14, holotype	Finland	LN850548	-	LN850699	-
E. mougeotii	LE254352	Russia: Caucasus	KC898446	KC898499	-	KC898464
E. murrayi	QI 1001	China: Liaoning	KJ658967	JQ993090	JQ993081	JQ993064
E. myrmecophilum	G. Tjallingii-Beukers 1981-10-30	Netherlands	KC710120	GQ289174	GQ289245	GQ289314
E. nidorosum	KK 419/12	Finland	LN850503	LN850706	LN850673	-
E. nitens	JC-19981012.5b (Ex-1004)	-	JX454901	-	-	-

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
E. nitidum	ME Noordeloos 200426	Slovakia	KC710122	GQ289175	GQ289246	GQ289315
E. ochreoprunuloides	E. Arnolds 01-142, holotype	Germany	KC710092	KC710147	-	KC710176
E. olivaceohebes	Dhancke 2507	-	JX454932	-	-	-
E. omiense	GDGM 27563	China:	JQ281487	JQ410330	JQ993079	JQ993067
E. pallideradicatum	A. Hausknecht, isotype ex WU 189010	Austria	-	GQ289176	GQ289247	GQ289316
E. pallidocarpum	GDGM 28828	China: Jilin	JQ320106	JQ410331	JQ993080	JQ993074
E. paludicola	KK 386/12	Finland	LN850516	-	LN850678	-
E. palustre	KK 101/14, holotype	Finland	LN850592	-	LN850692	-
E. parasiticum	ME Noordeloos 200330	Belgium	-	GQ289177	GQ289248	GQ289317
E. paragaudatum	KK 383/08, holotype	Finland	LN850530	-	LN850691	-
E. perbloxamii	MEN 2004071, holotype	Australia: Tasmania	KC710117	GQ289178	GQ289249	GQ289318
E. percoelestinum	T. Bulyonkova (LE254327)	Russia: Novosibirsk	KC898359	KC898526	-	KC898496
E. phaeocarpum	LIP JVG 1031018, holotype	Spain: La Rioja	KJ001430	KJ001462	-	-
E. phaeomarginatum	ME Noordeloos 2004127	Australia: Tasmania	-	GQ289179	GQ289250	GQ289319
E. philocistus	Hausknecht \& Reinwald 9.XI.1998, paratype	Portugal	LN850600	-	-	-
E. placidum	S. Lundell (5276) \& G. Haglund (UPS: BOT: F-121714, epitype)	Sweden	KC898394	KC898514	-	KC898481
E. pleurotoides	SAAS 1215	China: Yunnan	KU312112	KU534229	KU534467	KU534422
E. pleurotoides	SAAS 1252, holotype	China: Yunnan	KU312113	KU534227	KU534468	KU534424
E. pleurotoides	SAAS 1354	China: Yunnan	KU312114	KU534228	KU534469	KU534425
E. politum	KK 289/09	Finland	LN850511	-	LN850677	-
E. porphyrescens	ME Noordeloos 2004113	Australia: Tasmania	-	GQ289182	GQ289253	GQ289322
E. praegracile	GDGM 29251	China: Guangdong	JQ281482	JQ320129	JQ993077	JQ993072
E. prismaticum	K381	Japan: Tokyo	AB691998	AB692006	AB692016	-
E. procerum	ME Noordeloos 2004070	Australia: Tasmania	-	GQ289183	GQ289254	GQ289323
E. prunuloides	MEN 200340	Slovakia	KC710073	GQ289184	GQ289255	GQ289324
E. pseudofavrei	JVG 1060930-7	-	JX454886	-	-	-

