Three new species and a new combination of *Triblidium*

Tu Lv¹, Cheng-Lin Hou¹, Peter R. Johnston²

¹ College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China
² Manaaki Whenua Landcare Research, Private Bag 92170, Auckland 1142, New Zealand

Corresponding author: Cheng-Lin Hou (chenglin-hou@cnu.edu.cn)

Academic editor: D. Haelewaters

Received 17 September 2019 | Accepted 18 October 2019 | Published 31 October 2019

Citation: Lv T, Hou C-L, Johnston PR (2019) Three new species and a new combination of *Triblidium*. MycoKeys 60: 1–15. https://doi.org/10.3897/mycokeys.60.46645

Abstract

Triblidiaceae (Rhytismatales) currently consists of two genera: *Triblidium* and *Huangshania*. *Triblidium* is the type genus and is characterised by melanized apothecia that occur scattered or in small clusters on the substratum, cleistohymenial (opening in the mesohymenial phase), inamyloid thin-walled asci and hyaline muriform ascospores. Before this study, only the type species, *Triblidium caliciiforme*, had DNA sequences in the NCBI GenBank. In this study, six specimens of *Triblidium* were collected from China and France and new ITS, mtSSU, LSU and RPB2 sequences were generated. Our molecular phylogenetic analysis and morphological study demonstrated three new species of *Triblidium*, which are formally described here: *T. hubeiense*, *T. rostriforme* and *T. yunnanense*. Additionally, our results indicated that *Huangshania* that was considered to be distinct from *Triblidium* because of its elongated, transversely-septate ascospores, is congeneric with *Triblidium*. Therefore, we have placed *Huangshania* in synonymy under *Triblidium*, rendering *Triblidiaceae* a monotypic family.

Keywords

Huangshania, phylogenetic, taxonomy, *Triblidiaceae*, three new taxa, muriform ascospores

Introduction

Triblidium Rebent.: Fr. is the type genus of *Triblidiaceae* Rehm (Rehm 1888–1896, 1912), which includes presumed saprobes on the bark of Pinaceae, Ericaceae and Fagaceae (Magnes 1997). In his monograph of the family, Magnes (1997) speculated that some species may exist in an endophytic state. Species of *Triblidium* are well documented in Europe, but they are poorly understood in Asia and America (Magnes...
1997). Magnes (1997) revised *Triblidium* and accepted amongst the many included species only four species and one subspecies.

A history of Triblidiaceae is given in Karakehian et al. (2019). In brief, Magnes (1997) placed Triblidiaceae in Rhytismatales and treated Triblidiales as a synonym of Rhytismatales. Recent five-locus (Prieto et al. 2019) and 15-locus (Johnston et al. 2019) phylogeny analyses found high support for *Pseudographis* (Triblidiaceae) within Rhytismatales. The results of a three-gene phylogenetic analysis with expanded sampling by Karakehian et al. (2019) supported Magnes classification and the authors emended Triblidiaceae to include *Triblidium* and *Huangshania*.

We conducted a morphological analysis of a specimen of *Triblidium caliciiforme* Rebent.: Fr., the type species of *Triblidium* and additional collections of Triblidiaceae. Phylogenetic relationships were inferred based on internal transcribed spacer (ITS), nuclear large subunit ribosomal DNA (LSU), mitochondrial small subunit ribosomal DNA (mtSSU) and the second largest subunit of RNA polymerase II (RPB2) gene.

Materials and methods

Morphological studies and isolation

A specimen of *Triblidium caliciiforme* was collected in France in June 2012 on *Quercus* sp. Other specimens were collected in China between 2006 and 2018. Mature dried ascomata were selected for morphological observation. All observations were made from dead herbarium material. Gross morphology was observed and photographed with a dissecting microscope (Nikon SMZ-1000). Standardised colour values matching the colour of the hymenium were taken from https://www.colorhexa.com/. Microscopic preparations were observed in distilled water, Lugol’s solution (IKI), 5% potassium hydroxide (KOH) and lactophenol solution. Methods for morphological analysis follow Hou et al. (2009). Measurements of asci and ascospores were made in distilled water in 2019. For each structure, at least 25 measurements were recorded. Microphotographs were obtained using an Olympus BX51 compound microscope. Specimens are deposited in the Herbarium of the College of Life Science, Capital Normal University, Beijing, China (BJTC). Fresh specimens were used to obtain cultures directly from single ascoma, after washing and surface sterilisation, as follows: 75% ethanol for 10 s, 10% sodium hypochlorite for 3 min, washing in sterile water three times. The single ascoma was dried in sterilised tissue paper, placed on potato dextrose agar (PDA) with 50 mg/l chloramphenicol and incubated at room temperature (25 °C ± 3 °C). We were unable to obtain cultures from ascomata after a month.

DNA extraction and PCR amplification

Genomic DNA was extracted from ascomata using NuClean Plant Genomic DNA Kit (CWBIO, China), following the manufacturer’s instructions and stored at -20°C. Se-
quences of ITS, LSU, mtSSU and RPB2 were obtained. PCR amplifications were undertaken using primers ITS1F/ITS4 for ITS, mrSSU1/mrSSU3R for mtSSU, LR0R/LR5 for LSU and 5F/7CR for RPB2 (Vigalys and Hester 1990, White et al. 1990, Gardes and Bruns 1993, Rehner and Samuels 1994, Liu et al. 1999, Zoller et al. 1999). ITS, mtSSU and LSU PCR procedures in 25 µl reactions were carried out as outlined by Hou et al. (2009). PCR amplification of the RPB2 region was undertaken with an initial denaturation at 95 ºC for 5 min, followed by 35 cycles of denaturation at 95 ºC for 60 s, annealing at 55 ºC for 60 s and elongation at 72 ºC for 2 min and a final elongation at 72 ºC for 10 min (Liu et al. 1999). The PCR products were purified, sequenced and edited by ZhongKe Xilin Biotechnology Co., Ltd. (Beijing, China). The new sequences were submitted to the NCBI GenBank database. Their accession numbers, as well as those for other ITS, LSU, mtSSU and RPB2 sequences downloaded from GenBank, are given in Table 1.

Table 1. Species and GenBank accession numbers of the sequences analysed in this study. “−” indicates data unavailable. Sequences generated for this study are in boldface.
Phylogenetic analysis

The sequences, used in this study, included 22 taxa for the ITS matrix, 32 taxa for the LSU matrix, 30 taxa for the mtSSU, and 11 taxa of RPB2. *Bisporella citrina* (Batsch) Korf & S.E. Carp. (Helotiales, Helotiaceae) and *Neofabraea malicorticis* (Cordley) H.S. Jacks. (Helotiales, Dermateaceae) were selected as outgroups. Maximum parsimony (MP) and Bayesian Inference (BI) analyses were performed on the concatenated ITS–LSU–mtSSU–RPB2 dataset. Each dataset was first aligned with Clustal X and then manually adjusted to allow maximum sequence similarity in Se-Al v.2.03a (Thompson et al. 1997; Rambaut 2000). Ambiguously aligned regions were excluded from the analysis by hand. Alignments were submitted to TreeBASE under accession number S25247. A partition homogeneity test was performed to determine the congruence of ITS, LSU, mtSSU and RPB2 (Farris et al. 1995; Huelsenbeck et al. 1996). After a positive outcome, the datasets were analysed together. The datasets were prepared and analysed with the maximum parsimony (MP) method using PAUP* 4.0b10 (Swofford 1998). The phylogenetic analysis was conducted using heuristic searches with 1000 replicates of random-addition sequence, tree bisection reconnection (TBR) branch swapping and no maxtree limit. All characters were equally weighted and unordered. Gaps were treated as missing data to minimise homology assumptions. A bootstrap analysis was performed with 1000 replicates, each with 100 random taxon addition sequences. Maxtrees were set to 1000 and TBR branch swapping was employed. For the Bayesian analysis, MrModeltest 2.3 with the Akaike Information Criterion (AIC) was used to choose the best-fit substitution models for the concatenated dataset: GTR+I+G for both ITS and LSU, HKY+I+G for mtSSU and SYM+G for RPB2. The Bayesian analysis was performed with MrBayes 3.1.2 (Huelsenbeck et al. 2011, Ronquist and Huelsenbeck 2003) with two sets of four chains (one cold and three heated) and the Stoprule option in effect, halting the analyses at an average standard deviation of split frequencies of 0.01. The sample frequency was set to 100 and the first 25% of trees were removed as burn-in and the remaining trees were kept and combined into one 50% majority-rule consensus tree. Bayesian Posterior Probabilities (PP) were obtained from the 50% majority consensus of the remaining trees. Clades receiving both bootstrap values of maximum parsimony (BP) ≥ 70% and PP ≥ 0.95 were considered to be significantly supported.

Results

Molecular phylogeny

The phylogenetic analyses, based on the concatenated four-locus (ITS, LSU, mtSSU, RPB2) DNA matrix, included 32 taxa and 3472 characters, of which 843 were parsimony-informative. The maximum parsimony analysis resulted in one most parsimonious tree with a length (TL) of 2991 steps, consistency index (CI) of 0.697, retention
News species of *Triblidium*

Triblidium hubeiense T. Lv & C. L. Hou, sp. nov.
MycoBank No: 832358
Figs 2, 3

Diagnosis. Similar to *Triblidium sherwoodiae* but different by apically not swollen and unbranched paraphyses and homolateral curved ascospores, with a smaller L/W ratio of 1.4–2.3 (average ratio of 1.83) (average ratio of 2.52 for *T. sherwoodiae*).

Description. Ascomata erumpent from the bark, circular or rectangular in outline, 1.3–2.0 mm diam., solitary or occasionally confluent, with a black (#211414) outer surface that is sculptured with polygonal areolae, opening by irregular splits to expose a yellow (#ffc14f) hymenium. In median vertical section, ascomata 500–600 µm thick. Covering stroma 270–300 µm thick near the central part of ascomata, decreasing to 65–110 µm at the edge, consisting of an outer layer of highly melanized hyphae with a few remnants of host tissue embedded in the surface and an inner layer of hyaline hyphae. Basal layer 65–160 µm thick, composed of highly melanized hyphae with hyaline hyphae towards the internal matrix of stroma that is 75–125 µm thick, composed of textura angularis. Subhymenium 45–75 µm thick consisting of small, irregular textura angularis. Excipulum absent. Paraphyses 200–230 × ca. 1 µm, filiform, multi-guttulate, guttulae visible in water and IKI but disappearing in both lactophenol solution and 5% KOH, not swollen and branched at the apex, extending past mature asci. Asci ripening sequentially, 160–200 × 15–24 µm, cylindrical, thin-walled, without circumapical thickening, rounded at the apex, 6–8-spored. Ascospores 20–30 × 12–18 µm, L/W ratio of 1.4–2.3 (average ratio of 1.83), ellipsoidal, often curved homolateral, hyaline, at first aseptate, becoming muriform at maturity, with 6–8 transverse septa and a few longitudinal and oblique septa, without a gelatinous sheath, inamyloid in IKI.

Conidiomata and zone lines not seen.

Known distribution. Known from a single collection from Shennongjia National Nature Reserve, Hubei Province, China.
Figure 1. A phylogenetic tree generated by maximum parsimony and Bayesian analysis of the combined ITS, LSU, mtSSU and RPB2 sequences, using B. citrina and N. malicorticis as outgroups. Bootstrap values of maximum parsimony ≥ 70% are shown above the respective branches. Bayesian posterior probabilities ≥ 0.95 are marked below the branches. Sequences in bold indicate that the sequences are from the holotypes.
Figure 2. Triblidium hubeiense (Holotype, BJTC 201908) on Rhododendron sp. twig A, B mature dried ascomata observed under dissecting microscope C dead ascospores in water.

Figure 3. Triblidium hubeiense (Holotype, BJTC 201908) A ascoma in median vertical section B paraphyses, mature asci with ascospores and immature ascus C dead ascospores in water.
Etymology. Referring to the Hubei Province where the specimen was collected.

Comments. *Triblidium hubeiense* is similar to *T. sherwoodiae* Magnes and *T. carestiae* (De Not.) Rehm, but *T. sherwoodiae* has paraphyses with swollen terminal cell, straight ascospores and is only found on *Pinus ponderosa*; *T. carestiae* commonly has 3–8 ascospores per ascus, ascospores usually with beak-like structure at poles, 7–14 transverse septa and apically branched paraphyses.

Triblidium rostriforme T. Lv & C. L. Hou, sp. nov.
MycoBank No: 832359
Figs 4, 5

Diagnosis. Different from most *Triblidium* species by producing longer ascospores that have rostriform structures at the poles.

Holotype. On dead twigs of *Rhododendron* sp., CHINA, Yunnan Province, Lijiang, Laojunshan, 26.6831 N; 99.6997 E, alt. ca. 4056 m, 25 June 2011, C.-L. HOU 889 (BJTC 201906).

Description. Ascomata erumpent from bark, elliptical in outline, 0.85–1.7 mm diam., solitary, with a black (#211414) outer surface that is sculptured with polygonal areolae, opening by irregular splits to expose the hymenium. In median vertical section, ascomata 350–550 µm thick, consisting of an outer layer of highly melanized hyphae with some host tissues incorporated into the surface and an inner layer of hyaline hyphae. Basal layer 40–80 µm thick, composed of a lower, highly melanized layer with hyaline hyphae towards the internal matrix of the stroma which is 40–98 µm thick, composed of textura intricata. Subhymenium 25–45 µm thick, consisting of hyaline textura angularis. Excipulum moderately developed, formed by marginal paraphyses. Paraphyses 180–240 × ca. 1 µm, filiform, occasionally branched, sparsely guttulate, guttulae visible in water and IKI but disappearing in both lactophenol solution and 5% KOH. Asci ripening sequentially, 160–220 × 15–25 µm, cylindrical, thin-walled, without circumapical thickening, rounded at the apex, 8-spored. Ascospores 35–50 × 12–20 µm, L/W ratio of 2.0–3.8 (average ratio of 2.55), elliptical, with rostriform structures at the poles, hyaline, at first aseptate, becoming muriform at maturity, with usually 6 transverse septa and a few longitudinal and oblique septa, without gelatinous sheath, inamyloid in IKI.

Conidiomata and zone lines not seen.

Etymology. From Latin, *rostriforme*, referring to the beak-like protrusions observed at the ascospore poles.

Additional specimen examined. On dead twigs of *Rhododendron* sp., CHINA, Yunnan Province, Lijiang, Laojunshan, 26.6702 N; 99.7002 E, alt. ca. 4110 m, 24 June 2011, C.-L. HOU 851A (BJTC 201907).

Comments. *Triblidium rostriforme* is similar to *T. carestiae* (De Not.) Rehm but *T. carestiae* commonly has asci with 3–8 ascospores, ascospores with usually 7–14 transverse septa and ramose, multi-guttulate paraphyses.
News species of Triblidium

Figure 4. Triblidium rostriforme (Holotype, BJTC 201906) on Rhododendron sp. twig A, B mature dried ascomata observed under a dissecting microscope C dead ascospores in water D rostriform structure of ascospores.

Triblidium yunnanense T. Lv & C. L. Hou, sp. nov.
MycoBank No: 832360
Figs 6, 7

Diagnosis. Different from T. hafellneri by its ascospores with 6–8 transverse septa, narrow asci and geographical range. Different from its phylogenetically closest relatives (T. hubeiense and T. rostriforme) by the size and the shape of ascomata and ascospores.

Description. Ascomata erumpent from bark, circular or slightly irregular in outline, 0.5–0.8 mm diam., solitary, with a black (#211414) outer surface that is sculptured with polygonal areolae, opening by irregular splits to expose the hymenium. In median vertical section, ascomata 300–400 µm thick. Covering stroma 45–75 µm, consisting of an outer layer of highly melanized hyphae with remnants of host tis-
Figure 5. *Triblidium rostriforme* (Holotype, BJTC 201906) A ascoma in median vertical section B paraphyses, mature asci with ascospores and immature ascus C dead ascospores in water.

sue incorporated into the outer surface and an inner layer of hyaline hyphae. Basal layer 45–88 µm thick, composed of an outer layer of highly melanized hyphae and short, thick, hyaline hyphae towards the internal matrix of stroma that is 60–85 µm thick, composed of thick hyphae. Subhymenium 35–59 µm thick, consisting of hyaline textura angularis. Excipulum 25–35 µm thick, formed by marginal paraphyses. Paraphyses 180–230 × 1–1.2 µm, filiform, often branched, multi-guttulate, guttulae visible in water and IKI but disappearing in both lactophenol solution and 5% KOH. Asci ripening sequentially, 150–200 × 13–18 µm, cylindrical, thin-walled, without circumapical thickening, rounded at the apex, 6–8-spored. Ascospores 20–30 × 10–15 µm, L/W ratio of 1.7–2.5 (average ratio of 1.99), ellipsoid, hyaline, at first aseptate, becoming muriform at maturity, with usually 6–8 transverse septa and a few longitudinal and oblique septa, without gelatinous sheath, inamyloid in IKI.

Conidiomata and zone lines not seen.

Etymology. Referring to the Yunnan Province where the holotype specimens were collected.

Additional specimens examined. On twigs of *Rhododendron* sp., CHINA, Yunnan Province, Lijiang, Laojunshan, 26.6741 N; 99.6930 E, alt. ca. 4040 m, 11 July 2007, C.-L. HOU 470A (BJTC 201904). On dead twigs of *Rhododendron* sp., CHINA, Sichuan Province, Mt. Emeishan, 29.5185 N; 103.3329 E, alt. ca. 3010 m, 12 July 2014, C.-L. HOU 1179 (BJTC 201905).
Figure 6. Triblidium yunnanense (Holotype, BJTC 201903) on Rhododendron sp. twig A, B mature dried ascomata observed under a dissecting microscope C dead ascospores in water.

Figure 7. Triblidium yunnanense (Holotype, BJTC 201903) A ascoma in median vertical section B paraphyses, mature asci with ascospores and immature ascus C dead ascospores in water.
Comments. *Triblidium yunnanense* is similar to *T. hafellneri* Magnes, but the latter has asci 20–25 µm wide, ascospores with 7 transverse septa and occurs on * Vaccinium ovatum*, *Calluna vulgaris*, *Salix* spp., and *Nothofagus antarctica* in Europe and the Americas. *Triblidium yunnanense* has a close relationship to the two other new species in this study, but *T. rostriforme* has larger ascomata, ascospores with special beak-like structures and *T. hubeiense* has larger ascomata, unbranched paraphyses, a moderately developed excipulum, a thicker covering stroma, basal layer and subhymenium.

Triblidium verrucosum (O.E. Erikss.) T. Lv, C. L. Hou & P. R. Johnst., comb. nov. MycoBank No: 832361

Notes. The placement of this species in *Triblidium* is demonstrated by the phylogeny presented in Fig. 1. Eriksson (1992) discussed the similarities between *Huangshania* and *Triblidium* in macro-morphology and in the morphology of hamathecial tissues and asci. The two genera differed only in ascospore morphology (elargate-phragmosporous vs. ellipsoidal-muriform). Karakehian et al. (2019) reviewed that ascospore morphology is a poor predictor of relatedness amongst these fungi. *Huangshania verrucosa* is the type species of the genus, therefore, *Huangshania*, is synonymized here under *Triblidium*.

Discussion

The morphological characteristics of the species described here are typical of *Triblidium* (Magnes 1997): ascomata on twigs of *Rhododendron* spp., muriform, inamyloid ascospores, and highly melanized ascomata with roughened outer surfaces. Based on our molecular phylogenetic analyses (Fig. 1), the three newly described species form a highly supported clade, sister to *T. verrucosum*. *Triblidium yunnanense* and *T. hubeiense* form a well-supported subclade sister to *T. rostriforme*. The similarity of ITS amongst these three new species is 90–95%. The sequences generated from the specimens of *T. caliciiforme* collected from France on bark of *Quercus* sp., clustered well with other sequences accepted as *T. caliciiforme* by Karakehian et al. (2019).

The strongly supported phylogenetic relationship justifying the synonymy of *Huangshania* with *Triblidium* was not detected by Karakehian et al. (2019) because only the type species of *Triblidium* had DNA sequences available. If *Huangshania* is not placed in synonymy, the addition of the new Chinese *Triblidium* species described here would result in *Triblidium* being paraphyletic. The alternative solution, to erect a new genus for the Chinese species, has no morphological support, since these species are very similar to *T. caliciiforme* in both morphology and ecology. In 1992, Eriksson erected *Huangshania* as a genus only according to the morphology of the spores. Karakehian et al. (2019) examined the ascospores of *H. verrucosa* and noted
that ascospore morphology appears to be a poor predictor of phylogenetic relationships amongst these fungi. It is worth noting that the rostrum of the ascospores in *T. rostriforme* and *T. carestiae* bear some similarity to the plug-like appendages of *H. verrucosa*. Furthermore, we did not transfer *H. novae-landiae* (Rehm) Magnes, another species in *Huangshania*, to *Triblidium* since sequences were lacking.

In conclusion, three new *Triblidium* species from China were described in detail by both morphological and phylogenetic analyses. The new species, discovered in China, illustrate that these fungi are more widespread than previously known. Sequences from these new collections have expanded the representation of this genus in NCBI GenBank and helped our understanding of the family Triblidiacae. *Huangshania* is placed in synonymy with *Triblidium* in order to maintain its monophyly, further demonstrating that ascospore morphology alone may be a poor predictor of evolutionary relationships.

Key to species of *Triblidium*

1. Ascospores phragmosporous .. *T. verrucosum*
 - Ascospores muriform ... 2

2. Ascospores ellipsoid, without rostriform beaks at the poles 3
 - Ascospores ellipsoid with rostriform beaks at the poles 4

3. Ascomata ≥1mm diam .. 5
 - Ascomata <1mm diam ... 6

4. Paraphyses multi-guttulate, often branched at the apex; thick-walled asci with 3–8 ascospores; ascospores with 7–14 transverse septa *T. carestiae*
 - Paraphyses sparsely guttulate, occasionally branched at the apex; asci thin-walled with 8-ascospores; ascospores with 6 transverse septa.... *T. rostriforme*

5. Asci 20–25 µm wide; ascospores with 7 transverse septa; occurring on *Vaccinium ovatum*, *Calluna vulgaris*, *Salix* spp. and *Nothofagus antarctica* *T. hafellneri*
 - Asci 13–18 µm wide; ascospores with 6–8 transverse septa; only found on *Rhododendron* sp. ... *T. yunnanense*

6. Occurring mainly on *Fagaceae* spp. and *Pinus* spp. 7
 - Occurring mainly on *Rhododendron* spp., asci 160–200 × 15–24 µm, ascospores 20–30 × 12–18 µm................................. *T. hubeiense*

 - Asci 150–190 × 13–23 µm, ascospores 28–35 × 11–14 µm.... *T. sherwoodiae*

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31870629 and 31170019). We thank A. Gondiennet for the specimen collection from France. We also thank reviewers Hans-Otto Baral, Jason Karakehian, Donald Pfister and Joey Tanney for patient modification and improvements to the manuscript.
References

Hou CL, Li L, Piepenbring M (2009) *Lophodermium pini-mugonis* sp. nov. on needles of *Pinus mugo* from the Alps based on morphological and molecular data. Mycological Progress 8: 29–33. https://doi.org/10.1007/s11557-008-0575-z

News species of *Triblidium*

Taxonomy of two synnematal fungal species from *Rhus chinensis*, with *Flavignomonia* gen. nov. described

Ning Jiang¹*, Qin Yang¹,²*, Ying-Mei Liang³, Cheng-Ming Tian¹

¹ The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
² Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China
³ Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China

Corresponding author: Cheng-Ming Tian (chengmt@bjfu.edu.cn)

Abstract

Rhus chinensis represents a commercially and ecologically important tree species in China, but suffers from canker diseases in Jiangxi Province. Synnemata, pycnidia and ascomata were discovered on cankered tissues. Strains were obtained from single ascospore or conidium within the fruiting bodies and identified based on morphological comparison and the phylogenetic analyses of partial ITS, LSU, *tef1* and *rpb2* gene sequences. As a result, two species were confirmed to represent two kinds of synnemata. One of these species is described herein as *Flavignomonia rhoigena* gen. et sp. nov.; and *Synnemasporella aculeans* is illustrated showing ascomata, pycnidia and synnemata. *Flavignomonia* is distinguished from *Synnemasporella* by the colour of the synnematal tips. Additionally, *Flavignomonia* can be distinguished from the other gnomoniaceous genera by the formation of synnemata.

Keywords

Diaporthales, Gnomoniaceae, systematics, taxonomy

Introduction

* These authors contributed equally to this work and should be considered as co-first authors.

Copyright Ning Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
However, two diaporthalean species with synnemata were reported to cause cankers, namely *Synnemasporella aculeans* (syn. *Cryptodiaporthe aculeans*) and *S. toxicodendri* (Fan et al. 2018). These two species differ from the other diaporthalean taxa in conidiomata and form a distinct clade phylogenetically, which was named Synnemasporellaceae and distinguished by Fan et al. (2018).

Gnomoniaceae was initially introduced with *Gnomonia* as the type (Winter 1886). Species in Gnomoniaceae formed upright perithecia, with or without long or short necks and presence or absence of stromatic tissues (Barr 1978, Sogonov et al. 2008, Walker et al. 2012). In the recent monograph of Diaporthales, 34 genera were accepted in the family Gnomoniaceae (Senanayake et al. 2018). Subsequently, *Neognomoniopsis* and *Tenuignomonia* were added based on both molecular and morphological evidence (Crous et al. 2019, Minoshima et al. 2019).

Chinese gall (*Rhus chinensis* Mill.) has a range of uses as source of medicine, dye and oil, and has a wide distribution in China (Wang et al. 2014). However, cankers were found to be associated with different ascomata during our fungal collection trips in Jiangxi Province, China. The objectives of the present study were to identify these fungi based on morphological and phylogenetic evidence.

Materials and methods

Sample collections and isolation

We conducted our fungal collection surveys from April to October in China, and found *Rhus chinensis* to be one of the major tree species in Jiangxi Province. Twigs, branches and stems were carefully checked, and diseased tissues were cut into small pieces and packed in paper bags. Isolates were obtained by transferring the ascospores or conidial masses from ascomata to sterile PDA plates, incubating at 25 °C until spores germinated. Single germinating spores were transferred onto new PDA plates, which were kept at 25 °C in darkness. Specimens were deposited in the Museum of the Beijing Forestry University (BJFC) and axenic cultures maintained in the China Forestry Culture Collection Centre (CFCC).

Morphological analysis

Recognition and identification of the fungal species on *Rhus chinensis* was based on fruiting bodies formed on the bark. Ascomata and conidiomata were sectioned by hand using a double-edged blade, and microscopic structures were observed under a dissecting microscope. At least 10 conidiomata/ascomata, 10 asci, and 50 conidia/ascospores were measured to calculate mean and standard deviation. Measurements are reported as maxima and minima in parentheses and the range representing the mean plus and minus the standard deviation of the number of measurements given in parentheses (Voglmayr et al. 2017). Microscopy photographs were captured with a Nikon Eclipse
Flavignomonia gen. nov. from China

80i compound microscope equipped with a Nikon digital sight DS-Ri2 high definition colour camera, using differential interference contrast illumination. Nomenclatural novelties and descriptions were deposited in MycoBank (Crous et al. 2004).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from colonies grown on cellophane-covered PDA plates using a modified CTAB method (Doyle and Doyle 1990). PCR amplifications were performed in a DNA Engine Peltier Thermal Cycler (PTC-200; Bio-Rad Laboratories, Hercules, CA, USA). The primer sets ITS1/ITS4 (White et al. 1990) were used to amplify the ITS region. The primer pair LR0R/LR5 (Vilgalys and Hester 1990) was used to amplify the LSU region. The primer pairs EF1-688F/EF1-986R or EF1-728F/TEF1-LL Rev (Carbone and Kohn 1999; Jaklitsch et al. 2005; Alves et al. 2008) were used to amplify the tef1 gene. The primer pair dRPB2-5f/dRPB2-7r (Voglmayr et al. 2016) was used to amplify the rpb2 gene. The polymerase chain reaction (PCR) assay was conducted as described by Fan et al. (2018). PCR amplification products were assayed via electrophoresis in 2 % agarose gels. DNA sequencing was performed using an ABI PRISM 3730XL DNA Analyzer with a BigDye Terminator Kit v.3.1 (Invitrogen, USA) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China).

Phylogenetic analyses

The preliminary identities of the isolates sequenced in this study were obtained by conducting a standard nucleotide BLAST search using the sequences generated from the above primers of the different genomic regions (ITS, LSU, tef1 and rpb2). The BLAST results showed that three isolates were grouped in the family Gnomoniaceae, and five isolates in the genus Synnemasporella. The phylogenetic analyses for the three gnomoniaceous isolates were conducted based on Senanayake et al. (2018), supplemented by sequences of Tenugnomenonia styracis and Neognomoniopsis quercina from Crous et al. (2019) and Minoshima et al. (2019). Melanconis marginalis (CBS 109744) in Melanconidaceae was selected as the out-group taxon. All sequences were aligned using MAFFT v. 6 (Katoh and Toh 2010) and edited manually using MEGA v. 6 (Tamura et al. 2013). Phylogenetic analyses were performed using PAUP v. 4.0b10 for maximum parsimony (MP) analysis (Swofford 2003), and PhyML v. 3.0 for Maximum Likelihood (ML) analysis (Guindon et al. 2010).

MP analysis was run using a heuristic search option of 1000 search replicates with random additions of sequences with a tree bisection and reconnection algorithm. Other calculated parsimony scores were tree length (TL), consistency index (CI), retention index (RI), and rescaled consistency (RC). ML analysis was performed using a GTR site substitution model including a gamma-distributed rate heterogeneity and a proportion of invariant sites (Guindon et al. 2010). The branch support was evaluated using a bootstrapping method of 1000 replicates (Hillis and Bull 1993). The matrix
was partitioned for the different gene regions. Phylograms were shown using FigTree v. 1.4.3 (Rambaut 2016). Novel sequences generated in the current study were deposited in GenBank (Table 1) and the aligned matrices used for phylogenetic analyses in TreeBASE (accession number: S25047).

Results

Phylogenetic analyses

The alignment based on the combined sequence dataset (ITS, LSU, tef1, and rpb2) included 42 in-group taxa and one out-group taxon, comprising 3368 characters in the aligned matrix. Of these, 2201 characters were constant, 224 variable characters were parsimony-uninformative and 943 characters were parsimony informative (282 from the ITS-LSU, 280 from tef1, 381 from rpb2). The MP analysis resulted in nine equally most parsimonious trees with identical tree backbone. The best ML tree (lnL = −20604.0384) was compatible with the MP strict consensus tree, except for unsupported clades in Fig. 1. As the trees obtained from different analytical methods were similar, only the ML tree was present in Fig. 1. The phylogram based on the four gene sequence matrix indicated that the three strains from the present study represent a novel genus in Gnomoniaceae.

Taxonomy

Flavignomonia C.M. Tian, Q. Yang & N. Jiang, gen. nov.

MycoBank No: 829530

Diagnosis. *Flavignomonia* is distinguished from *Synnemasporella* by the orange tips of its synnemata.

Type species. *Flavignomonia rhoigena* C.M. Tian & Q. Yang

Etymology. The generic name is derived from the colour of synnema (flavus = yellow) and the genus name *Gnomonia*.

Description. Sexual morph: not observed. Asexual morph: Conidiomata synnematal. Synnemata long and determinate, growing from host tissue, with brown base and orange tip, straight to curved, parallel, with flat to slightly concave and dark zone of conidiogenous cells and host tissue at their bases. Conidiophores reduced to conidiogenous cells. Conidiogenous cells phialidic, aggregated, hyaline, straight to curved, cylindrical, arranged adjacent to one another at the end of the synnema, producing a single conidium. Conidia cylindrical to oblong, smooth, multiguttulate, hyaline.

Notes. *Flavignomonia* is included in Gnomoniaceae based on DNA sequences data. *Flavignomonia* is morphologically similar to *Synnemasporella* in forming synne-
Table 1. Strains used in the phylogenetic tree and their culture accession and GenBank numbers. Strains from this study are in bold.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strains</th>
<th>GenBank numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITS</td>
<td>LSU</td>
</tr>
<tr>
<td>Alnicicium auctum</td>
<td>CBS 124263</td>
<td>KF570154</td>
</tr>
<tr>
<td>Ambargarinononia petiolorum</td>
<td>CBS 116866</td>
<td>EU199193</td>
</tr>
<tr>
<td>Amphiporthe tiliae</td>
<td>CBS 119289</td>
<td>EU199178</td>
</tr>
<tr>
<td>Anisogramma anomala</td>
<td>529478</td>
<td>EU683064</td>
</tr>
<tr>
<td>Anisogramma virgultorum</td>
<td>529479</td>
<td>EU683062</td>
</tr>
<tr>
<td>Apiognomonia erubunda</td>
<td>AR 2813</td>
<td>DQ313525</td>
</tr>
<tr>
<td>Apiognomonia veneta</td>
<td>MFLUCC 16-1193</td>
<td>MF190014</td>
</tr>
<tr>
<td>Apioplagniroma populi</td>
<td>858501</td>
<td>KP637024</td>
</tr>
<tr>
<td>Asteroma atestum</td>
<td>CBS 109840</td>
<td>EU167609</td>
</tr>
<tr>
<td>Asteroma sp. Masuya 8Ah9-1</td>
<td>NA</td>
<td>AB69035</td>
</tr>
<tr>
<td>Cryptosporella hypodermia</td>
<td>CBS 116866</td>
<td>EU199181</td>
</tr>
<tr>
<td>Discula destructiva</td>
<td>MD 254</td>
<td>AF429741</td>
</tr>
<tr>
<td>Diploesporella bispata</td>
<td>MFLU 15-2661</td>
<td>MF190147</td>
</tr>
<tr>
<td>Diploesporella diptera</td>
<td>CBS 109748</td>
<td>DQ323526</td>
</tr>
<tr>
<td>Diploesporella sp.</td>
<td>CBS 121471</td>
<td>EU254763</td>
</tr>
<tr>
<td>Flavignomonia rhoigena</td>
<td>CFCC 53118</td>
<td>MK432674</td>
</tr>
<tr>
<td></td>
<td>CFCC 53119</td>
<td>MK432675</td>
</tr>
<tr>
<td></td>
<td>CFCC 53120</td>
<td>MK432676</td>
</tr>
<tr>
<td>Gnomonia gnomon</td>
<td>CBS 199.53</td>
<td>DQ491518</td>
</tr>
<tr>
<td>Gnomoniopsis alderdunensis</td>
<td>CBS 125680</td>
<td>GU320825</td>
</tr>
<tr>
<td>Gnomoniopsis chamaenori</td>
<td>CBS 803.79</td>
<td>EU254808</td>
</tr>
<tr>
<td>Gnomoniopsis racemula</td>
<td>AR 3892</td>
<td>EU254841</td>
</tr>
<tr>
<td>Mamaniella corvus</td>
<td>BPI 877578</td>
<td>EU254862</td>
</tr>
<tr>
<td>Marsupiomyces quercina</td>
<td>MFLUCC 13-0664</td>
<td>MF190116</td>
</tr>
<tr>
<td>Marsupiomyces epidermoidea</td>
<td>MFLU 15-2921</td>
<td>NA</td>
</tr>
<tr>
<td>Melanconis marginalis</td>
<td>CBS 109744</td>
<td>EU199197</td>
</tr>
<tr>
<td>Neognomoniopsis quercina</td>
<td>CBS 145575</td>
<td>MK876399</td>
</tr>
<tr>
<td>Occultocarpus alanothunense</td>
<td>LCM 524.01</td>
<td>JF779849</td>
</tr>
<tr>
<td>Ophiognomonia melanostyla</td>
<td>LCM 522.01</td>
<td>JF779848</td>
</tr>
<tr>
<td>Ophiognomonia vitellinae</td>
<td>LCM 389.01</td>
<td>JF779850</td>
</tr>
<tr>
<td>Phegiontoma aculeus</td>
<td>AR 3640</td>
<td>EU254994</td>
</tr>
<tr>
<td>Linospora capreae</td>
<td>CBS 372.69</td>
<td>NA</td>
</tr>
<tr>
<td>Pleurocera argentipes</td>
<td>AR 4333</td>
<td>EU255060</td>
</tr>
<tr>
<td>Pleurocera pleurostyla</td>
<td>CBS 906.79</td>
<td>EU255061</td>
</tr>
<tr>
<td>Phragmoporella conformis</td>
<td>AR 3632</td>
<td>NA</td>
</tr>
<tr>
<td>Valulnica oxynoma</td>
<td>AR 5137</td>
<td>JX519561</td>
</tr>
<tr>
<td>Sirococcus tsugae</td>
<td>AR 4010</td>
<td>EFS12478</td>
</tr>
<tr>
<td>Synnemasporella aculeana</td>
<td>CFCC 52094</td>
<td>MG682086</td>
</tr>
<tr>
<td></td>
<td>CFCC 53123</td>
<td>MK432679</td>
</tr>
<tr>
<td></td>
<td>CFCC 53124</td>
<td>MK432680</td>
</tr>
<tr>
<td></td>
<td>CFCC 53125</td>
<td>MK432681</td>
</tr>
<tr>
<td></td>
<td>CFCC 53126</td>
<td>MK432682</td>
</tr>
<tr>
<td></td>
<td>CFCC 53127</td>
<td>MK432683</td>
</tr>
<tr>
<td>Synnemasporella toxicodendri</td>
<td>CFCC 52097</td>
<td>MG682089</td>
</tr>
<tr>
<td>Tenuignomonia styraei</td>
<td>BPI 89278</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 1. Phylogenetic tree based on an ML analysis of a combined DNA dataset of ITS, LSU, tef1 and rpb2 gene sequences for all genera with DNA data and some species of Gnomoniaceae. Bootstrap values ≥ 50 % for MP and ML analyses are presented at the branches. The scale bar represents the number of changes per site.
mata (Wehmeyer 1933, Fan et al. 2018). However, *Flavignomonia*, typified with *Flavignomonia rhoigena*, is distinguished from *Synnemasporella* species by its orange synnematous tips and hyaline conidia (Fan et al. 2018).

Flavignomonia rhoigena C.M. Tian & Q. Yang, sp. nov.
Figure 2
MycoBank No: 829531

Diagnosis. *Flavignomonia rhoigena* can be distinguished from other gnomoniaceous species by the formation of synnemata.

Etymology. Named after the host genus, *Rhus*.

Description. Sexual morph: not observed. Asexual morph: Conidiomata synnematous. Synnemata (650–)750–1100 µm high, 150–300 µm diam, determinate, growing from host tissue, with brown base and orange tip, straight to curved, parallel, with flat to

Figure 2. *Flavignomonia rhoigena* on *Rhus chinensis* (BJFC-S1766, holotype) A–C habit of conidiomata on twigs D transverse section through synnema E longitudinal section through synnema F, I conidiogenous cells attached with conidia G conidiomata on PDA H conidia J the colony on PDA. Scale bars: 1 mm (B); 500 µm (C); 100 µm (D); 10 µm (F, H–I); 200 µm (G).
slightly concave and dark zone of conidiogenous cells and host tissue at their bases. Conidiophores reduced to conidiogenous cells. Conidiogenous cells (12.5–)16–22(–25) × 2 µm, phialidic, aggregated, hyaline, straight to curved, cylindrical, arranged adjacent to one another at the end of the synnema, producing a single conidium. Conidia cylindrical to oblong, smooth, multiguttulate, hyaline, (5–)5.5–7(–8) × 1.5–2 µm.

Culture characters. On PDA at 25 °C in darkness, initially white, becoming olive-green to black after 3 wk, zonate with 3–4 well defined zones. Conidiomata distributed concentrically over agar surface.

Figure 3. Asexual morphology of *Synnemasporella aculeans* on *Rhus chinensis* (BJFC-S1740) **A, B** habit of pycnidia on twigs **C** transverse section of pycnidium **D** longitudinal section through pycnidium **E** conidia **F, G** conidiogenous cells and conidia **H, I** habit of synnemata on twigs **J** longitudinal section through synnema **K** the colony on PDA **L, N** conidiogenous cells bearing conidia **M** conidia. Scale bars: 500 µm (**B–D, I, J**); 10 µm (**E–G, L–N**).
Flavignomonia gen. nov. from China

Figure 4. Sexual morphology of *Synnemasporella aculeans* on *Rhus chinensis* (BJFC-S1745) **A, B** habit of ascomata on twigs **C** transverse section of ascomata **D** longitudinal section through ascomata **E, F** asci **G** ascospores. Scale bars: 500 µm (B–D); 10 µm (E–G).

Specimen examined. CHINA, Jiangxi Province, Ganzhou City, Xunwu County, 24°52’31.34”N, 115°35’39.53”E, on branches of *Rhus chinensis*, 14 May 2018, Q. Yang, Y. Liu & Y.M. Liang (holotype BJFC-S1766, ex-type living cultures CFCC 53118, CFCC 53119 and CFCC 53120).

Notes. *Flavignomonia rhoigena* is the type species of *Flavignomonia* in the family Gnomoniaceae. It can be easily distinguished from the other gnomoniaceous genera by its unique conidiomata (Walker et al. 2004, Senanayake et al. 2018, Crous et al. 2019, Minoshima et al. 2019).

Figure 3, 4

Specimens examined. CHINA, Jiangxi Province, Ganzhou City, Xunwu County, 24°52’31.34”N, 115°35’39.53”E, on branches of *Rhus chinensis*, 14 May 2018, Q. Yang, Y.

Notes. *Synnemasporella aculeans* was proposed as a new combination in the new genus *Synnemasporella* based on the description of *Cryptodiaporthe aculeans* (Fan et al. 2018), which was introduced producing perithecial ascomata, and an asexual morph producing sporodochial and/or pycnidial conidiomata (Wehmeyer 1933). In the present study, five isolates from canker tissues on *Rhus chinensis* were congruent with *S. aculeans* based on morphology and DNA sequences data. This was the first time that the sexual morph of *Synnemasporella aculeans* in China had been collected.

Discussion

In this study, two diaporthalean species forming synnemata on *Rhus chinensis* were identified based on morphology and ITS, LSU, *tef1*, and *rpb2* sequence datasets. As a result, *Flavignomonia* typified with *F. rhoigena* is proposed as a new genus in Gnomoniaceae for its distinct phylogenetic position and distinctive asexual fruiting body. Also, *Synnemasporella aculeans* strains were successfully isolated from perithecia, pycnidia and synnemata, which was confirmed by molecular data.