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
E. pygmaeopapillatum	ME Noordeloos 200364	Slovakia	-	GQ289185	GQ289256	GQ289325
E. quadratum	GDGM 28953	China: Jiangxi	-	KJ648471	KP226183	-
E. radicipes	KK 42/14, holotype	Finland	LN850585	-	LN850693	-
E. readiae	ME Noordeloos 2004050	Tasmania: Australia	-	GQ289186	GQ289257	GQ289326
E. reductum	SAAS 1016	China: Sichuan	KU312117	KU534236	KU534482	KU534435
E. reductum	SAAS 1091, holotype	China: Yunnan	KU312123	KU534232	KU534480	KU534419
E. reductum	SAAS 1608	China: Yunnan	KU312124	KU534233	KU534481	KU534431
E. rhodocylix	K (M): 147598	United Kingdom: Wales	KJ001415	KJ001450	-	-
E. rhodopolium	KK 1664/12	Sweden	LN850497	LN850705	LN850705	-
E. rivulare	KK 703/12, holotype	Finland	LN850544	LN850701	LN850707	-
E. rubropilosum	SAAS 406	China: Sichuan	MH020761	KU534218	KU534488	KU534439
E. rusticoides	LIP JVG 1020416U, epitypus	Spain: Tarragona	KJ001434	KJ001478	-	-
E. sarcitum	A. Hausknecht 1994-04-20	Austria	-	GQ289188	GQ289259	GQ289328
E. saussetiense	G. Eyssartier 08-067, holotype	France	LN850594	-	-	-
E. sericatum	KK 299/08	Finland	LN850442	-	LN850630	LN850702
E. sericellum	ME Noordeloos 200315	Belgium	-	GQ289190	GQ289261	GQ289330
E. sericeonitidum	TB 7144	-	EF421108	AF261315	EF421016	EF421108
E. serpens	KK 410/09, holotype	Finland	LN850526	-	LN850694	-
E. serrulatum	ME Noordeloos 2004062	Australia: Tasmania	-	GQ289192	GQ289263	GQ289332
E. setastipes	L.R. Hesler 13853, holotype	U.S.A.	LN850619	-	-	-
E. sinuatum	J. Wisman 2003-09-19	Netherlands	KC710109	GQ289193	GQ289264	GQ289333
E. sordidulum	Co-David 2003	Belgium	KC710062	GQ289194	GQ289265	GQ289334
Entoloma sp.	K389	Japan: Oita	AB691993	AB692008	AB692018	-
Entoloma sp. 1	083001	China: Yunnan	KU312119	KU534230	KU534479	KU534437
Entoloma sp. 1	SAAS 1154	China: Sichuan	KU312121	KU534235	KU534478	KU534434
Entoloma sp. 2	SAAS 369	China: Jilin	KU312104	KU534216	KU534483	KU534416
Entoloma sp. 3	SAAS 203	China: Jilin	KJ658966	KJ658971	KU534473	KU534415
Entoloma sp. 4	SAAS 712	China: Shaanxi	KJ658970	KJ658973	KU534472	KU534417

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
Entoloma sp. 5	SAAS 315	China: Sichuan	-	-	-	-
E. subcaesiocinctum	SAAS 133	China: Jilin	KY711236	KY972697	-	-
E. sublaevisporum	LIP JVG 1070823T, holotype	Spain	KC898436	KC898518	-	KC898478
E. subtenuicystidiatum	GDGM 28459	China: Jiangxi	JQ320109	JQ320116	-	JQ993071
E. tectonicola	P. Manimohan (741, holotype)	India	-	GQ289196	-	GQ289336
E. tenellum	Dhancke 2820	-	JX454933	-	-	-
E. tenuissimum	GDGM 28813	China: Jilin	JX975295	JQ993097	JQ993086	JQ993059
E. terreum	Esteve-Raventós et al. 16.X.2003, holotype	Spain	LN850547	-	-	-
E. tjallingiorum	S. Ryman (6124) (UPS: BOT: F-016378, holotype)	Sweden	KC898412	KC898509	-	KC898474
E. trachyosporum	H. den Bakker 1901	Canada	KC710121	GQ289199	-	GQ289339
E. transmutans	ME Noordeloos 2004155	Australia: Tasmania	-	GQ289200	GQ289268	GQ289340
E. turbidum	MEN 200351	Slovakia	KC710060	GQ289201	GQ289269	GQ289269
E. undatum	ME Noordeloos 200327	Belgium	-	GQ289202	GQ289270	GQ289342
E. undatum	JVG 1051115-19	Spain: Girona	KJ001410	KJ001455	-	-
E. undulatosporum	SFC 11021902	Spain: Barcelona	KJ001412	KJ001454	-	-
E. valdeumbonatum	M. Meusers E4565, holotype	Germany	-	GQ289203	GQ289271	GQ289343
E. venustum	L, Wö E17/10, holotype	Germany	KC898355	KC898523	-	KC898490
E. vindobonense	Wu 20810, holotype	-	JX454802	-	-	-
E. violaceovillosum	P. Manomohan 645, holotype	India: Kerala	-	GQ289205	GQ289273	GQ289345
E. violaceozonatum	V. Liiv (L 275, holotype)	Estonia	KC898448	KC898502	-	KC898467
Inocephalus hypipamee	DLL 10071	Australia	-	JQ624609	JQ624616	JQ624604
Inocephalus plicatus	DLL 10216	Australia	-	JQ624615	JQ624623	JQ624606
Inocephalus sp. 1	MCA 2479	-	-	GU384622	GU384640	GU384593
Inocephalus sp. 2	GD-b	Argentina	DQ490636	DQ457683	DQ472728	-
Inocephalus sp. 3	MCA 1867	-	-	GU384621	GU384638	GU384591