Nineteen fungal species have been recorded from the commercially and ecologically important tree species in China, including *Cladosporium cladosporioides*, *Cronartium quercuum*, *Mycosphaerella fushinoki*, *Pestalotiopsis diospyri*, *P. guépinii*, *P. mangiferae*, *P. sorbi*, *Phaeanamularia rhois*, *Phyllactinia corylea*, *Ph. rhoina*, *Pileolaria klugkistiana*, *Pi. shiratiana*, *Pseudocercospora rhoina*, *Ps. toxicodendri*, *Septoria* sp., *Tubercularia phyllophila*, *Uncinula vernicifera*, and two synnematal species from branch cankers in this study (Farr and Rossman 2019). *Flavignomonia rhoigena* and *Synnemasporella aculeans*, described and illustrated in the present study can be easily recognized by the asexual fruiting bodies, and they differ from each other in the colour of the synnematal tips.

Gnomoniaceae is a globally distributed fungal family on diverse plant hosts (Mejía et al. 2008, 2011a, 2011b, 2012, Sogonov et al. 2008, Walker et al. 2012, Senanayake et al. 2017, 2018). Host specificity of this family has been confirmed to be important in the evolution (Walker et al. 2014). Our newly discovered genus *Flavignomonia* was only found on *Rhus chinensis*, and more *Flavignomonia* species might be collected from the plant family Anacardiaceae in the future.

Acknowledgements

This study is financed by National Natural Science Foundation of China (Project No.: 31670647). We are grateful to Chungen Piao, Minwei Guo (China Forestry Culture Collection Center (CFCC), Chinese Academy of Forestry, Beijing.
References

Neptunomyces aureus gen. et sp. nov.
(Didymosphaeriaceae, Pleosporales) isolated from algae in Ria de Aveiro, Portugal

Micael F.M. Gonçalves¹, Tânia F.L. Vicente¹, Ana C. Esteves¹,², Artur Alves¹

¹ Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal ² Universidade Católica Portuguesa, Institute of Health Sciences (ICS), Centre for Interdisciplinary Research in Health (CIIS), Viseu, Portugal

Corresponding author: Artur Alves (artur.alves@ua.pt)

Abstract
A collection of fungi was isolated from macroalgae of the genera Gracilaria, Enteromorpha and Ulva in the estuary Ria de Aveiro in Portugal. These isolates were characterized through a multilocus phylogeny based on ITS region of the ribosomal DNA, beta-tubulin (tub2) and translation elongation factor 1 alpha (tef1-α) sequences, in conjunction with morphological and physiological data. These analyses showed that the isolates represented an unknown fungus for which a new genus, Neptunomyces gen. nov. and a new species, Neptunomyces aureus sp. nov. are proposed. Phylogenetic analyses supported the affiliation of this new taxon to the family Didymosphaeriaceae.

Keywords
Didymosphaeriaceae, marine fungi, phylogeny, taxonomy

Introduction
The family Didymosphaeriaceae is an important family in the order Pleosporales introduced by Munk (1953) and typified by the genus Didymosphaeria Fuckel with D. epidermidis as the type species. Members of this family are characterized by having brown 1-septate ascospores and trabeculate pseudoparaphyses that anastomose.

Accurate species’ identification in genera of the family Didymosphaeriaceae was discussed in detail by Ariyawansa et al. (2014a). Phylogenetic analyses based on regions such as the internal transcribed spacer (ITS) region of the ribosomal DNA, beta-tubulin (tub2) and translation elongation factor 1 alpha (tefl-α) proved to be useful in delimiting taxa (Tennakoon et al. 2016, Ariyawansa et al. 2014b). Several studies have been conducted to resolve the boundaries of this family. First, Ariyawansa et al. (2014a) showed that Montagnulaceae and Didymosphaeriaceae were synonyms and thus, Ariyawansa et al. (2014b) synonymized Montagnulaceae under Didymosphaeriaceae and rearranged the family into 16 genera: Alloconiothyrium, Barria, Bimuria, Deniqualata, Didymocrea, Didymosphaeria, Julella, Kalmusia, Karstenula, Letendraea, Montagnula, Neokalmusia, Paraconiothyrium, Paraphaeosphaeria, Phaeodothis and Tremateia. Subsequently, in the last years, additional genera were added, namely Paracamarosporium and Pseudocamarosporium (Wijayawardene et al. 2014), Spegazzinia (Tanaka et al. 2015), Xenocamarosporium (Crous et al. 2015), Austropleospora and Pseudopithomyces (Ariyawansa et al. 2015) and Laburnicola and Paramassariosphaeria (Wanasighe et al. 2016). More recently, Jayasiri et al. (2019) introduced Cylindroaseptospora and Gonçalves et al. (2019) reassigned the genus Verrucoconiothyrium previously included in the family Didymosphaeriaceae to the family Didymelaceae. Thus, the family Didymosphaeriaceae currently comprises 25 genera.

During an extensive survey of the fungal diversity from macroalgae species in the salt marsh of Ria de Aveiro in Portugal, we gathered a collection of fungal isolates. Here we report the morphological, cultural and phylogenetic characterization of these fungal isolates and introduce a novel genus and species to accommodate them.

Material and methods

Collection and isolation

Macroalgae (Gracilaria gracilis, Enteromorpha intestinalis, and other macroalgae species identified at genus-level only) were collected from various sites in the estuary Ria de Aveiro in Portugal (Table 1). Samples were placed in sterile plastic containers and maintained at 4 °C until fungal isolation. Algae samples were washed with autoclaved filtered saline water, cut into small pieces and placed on Potato Dextrose Agar (PDA) enriched with 3 % (w/v) sea salts (Sigma-Aldrich). Streptomycin and tetracycline, at final concentrations of 100 mg/L, were added to PDA to inhibit the growth of bacteria. From each sample (algae) 20 pieces of tissue were plated on PDA medium. The plates were incubated at 25 °C for 5 days and examined daily to observe the growth of fungal hyphae. Distinct fungal colonies were then transferred to new PDA plates for further isolation and purification.
Table 1. Sampling sites.

<table>
<thead>
<tr>
<th>Locality name</th>
<th>GPS coordinates</th>
<th>Sampling date</th>
<th>Algae species collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ria de Aveiro</td>
<td>40°37'45"N, 8°43'27"W</td>
<td>26/09/18</td>
<td>Ulva sp.</td>
</tr>
<tr>
<td></td>
<td>40°39'33"N, 8°43'27"W</td>
<td></td>
<td>Enteromorpha sp.</td>
</tr>
<tr>
<td></td>
<td>40°43'00"N, 8°42'04"W</td>
<td></td>
<td>Enteromorpha intestinalis, Ulva sp.</td>
</tr>
<tr>
<td></td>
<td>40°42'20"W</td>
<td></td>
<td>Gracilaria gracilis, Ulva sp.</td>
</tr>
</tbody>
</table>

DNA isolation, amplification and analyses

Genomic DNA was extracted from fresh mycelium of cultures growing on PDA according to Möller et al. (1992). The primers ITS1 and ITS4 (White et al. 1990) were used for amplification and sequencing of the ITS region of the ribosomal DNA was as described by Alves et al. (2004). Beta-tubulin (tub2) gene was amplified and sequenced using T1 and Br2b primers (Glass and Donaldson 1995, O’Donnell and Cigelnik 1997) with the cycling conditions previously described by Lopes et al. (2017). Translation elongation factor 1 alpha (tefl-α) gene was amplified and sequenced using EF1-688F and EF1-2218R primers (Rehner 2001, Alves et al. 2008). The amplified PCR fragments were purified with the NZYGelpure kit (NZYTech, Portugal) before sequencing at GATC Biotech (Cologne, Germany). The nucleotide sequences were analyzed with FinchTV v.1.4.0 (Geospiza Inc. www.geospiza.com/finchtv). A BLASTn search against the nucleotide collection (nr/nt) database using the ITS, tub2 and tefl-α sequences was carried out to determine the closest matching sequences, which were added to the sequence alignment. Sequences were aligned with ClustalX v. 2.1 (Thompson et al. 1997), using the following parameters: pairwise alignment parameters (gap opening = 10, gap extension = 0.1) and multiple alignment parameters (gap opening = 10, gap extension = 0.2, transition weight = 0.5, delay divergent sequences = 25 %). Alignments were checked and edited with BioEdit Alignment Editor v.7.2.5 (Hall 1999). Phylogenetic analyses were done with MEGA7 v.7.0 (Kumar et al. 2016). All gaps were included in the analyses. MEGA7 v.7.0 was also used to determine the best substitution model to be used to build the Maximum Likelihood (ML) tree. ML analysis was performed on a Neighbour-Joining (NJ) starting tree automatically generated by the software. Nearest-Neighbour-Interchange (NNI) was used as the heuristic method for tree inference with 1,000 bootstrap replicates. The sequences generated in this study were deposited in GenBank and taxonomic novelties in MycoBank. Alignment and tree were deposited in TreeBase (TB2:S24556).

Morphology and growth studies

Observations of morphological characters were made with a SMZ1500 stereoscopic microscope (Nikon, Japan) and a Nikon Eclipse 80i microscope (Nikon, Japan) equipped with differential interference contrast. Fungal structures were mounted in 100% lactic acid. Photographs and measurements were taken with a Nikon DSRi1 camera (Nikon, Japan) and the NIS-Elements D program (Nikon, Japan). Colony characters and pigment production were registered after 2 weeks of growth on PDA, Malt Extract Agar (MEA) and
Oatmeal Agar (OA) incubated at 25 °C. Colony colors (obverse and reverse) were assessed according to the color charts of Rayner (1970). Morphological descriptions were based on cultures sporulating on PDA and pine needles, after 1-month incubation at 25 °C.

Temperature growth studies were performed for the new species described. A 5-mm diameter plug was taken from the margin of an actively growing colony (14-day-old) and placed in the center of PDA, MEA and OA plates. Three replicate plates per isolate were incubated at 10, 15, 20, 25, 30 and 35 °C in the dark. Colony diameter was measured after 1 and 2 weeks.

To evaluate the growth requirements for sea salts, the new species was cultured in PDA with 3% (w/m) sea salts. Three replicate plates per isolate were incubated at 25 °C for 2 weeks in the dark. After incubation the diameter of the colonies was measured and compared.

Results

Phenotype

Regarding conidial morphology, the fungal isolates studied were characterized by being aseptate and subcylindrical with rounded apices golden yellow conidia. For all media tested, the minimum, maximum and optimal growth temperatures were 10, 30 and 25 °C, respectively. No differences were observed in terms of colony diameter when grown in PDA with and without the addition of 3% sea salts, indicating that this fungus does not require salt for growth.

Phylogenetic analysis

BLASTn searches against the NCBI nucleotide database using the ITS, tub2 and tef1-a sequences of the isolates retrieved various hits, of which those with the highest sequence similarity belonged to members of the family Didymosphaeriaceae. Based on a megablast search using the ITS sequence, the closest matches for MUM 19.38 = CMG 10A in GenBank were *Dothideomycetes* sp. (GenBank accession: HQ631008; Identities 549/564 (97%), no gaps) and *Letendraea* sp. (GenBank accession: LT796897; Identities 548/564 (97%), no gaps). The closest hits using the tub2 sequence were *Letendraea* sp. (GenBank accession: LT796988; Identities 457/516 (89%), 5 gaps). Closest hits using tef1-a sequence also had highest similarity to *Letendraea* sp. (GenBank accession: LT797101; Identities 935/957 (98%), no gaps).

To confirm the phylogenetic placement of the fungal isolates within the family Didymosphaeriaceae, sequences of ITS, ITS + tub2 and ITS + tef1-a were aligned against those of several genera/species belonging to Didymosphaeriaceae (Suppl. material 1: Table S1). The alignment of the ITS, ITS + tub2 and ITS + tef1-a contained 60, 20 and 20 sequences (including the outgroup), and there was a total of 1010, 1352 and 1836 positions in the final dataset, respectively. In all ML phylogenetic trees
Neptunomyces aureus gen. et sp. nov. isolated from algae

Figure 1. Phylogenetic relationships of Didymosphaeriaceae species based on ITS sequence data and inferred using the Maximum Likelihood method under the Kimura 2-parameter model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site and rooted to Cucurbitaria berberidis (CBS 130007) and Coniothyrium palmarum (CBS 400.71). Bootstrap values (> 70%) are shown at the nodes. Ex-type strains are in bold and the isolates from the current study are in blue.
Figure 2. Phylogenetic relationships of Didymosphaeriaceae species based on ITS and *tub2* sequence data and inferred using the Maximum Likelihood method under the Kimura 2-parameter model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site and rooted to *Cucurbitaria berberidis* (CBS 130007) and *Coniothyrium palmarum* (CBS 400.71). Bootstrap values (> 70%) are shown at the nodes. Ex-type strains are in bold and the isolates from the current study are in blue.

Figure 3. Phylogenetic relationships of Didymosphaeriaceae species based on ITS and *tef1*-α sequence data and inferred using the Maximum Likelihood method under the Kimura 2-parameter model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site and rooted to *Cucurbitaria berberidis* (CBS 130007) and *Coniothyrium palmarum* (CBS 400.71). Bootstrap values (> 70%) are shown at the nodes. Ex-type strains are in bold and the isolates from the current study are in blue.
Neptunomyces aureus gen. et sp. nov. isolated from algae

(Figs 1–3), all novel isolates clustered in a monophyletic clade that received high (100 %) bootstrap support within the family Didymosphaeriaceae with a close relationship with the genera Alloconiothyrium and Kalmusia (ITS + tub2, Fig. 2) and Xenocamarosporium (ITS + tef1-a, Fig. 3). Thus, this novel lineage is phylogenetically well delimited, and it is clearly distinct from the other genera of Didymosphaeriaceae described so far and therefore it is proposed here as a new genus and a new species.

Taxonomy

Neptunomyces M. Gonçalves, T. Vicente & A. Alves. Portugal, gen. nov.

MycoBank No: 831436

Description. Asexual morph: mycelium consisting of septate, smooth hyphae, thick-walled, hyaline and rarely with nucleus. Conidia aseptate, golden yellow, smooth, subcylindrical with rounded apices. Chlamydospores not observed. Sexual morph unknown.

Etymology. Referring to Neptune (Latin: Neptūnus) the god of the seas in Roman mythology.

Type species. Neptunomyces aureus M. Gonçalves, T. Vicente & A. Alves. Portugal

Neptunomyces aureus M. Gonçalves, T. Vicente & A. Alves. Portugal, sp. nov.

MycoBank No: 831437

Fig. 4

Type. Portugal, Ria de Aveiro (40°40’38”N, 8°42’21”W), isolated from Gracilaria gracilis, 26th September 2018, M. Gonçalves, (holotype: a dried culture sporulating on pine needles AVE-F-1; ex-type living culture, MUM 19.38 = CMG 10A).

Etymology. Referring to the golden yellow conidia.

Diagnosis. Phylogenetic analysis based on the ITS, ITS and tub2 and ITS and tef1-a dataset considered in the present study clustered the retrieved strains in a monophyletic lineage in the family Didymosphaeriaceae. Therefore, a new genus Neptunomyces gen. nov., and a new species Neptunomyces aureus sp. nov. are here proposed.

Description. Mycelium smooth, white, 2–3 µm wide hyphae. Hyphae thick-walled, smooth, hyaline and rarely with nucleus. Conidiomata aggregated or solitary, globose to subglobose, dark brown, immersed or rarely superficial. Conidiomata wall pseudoparenchymatous. Conidiophores reduced to ampulliform to subcylindrical, hyaline, smooth conidiogenous cells (mean ± S.D. = 5.2 ± 0.3 x 2.0 ± 0.6 µm, n = 20). Conidia solitary, subcylindrical with rounded apices, aseptate, initially hyaline, smooth, becoming golden yellow (mean ± S.D. = 7.0 ± 0.6 x 2.7 ± 0.2 µm, n = 100). Sexual morph unknown.

Culture characteristics. On 2 weeks old PDA and OA plates, at 25 °C, colonies growing to 50 mm in diameter, regular and above and a little immersed into agar. PDA obverse white near the center getting flesh orange towards the borders; reverse buff orange in the center and lighter in periphery. OA obverse skimmed milk white;
Figure 4. Neptunomyces aureus (MUM 19.38). A, B Colony after 2 weeks at 25 °C on PDA (obverse and reverse) C, D colony after 2 weeks at 25 °C on MEA (obverse and reverse) E, F colony after 2 weeks at 25 °C on OA (obverse and reverse) G, H conidiomata after 1 month at 25 °C on pine needles and PDA. I, J conidiogenous cells K conidia. Scale bars: 2.5 µm.

reverse snow white. On 2 weeks old MEA plates, at 25 °C, colonies growing to 44 mm in diameter, regular and above and a little immersed into agar. Obverse orange-colored white; reverse reddish orange in the center and ochre yellow in periphery. At 35 °C, there was no growth in any media tested.

Distribution. Estuary Ria de Aveiro, Portugal

Additional specimens examined. Portugal, Ria de Aveiro (Table 1), isolated from Ulva sp., Enteromorpha intestinalis and Enteromorpha sp. (Supp. material 1: Table S1). M. Gonçalves, living cultures CMG 11, CMG 12, CMG 13 and CMG 14.

Notes. Neptunomyces aureus clustered in a distinct lineage in the family Didymosphaeriaceae with high p-distances (= 0.07) of nucleotide sites among the two-loci se-
Neptunomyces aureus gen. et sp. nov. isolated from algae

Sequences (ITS and tef1-α) with closest genus Xenocamarosporium. Although the morphology of conidiomata, conidiomata wall and conidiogenous cells can be very similar in the genera of this family, conidial morphology distinguishes Neptunomyces from Xenocamarosporium (Table 2).

Discussion

This study adds to the family Didymosphaeriaceae a new genus/species, namely Neptunomyces aureus isolated from macroalgae in the estuary of Ria de Aveiro in Portugal. The family Didymosphaeriaceae contains now 26 genera described.

The majority of the genera in the Didymosphaeriaceae remain under studied, which makes the family still poorly understood and not well resolved (Wanasinghe et al. 2016). In fact, there was no β-tubulin and tef1-α sequence data available for many species and therefore the phylogenetic analyses presented did not encompass all known species of the family. For example, phylogenetic analyses based on ITS + tub2 revealed that N. aureus is closely related to the genera Alloconiothyrium and Kalmusia, while on ITS + tef1-α it is related to the genus Xenocamarosporium, since there is no tef1-α/tub2 for Alloconiothyrium, Kalmusia and Xenocamarosporium, respectively. However, this family contains several well supported clades, most of which correspond to monotypic genera (e.g. Alloconiothyrium, Bimuria, Karstenula, Xenocamarosporium), or genera with only two species (e.g. Cylindroaseptospora, Deniquelata, Didymocrea).

Comparison of the ITS and tef1-α sequences from N. aureus and the closest genus/species X. acaciae revealed 65 and 58 base pair differences, respectively, with high p-distances (= 0.07) supporting the establishment of Neptunomyces as a distinct genus. Although the morphology of conidiomata, conidiomata wall and conidiogenous cells are similar, the conidiogenous cells of N. aureus are smaller than those of X. acaciae. Also, both can be easily discriminated by their conidia morphology, color and size. The

Table 2. Comparison of Neptunomyces aureus and Xenocamarosporium acaciae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Neptunomyces aureus</th>
<th>Xenocamarosporium acaciae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>MUM 19.38</td>
<td>CBS 139895</td>
</tr>
<tr>
<td>Nucleotide differences</td>
<td>ITS</td>
<td>tef1-α</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>58</td>
</tr>
<tr>
<td>(p-distance)</td>
<td>ITS + tef1-α</td>
<td>0.07</td>
</tr>
<tr>
<td>Conidia</td>
<td>Size (µm)</td>
<td>7.0 ± 0.6 x 2.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>Subcylindrical</td>
</tr>
<tr>
<td></td>
<td>Apex and base</td>
<td>Rounded</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>Hyaline becoming golden yellow</td>
</tr>
<tr>
<td>Conidiogenous cells</td>
<td>Size (µm)</td>
<td>5.2 ± 0.3 x 2.0 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>Ampulliform</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>Hyaline</td>
</tr>
<tr>
<td>References</td>
<td>Present study</td>
<td>Crous et al. 2015</td>
</tr>
</tbody>
</table>
conidia of *N. aureus* are aseptate, subcylindrical with rounded apices and initially hyaline and soon become golden yellow, while conidia of *X. acaciae* are mostly tri-septate, ellipsoidal to subcylindrical, sometimes with truncate base and golden brown. Moreover, conidia of *N. aureus* are considerably smaller than those of *X. acaciae*.

Neptunomyces aureus was isolated from healthy tissues of the macroalgae analyzed, where it may occur as endophyte or epiphyte. Further investigations are essential for clarifying its biology, ecology, physiological characteristics and host-specificity. Moreover, we did not obtain any sexual morph for this new species and there is no molecular support to link possible sexual taxa.

So far, species of Didymosphaeriaceae seem to be cosmopolitan in distribution: they have been recorded from both temperate and tropical regions. Also, Didymosphaeriaceae have been found on various hosts and substrates, including plants, humans and soil, being regarded as saprobes, endophytes or pathogens of a wide variety of plant substrates worldwide (Ariyawansa et al. 2014a, Liu et al. 2015, Wanasinghe et al. 2016). However, most Didymosphaeraceous genera occur on plants of more than 20 host families, the majority of them being monocotyledons and herbaceous plants, such as *Anacardiaceae*, *Asparagaceae*, *Asteraceae*, *Caprifoliaceae*, *Euphorbiaceae*, *Fagaceae*, *Lecythidaceae* and *Poaceae*. Reports of Didymosphaeriaceous species in marine/estuarine environments are almost non-existent. So far, this new genus/species has been found only in association with macroalgae species. Garzoli et al. (2018) reported, for the first time, some species within this family in *Padina pavonica*, a brown alga collected in the Mediterranean Sea: *Paraconiothyrium variabile*, *Paraphaeosphaeria neglecta* and another eight unidentified Didymosphaeriaceous species. Also, *Paraconiothyrium estuarinum* was isolated from sediments of an estuarine environment (Verkley et al. 2004) and *Paraphaeosphaeria michotii* from *Phragmites australis*, also typically found in estuaries (Eriksson 1967).

Physiological tests allowed us to characterize the retrieved isolates as a slight halophile as they grow equally well in the presence and absence of 3% sea salts. Information regarding NaCl tolerance is still poorly described in Didymosphaeriaceous species, but future studies related to tolerance to salinity in these organisms (especially in this new species) may provide physiological unique characteristics which may have some biotechnological potential.

Acknowledgements

The authors acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) to CESAM (UID/AMB/50017/2019) and the PhD grant of M. Gonçalves (SFRH/BD/129020/2017).

References

Neptunomyces aureus gen. et sp. nov. isolated from algae

Neptunomyces aureus gen. et sp. nov. isolated from algae

Supplementary material 1

Table S1. List of isolates used in this study
Authors: Micael F.M. Gonçalves, Tânia F.L. Vicente, Ana C. Esteves, Artur Alves
Data type: species data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.60.37931.suppl1
A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species

Xin-Cun Wang¹, Tie-Zhi Liu², Shuang-Lin Chen³, Yi Li⁴, Wen-Ying Zhuang¹

¹ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China ² College of Life Sciences, Chifeng University, Chifeng, Inner Mongolia 024000, China ³ College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China ⁴ College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China

Corresponding author: Wen-Ying Zhuang (zhuangwy@im.ac.cn)

Academic editor: T. Lumbsch | Received 11 July 2019 | Accepted 18 September 2019 | Published 31 October 2019

Abstract
Helvella species are ascomycetous macrofungi with saddle-shaped or cupulate apothecia. They are distributed worldwide and play an important ecological role as ectomycorrhizal symbionts. A recent multi-locus phylogenetic study of the genus suggested that the cupulate group of Helvella was in need of comprehensive revision. In this study, all the specimens of cupulate Helvella sensu lato with ribbed stipes deposited in HMAS were examined morphologically and molecularly. A four-locus phylogeny was reconstructed using partial sequences of the heat shock protein 90, nuclear rDNA internal transcribed spacer region 2, nuclear large subunit ribosomal DNA and translation elongation factor 1-α genes. Three clades were revealed in Helvella sensu stricto. Twenty species were included in the analysis, of which 13 are distributed in China. Three new species, H. acetabuloides, H. sichuanensis and H. tianshanensis, are described and illustrated in detail. A neotype was designated for H. taiyuanensis. Helvella calycina is a new record for China, while Dissingia leucomelaena should be excluded from Chinese mycota. Hsp90 and ITS2 are recommended as useful supplementary barcodes for species identifications of the genus.

Keywords
Ascomycota, DNA barcode, phylogeny, taxonomy, typification

Copyright Xin-Cun Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The genus *Helvella* L. contains a group of ascomycetous macrofungi with saddle-shaped or cupulate apothecia. *Helvella* species are distributed worldwide, especially in temperate regions (Dissing 1966, Abbott and Currah 1997). Some of them are edible, for example, *H. bachu* Q. Zhao, Zhu L. Yang & K.D. Hyde (Zhao et al. 2016a) and *H. taiyuanensis* B. Liu, Du & J.Z. Cao (Liu et al. 1985), and some are medicinal, for example, *H. lacunosa* Afzel. (Shameem et al. 2016). They are also important as ectomycorrhizal symbionts (Tedersoo et al. 2006, Healy et al. 2013, Hwang et al. 2015).

Helvella was established in 1753 and more than 400 names attributable to the genus have been recorded in the databases of Index Fungorum and MycoBank. Several taxonomic treatments were proposed, based on morphological characters (Table 1). Seven sections were established by Dissing (1966): sections *Acetabulum*, *Crispae*, *Elasticae*, *Ephippium*, *Lacunosae*, *Leucomelaenae* and *Macropodes*. Amongst them, the sections *Acetabulum* and *Leucomelaenae* included the species having cup-shaped apothecia with ribbed stipes. Similarly, six to eight infragenetric groups (sections or subgenus) were recognised by different authors (Weber 1972, Häßner 1987, Abbott and Currah 1997). Meanwhile, many additional species were added to the genus (Weber 1975, Harmaja 1976, 1977a, b, 1978, 1979, Abbott and Currah 1988). A checklist of cupulate *Helvella* species having ribbed stipes and their infragenetric positions are summarised in Table 2. Recently, *Helvella* sensu stricto was found to be associated with *Balsamia* Vittad., *Dissingia* K. Hansen, X.H. Wáng & T. Schumach., *Midotis* Fr., *Pindara* Velen. and *Underwoodia* Peck in Helvellaceae (Hansen and Pfister 2006; Hansen et al. 2019). Amongst them, *Dissingia* was proposed to accommodate the species formerly placed in *Helvella* section *Leucomelaenae* (Hansen et al. 2019).

With the development of molecular phylogenetics, the taxonomy of *Helvella* has been re-evaluated. Sequences of nuclear large and small subunit ribosomal DNA (LSU and SSU) were adopted for phylogenetic inference of *Helvella* sensu lato and its allied genera (Hansen and Pfister 2006, Tedersoo et al. 2006, Laessoe and Hansen 2007). Protein-coding genes, RNA polymerase II the largest subunit (RPB1), the second largest subunit (RPB2) and translation elongation factor 1-α (TEF1) were also applied (Bonito et al. 2013, Hansen et al. 2013). Nguyen et al. (2013) explored *Helvella* phylogeny using large-scale sequence analysis of LSU and the nuclear rDNA internal transcribed spacer region (ITS) and reported two new species from North America based on molecular and morphological evidence. On the basis of examinations of the type specimens and LSU sequence analysis, Landeros et al. (2012, 2015) concluded that the sections *Elasticae*, *Helvella*, *Lacunosae* and *Leucomelaenae* were monophyletic. Skrede et al. (2017) studied molecular characteristics of 55 European species, described seven new species based on the sequence divergences of LSU, RPB2, TEF1 and heat shock protein 90 gene (Hsp90), and designated neotypes and epitypes for 30 of them. Five clades and 18 lineages were distinguished according to the phylogeny inferred from the combined Hsp90 and RPB2 datasets. The above work provides background information for understanding the species concept of *Helvella*. In their updated study, Hansen et al. (2019) defined *Helvella* s. s., treated the cupulate *H. leucomelaena* (Pers.)
A four-locus phylogeny of Helvella

Table 1. Comparison of the taxonomic systems established in Helvella.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td>Subgenus Leucomelaenae</td>
<td>Helvella L.</td>
</tr>
<tr>
<td>Section Acetabulum</td>
<td>Section Acetabulum</td>
<td>Section Acetabulum</td>
<td>Subgenus Helvella L.</td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Crispae</td>
<td>Section Helvella L.</td>
<td>Section Helvella L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Lacunosae</td>
<td>Section Lacunosae</td>
<td>Section Lacunosae</td>
<td>Subgenus Elasticae (Dissing) S.P. Abbott</td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Elasticae</td>
<td>Section Elasticae</td>
<td>Section Elasticae</td>
<td>Subgenus Elasticae</td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Ephippium</td>
<td>Section Ephippium</td>
<td>Section Ephippium</td>
<td>Subgenus Macropodes (Dissing) S.P. Abbott</td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Macropodes</td>
<td>Section Macropodes</td>
<td>Section Macropodes</td>
<td>Subgenus Cupuliformes S.P. Abbott</td>
<td></td>
</tr>
<tr>
<td>Dissing</td>
<td>Dissing</td>
<td>Dissing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subgenus Silvicolar (S.P. Abbott) S.P. Abbott</td>
<td>Midotis Fr.</td>
</tr>
</tbody>
</table>

Nannf. lacking crozier at the ascus base as a separate genus Dissingia, retrieved the generic name Pindara, and transferred H. aestivalis (R. Heim & L. Rémy) Dissing & Raitv. to Balsamia. Brief comparisons amongst different taxonomic treatments are shown in Table 1.

The present study is aimed at exploring species diversity of the cupulate Helvella species with ribbed stipes.

Materials and methods

Fungal materials and morphological observations

Collections of the cupulate Helvella species with ribbed stipes, deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS), were re-examined, including those originally deposited in the Mycological Herbarium of Shanxi University (MHSU). Specimens recently collected from Beijing, Inner Mongolia, Hubei and Sichuan provi-
Table 2. A checklist of cupulate *Helvella* species sensu lato with ribbed stipes.

<table>
<thead>
<tr>
<th>Species</th>
<th>Section Acetabulum</th>
<th>Section Leucomelaenae</th>
<th>Section Solitariae</th>
<th>Section Macropodes</th>
<th>Subgenus Leucomelaenae</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetabula calyx Sacc., 1873</td>
<td>–</td>
<td>Syn. of H. solitaria (Dissing 1966); Syn. of H. leucomelaena (Harmaja 1977a)</td>
<td>–</td>
<td>–</td>
<td>Syn. of H. leucomelaena (Abbott and Currah 1997)</td>
<td>Syn. of H. leucomelaena (Landeros et al. 2015)</td>
</tr>
<tr>
<td>Helvella calycina Skrede, T.A. Carlsen & T. Schumach, 2017</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Valid species</td>
</tr>
<tr>
<td>Helvella costata Schwein, 1822</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Syn. of H. acetabulum (Abbott and Currah 1997)</td>
<td>Valid species</td>
</tr>
<tr>
<td>Helvella floriforma Q. Zhao & K.D. Hyde, 2016*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Valid species</td>
</tr>
<tr>
<td>Helvella helvellula (Durieu) Dissing, 1966</td>
<td>–</td>
<td>Dissing 1966</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Member of lasunosa clade (Skrede et al. 2017)</td>
</tr>
</tbody>
</table>
A four-locus phylogeny of *Helvella*

<table>
<thead>
<tr>
<th>Species</th>
<th>Section Acetabulum</th>
<th>Section Leucomelaenae</th>
<th>Section Solitariae</th>
<th>Section Macropodes</th>
<th>Subgenus Leucomelaenae</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helvella jiaohensis J.Z. Cao, L. Fan & B. Liu, 1990</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Holotype lost</td>
</tr>
<tr>
<td>Helvella jilinensis J.Z. Cao, L. Fan & B. Liu, 1990</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Syn. of H. leucomelaena (Abbott and Currah 1997)</td>
<td>Holotype lost</td>
</tr>
<tr>
<td>Helvella taiyuanensis B. Liu, Du & J.Z. Cao, 1985</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Neotypification here</td>
</tr>
<tr>
<td>Helvella tinta Q. Zhao, B. Feng & K.D. Hyde, 2016</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Valid species</td>
</tr>
<tr>
<td>Helvella verruculosa (Sacc.) Harmaja, 1978</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Abbott and Currah 1997</td>
<td>In need of reassessment (Skrede et al. 2017)</td>
</tr>
</tbody>
</table>

Syn.: synonym; * indicates the species originally described from China.

incences were identified (Table 3). Morphological observations were conducted following Wang and Zhuang (2019). In measurements, Q refers to length/width ratio of ascospores for which the medians are given.

DNA extraction, PCR amplification and sequencing

Well-preserved specimens were selected for DNA extraction using a Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Partial Hsp90, ITS2, LSU and TEF1 were amplified by PCR using primers H_hspf and H_hspr (Skrede et al. 2017), ITS3 and ITS4 (White et al. 1990), LROR and LR5 (Vilgalys and Hester 1990) and EF1-983F and EF1-1567R (Rehner and Buckley 2005). Products were sequenced on an ABI 3730 DNA Sequencer (Applied Biosystems).
Table 3. Fungal species and sequences used in phylogenetic analyses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Voucher</th>
<th>Locality</th>
<th>HSP90</th>
<th>ITS</th>
<th>LSU</th>
<th>TEF1</th>
<th>Label</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsamia platyspora Berk.</td>
<td>O-253217</td>
<td>Norway</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MK100251</td>
<td>MK113870</td>
<td>Balsamia aestivalis</td>
</tr>
<tr>
<td>Dissingia confusa (Harmaja) K. Hansen & X.H. Wang</td>
<td>TUR206101</td>
<td>Finland</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MK100252</td>
<td>MK113871</td>
<td>Balsamia platyspora</td>
</tr>
<tr>
<td>Balsamia aestivalis</td>
<td>H437</td>
<td>Norway</td>
<td>KY784529</td>
<td>–</td>
<td>KY773164</td>
<td>–</td>
<td>Helvella confusa</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Balsamia aestivalis</td>
<td>HMAS 27728*</td>
<td>Qinghai, China</td>
<td>MK652180</td>
<td>MK592119</td>
<td>–</td>
<td>–</td>
<td>Helvella confusa</td>
<td>This study</td>
</tr>
<tr>
<td>Balsamia platyspora</td>
<td>HMAS 38328*</td>
<td>Xinjiang, China</td>
<td>MK652181</td>
<td>MK592120</td>
<td>–</td>
<td>–</td>
<td>Acetabula leucomelaena</td>
<td>This study</td>
</tr>
<tr>
<td>Dissingia confusa</td>
<td>H115*</td>
<td>USA</td>
<td>KY784253</td>
<td>–</td>
<td>KY772970</td>
<td>–</td>
<td>Helvella leucomelaena</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Dissingia confusa</td>
<td>KH.0601 + H115</td>
<td>USA</td>
<td>–</td>
<td>–</td>
<td>KC012682</td>
<td>KC109207</td>
<td>Helvella leucomelaena</td>
<td>Hansen et al. 2013</td>
</tr>
<tr>
<td>Dissingia confusa</td>
<td>He273</td>
<td>Australia</td>
<td>–</td>
<td>–</td>
<td>JX993075</td>
<td>–</td>
<td>Helvella leucomelaena</td>
<td>Landeros et al. 2015</td>
</tr>
<tr>
<td>Dissingia confusa</td>
<td>He286, isotype</td>
<td>Italy</td>
<td>–</td>
<td>–</td>
<td>JX993051</td>
<td>–</td>
<td>Acetabula calyx</td>
<td>Landeros et al. 2015</td>
</tr>
<tr>
<td>Dissingia crassitunicata</td>
<td>HMAS 61351</td>
<td>Denmark</td>
<td>MK652201</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella leucomelaena</td>
<td>This study</td>
</tr>
<tr>
<td>Dissingia crassitunicata</td>
<td>HMAS 61356*</td>
<td>Sweden</td>
<td>MK652202</td>
<td>MK592137</td>
<td>–</td>
<td>–</td>
<td>Helvella leucomelaena</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 38329*</td>
<td>Xinjiang, China</td>
<td>MK652203</td>
<td>MK592138</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 7465*</td>
<td>Gansu, China</td>
<td>MK652204</td>
<td>MK592139</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 75147*</td>
<td>Sichuan, China</td>
<td>MK652205</td>
<td>MK592140</td>
<td>–</td>
<td>MK562162</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 75151</td>
<td>Sichuan, China</td>
<td>MK652206</td>
<td>MK592141</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 75183</td>
<td>Sichuan, China</td>
<td>MK652207</td>
<td>MK592142</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 75960</td>
<td>Sichuan, China</td>
<td>MK652208</td>
<td>MK592143</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 86050</td>
<td>Xinjiang, China</td>
<td>–</td>
<td>MK592144</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 86051</td>
<td>Xinjiang, China</td>
<td>–</td>
<td>MK592145</td>
<td>–</td>
<td>MK562163</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 86160</td>
<td>Shansi, China</td>
<td>–</td>
<td>MK592146</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 23842*</td>
<td>Shaanxi, China</td>
<td>MK652200</td>
<td>MK592137</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 23843*</td>
<td>Qinghai, China</td>
<td>–</td>
<td>–</td>
<td>MK652173</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
</tr>
<tr>
<td>Helvella acetabuloides X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 38129</td>
<td>Xinjiang, China</td>
<td>MK652175</td>
<td>MK592115</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Species</td>
<td>Voucher</td>
<td>Locality</td>
<td>HSP90</td>
<td>ITS</td>
<td>LSU</td>
<td>TEF1</td>
<td>Label</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Helvella acetabulum (L.) Quél.</td>
<td>HMAS 73176'</td>
<td>Sichuan, China</td>
<td>MK652178</td>
<td>MK592117</td>
<td>–</td>
<td>MK652156</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella arctoalpina Harmaja</td>
<td>H293, holotype</td>
<td>Norway</td>
<td>KY784406</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella arctoalpina</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td></td>
<td>H294</td>
<td>Norway</td>
<td>KY784207</td>
<td>KY772924</td>
<td>KY772841</td>
<td>–</td>
<td>Helvella arctoalpina</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Helvella calycina Skrede, T.A. Carlsen & T. Schumach.</td>
<td>HMAS 279704', CFSZ 2658, Inner Mongolia, China</td>
<td>MK652179</td>
<td>MK592118</td>
<td>MK592118</td>
<td>–</td>
<td>MK652157</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella costata Schwein.</td>
<td>H100</td>
<td>USA</td>
<td>KY784244</td>
<td>–</td>
<td>KY772962</td>
<td>–</td>
<td>Helvella costata</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Helvella costifera Nannf.</td>
<td>H298, epitype</td>
<td>Sweden</td>
<td>KY784409</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td></td>
<td>H131'</td>
<td>Norway</td>
<td>KY784264</td>
<td>KY772928</td>
<td>KY772874</td>
<td>–</td>
<td>Helvella costifera</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td></td>
<td>HMAS 61361</td>
<td>Shanxi, China</td>
<td>MK652185</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 71778</td>
<td>Beijing, China</td>
<td>MK652186</td>
<td>MK592124</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83510</td>
<td>Xinjiang, China</td>
<td>MK652187</td>
<td>MK592125</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 898497</td>
<td>Shanxi, China</td>
<td>MK652188</td>
<td>MK592126</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 139024'</td>
<td>Shaanxi, China</td>
<td>MK652182</td>
<td>MK592121</td>
<td>MK592101</td>
<td>–</td>
<td>Helvella sp.</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 187120'</td>
<td>Beijing, China</td>
<td>MK652183</td>
<td>MK592122</td>
<td>MK592102</td>
<td>MK592158</td>
<td>Helvella sp.</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 280301'</td>
<td>Yunnan, China</td>
<td>MK652184</td>
<td>MK592123</td>
<td>MK592103</td>
<td>MK592159</td>
<td>Helvella sp.</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella dryadophila Harmaja</td>
<td>H302, holotype</td>
<td>Norway</td>
<td>KY784412</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella dryadophila</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td></td>
<td>H180'</td>
<td>Norway</td>
<td>KY784309</td>
<td>–</td>
<td>KY773024</td>
<td>KY772883</td>
<td>Helvella dryadophila</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Helvella grisella N.S. Weber</td>
<td>He164, holotype</td>
<td>USA</td>
<td>–</td>
<td>–</td>
<td>JX993066</td>
<td>–</td>
<td>Helvella grisella</td>
<td>Landeros et al. 2015</td>
</tr>
<tr>
<td></td>
<td>H306'</td>
<td>USA</td>
<td>KY784416</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella grisella</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Helvella hyperborea Harmaja</td>
<td>H491'</td>
<td>Finland</td>
<td>KY784569</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella hyperborea</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td></td>
<td>HMAS 23840</td>
<td>Gansu, China</td>
<td>MK652189</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 38331</td>
<td>Xinjiang, China</td>
<td>MK652190</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83506</td>
<td>Xinjiang, China</td>
<td>MK652191</td>
<td>MK592127</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83507</td>
<td>Xinjiang, China</td>
<td>MK652192</td>
<td>MK592128</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83508</td>
<td>Xinjiang, China</td>
<td>MK652193</td>
<td>MK592129</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83509</td>
<td>Xinjiang, China</td>
<td>MK652194</td>
<td>MK592130</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 83511</td>
<td>Xinjiang, China</td>
<td>MK652195</td>
<td>MK592131</td>
<td>MK652160</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella hyperborea Harmaja</td>
<td>HMAS 83512</td>
<td>Xinjiang, China</td>
<td>MK652196</td>
<td>MK592132</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 85476</td>
<td>Xinjiang, China</td>
<td>MK652197</td>
<td>MK592133</td>
<td>–</td>
<td>–</td>
<td>Helvella acetabulum</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 85591'</td>
<td>Shanxi, China</td>
<td>MK652198</td>
<td>MK592134</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 88673'</td>
<td>Shanxi, China</td>
<td>MK652199</td>
<td>MK592135</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>HMAS 86043'</td>
<td>Xinjiang, China</td>
<td>MK652200</td>
<td>MK592136</td>
<td>–</td>
<td>MK652161</td>
<td>Helvella costifera</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella modesta S.P. Abbott</td>
<td>He163, holotype</td>
<td>Canada</td>
<td>–</td>
<td>–</td>
<td>JX993079</td>
<td>–</td>
<td>Helvella modesta</td>
<td>Landeros et al. 2015</td>
</tr>
<tr>
<td>Helvella sichuanensis X.C. Wang & W.Y. Zhuang</td>
<td>10706, HMAS 254610, holotype</td>
<td>Sichuan, China</td>
<td>MK652221</td>
<td>MK592156</td>
<td>MK592107</td>
<td>MK652169</td>
<td>Helvella modesta</td>
<td>This study</td>
</tr>
<tr>
<td>Species</td>
<td>Voucher</td>
<td>Locality</td>
<td>HSP90</td>
<td>ITS</td>
<td>LSU</td>
<td>TEF1</td>
<td>Label</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Helvella solitaria P. Karst.</td>
<td>H370, epitype</td>
<td>Sweden</td>
<td>KY784470</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>H004</td>
<td></td>
<td>Norway</td>
<td>KY784184</td>
<td>–</td>
<td>KY772902</td>
<td>KY772819</td>
<td>–</td>
<td>Helvella solitaria</td>
</tr>
<tr>
<td>He248, holotype</td>
<td></td>
<td>Finland</td>
<td>–</td>
<td>–</td>
<td>JX93085</td>
<td>–</td>
<td>–</td>
<td>Landeros et al. 2015</td>
</tr>
<tr>
<td>HMAS 41140</td>
<td></td>
<td>Netherlands</td>
<td>MK652211</td>
<td>MK592148</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 71891</td>
<td></td>
<td>Czech</td>
<td>MK652212</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 27727</td>
<td></td>
<td>Qinghai, China</td>
<td>MK652209</td>
<td>MK592147</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 27951</td>
<td></td>
<td>Jilin, China</td>
<td>MK652210</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 73509</td>
<td></td>
<td>Sichuan, China</td>
<td>MK652213</td>
<td>MK592149</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 75175</td>
<td></td>
<td>Sichuan, China</td>
<td>MK652214</td>
<td>MK592150</td>
<td>–</td>
<td>MK652164</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella taiyuanensis B. Liu, Du & J.Z. Cao</td>
<td>HMAS 85689, neotype</td>
<td>Shaanxi, China</td>
<td>MK652217</td>
<td>MK592153</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 277500</td>
<td></td>
<td>Yunnan, China</td>
<td>MK652216</td>
<td>MK592152</td>
<td>MK592105</td>
<td>MK652166</td>
<td>–</td>
<td>Helvella sp.</td>
</tr>
<tr>
<td>11925, HMAS 254611</td>
<td></td>
<td>Beijing, China</td>
<td>MK652215</td>
<td>MK592151</td>
<td>MK592104</td>
<td>MK652165</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>MCCNNU 6499, HMAS 279702</td>
<td></td>
<td>Hubei, China</td>
<td>MK652218</td>
<td>MK592154</td>
<td>MK592106</td>
<td>MK652167</td>
<td>–</td>
<td>Helvella solitaria</td>
</tr>
<tr>
<td>Helvella tianshanensis X.C. Wang & W.Y. Zhuang</td>
<td>HMAS 86040, holotype</td>
<td>Xinjiang, China</td>
<td>MK652222</td>
<td>MK592157</td>
<td>MK592108</td>
<td>MK652170</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>HMAS 8861</td>
<td></td>
<td>Xinjiang, China</td>
<td>MK652223</td>
<td>MK592158</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Helvella costifera</td>
</tr>
<tr>
<td>Helvella tinta Q. Zhao, B. Feng & K.D. Hyde</td>
<td>HKAS 82560, holotype</td>
<td>Sichuan, China</td>
<td>–</td>
<td>–</td>
<td>KX239842</td>
<td>KX239772</td>
<td>–</td>
<td>This study</td>
</tr>
<tr>
<td>Helvella crispa (Scop.) Fr.</td>
<td>H408, epitype</td>
<td>Sweden</td>
<td>KY784504</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>H135</td>
<td></td>
<td>Norway</td>
<td>KY784268</td>
<td>–</td>
<td>KY772986</td>
<td>–</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>HKAS 75434</td>
<td></td>
<td>Germany</td>
<td>–</td>
<td>JX62572</td>
<td>KR493479</td>
<td>KT254487</td>
<td>–</td>
<td>Zho et al. 2015</td>
</tr>
<tr>
<td>H407, epitype</td>
<td></td>
<td>Sweden</td>
<td>KY784503</td>
<td>–</td>
<td>KY773152</td>
<td>–</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>H039</td>
<td></td>
<td>Norway</td>
<td>KY784213</td>
<td>–</td>
<td>KY772930</td>
<td>KY772845</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Helvella lacunosa Aitzel.</td>
<td>H412, epitype</td>
<td>Sweden</td>
<td>KY784507</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>H073</td>
<td></td>
<td>Norway</td>
<td>KY784233</td>
<td>–</td>
<td>KY772954</td>
<td>KY772863</td>
<td>–</td>
<td>Skrede et al. 2017</td>
</tr>
<tr>
<td>Midotis lingua Fr.</td>
<td>H283</td>
<td>Switzerland</td>
<td>KY784397</td>
<td>–</td>
<td>KY773093</td>
<td>–</td>
<td>–</td>
<td>Wynnella silvicola</td>
</tr>
<tr>
<td>HMAS 67962</td>
<td></td>
<td>Germany</td>
<td>MK652224</td>
<td>MK592159</td>
<td>MK592109</td>
<td>–</td>
<td>–</td>
<td>Wynnella silvicola</td>
</tr>
<tr>
<td>HMAS 1886</td>
<td></td>
<td>Shanshi, China</td>
<td>MK652225</td>
<td>MK592160</td>
<td>MK592110</td>
<td>–</td>
<td>–</td>
<td>Wynnella silvicola</td>
</tr>
<tr>
<td>HMAS 74656</td>
<td></td>
<td>Guangxi, China</td>
<td>MK652226</td>
<td>MK592161</td>
<td>MK592111</td>
<td>–</td>
<td>–</td>
<td>Wynnella silvicola</td>
</tr>
<tr>
<td>HMAS 83548</td>
<td></td>
<td>Xinjiang, China</td>
<td>MK652227</td>
<td>MK592162</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Wynnella silvicola</td>
</tr>
<tr>
<td>Pindara terrestris Velen.</td>
<td>KH.12.67</td>
<td>Sweden</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Hansen et al. 2019</td>
</tr>
<tr>
<td>S-F327988</td>
<td></td>
<td>Sweden</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Pindara terrestris</td>
</tr>
<tr>
<td>T. Kekki 168</td>
<td></td>
<td>Finland</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Pindara terrestris</td>
</tr>
</tbody>
</table>