Taxa	Collection No.	Origin	GenBank accessions			
			ITS	LSU	RPB2	mtSSU
Leptonia sp.	MCA 1486	-	-	GU384623	GU384635	GU384589
Lyophyllum leucophaeatum	-	-	AF357032	AF223202	DQ367434	AF357101
Nolanea sericea	VHAs 03/02	-	-	DQ367423	DQ367435	EF421099
N. strictior	DUKE-JM96/10	-	EF421109	-	EF421017	EF421100
Pouzarella albostrigosa	DL Largent 9641	Australia: Queensland	-	HQ876535	HQ876513	HQ876557
P. farinosa	DL Largent 9934, holotype)	Australia: Queensland	-	HQ876516	HQ876495	HQ876538
P. lasia	DL Largent 9662	Australia: Queensland	-	HQ876529	HQ876507	HQ876551
P. pilocystidiata	DL Largent 9932, holotype	Australia: Queensland	-	HQ876521	HQ876500	HQ876543

Sequences in bold are newly generated in this study.

Figure I. Basidiomes of Claudopus species. a Basidiomes of E. conchatum on soil (SAAS 1712) b Basidiomes of E. conchatum on stem of live Pinus (SAAS 1014) c Pileus of E. flabellatum (SAAS 1501) d Lamellae of E. flabellatum (SAAS 1080). e Basidiomes of C. gregarium on bark-wood of live Castanopsis (SAAS 1220) \mathbf{f} Red droplets on the lamellar edges of E. gregarium (SAAS 1493) \mathbf{g} Basidiomes of E. pleurotoides on decaying bark-wood of Castanopsis (SAAS 1215) h Basidiomes of E. pleurotoides on bark-wood of live Castanopsis (SAAS 1252) i Basidiomes of E. reductum on decaying stump of Castanopsis (SAAS 1091) j Mature basidiomes of E. reductum on rock (SAAS 2068) \mathbf{k} Young basidiomes of E. reductum on soil (SAAS 1016) I Lamellae of E. byssisedum var. microsporum (SAAS 1828) \mathbf{m} Basidiomes of E. byssisedum var. microsporum on decaying stump of Betula (SAAS 1160).

Figure 2. Microscopic structures of Entoloma conchatum (holotype): a Basidiospores b Pileipellis.

Figure 3. Microscopic structures of Entoloma flabellatum (holotype). a Basidiospores bileipellis.

Figure 4. Microscopic structures of Entoloma gregarium (holotype). a Basidiospores \mathbf{b} Pileipellis.

Figure 5. Microscopic structures of Entoloma pleurotoides (holotype). a Basidiospores b Pileipellis.
Figure 6. Microscopic structures of Entoloma reductum (holotype). a Basidiospores \mathbf{b} Pileipellis.

Figure 7. Microscopic structures of Entoloma byssisedum var. microsporum (SAAS 1279). a Basidiospores b Pileipellis.

[^0]: Academic editor: G. Rambold \| Received 27 May 2019 | Accepted 7 November 2019 | Published 5 February 2020
 Citation: Kinge TR, Goldman G, Jacobs A, Ndiritu GG, Gryzenhout M (2020) A first checklist of macrofungi for South Africa. MycoKeys 63: 1-48. https://doi.org/10.3897/mycokeys.63.36566

[^1]: Academic editor: Huzefa Raja | Received 11 December 2019 \| Accepted 30 January 2020 | Published 13 February 2020
 Citation: Zhang Q, Yang Z-F, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y (2020) Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov. MycoKeys 63: 49-67. https://doi. org/10.3897/mycokeys.63.49264

[^2]: ${ }^{\mathrm{T}}=$ ex-type

[^3]: Academic editor: A. Miller \| Received 3 December 2019 | Accepted 30 January 2020 | Published 2 March 2020
 Citation: Jaklitsch WM, Voglmayr H (2020) The genus Melanconis (Diaporthales). MycoKeys 63: 69-117. https:// doi.org/10.3897/mycokeys.63.49054

[^4]: Academic editor: María P. Martín | Received 30 December 2019 | Accepted 15 January 2020 | Published 2 March 2020
 Citation: He X-L, Horak E, Wang D, Li T-H, Peng W-H, Gan B-C (2020) Corrigendum: He XL, Horak E, Wang D, Li TH, Peng WH, Gan BC (2019) Descriptions of five new species in Entoloma subgenus Claudopus from China, with molecular phylogeny of Entoloma s.l. MycoKeys 60: 1-26. https://doi.org/10.3897/mycokeys.61.46446. MycoKeys 63: 163-172. https://doi.org/10.3897/mycokeys.63.49739