*Taxa included in the four-locus sequence analysis; Note: GenBank accession numbers in bold indicating the newly generated sequences.
Phylogenetic analyses

Sequences obtained from this study and those retrieved from GenBank are listed in Table 3. Four single gene datasets and two combined datasets were compiled. Sequences were aligned using MAFFT 7.221 (Katoh and Standley 2013) and subsequently processed with BioEdit 7.1.10 (Hall 1999). A Maximum-Likelihood (ML) tree for each single gene data was generated using MEGA 6.0.6 (Tamura et al. 2013) with the most suitable nucleotide substitution model and 1,000 replicates of bootstrap (BP) tests. For the combined four-gene dataset, the ML tree was determined using RAxML-HPC2 on XSEDE 8.2.12 on CIPRES Science Gateway (Miller et al. 2010) with the default GTRCAT model. Bayesian Inference (BI) analysis was performed with MrBayes 3.2.6 (Ronquist et al. 2012) using a Markov Chain Monte Carlo (MCMC) algorithm. Appropriate nucleotide substitution models and parameters were determined via ModelTest 3.7 (Posada and Crandall 1998). The first 25% of the trees were excluded as the burn-in phase and posterior probability (PP) values were estimated with the remaining 75% of trees. Helvella crispa (Scop.) Fr., H. elastica Bull., H. lacunosa Afzel. and H. macropus (Pers.) P. Karst. are the representatives of the formerly recognised sections Crispae, Elasticae, Lacunosae and Macropodes, respectively. Midotis lingua (Fr.) served as the outgroup taxon of the four-gene phylogeny and Underwoodia columnaris Peck worked for the two-gene analysis.

Results

Fifty-one specimens of the rib-stiped cupulate species of Helvella s. l. deposited in HMAS and five recent collections were examined. A total of 125 sequences of the Helvella and Dissingia samples and 11 of the outgroup taxa were submitted to GenBank (Table 3).

The combined four-locus dataset included 48 taxa of Helvella s. s. and Dissingia in an alignment of 1788 bp, including 236 bp of Hsp90, 348 bp of ITS2, 690 bp of LSU and 514 bp of TEF1. Kimura 2-parameter (K2) with gamma distribution (+G) was determined as the most suitable model for ML analysis. Tamura-Nei with gamma distribution and invariant sites (TrN+I+G) was selected by Akaike Information Criterion as the best fit for the BI analysis. As shown in Figure 1, three clades and some independent lineages were recognised amongst the cupulate taxa of Helvella s. s. Clade 1 consisted of H. calycina, H. costifera and H. tianshanensis; Clade 2 included H. solitaria and H. taiyuanensis; and Clade 3 contained H. acetabuloides, H. acetabulum, H. arctoalpina, H. costata and H. sichuanensis. Helvella dryadophila, as an independent lineage, was sister to Clade 3, which was not supported by two of the single gene analyses (Suppl. material 1: Figures S1 and S4). Helvella griseoalba and H. hyperborea were situated outside the clades in all analyses.

The combined LSU and TEF1 dataset was comprised of 38 taxa of Balsamia, Dissingia, Helvella, Midotis, Pindara and Underwoodia. The alignment is of 1239 bp, including 711 bp of LSU and 528 bp of TEF1. Tamura-Nei with gamma distribution (TN93+G) was determined as the most suitable model for ML analysis.
Clades 1–3 were supported and *H. dryadophila* was outside Clade 3 (Figure 2), which are congruent with the four-gene analysis (Figure 1).

The Hsp90 dataset consisted of 84 sequences of *Helvella* and *Dissingia*. K2+G was determined as the most suitable model for ML analysis. Clades 2 and 3 were monophyletic, but Clade 1 was poorly supported (Suppl. material 1: Figure S1). The positions of the three undescribed species were consistent with that of the four-locus phylogeny.
The ITS2 dataset possessed 53 taxa of Helvella and Dissingia. Tamura 3-parameter with gamma distribution (T92+G) was determined as the most suitable model for ML analysis. Clades 1–3 were strongly supported. Helvella tinta, excluded from these clades, appeared to be sister of H. hyperborea (Suppl. material 1: Figure S2).

The LSU dataset comprised 40 sequences of Helvella and Dissingia. TN93+G was determined as the most suitable model for ML analysis. Clades 1–3 of Helvella were monophyletic, in which H. floriforma and H. robusta, absent in other trees, were located. Dissingia seemed to be not monophyletic (Suppl. material 1: Figure S3).
The TEF1 dataset consisted of 26 taxa of *Helvella* and *Dissingia*. K2+G was determined as the most suitable model for ML analysis. Clades 1–3 of *Helvella* were strongly supported (Suppl. material 1: Figure S4) and the phylogenetic positions of the three undescribed species recalled that of the multigene phylogeny (Figure 1).

Taxonomy

New species

Helvella acetabuloides X.C. Wang & W.Y. Zhuang, sp. nov.

Fungal Names: FN 570634

Figure 3a–d

Holotype. CHINA. Inner Mongolia Autonomous Region, Chifeng City, Harqin Banner, Shijia Town, Toudaoyingzi Village, 41°53’20”N, 119°1’1”E, on the ground under *Ostryopsis davidiana* Decne., 8 Aug 2002, T.Z. Liu & T.H. Liu, HMAS 279703 (= CFSZ 2044).

Etymology. The species epithet refers to its similarity to *H. acetabulum*.

Description. Apothecia stipitate to subsessile, cupulate, margin undulate, involute or revolute, 2.2–4.8 cm high and 2.5–4 cm diam. when dry; hymenium dull brown to reddish-brown when dry, receptacle surface light brown to brown when dry, glabrous; stipe terete or flattened, buff, light yellowish-brown to brown, surface ribbed, 0.5–3 × 0.4–1.3 cm, typically fluted with sharp-edged or rarely blunt ribs, ribs branching at the upper half of receptacle surface, reaching to the edge or ending 1–2 mm from the edge. Ectal excipulum of *textura angularis*, 75–100 µm thick, cells hyaline, outer cells arranged in chains, 16–21.5 × 7–8 µm. Medullary excipulum of *textura intricata*, 180–220 µm thick, hyphae hyaline. Asci subcylindrical, tapering and with crozier at base, 8-spored, 235–280 × 15–20 µm. Paraphyses filiform with apical portion very slightly enlarged, septate, hyaline, 4.5–5.5 µm wide at apex and 4–4.5 µm below. Ascospores ellipsoidal, hyaline, smooth, uniguttulate, 14–20 × 10–14.5 µm, median 16.2 × 12.3 µm, Q = 1.2–1.55, median 1.375, n = 50.

Additional specimen examined. CHINA. Shaanxi Province, Baoji City, Taibai County, Mt. Taibai, 34°1’53”N, 107°25’33”E, alt. 2270 m, on the ground in broadleaf forest, 26 Jun 1958, J.H. Yu 106, HMAS 23842.

Notes. *Helvella acetabuloides* is nested with *H. acetabulum, H. arctoalpina, H. costata* and *H. sichuanensis* in Clade 3 (Figure 1). Its hymenium is reddish-brown when dry and different from that of *H. acetabulum* (brown when dry) and those of *H. arctoalpina* and *H. sichuanensis* (black when dry, Harmaja 1977b). The two specimens cited are identical in sequences of *Hsp90*. *Helvella acetabuloides* differs from *H. acetabulum* in 6 bp for *Hsp90* (H410, epitype), 14 bp for ITS2 (HMAS 243823) and 17 bp for TEF1 (H133). It is distinguished from *H. arctoalpina* in 2 bp of *Hsp90* (H293, holotype) and 11 bp of TEF1 (H033), from *H. costata* in 3 bp of *Hsp90*. It differs from *H. sichuanensis* in 1 bp of *Hsp90*, 20 bp of ITS2 and 11 bp of TEF1. PCR amplification of LSU failed.
A four-locus phylogeny of Helvella

Figure 3. a–d Helvella acetabuloides: a mature apothecia when dry (CFSZ 2044) b asci (HMAS 23842) c, d ascospores in ascus (c: CFSZ 2044, d: HMAS 23842) e–g Helvella sichuanensis (HMAS 254610): e mature apothecia when dry f mature apothecia when fresh g ascospores in ascus h–k Helvella tianshanensis (HMAS 86040): h, i Mature apothecium when dry j asci k ascospores in asci. Scale bars: 1 cm (a, e); 0.75 cm (h, i); 50 µm (b, g, j); 20 µm (c, d, k).

Helvella sichuanensis X.C. Wang & W.Y. Zhuang, sp. nov.
Fungal Names: FN 570635
Figure 3e–g

Holotype. CHINA. Sichuan Province, Garzé Tibetan Autonomous Prefecture, Daocheng County, Yading National Nature Reserve, 28°25′6″N, 100°21′26″E, alt. 3900 m, on the ground of mixed forest, 18 Aug 2016, J.P. Wang & X.C. Wang 10706, HMAS 254610.

Etymology. The species epithet refers to the type locality of the fungus.

Description. Apothecia stipitate, shallow-cupulate, margin entire and flattened when fresh, undulate, involute or revolute when dry, 5–6 cm diam. when fresh and 2.5–3.5 cm high when dry; hymenium yellowish-brown when fresh, nearly black when dry, receptacle surface buff to light brown when fresh, light brown to dark brown when dry, glabrous; stipe terete or flattened, buff to light brown, surface ribbed, 2.5–3 × 1.5–3 cm when fresh, 2–2.5 × 0.5–1.5 cm when dry, typically fluted with sharp-edged or rarely
blunt ribs, ribs branching at the upper half of receptacle surface, reaching to the edge or ending 3–5 mm from the edge. Ectal excipulum of *textura angularis*, 100–180 µm thick, cells hyaline to light brown, outer cells 15–45 × 9–35 µm. Medullary excipulum of *textura intricata*, 300–500 µm thick, hyphae hyaline. Asci subcylindrical, tapering and with crozier at base, 8-spored, 225–325 × 13–18.5 µm. Paraphyses filiform with apical portion obviously swollen, septate, hyaline to light brown, 7–10.5 µm wide at apex and 3–4.5 µm below. Ascospores ellipsoidal, hyaline, smooth, uniguttulate, 15.5–18.5 × 10–12.5 µm, median 16.9 × 11.2 µm, Q = 1.3–1.7, median 1.48, n = 40.

Notes. *Helvella sichuanensis* belongs to Clade 3 (Figure 1). Its hymenium is nearly black when dry, which is similar to that of *H. arctoalpina*, but different from those in *H. acetabulum* (brown when dry) and *H. acetabuloides* (reddish-brown when dry). When fresh, the hymenium is yellowish-brown, while that of *H. arctoalpina* is brown. Molecularly, it differs from *H. acetabulum* in 7 bp of Hsp90 (H410, epitype), 14 bp of ITS2 (HMAS 243823), 17 bp of LSU (H133) and 15 bp of TEF1 (H133); from *H. arctoalpina* in 1 bp of Hsp90 (H293, holotype), 25 bp of LSU (H033) and 11 bp of TEF1 (H033); and from *H. costata* in 2 bp of Hsp90 and 13 bp of LSU. The sequence divergences between *H. sichuanensis* and *H. acetabuloides* are 1 bp of Hsp90, 20 bp of ITS2 and 12 bp of TEF1.

Helvella tianshanensis X.C. Wang & W.Y. Zhuang, sp. nov.
Fungal Names: FN 570636
Figure 3h–k

Holotype. CHINA. Xinjiang Uygur Autonomous Region, Changji Hui Autonomous Prefecture, Jimsar County, 43°59'44"N, 89°10'31"E, 1700 m, on the ground, 31 Jul 2003, W.Y. Zhuang & Y. Nong 4661, HMAS 86040.

Etymology. The species epithet refers to the type locality of the fungus.

Description. Apothecia stipitate, cupulate, margin undulate, involute, 2.5–3.5 cm high and 2–3 cm diam. when dry; hymenium greyish-brown, brown to dark brown, receptacle surface yellowish-brown to brown; stipe terete or flattened, buff, yellowish-brown, orange brown to brown, surface ribbed, 2–2.5 × 0.5–1.3 cm, typically fluted with rarely blunt ribs, ribs branching at the upper half of receptacle surface, reaching to the edge or ending 3–12 mm from the edge. Ectal excipulum of *textura angularis*, 120–150 µm thick, hyphae hyaline, outer cells 35–40 × 20–40 µm. Medullary excipulum of *textura intricata*, 350–600 µm thick, hyphae hyaline. Asci subcylindrical, tapering and with crozier at base, 8-spored, 240–275 × 12–24 µm. Paraphyses filiform, slightly enlarged at apical portion, septate, hyaline to light brown, 6–7.5 µm wide at apex and 3–4.5 µm below. Ascospores ellipsoidal, hyaline, smooth, uniguttulate, 17–21 × 11.5–13.5 µm, median 18.8 × 12.3 µm, Q = 1.35–1.7, median 1.51, n = 30.

Additional specimen examined. CHINA. Xinjiang Uygur Autonomous Region, Urumqi City, Urumqi County, 43°28'47"N, 87°27'27"E, 12 Aug 1985, L. Fan & K. Tao 161, HMAS 88611.
Notes. *Helvella tianshanensis* nested with *H. calycina* and *H. costifera* in Clade 1 (Figure 1). These three species are hardly separated by gross morphology and anatomic structures. *Helvella tianshanensis* differs from *H. calycina* in 4 bp of Hsp90 (H022, epitype), 16 bp of ITS2 (HMAS 279704), 9 bp of LSU (H022) and 15 bp of TEF1 (H022); and it is different from *H. costifera* in 3 bp of Hsp90 (H298, epitype), 12 bp of ITS2 (HMAS 187120), 11 bp of LSU (H131) and 13 bp of TEF1 (H131). The two specimens of the new species are identical in Hsp90 and ITS2.

New Chinese record

Specimen examined. CHINA. Inner Mongolia Autonomous Region, Xilingol League, Zhenglan Banner, Yihehaierhan Sumu, 42°23′8″N, 116°10′17″E, 21 August 2005, on the ground, T.Z. Liu & X.L. Bai, HMAS 279704 (= CFSZ 2658).

Notes. *Helvella calycina* is a new record for China. It was known only from Norway and Denmark. The Chinese collection extends its distribution to Asia. The Chinese collection is identical with the epitype in TEF1 but with 2 bp differences for Hsp90 and 1 bp for LSU.

Neotypification

Fungal Names: FN 570637

Figure 4

Neotype is designated here. CHINA. Shanxi Province, Lvliang City, Jiaocheng County, Guandishan National Forest Park, 37°54′25″N, 111°35′40″E, on the ground in mixed forest, 16 Jul 1987, Y.M. Li, HMAS 85689 (= MHSU 758).

Additional specimens examined. CHINA. Beijing City, Mentougou District, Xialongmen National Forest Park, 39°58′2″N, 115°26′43″E, alt. 1100 m, on the ground in mixed forest, 4 Aug 2018, X.C. Wang et al. 11925, HMAS 254611. Hubei Province, Yichang City, Xingshan County, Longmenhe National Forest Park, 31°21′12″N, 110°30′40″E, on the ground, 23 Jul 2017, R. Wang & X. Zhang 420526MF0679, MCCNNNU 6499, HMAS 279702. Yunnan Province, Diqing Tibetan Autonomous Prefecture, Dêqên County, Yunling Town, Meili Snow Mountain, 28°23′23″N, 98°47′49″E, alt. 3150 m, on the ground, 12 Aug 2016, Y. Li 920, HMAS 277500.

Notes. This species was originally described, based on a single specimen collected by Y.M. Li from Taiyuan City, Shanxi Province in 1983 (Holotype: HBSU 2449, Liu et al. 1985). Unfortunately, the type specimen was destroyed by a fire in MHSU
in 1984 (Cao 1988, Cao et al. 1990). To protect fungal collections after the fire, the remaining specimens, deposited in MHSU, were moved to HMAS. The neotype specimen HMAS 85689 was collected by the same collector as the type specimen of *H. taiyuanensis* and identified by one of the original authors J.Z. Cao (Cao 1988). Its detailed morphological characteristics are in accordance with the original description. We thus treat it as authentic material. As other specimens were neither cited in the protologue nor filed under this name, we thus designate HMAS 85689 as the neotype specimen of *H. taiyuanensis*.

Helvella taiyuanensis was once treated as a synonym of *H. solitaria* sensu Dissing (1966), based on morphological features (Cao 1988), but the molecular differences between them are clear in the multigene analysis (Figure 1). It should be a tenable species. The four specimens of the fungus examined are variable in colour of the hymenium and receptacle surface when dry or fresh, but stable in cupulate to saddle-shaped apothecia (Figure 4). Phylogenetic analyses indicate that they belong to the same species (Figures 1, 2 and Suppl. material 1: S1–S4) although minor sequence divergences exist amongst collections. The maximum sequence divergences amongst collections are 1 bp in Hsp90, 6 bp in ITS2, 3 bp in LSU and 7 bp in TEF1.

Discussion

A total of about 28 rib-stiped cupulate species of *Helvella* and *Dissingia* have been reported in the world (Table 2) and 17 of them were investigated in this study. With the discovery of the three new species and one new record, 13 species were confirmed to be distributed in China. Amongst them, six are known only from China, five
A four-locus phylogeny of of Helvella

(D. oblongispora, H. acetabulum, H. calycina, H. costifera and H. hyperborea) are found in Europe and China and D. confusa and H. solitaria are widespread in Europe, Asia and North America. Amongst the Chinese helvellas, H. acetabulum, H. costifera and H. taiyuanensis show a relatively wide distribution range and occur in at least four provinces. However, H. calycina, H. floriforma, H. sichuanensis, H. tianshanensis and H. tinta were known only from a single locality. Eight species are in northwest China (Gansu, Qinghai, Shaanxi and Xinjiang), eight in the southwest (Sichuan and Yunnan) and seven in the north (Beijing, Inner Mongolia and Shanxi). However, the Chinese record of H. leucomelaena (≡ D. leucomelaena) (Teng 1963, Tai 1979, Zhuang 1998) is questionable since many specimens in HMAS, filed under that name, were based on misidentifications (Table 3).

As shown in the multigene phylogeny (Figure 1), three clades were formed amongst the investigated species. The cupulate Helvella taxa are clustered or mixed with the saddle-shaped ones. This gives the hint that the apothecial shape changed several times during the evolution. Clade 2, Clade 3 and H. dryadophila belong to the acetabulum-solitaria lineage (Skrede et al. 2017); however, this lineage was not herein supported due to joining of the non-cupulate species H. crispa. Clade 1 is in accordance with the costifera lineage (Skrede et al. 2017) with the addition of H. tianshanensis. Our results clearly support the separation of Dissingia from Helvella s. l. (Hansen et al. 2019).

Supplementary DNA barcodes are essential for delimitation of Helvella species. LSU is the most commonly used region for Helvella species identification (Nguyen et al. 2013, Landeros et al. 2015, Skrede et al. 2017). LSU is capable of distinguishing cupulate Helvella species (Suppl. material 1: Figure S3); whereas, its PCR amplification success rate is low (10/56), especially for specimens subject to long storage. A similar situation is witnessed in TEF1, which was suggested as a secondary barcode for fungi (Stielow et al. 2015). Although the primers for this region were reported working well on DNAs extracted from fresh materials, the amplifications from dried Helvella specimens were not easy (Skrede et al. 2017). The amplification success rate of TEF1 in our study was again low (15/56). Hsp90 was first applied to Helvella by Skrede et al. (2017) and is recommended due to its short sequence length, high amplification success rate, usefulness in species delimitation and its reasonable phylogenetic informative properties. It was successfully amplified from 53 of the 56 specimens studied and is able to distinguish all the involved species (Suppl. material 1: Figure S1). RPB2 was also applied in the recent studies (Skrede et al. 2017, Hansen et al. 2019), but did not work well since the amplicons of the newly designed primers, H_rpb2r2 and H_rpb2f, had a lower species resolution than that of Hsp90. The fragment is also too short to align with the existing sequences in GenBank.

ITS is recommended as the universal barcode for fungi (Schoch et al. 2012), which is applied widely to elucidate species diversity of the pezizalean ectomycorrhizae (Tedesco et al. 2006, Healy et al. 2013, Hwang et al. 2015). However, very limited ITS sequences of cupulate Helvella species were available in GenBank. The trials of obtaining ITS amplicons, using the universal primers for many Helvella species, usually failed owing to primer mismatch (Skrede et al. 2017). The success rate of ITS amplification in our work was extremely low (2/56) upon using the primer pairs ITS5
and ITS4. Functional *Helvella*-specific ITS primers are expected to be developed. Our amplifications of the ITS2 region by the primers ITS3 and ITS4 reached a relative high success rate (47/56) with the tested species well separated (Suppl. material 1: Figure S2). We thus propose to use Hsp90 and ITS2 as supplementary DNA barcodes for rib-stiped cupulate species of *Helvella*.

Acknowledgements

We are very grateful to Prof. Jie-Ping Wang (Fujian Academy of Agricultural Sciences) and Mr. Xian Zhang (Nanjing Normal University) for sending the specimen and photograph of a *Helvella* species as gift.

This work was supported by the National Natural Science Foundation of China (nos. 31750001, 31760004) and Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDY-SSW-SMC029).

References

A four-locus phylogeny of *Helvella*

A four-locus phylogeny of *Helvella*

Supplementary material I

Figures S1–S4

Authors: Xin-Cun Wang, Tie-Zhi Liu, Shuang-Lin Chen, Yi Li, Wen-Ying Zhuang

Data type: phylogenetic data

Explanation note: **Figure S1.** Maximum-likelihood phylogenetic tree of *Helvella* and its allies inferred from Hsp90 dataset. Bootstrap values ≥ 50% are indicated at nodes. **Figure S2.** Maximum-likelihood phylogenetic tree of *Helvella* and its allies inferred from ITS2 dataset. Bootstrap values ≥ 50% are indicated at nodes. **Figure S3.** Maximum-likelihood phylogenetic tree of *Helvella* and its allies inferred from LSU dataset. Bootstrap values ≥ 50% are indicated at nodes. **Figure S4.** Maximum-likelihood phylogenetic tree of *Helvella* and its allies inferred from TEF1 dataset. Bootstrap values ≥ 50% are indicated at nodes.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.60.38186.suppl1
The genus Simplicillium

De-Ping Wei1,2,3,4, Dhanushka N. Wanasinghe3,5, Kevin D. Hyde2,4, Peter E. Mortimer3, Jianchu Xu3,5, Yuan-Pin Xiao2,6,7, Chitrabhanu S. Bhunjun2,7, Chaiwat To-anun1

1 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 5 World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China 6 Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, 550025, China 7 School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

Corresponding author: Peter E. Mortimer (petermortimer@mac.com)

Academic editor: Cecile Gueidan | Received 6 July 2019 | Accepted 9 September 2019 | Published 19 November 2019

Abstract

Simplicillium species have a wide host range and an extensive distribution. Some species are associated with rusts, as well as other plant pathogenic fungi and play an important role in biological control. In this study, two specimens of Simplicillium were collected from Chiang Mai Province, Thailand. Simplicillium formicae sp. nov. was isolated from an infected ant and S. lanosoniveum from Ophiocordyceps unilateralis which is a new host record. Species were initially identified using ITS gene sequences and confirmed using morphology coupled with phylogenetic analyses of a combined nrLSU, nrSSU, TEF and RPB1 dataset. Simplicillium formicae differs from other species in the genus by the presence of flask-shaped synnemata and phialides with intercalary nodes. Simplicillium lanosoniveum resembles other collections of the species by its completely solitary, tapering phialides and globose to ellipsoidal conidia which adhere in a slimy head. A key to species of Simplicillium is also provided.

Keywords

new species, Thailand, ant fungi, taxonomy, phylogeny
Introduction

Zare and Gams (2001) introduced *Simplicillium* to accommodate four taxa including the type species *S. lanosoniveum* and three other species, *S. lamellicola*, *S. obclavatum* and *S. wallacei*. *Simplicillium* species were historically placed in *Verticillium* sect. *Prostrata* which was described by Gams (1971) for prostrate conidiophore-producing species. Later, most of the species of *Verticillium* sect. *Prostrata* were reported as members in Clavicipitaceae, based on molecular data (including SSU, LSU and ITS sequences), whereas *Simplicillium* species consistently formed a monophyletic group apart from the other described taxa in this family (Zare et al. 2000; Gams and Zare 2001; Sung et al. 2001; Zare and Gams 2001). Recently, Clavicipitaceae was divided into three families, based on multi-gene phylogenetic analyses and *Simplicillium* was assigned to Cordycipitaceae (Hypocreales, Hypocreomycetidae, Sordariomycetes) (Sung et al. 2007; Maharachchikumbura et al. 2016; Wijayawardene et al. 2018). Zare and Gams (2008) excluded *Simplicillium wallacei* from *Simplicillium* and transferred it to *Lecanillicium* due to the basal position being closer to the latter genus than to the former genus in the cladogram of ITS data. Subsequently, ten species viz. *Simplicillium chinense* (Liu and Cai 2012), *S. aogashimaense*, *S. cylindrosporum*, *S. minatense*, *S. subtropicum*, *S. sympodiophorum* (Nonaka et al. 2013), *S. lanosoniveum* var. *tianjinensis* (Dong et al. 2014), *S. calcicola* (Zhang et al. 2017), *S. coffeanum* (Gomes et al. 2018) and *S. filiforme* (Crous et al. 2018) were restricted to *Simplicillium*, based on the phylogenetic analyses of ITS sequence data and strong morphological evidence. Its sexual-asexual connection has been established with *S. lanosoniveum* linked to a *Torrubiella* sp. (Zare and Gams 2001).

Simplicillium species have a wide distribution and are considered as mammal and plant-parasitic, symbiotic, entomopathogenic, fungicolous and nematophagous fungi, as they have a broad spectrum of hosts and substrates, such as insects, plants, rusts, nematodes, human nails, canine tissues and mushrooms, *Chroococcus* sp., soil, freshwater, marine and terrene environments (Zare and Gams 2001; Guo et al. 2012; Liu and Cai 2012; Dong et al. 2014; Liang et al. 2016; Sun et al. 2019). Several studies have been shown that *Simplicillium* species have a high ecological and economical value for biocontrol and bioactive compounds (Takata et al. 2013; Yan et al. 2015; Hyde et al. 2019). For example, *Simplicillium lanosoniveum* can be a phytopathogen, causing brown spots and lesions on flowers (Chen et al. 2008) or a mycoparasite on soybean rust (Ward et al. 2012; Gauthier et al. 2014) or a pathogen on aphids and other phytopathogens (Chen et al. 2017) or an anti-*Trichomonas vaginalis* agent (Scopel et al. 2013). *Simplicillium chinense* can be a biological control agent against plant parasitic nematodes (Zhao et al. 2013; Luyen 2017). *Simplicillium lamellicola* can suppress plant bacterial diseases and grey mould diseases of tomato (*Solanum lycopersicum*) and ginseng (*Panax ginseng*) (Dang et al. 2014; Shin et al. 2017). *Simplicillium obclavatum* has the ability to produce multiple xylanases and endoglucanases that have the potential to be used in biofuels, animal feed and food industry applications (Roy et al. 2013). Bioactive compounds with anti-fungal and anti-bacterial profiles and pharma-
ceutical exopolysaccharides have been isolated from *S. lanosoniveum* (Yu et al. 2013; Fukuda et al. 2014; Xing et al. 2016; Dong et al. 2018). Linear and cyclic peptides with anti-fungal and anti-viral properties have also been discovered from the secondary metabolites of *S. obclavatum* (Liang et al. 2016, 2017).

Recent studies have shown that Thailand supports an amazing fungal diversity with numerous new species that have the potential for biotechnological application (Hyde et al. 2018, 2019). In this study, we introduce a novel species, *Simplicillium formicæ* from northern Thailand and a new record of *S. lanosoniveum* with evidence from a combination of molecular analyses and morphological characteristics to reserve a natural resource for future studies regarding biocontrol in the forestry, agricultural and pharmaceutical industries.

Material and methods

Sample collection and isolation

The Mushroom Research Centre (MRC) is a disturbed rainforest located in Chiang Mai Province, Thailand (Aung et al. 2008). The forest consists of various tall tree and lower shrubs. The climate of Chiang Mai is controlled by tropical monsoons and the weather is typically hot and humid with temperatures often close to or above 30 °C. Frequent rain and thunder showers usually last from June to late October (Chiang Mai Buddy website: https://chiangmaibuddy.com/welcome-to-chiang-mai/weather-and-climate/, accessed 26.8.2019). Two ant fungi were found anchored to the underside of two different shrubby leaves in the forest at the Mushroom Research Centre. These two fresh specimens; HKAS 102459 and HKAS 102447 were collected and placed in plastic containers and transported to the laboratory for subsequent study. Interestingly, the ant fungus HKAS 102447 was already dead and was colonised by a saprobic fungus. The isolate MFLUCC 18–1385 was separated from this saprobe which occurred on the surface of specimen HKAS 102447 via single spore isolation. The isolate MFLUCC 18–1379 was separated from specimen HKAS 102459 by directly cultivating the hyphae which covered the surface of the ant host. These two isolates were cultured with potato dextrose agar (PDA, 1% w/v peptone) and incubated at room temperature (25 °C).

Morphological studies

For long-term deposit, these two specimens were dried with allochroic silica gel to protect them from contamination of opportunistic fungi and to retain the informative taxonomic characters. The macro-morphological characters were observed with a stereoscope (Olympus SZ61) and the micro-morphological features were examined with a compound microscope (Nikon ECLIPSE Ni). Important characteristics such as myce-
lium, phialides and conidia were captured with a digital camera (Canon EOS 600D). Measurements of perithecia, synnemata, phialides and conidia were taken using the Tarosoft (R) Image Frame Work programme and the images used were processed with Adobe Photoshop CS3 Extended v. 10.0 (Adobe, San Jose, CA).

DNA extraction, PCR amplification and sequencing

DNA was extracted from fresh mycelium of isolates MFLUCC 18–1379 and MFLUCC 18–1385 and from stromal tissue of ant fungus HKAS 102447 (the host of isolate MFLUCC 18–1385) using a DNA extraction kit (Biospin Fungus Genomic DNA Extraction Kit, BioFlux, China), following the instructions of the manufacturer. Extracted DNA was stored at 4 °C for use in regular work and duplicated at –20 °C for long-term storage. The internal transcribed spacer (ITS1-5.8S-ITS2, ITS) was amplified with primer ITS4 and ITS5 (White et al. 1990) and was used for individual gene phylogenetic analyses. The large subunit (LSU), small subunit rDNA (SSU), translation elongation factor 1-alpha gene (TEF1-α) and RNA polymerase II largest subunit 1 (RPB1) were also amplified as described in Wei et al. (2018) and used for multi-gene phylogenetic analyses. The PCR products were sent to Sangon Company, Kunming City, Yunnan Province, China for sequencing using the above primers. Newly generated sequences, used in the study, were submitted to GenBank to be assigned their accession numbers.

Sequence alignments and phylogenetic analyses

The raw sequences were verified with Finch TV version 1.4.0 (Mccredden 2016) and assembled with BioEdit v. 7.0.9.1 (Hall 1999). Sequence data were downloaded from GenBank based on BLAST searches of ITS sequences and with reference to the recent publications (Table 1). Most *Simplicillium* species are lacking protein-coding genes, but ITS sequences are available for all the species that are useful in understanding the intraspecific relationships within *Simplicillium* (Liu and Cai 2012, Nonaka et al. 2013, Dong et al. 2014 and Crous et al. 2018). Therefore, phylogenetic analyses, based on ITS regions, were generated throughout *Simplicillium* for the primary identification. Multi-gene phylogenetic analysis of the combined SSU, LSU, TEF and RPB1 sequences from representative species in Hypocreales was afterwards performed to confirm the taxonomic placements of our isolates.

The generated sequences of each gene region were aligned separately with representative sequences using MAFFT v. 7 web server (http://mafft.cbrc.jp/alignment/server) (Kuraku et al. 2013; Katoh et al. 2017). The uninformative gaps and ambiguous regions were manually removed and different gene regions were concatenated using BioEdit v. 7.0.9.1 (Hall 1999). The maximum Likelihood (ML) analyses was performed using RAxML-HPC2 on XSEDE (8.2.10) at CIPRES Science Gateway V. 3.3 (https://www.phylo.org/portal2/home.action), with default setting, except the boot-
Table 1. Strains and GenBank accession numbers from related references used in multi-gene tree.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher no.</th>
<th>Host/substrate</th>
<th>SSU rRNA</th>
<th>LSU rRNA</th>
<th>tef1</th>
<th>rpb1</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akanthomyces tuberculata</td>
<td>OSC 111002</td>
<td>Lepidoptera</td>
<td>DQ522553</td>
<td>DQ518767</td>
<td>DQ52238</td>
<td>DQ52234</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Aschersonia badia</td>
<td>BCC 8105</td>
<td>Scale insect</td>
<td>DQ522537</td>
<td>DQ518752</td>
<td>DQ522317</td>
<td>DQ522363</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Aschersonia placenta</td>
<td>BCC 7957</td>
<td>Scale insect</td>
<td>DQ522538</td>
<td>DQ518753</td>
<td>DQ522318</td>
<td>DQ522364</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Balanista henningiana</td>
<td>GAM 16112÷AEG96-27a</td>
<td>Panicum sp.</td>
<td>AY545723</td>
<td>AY545727</td>
<td>AY489610</td>
<td>AY489643</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Balanista pilulaeformis</td>
<td>AEG 94-2</td>
<td>Poaceae</td>
<td>AF543764</td>
<td>AF543788</td>
<td>DQ522319</td>
<td>DQ522365</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Claviceps fusiformis</td>
<td>ATCC 26019</td>
<td>Poaceae</td>
<td>DQ522539</td>
<td>U17402</td>
<td>DQ522320</td>
<td>DQ522366</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Claviceps papali</td>
<td>ATCC 13892</td>
<td>Poaceae</td>
<td>U32401</td>
<td>U47826</td>
<td>DQ522321</td>
<td>DQ522367</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Claviceps purpurea</td>
<td>GAM 12885</td>
<td>Dactylis glomerana</td>
<td>AF543765</td>
<td>AF543789</td>
<td>AF543778</td>
<td>AY489648</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps farinosa</td>
<td>OSC 111005</td>
<td>Lepidoptera pupa</td>
<td>DQ522558</td>
<td>DQ518773</td>
<td>DQ522348</td>
<td>DQ522394</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps heteropoda</td>
<td>OSC 106404</td>
<td>Cicada</td>
<td>AY489690</td>
<td>AY489722</td>
<td>AY489617</td>
<td>AY489651</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps militaris</td>
<td>OSC 93623</td>
<td>Lepidoptera</td>
<td>AY184977</td>
<td>AY184966</td>
<td>DQ522332</td>
<td>DQ522377</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps ophioglossoides</td>
<td>OSC 106405</td>
<td>Elaphomyces sp.</td>
<td>AY489691</td>
<td>AY489723</td>
<td>AY489618</td>
<td>AY489652</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps pruinosa</td>
<td>ARSEF 5413</td>
<td>Iragosides fasciata</td>
<td>AY184979</td>
<td>AY184968</td>
<td>DQ522351</td>
<td>DQ522397</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps scabariaeola</td>
<td>ARSEF 5689</td>
<td>Scarabaeidae papu</td>
<td>AF339574</td>
<td>AF339524</td>
<td>DQ522335</td>
<td>DQ522380</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Cordyceps tenuipes</td>
<td>OSC 111007</td>
<td>Lepidoptera pupa</td>
<td>DQ522559</td>
<td>DQ518774</td>
<td>DQ522349</td>
<td>DQ522395</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Drechmeria balanoides</td>
<td>CBS 250.82</td>
<td>Nematoda</td>
<td>AF339588</td>
<td>AF339539</td>
<td>DQ522342</td>
<td>DQ522388</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Drechmeria gunnii</td>
<td>OSC 76404</td>
<td>Lepidoptera larva</td>
<td>AF339572</td>
<td>AF339522</td>
<td>AY489616</td>
<td>AY489650</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Drechmeria sinensis</td>
<td>CBS 567.95</td>
<td>Nematoda</td>
<td>AF339594</td>
<td>AF339545</td>
<td>DQ522343</td>
<td>DQ522389</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Engyodontium araneorum</td>
<td>CBS 309.85</td>
<td>Spider</td>
<td>AF339576</td>
<td>AF339526</td>
<td>DQ522341</td>
<td>DQ522387</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Epichloë typhina</td>
<td>ATCC 56429</td>
<td>Festuca rubra</td>
<td>U32405</td>
<td>U17396</td>
<td>AF543777</td>
<td>AY489653</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Hypocrella nectrioides</td>
<td>GJS 89-104</td>
<td>Scale insect</td>
<td>U32409</td>
<td>U47832</td>
<td>DQ522347</td>
<td>DQ522393</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Hypocrella schizostachyi</td>
<td>BCC 14123</td>
<td>Scale insect</td>
<td>DQ522557</td>
<td>DQ518771</td>
<td>DQ522346</td>
<td>DQ522392</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Lecanicillium antillanum</td>
<td>CBS 350.85</td>
<td>Agaric</td>
<td>AF339585</td>
<td>AF339536</td>
<td>DQ522350</td>
<td>DQ522396</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Lecanicillium lecanii</td>
<td>CBS 101247÷IMI 304807</td>
<td>Coccus viridus</td>
<td>AF339604</td>
<td>AF339555</td>
<td>DQ522359</td>
<td>DQ522407</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Lecanicillium wulssii</td>
<td>CBS 10123÷IMI 331549</td>
<td>Lepidoptera</td>
<td>AY184967</td>
<td>EF469073</td>
<td>EF469102</td>
<td>Zare and Gams (2008); Kouvelis et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>Metarhizium albopunctatum</td>
<td>CBS 101244</td>
<td>Mollusca</td>
<td>DQ522544</td>
<td>DQ518758</td>
<td>DQ522327</td>
<td>DQ522372</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Metarhizium flavoviride</td>
<td>ARSEF 5714</td>
<td>Lepidoptera</td>
<td>AF543763</td>
<td>AF543787</td>
<td>AF543775</td>
<td>DQ522383</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Metapoecilium goniodes</td>
<td>CBS 891.72</td>
<td>Nematoda</td>
<td>AF339599</td>
<td>AF339550</td>
<td>DQ522354</td>
<td>DQ522401</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Metarhizium album</td>
<td>ARSEF 2082</td>
<td>Cafantia spectra</td>
<td>DQ522560</td>
<td>DQ518775</td>
<td>DQ522352</td>
<td>DQ522398</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Metarhizium flavoviride</td>
<td>ARSEF 2037</td>
<td>Nilaparvata lugens</td>
<td>AF339580</td>
<td>AF339531</td>
<td>DQ522353</td>
<td>DQ522400</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Metarhizium majus</td>
<td>ARSEF 3145</td>
<td>Oryctes rhinocerus</td>
<td>AF339579</td>
<td>AF339530</td>
<td>AF543774</td>
<td>DQ522399</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Taxon</td>
<td>Voucher no.</td>
<td>Host/substrate</td>
<td>SSU rRNA</td>
<td>LSU rRNA</td>
<td>tef1</td>
<td>rpb1</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Myriogenospora atraimentosa</td>
<td>AEG 96-32</td>
<td>Andropogon virginicus</td>
<td>AY489701</td>
<td>AY489733</td>
<td>AY489628</td>
<td>AY489665</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Ophiocordyceps acicularis</td>
<td>OSC 128580</td>
<td>Coleoptera</td>
<td>DQ522543</td>
<td>DQ518757</td>
<td>DQ522326</td>
<td>DQ522371</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps aphodi</td>
<td>ARSEF 5498</td>
<td>Coleoptera</td>
<td>DQ522541</td>
<td>DQ518755</td>
<td>DQ522323</td>
<td></td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps brunneipunctata</td>
<td>OSC 128576</td>
<td>Coleoptera</td>
<td>DQ522542</td>
<td>DQ518756</td>
<td>DQ522324</td>
<td>DQ522369</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps irangieniis</td>
<td>OSC 128577</td>
<td>Ant</td>
<td>DQ522546</td>
<td>DQ518760</td>
<td>DQ522329</td>
<td>DQ522374</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps irangieniis</td>
<td>OSC 128578</td>
<td>Ant</td>
<td>DQ522556</td>
<td>DQ518770</td>
<td>DQ522345</td>
<td>DQ522391</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps melolonthae</td>
<td>OSC 110993</td>
<td>Scarabaeidae larva</td>
<td>DQ522548</td>
<td>DQ518762</td>
<td>DQ522331</td>
<td>DQ522376</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps mutans</td>
<td>OSC 110994</td>
<td>Phyllophaga sp.</td>
<td>DQ522550</td>
<td>DQ518764</td>
<td>DQ522334</td>
<td>DQ522379</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps ravenellii</td>
<td>OSC 110995</td>
<td>Phyllophaga sp.</td>
<td>DQ522551</td>
<td>DQ518765</td>
<td>DQ522336</td>
<td>DQ522381</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps sphaerocephala</td>
<td>OSC 111000</td>
<td>Elateridae grub</td>
<td>DQ522552</td>
<td>DQ518766</td>
<td>DQ522337</td>
<td>DQ522382</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps styphora</td>
<td>OSC 128574</td>
<td>Ant</td>
<td>DQ522554</td>
<td>DQ518768</td>
<td>DQ522339</td>
<td>DQ522385</td>
<td>Araújo et al. (2018)</td>
</tr>
<tr>
<td>Ophiocordyceps unilateralis</td>
<td>ARSEF 5365</td>
<td>Diptera larva</td>
<td>DQ522555</td>
<td>DQ518769</td>
<td>DQ522340</td>
<td>DQ522386</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Rostroghythora angustipons</td>
<td>CBS 101437</td>
<td>Rotiferia</td>
<td>AF339584</td>
<td>AF339535</td>
<td>AF543776</td>
<td>DQ522402</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Simplicillium calcicola</td>
<td>LC5586 = CGMCC3.17943</td>
<td>Calcaire</td>
<td>KY883301</td>
<td>KU746752</td>
<td>KX855252</td>
<td></td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Simplicillium lamellicola</td>
<td>CBS 116.25</td>
<td>Agaricus bisporus</td>
<td>AF339601</td>
<td>AF339552</td>
<td>DQ522356</td>
<td>DQ522404</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Simplicillium lanoosetusm</td>
<td>CBS 704.86</td>
<td>Hemileia vastatrix</td>
<td>AF339602</td>
<td>AF339553</td>
<td>DQ522358</td>
<td>DQ522406</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Simplicillium obclavatum</td>
<td>CBS 311.74</td>
<td>Air above sugarcane filed</td>
<td>AF339567</td>
<td>AF339517</td>
<td>EF468798</td>
<td></td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Tolypocladium fractum</td>
<td>OSC 110990</td>
<td>Elaphomyces sp.</td>
<td>DQ522545</td>
<td>DQ518759</td>
<td>DQ522328</td>
<td>DQ522373</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Tolypocladium japonicum</td>
<td>OSC 110991</td>
<td>Elaphomyces sp.</td>
<td>DQ522547</td>
<td>DQ518761</td>
<td>DQ522330</td>
<td>DQ522375</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Torrubia ratticandata</td>
<td>ARSEF 1915</td>
<td>Euophry sp.</td>
<td>DQ522562</td>
<td>DQ518777</td>
<td>DQ522360</td>
<td>DQ522408</td>
<td>Spatafora et al. (2007)</td>
</tr>
<tr>
<td>Verticillium epiphytum</td>
<td>CBS 384.81</td>
<td>Hemileia vastatrix</td>
<td>AF339596</td>
<td>AF339547</td>
<td>DQ522361</td>
<td>DQ522409</td>
<td>Spatafora et al. (2007)</td>
</tr>
</tbody>
</table>

strap iterations were set to 1,000 and the substitution model set to GTRGAMMA + I (Miller and Blair 2009). Maximum Parsimony analysis (MP) was performed by PAUP v. 4.0b10 (Swofford 2002) with the heuristic search option and Tree-Bisection-Reconnection (TBR) branch-swapping algorithm for 1000 random replicates. Branches that have a minimum branch length of zero were collapsed. Gaps were treated as “missing” and starting tree(s) were generated via stepwise addition (Hillis and Bull 1993). Tree Length [TL], Consistency Index [CI], Retention Index [RI], Rescaled Consistency Index [RC] and Homoplasy Index [HI]) were calculated for all parsimonious trees. For Bayesian analysis, the best models of each gene were selected under Akaike Information Criterion (AIC) employing MrModeltest v. 2.3 (Nylander et al. 2008) and
The genus *Simplicillium*

PAUP v. 4.0b10 (Ronquist and Huelsenbeck 2003). Bayesian analysis was performed using MrBayes v. 3.1.2 (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) to evaluate posterior probabilities (BYPP) with the Markov Chain Monte Carlo sampling (MCMC) method. Trees were sampled and printed to output at every 1000 generations. The first 25% of sampled trees were discarded as part of a burn-in procedure, the rest of the trees were used to create the consensus tree and the average standard deviation of split frequencies was set as 0.01.

Phylogenetic trees were visualised with FigTree v1.4.0 (Rambaut 2006) and edited in Microsoft PowerPoint, then saved as a PDF format and finally altered to JPG format using Adobe Illustrator CS6 (Adobe Systems Inc., United States). The finalised alignments and trees were submitted in TreeBASE (http://www.treebase.org/), with submission ID 24238 (ITS) and 24240 (multi-gene).

Results and discussion

Phylogenetic analysis

The combined four gene dataset comprised 60 taxa from three families (Cordycipitaceae, Ophiocordycipitaceae and Clavicipitaceae) (Table 1) with *Cosmospora coccinea*, *Nectria cinnabarina*, *Ophionectria trichospora* and *Viridispora diparietispora* as the outgroup taxa. The RAxML analysis of the combined dataset yielded a best scoring tree (Figure 1) with a final ML optimisation likelihood value of -39792.595439. The alignment comprised 3469 total characters including gaps, of which 2077 were constant, 338 variable characters parsimony-uninformative and 1054 characters parsimony-informative. The Kishino-Hasegawa (KH) test showed CI = 0.281, RI = 0.527, RC = 0.148 and HI = 0.719. The matrix had 1655 distinct alignment patterns, with 6.42% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.241091, C = 0.260362, G = 0.272837, T = 0.225710; substitution rates AC = 0.985172, AG = 2.843760, AT = 0.887714, CG = 0.898140, CT = 6.284116, GT = 1.000000; gamma distribution shape parameter $\alpha = 0.585080$. MrModeltest v. 2.3 imply that GTR+I+G is the best-fit model for LSU and RPB1, SYM+I+G for SSU and TEF sequences.

The ITS dataset comprised 49 taxa from all *Simplicillium* species that are currently available in GenBank (Figure 2) with *Cordyceps militaris* (CBS178.59) (Cordycipitaceae, Hypocreales) as the outgroup taxon. The RAxML analysis of the ITS dataset yielded a best scoring tree (Figure 2) with a final ML optimisation likelihood value of -3155.597177. The alignment comprised 570 total characters including gaps, of which 346 were constant, 43 variable characters parsimony-uninformative and 181 characters parsimony-informative. The Kishino-Hasegawa (KH) test showed CI = 0.281, RI = 0.527, RC = 0.148 and HI = 0.719. The matrix had 1655 distinct alignment patterns, with 6.42% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.232003, C = 0.283823, G = 0.254774, T = 0.229400; substitution rates
Figure 1. Phylogram generated from maximum likelihood analysis based on combined SSU, LSU, TEF and RPB1 sequence data. Bootstrap values for maximum likelihood (ML, left) and maximum parsimony (MP, right) equal to or greater than 50% and Bayesian posterior probabilities (BYPP, middle) equal to or greater than 0.90 are placed nearby the note. The newly generated sequences are indicated in red bold.

AC = 2.623562, AG = 2.645665, AT = 2.248749, CG = 1.653083, CT = 5.842034, GT = 1.000000; gamma distribution shape parameter α = 0.980038. MrModeltest v. 2.3 imply that GTR+I+G is the best-fit model for ITS sequences.
The genus *Simplicillium*

The genus *Simplicillium* is a group of fungi that belongs to the order Hypocreales. The family Cordycipitaceae contains species such as *Simplicillium* that are known for their ability to produce aerial hyphae and have been used in various biological control applications. The document provides a list of species within the genus *Simplicillium*, along with their accession numbers and host isolates.

Figure 2. Phylogram generated from maximum likelihood analysis based on ITS sequence data. Bootstrap values for maximum likelihood (ML, left) and maximum parsimony (MP, right) equal to or greater than 50% and Bayesian posterior probabilities (BYPP, middle) equal to or greater than 0.90 are placed nearby the branches, respectively. The newly generated sequences are indicated in red bold and the type species are highlighted in black bold.

The multi-gene phylogenetic analyses showed that our isolates MFLUCC 18-1379 and MFLUCC 18–1385 grouped with the remaining *Simplicillium* species with strong support (100% ML, 1.00 BYPP, 100% MP, Figure 1) in Cordycipitaceae. The host of isolate MFLUCC 18–1385 grouped with *Ophiocordyces unilateralis* (OSC...
128574) in Ophiocordycipitaceae with a significant statistical support (100% ML, 1.00 BYPP, 100% MP, Figure 1). In the individual ITS-based phylogenetic tree, the isolate MFLUCC 18-1379 constituted a close affiliation to *Simplicillium obclavatum* with moderate bootstrap support (68% ML, 0.93 BYPP, 87% MP, Figure 2, clade 2). The fungal isolate MFLUCC 18-1385 grouped with the remaining *Simplicillium lanosoniveum* strains with 85% ML, 0.99 BYPP and 67% MP support (Figure 2, clade 1).

Taxonomy

Simiplicillium W. Gams & Zare, Nova Hedwigia 73(1-2): 38 (2001)

Hyperparasitic on rusts or parasitic on nematodes or occurring in soil. **Asexual morph:** Mycelium thin, hyaline, septate, branched, smooth-walled. Phialides arising from prostrate aerial hyphae or rope-like and flask-shaped synnemata, typically solitary, rarely in whorls of 2–3, gradually tapering towards the apex, elongate, slender, smooth-walled, phialidic. Conidia hyaline, oval, spindle-shaped, cylindrical, subglobose to ellipsoidal, fusoid to filiform, straight to curved, smooth-walled. Conidia commonly form in small globose heads, sometimes in branched, unbranched, zigzag or imbricate chains, occasionally in sympodial proliferation with cylindrical conidium-bearing denticles. Colonies of species in this genus are usually fast growing, reaching 10–38 mm within 10 days on PDA, white, reverse brownish-cream to pale yellow, margin entire, cottony, fluffy or floccose. Some species produce yellow or orange pigment. Crystals are commonly present in the agar. **Sexual morph:** *Torrubiella* (Zare and Gams 2001; Liu and Cai 2012; Nonaka et al. 2013; Dong et al. 2014; Gomes et al. 2018; Zhang et al. 2017).

In this study, we introduce a new species and a new host species as described below.

Simplicillium formicae D.P . Wei & K.D. Hyde, sp. nov.

Index Fungorum number: IF556432
Facesoffungi number: FoF 05813

Figure 3, 4

Etymology. the epithet refers to its host–ant.

Holotype. HKAS 102459; living culture: MFLUCC 18–1379.

Description. Parasitic on ant (Formicidae). **Asexual morph:** Hyphomycetous. Mycelium rarely septate, hyaline, smooth-walled, covering the whole body of the ant host. Synnemata 250–350 × 65–100 (x̄ = 300 × 86, n = 10) μm, forming at the head region of ant host in circular arrangement, flask-shaped, hyaline to yellowish, composed of dense hyphae, somehow curved. Phialides 25–100 × 0.5–1.5 (x̄ = 49 × 1.1, n = 20) μm, arising from procumbent hyphae or synnemata, blastic, enteroblastic, phialidic, monophalidic, discrete, terminal, unbranched, solitary, aseptate, hyaline, smooth-walled, slender, occasionally a swollen node present. Conidia 2–3.5 × 1.5–2.5 (x̄ = 2.6 × 2,
The genus *Simplicillium*

Figure 3. *Simplicillium formicae* (from HKAS 102459, holotype) **a** superficial hyphae associated with the ant host **b–e** flask-shaped synnemata **f–k** phialides bearing conidia **l–p** conidia. Scale bars: 1000 µm (**a**); 500 µm (**b**); 100 µm (**d**); 30 µm (**e, f**); 15 µm (**j, k**); 10 µm (**l–p**) (**e** stained with cotton blue solution).
Figure 4. Simplicillium formicae (MFLUCC 18–1379, ex-type living culture) a upper and reverse view of cultures on PDA after 30 days e–g phialides indicated with black arrow c, d, h–j conidial mass on the tip of phialides k–m conidia. Scale bars: 10 μm (c, d, f, g); 20 μm (e); 3 μm (h–j); 1 μm (k–m) (e–j stained with cotton blue solution).

n = 30) μm, globose to ellipsoidal, hyaline, one-celled, smooth-walled, round at both ends, adhering in slimy head on the tip of phialides. **Sexual morph:** Undetermined.

Culture characteristics. The colonies were rapid-growing on PDA medium, reaching a diameter of 2.5–3 (x = 2.6, n = 9) cm, in 13 days at 22 °C, entire margin, circu-
The genus Simplicillium

Facesoffungi number: FoF 05814
Index Fungorum number: 532459
Figure 5

Cephalosporium lanosoniveum J.F.H. Beyma, Antonie van Leeuwenhoek 8: 121 (1942) (Basionym)

Ex-type. Netherlands, on hair of Cibotium schiedei in greenhouse, 1942, F.H. van Beyma, CBS123.42.

Description. Saprophytic on Ophiocordyceps unilateralis. Asexual morph: Hyphomycetous. Mycelium aseptate, hyaline, smooth-walled. Phialides 20–40 × 1.1–2 (x̄ = 30 × 1.6, n = 20) μm, arising from the prostrate mycelium, blastic, enteroblastic, phialidic, monophialidic, discrete, terminal, aseptate, hyaline, smooth-walled, solitary, tapering toward the apex. Conidia 2–4.5 × 1–3 (x̄ = 3 × 1.8, n = 60) μm, hyaline, amerospores, globose to ellipsoidal, smooth-walled, adhering in globose to ellipsoidal head at the apex of phialides. Sexual morph: Undetermined.

Culture characters. The colonies on PDA medium were rapid-growing, reaching a diam. of 5.5 cm in 30 days at 22 °C, white, entire margin, velvety, with radial cracks and primrose-yellow on the reverse.

lar, velvety and white from above, with radial crack and primrose-yellow on reverse. In vitro, Synnemata absent. Phialides 25–75 × 0.4–0.6 (x̄ = 50 × 0.55, n = 10) μm, arising from procumbent hyphae, blastic, enteroblastic, phialidic, discrete, terminal, unbranched, solitary, aseptate, hyaline, smooth-walled, relatively slender and long. Conidia 1.5–3 × 1.5–2.5 (x̄ = 2.3 × 1.7, n = 100) μm, hyaline, globose to ellipsoidal, aseptate, smooth-walled, slightly guttulate, adhering in slimy head on the tip of phialides.

Material examined. THAILAND, Chiang Mai Province, Mushroom Research Centre, on an adult ant, 1 April 2018, Deping Wei, MRC18040102 (holotype: HKAS 102459; ex-type living culture: MFLUCC 18–1379). Sequences generated from this strain have been deposited in GenBank with accession numbers: SSU = MK765046, LSU = MK766512, ITS = MK766511, TEF = MK926451, RPB1 = MK882623.

Note. Isolate MFLUCC 18–1379 has a close phylogenetic relationship with Simplicillium obclavatum, based on ITS sequence analysis. The new isolate is similar to Simplicillium obclavatum in terms of shape and dimensions of the conidia with slender phialides tapering towards the apex. However, they have a different conidial arrangement, by Simplicillium obclavatum having short-imbricate chains, whereas the new fungus has subglobose to globose head. There are numerous synnemata in a circular arrangement which can be observed in our isolate and those are absent in Simplicillium obclavatum. The comparisons of ITS sequences between our isolate MFLUCC 18–1379 and ex-type strain of Simplicillium obclavatum (CBS 311.74) show 23 bp differences within 550 bp (4.2%). Thereby, we identify our isolates as a new species according to Jeewon and Hyde (2016).
Figure 5. *Simplicillium lanosoniveum* (a–f from HKAS 102447, g–r from MFLUCC 18–1385) a host (*Ophiocordyceps unilateralis*); b, c hyphae associated with host indicated with black arrows g, h upper and reverse view of cultures on PDA after 40 days incubation i–l conidial mass on the tip of phialides m–o phialides bearing conidia p–r conidia. Scale bars: 15 µm (i–m); 10 µm (d–f, n, o); 3 µm (p–r) (i, l–n stained with cotton blue solution).
Host and distribution: Saprophytic on fungi, endophytic or symbiotic or pathogenic on plant, parasitic on rust, nematode and insect, occurring on soil, animal hair or human bronchoalveolar lavage fluid, with a cosmopolitan distribution (see Table 2).

Material examined. THAILAND, Chiang Mai Province, Mushroom Research Centre, on *Ophiocordyceps unilateralis*, 19 February 2018, Deping Wei, MRC18021901 (HKAS 102447; living culture: MFLUCC 18–1385). Sequences generated from this strain have been deposited in GenBank with accession numbers: SSU = MK752791, LSU = MK752849, ITS = MK752683, TEF = MK926450, RPB1 = MK882622.

Note. Our isolate MFLUCC 18–1385 colonised on a decayed *Ophiocordyceps unilateralis* with white hyphae. In a thorough examination of the *Ophiocordyceps unilateralis* host, we found the phialides and conidia of our isolate grown on the surface of the host (Figure 5). Phylogenetically, our isolate grouped with the strains of *Simplicillium lanosoniveum* with high bootstrap support (85% ML, 0.99 BYPP, 67% MP, Figure 2). The nucleotides comparison between our isolate and the type strain of *Simplicillium lanosoniveum* (CBS123.42) showed only 5 bp differences out of 539 in the ITS region. This evidence proves that our isolate is a strain of *S. lanosoniveum*, according to Jeewon and Hyde (2016). Morphologically, it resembles *S. lanosoniveum* with solitary phialides without verticillate branches and conidia adhering on a slimy head. Most of the previous descriptions of this species were given in hand-drawings and scanning electron micros-copy (SEM) patterns (Zare and Gams 2001; Ward et al. 2012; Gauthier et al. 2014). *Simplicillium lanosoniveum* has been reported from *Enhalus acoroides* (seagrass) in Trang Province, Thailand. In this study, we introduce our isolate MFLUCC 18–1385 as a new host record of *Simplicillium lanosoniveum* from *Ophiocordyceps unilateralis* and provide the updated morphological features for a better understanding of this species. *Simplicillium lanosoniveum* has been frequently reported as a hyperparasite of rust and plant pathogenic fungi. Therefore, this species has a high potential of being a natural source of microbial agents against microbiological diseases in commercial agriculture (Baiswar et al. 2014; Berlanga-Padilla et al. 2018). At first, we included all available sequences of *S. lanosoniveum* from GenBank in the individual gene tree. Some strains did not group with other strains but distributed throughout the genus in primary analyses (data not shown), so we excluded those strains from the final phylogenetic analysis. Most of the reported strains of *S. lanosoniveum*, including the invalid strains, are listed in Table 2 to show their distribution and host range, as well as the sequence data availability.

Index Fungorum number: 281145;
Facesoffungi number: FoF 05815

Figure 6

Description. Parasitic on ants (*Formicidae*). Sexual morph: Stromata up to 14 mm in length, 0.5 mm wide in the broadest part, cylindrical, brown, slightly tapering towards the apex, single, piercing through the dorsal neck region of the ant host.
Table 2. Distribution, host and available sequence data of *Simplicillium lanosoniveum* strains.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain no.</th>
<th>Host and habitat</th>
<th>Origin</th>
<th>Available gene region</th>
<th>Morphological description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. lanosoniveum</td>
<td>CBS123.42</td>
<td>Hair of Cibotium schiedei (Plant)</td>
<td>Netherland</td>
<td>ITS, LSU</td>
<td></td>
<td>GenBank; Zare and Gams (2001)</td>
</tr>
<tr>
<td></td>
<td>Ca0701</td>
<td>Salvia molesta (Plant)</td>
<td>Taiwan</td>
<td>ITS</td>
<td></td>
<td>Chen et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>PSU-ES104</td>
<td>Salvia rotundifolia (Plant)</td>
<td>Trang Province, Thailand</td>
<td>ITS</td>
<td></td>
<td>Supaphon et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>CBS 531.72</td>
<td>Salvia miliotricha (Plant)</td>
<td>USA</td>
<td>ITS</td>
<td></td>
<td>Zare and Gams (2001)</td>
</tr>
<tr>
<td></td>
<td>Ti3</td>
<td>Islands aconitum (Plant)</td>
<td>China</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>YLAC-5</td>
<td>Endophytic on Salvinia molesta (Plant)</td>
<td>Taiwan</td>
<td>SSU</td>
<td></td>
<td>Supaphon et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>E1, E3, E5</td>
<td>Endophytes of Sophora alopecuroides (Plant)</td>
<td>Ningxia, China</td>
<td>SSU, ITS</td>
<td></td>
<td>Yu et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>GA-B1</td>
<td>Grewia asiatica (Plant)</td>
<td>Shivalik region, Jammu, India</td>
<td>SSU</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>IMI 303103b</td>
<td>Hemileia vastatrix (Rust)</td>
<td>Colombia</td>
<td>ITS, SSU</td>
<td></td>
<td>Zare and Gams (2001), Kouvélis et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>AMH 9654</td>
<td>Rust pustules on leaves of Eleagnus sp.</td>
<td>India</td>
<td>LSU, ITS</td>
<td></td>
<td>Baiswar et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>D082307-2A</td>
<td>Soybean rust</td>
<td>Louisiana</td>
<td>ITS</td>
<td></td>
<td>Ward et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>vec-02</td>
<td>Rust of Eleagnus latifolia</td>
<td>India</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>vec-01</td>
<td>Rust of Eleagnus latifolia</td>
<td>India</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>CBS 704.86</td>
<td>Hemileia vastatrix (Rust)</td>
<td>Venezuela</td>
<td>ITS, SSU, LSU, TEF, RPB1, RPB2, ATP</td>
<td></td>
<td>GenBank; Zare et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>S-599</td>
<td>Coleonporium plumeriae (Rust)</td>
<td>Campos dos Goytacazes, GJ, Brazil</td>
<td>ITS</td>
<td></td>
<td>Berlanga-Padilla et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>D082307-2A-GFP15</td>
<td>Phakopsora pachyrhizi (Rust)</td>
<td>Florida, USA</td>
<td></td>
<td></td>
<td>Gauthier et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>HKAS 102487</td>
<td>Ophiocordyceps unilateralis (Fungi)</td>
<td>Chiang Mai, Thailand</td>
<td>SSU, LSU, ITS, TEF, RPB1</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>TYL001</td>
<td>Pseudaulacaspis pentagona (Insect)</td>
<td>Shanxi Province, China</td>
<td>ITS</td>
<td></td>
<td>Wang et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>SSBG2</td>
<td>Coccus hesperidum (Insect)</td>
<td>The South-Siberian Botanical Garden, Russia</td>
<td>ITS</td>
<td></td>
<td>Skaptsov et al. (2017)</td>
</tr>
<tr>
<td></td>
<td>TAMA 173</td>
<td>Aphidoidea sp. (Insect)</td>
<td>Ibaraki, Japan</td>
<td>ITS</td>
<td></td>
<td>Fukuda et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>CHE-CNRCB 373</td>
<td>Diaphorina citri (Insect)</td>
<td>Colima, USA</td>
<td>ITS</td>
<td></td>
<td>Berlanga-Padilla et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>ARSEF 8822</td>
<td>Calicid (Insect)</td>
<td>Tanzania</td>
<td></td>
<td></td>
<td>Hubner-Campos et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>ARSEF7550</td>
<td>Coccoidea (Insect)</td>
<td>Brazil</td>
<td>TEF</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>1T9BA</td>
<td>Tick (Insect)</td>
<td>New York, USA</td>
<td>ITS</td>
<td></td>
<td>Greengarten et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Btab03</td>
<td>Bemisia tabaci (Insect)</td>
<td>South Korea</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td>113-8</td>
<td>Mosquitoes (Insect)</td>
<td>Japan</td>
<td>ITS</td>
<td></td>
<td>Ishii et al. (2015)</td>
</tr>
</tbody>
</table>
The genus *Simplicillium*

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain no.</th>
<th>Host and habitat</th>
<th>Origin</th>
<th>Available gene region</th>
<th>Morphological description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. lanosoniveum</td>
<td>7S</td>
<td>Heterodera schachtii (Nematode)</td>
<td>Iran</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hair of giant panda (Animal)</td>
<td>China</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td>2502</td>
<td></td>
<td>Bronchoalveolar lavage fluid (Human)</td>
<td>China</td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td>41559-3</td>
<td></td>
<td>Cave and mine</td>
<td>New York State, USA</td>
<td>ITS, LSU</td>
<td></td>
<td>GenBank</td>
</tr>
<tr>
<td>CBS 321.72</td>
<td></td>
<td>Malaysia</td>
<td></td>
<td>SSU, LSU, ITS</td>
<td></td>
<td>GenBank; Summerbell et al. (2011)</td>
</tr>
<tr>
<td>CBS 322.72</td>
<td></td>
<td>Malaysia</td>
<td></td>
<td>ITS</td>
<td></td>
<td>GenBank</td>
</tr>
</tbody>
</table>

Note: ‘√’ means related data are available. The strains collected from Thailand are indicated with **black bold**.

Figure 6. *Ophiocordyceps unilateralis* (from HKAS 102447)

- **a** stroma emerging from host
- **b** ascomata on stroma
- **c** host (Formicidae)
- **d**, **e** decayed perithecia. Scale bars: 500 µm (**b, c**); 300 µm (**d**); 100µm (**e**).

Ascomatal cushion hemisphere, up to 1.2 mm in diam., laterally attaching to the erect stroma stalk, dark brown, with ostioles protruding from the cushions. *Perithecia* 200–400 × 50–120 (x̄ = 294 × 81, n = 10) µm, sub-immersed, flask-shaped. *Asci* and ascospores were too old to observe their features. **Asexual morph**: Undetermined.
Note. This collection was already decayed and was colonised by other fungi which we introduced as a new host record of *Simplicillium lanosoniveum* from Thailand. The outline of this specimen was intact, while its asci and ascospores were too old to analyse. We retrieved DNA through direct sequencing from the stromal tissue.

Sequences generated from this specimen have been deposited in GenBank with accession numbers: SSU = MK752759, LSU = MK752812, ITS = MK752874. The herbarium material is deposited at KUN herbarium, Yunnan Province, China. In the multi-gene phylogenetic tree, this collection groups with *Ophiocordyceps unilateralis* (OSC 128574) with a strongly supported bootstrap value (100% ML, 1.00 BYPP, 100% MP, Figure 1). Therefore, we identify this collection as *O. unilateralis*, based on its morphologic features and molecular evidence.

Key to accepted species of *Simplicillium*

1a Conidia formed in sympodia.. *S. sympodiophorum*

1b Conidia solitary, borne on the tip of phialides.. *S. calcicole*

1c Conidia aggregate in chains ..2

1d Conidia aggregate in subglobose to ellipsoidal heads3

1e Conidia aggregate in globose heads ..4

2a Conidia 2.5–3.5 × 1–2 µm, obclavate to ellipsoidal, formed in short imbricate chains ..*S. obclavatum*

2b Conidia 3.5–5.0 × 1.0–1.5 µm, oval, ellipsoidal or cylindrical, formed in vertical chains .. *S. chinense*

2c Conidia 7.2–12.5 × 1 µm, long, fusiform to short filiform, hyaline, straight to curved, formed in vertical chains .. *S. filiforme*

3a Phialides 15–50 × 0.7–1.0 µm, colonies light to dark-brown reverse on PDA, usually with yellow pigment diffusing into the agar *S. lamellicola*

3b Phialides 11–44 (–70) × 1.0–2.4 µm, colonies cream-coloured reverse on PDA, no diffused pigment .. *S. coffeanum*

4a Present flask-shaped synnemata ..5

4b Synnemata absent ..5

5a Conidia cylindrical ..6

5b Conidia globose to subglobose or ellipsoidal7

6a Phialides 23–53 × 1.2–2.0 µm, long .. *S. cylindrosporum*

6b Phialides 17–32 × 1.2–2.0(–2.5) µm, short .. *S. aogashima*

7a Phialides 35–75 × 1.2–3.0 µm, conidia 4.5–6.0 × 2.5–3.5 µm, colonies light yellow to deep tawny in reverse view on PDA ... *S. lanosoniveum var. tianjinensis*

7b Phialides 15–39 × 0.7–1.9 µm, conidia 1.5–3 × 0.7–1.3 µm, colonies brownish-cream to pale yellow reverse on PDA *S. lanosoniveum*

7c Phialides 11–31(–47) × 1.0–1.7 µm, conidia 2.0–3.5 × 1.8–2.5(–2.8) µm, colonies brown reverse on PDA *S. minatense*

7d Phialides (15)–20–42(–50) × 1.0–2.3 µm; conidia 2.3–4.0(–4.5) × 1.5–3.3 µm, colonies brownish-orange to brown reverse on PDA *S. subtropicum*
The genus *Simplicillium*

Conclusion

A new species *Simplicillium formicae* and a new host record species *Simplicillium lanosoniveum* from *Ophiocordyceps unilateralis* were introduced, based on phylogenetic analyses and morphological evidence. The host and distribution of *S. lanosoniveum* was summarised and a key to *Simplicillium* was provided.

Acknowledgements

We are grateful to the Thailand Research Fund (TRF) grant no DBG6080013 entitled ‘the future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, *Rhododendron* species and *Dracaena* species” for its financial support. Dhanushka Wanasinghe would like to thank CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2019PC0008) and the 64th batch of China Postdoctoral Science Foundation (grant no.: Y913083271). Peter E. Mortimer and D.N. Wanasinghe thank the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants: 41761144055, 41771063 and Y4ZK111B01. We acknowledge the Kunming Institute of Botany for providing the laboratories and instruments for molecular work. We appreciate the Centre of Excellence in Fungal Research (Mae Fah Luang University) for providing the grant support for collecting trips. We thank Milan Samarakoon and Dr. Sajeewa Maharachchikumbura for their assistance with the phylogenetic analyses and Dr. Shaun Pennycook for his help with the nomenclature of the novel species.

References

The genus *Simplicillium*

Rambaut A (2006) FigTree. Tree figure drawing tool version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh.

The genus *Simplicillium*

Taxonomy and phylogeny of the Leptographium olivaceum complex (Ophiostomatales, Ascomycota), including descriptions of six new species from China and Europe

Mingliang Yin¹,², Michael J. Wingfield², Xudong Zhou³, Riikka Linnakoski²,⁴, Z. Wilhelm de Beer²

¹ Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510000, China
² Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng Province, South Africa
³ FuturaGene Biotechnology (Shanghai) Co. Ltd, Shanghai, 200233, China
⁴ Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland

Corresponding author: Mingliang Yin (mingliang.yin@scau.edu.cn)

Academic editor: D. Haelewaters | Received 14 August 2019 | Accepted 22 October 2019 | Published 29 November 2019

Citation: Yin M, Wingfield MJ, Zhou X, Linnakoski R, de Beer ZW (2019) Taxonomy and phylogeny of the Leptographium olivaceum complex (Ophiostomatales, Ascomycota), including descriptions of six new species from China and Europe. MycoKeys 60: 93–123. https://doi.org/10.3897/mycokeys.60.39069

Abstract

The Leptographium olivaceum complex encompasses species in the broadly defined genus Leptographium (Ophiostomatales, Ascomycota) that are generally characterized by synnematous conidiophores. Most species of the complex are associates of conifer-infesting bark beetles in Europe and North America. The aims of this study were to reconsider the delineation of known species, and to confirm the identity of several additional isolates resembling L. olivaceum that have emerged from recent surveys in China, Finland, Poland, Russia, and Spain. Phylogenetic analyses of sequence data for five loci (ACT, TUB, CAL, ITS2-LSU, and TEF-1α) distinguished 14 species within the complex. These included eight known species (L. cucullatum, L. davidsonii, L. erubescens, L. francke-grosmaniae, L. olivaceum, L. olivaceapini, L. sagmatosporum, and L. vescum) and six new species (herein described as L. breviuscapum, L. conplurium, L. pseudobium, L. rhizoidum, L. sylvestris, and L. xiningense). New combinations are provided for L. cucullatum, L. davidsonii, L. erubescens, L. olivaceum, L. olivaceapini, L. sagmatosporum and L. vescum. New Typifications: Lectotypes are designated for L. olivaceum, L. erubescens and L. sagmatosporum. Epitypes were designated for L. olivaceapini and L. sagmatosporum. In addition to phylogenetic separation, the synnematous asexual states and ascomata with almost cylindrical necks and prominent ostiolar hyphae, distinguish the L. olivaceum complex from others in Leptographium.

Copyright Mingliang Yin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords
bark beetle, Leptographium, integrative taxonomy, new species, Ophiostomatales, phylogeny

Introduction

Species of Leptographium are commonly associated with bark beetles and weevils, and are responsible for causing sapstain on a wide range of primarily coniferous trees (Jacobs and Wingfield 2001). The genus also includes some important tree pathogens such as species in the Leptographium wageneri complex that cause black stain root disease (Goheen and Hansen 1978). In their monograph of Leptographium, Jacobs and Wingfield (2001) treated the asexual states of 46 species in the genus, all characterized by mononematous conidiophores branched at their apices. Conidia aggregate in slimy droplets at the apices of these structures, which make these species well-adapted for arthropod dispersal.

Following the “one fungus one name” principles adopted in the Melbourne Code (Hawksworth 2011), De Beer and Wingfield (2013) re-evaluated the taxonomy of Leptographium, considering available DNA sequence data for all species. Ninety-four species were included and ten species complexes were defined within a broadly defined concept for Leptographium sensu lato, based on phylogenies resulting from ribosomal internal transcribed spacer (ITS) and partial LSU sequences.

One of the species complexes recognized in Leptographium s.l. by De Beer and Wingfield (2013) was the L. olivaceum complex. Earlier, Zipfel et al. (2006) had shown that L. olivaceum produces synnematous asexual states, which is unlike mononematous conidiophores traditionally defining Leptographium. In extended phylogenies, Masoumi Alamouti et al. (2007), Six et al. (2011), and Linnakoski et al. (2012) showed that additional species with synnematous asexual states grouped in a monophyletic lineage with L. olivaceum. Six et al. (2011) referred to this lineage as the L. olivaceum species complex for the first time and they included L. olivaceum (Mathiesen-Käärik, 1951), L. sagmatosporum (Wright & Cain, 1961), L. olivaceapini (Davidson, 1971), and L. cucullatum (Solheim, 1986) in their phylogeny. Subsequently, L. davidsonii (Olcchowecki & Reid, 1974) and L. vescum (Davidson, 1958) were shown to also belong to this complex (Linnakoski et al. 2012, De Beer and Wingfield 2013).

The six species currently residing in the L. olivaceum complex have morphologically similar sexual and asexual states. They produce globose ascomata with long, nearly cylindrical necks, terminating in prominent ostiolar hyphae on which sticky droplets are formed that contain orange-section shaped ascospores with cucullate gelatinous sheaths (Mathiesen-Käärik 1951, Davidson 1958, Wright and Cain 1961, Davidson 1971, Olchowecki and Reid 1974, Solheim 1986). This study includes isolates representing all species in the L. olivaceum complex as well as morphologically similar isolates from recent surveys of fungi in China, Europe, and Russia. The aims of the study were to reconsider and redefine the species boundaries in the L. olivaceum complex based on phylogenetic analyses of multilocus regions, to provide neotypes for species where type specimens have been lost or are inadequate, and to describe new species in this complex.
Methods

Isolates

All isolates included in this study are listed in Table 1. Reference isolates were obtained from the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa. Ex-type isolates of newly described species were deposited in the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, in the Netherlands. Type specimens of new species were deposited in the National Collection of Fungi (PREM), Pretoria, South Africa. Taxonomic novelties and new typification events for known taxa were registered in MycoBank (Robert et al. 2013).

DNA extraction, PCR and sequencing

DNA extractions were done as described by Yin et al. (2015). For sequencing and phylogenetic analyses, five loci were amplified: internal transcribed spacer 2 and large subunit (ITS2-LSU), actin (ACT), beta tubulin (TUB), calmodulin (CAL) and translation elongation factor-1 alpha (TEF-1α). Primers used were: ITS3 and LR3 (White et al. 1990) for ITS2-LSU, Lepact-F and Lepact-R (Lim et al. 2004) for ACT, T10 (O’Donnell and Cigelnik 1997) and Bt2b (Glass and Donaldson 1995) for TUB, CL2F and CL2R (Duong et al. 2012) for CAL, EF2-F (Marincowitz et al. 2015) and EF2-R (Jacobs et al. 2004) for TEF-1α.

PCR reactions were conducted in 25 µL reaction mixtures containing 5 µL of Mytaq buffer (including MgCl₂, dNTPs and reaction buffer), 0.5 µL of Mytaq polymerase (Bioline, USA), 0.5 µL of each primer (10 µM), and 16.5 µL of PCR grade water. PCR conditions for these five gene regions followed the protocols described by Yin et al. (2015). PCR products were purified with Sephadex G-50 columns (6%).

PCR products were sequenced with the same primers used for PCR, together with the Big Dye Terminator 3.1 cycle sequencing premix kit (Applied Biosystems, Foster City, California, USA). BigDye PCRs were conducted in 12 µL: sequencing Buffer 4.0 µL, Big Dye 1.0 µL, PCR Grade Water 4.0 µL, primer 1.0 µL, PCR product 2.0 µL; PCR conditions were: 1 min at 96 °C; 25 cycles of 10 sec at 96 °C, 5 sec at 50 °C, and 1 min at 60 °C; and finally held at 12 °C. BigDye PCR products were also cleaned up with Sephadex. Sequence analyses were done on the ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, California, USA). Consensus sequences were generated from forward and reverse sequences in the CLC Main Workbench 6.0 (CLC Bio, Aarhus, Denmark).

Phylogenetic analyses

Five sequence datasets were analyzed. The ITS2-LSU sequences of the ex-type isolate of every species in the L. olivaceum complex (Table 1) were compared with sequences of other known species in Leptographium obtained from GenBank to show the placement
Table 1. Isolates used in the present study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Isolate no.</th>
<th>Country</th>
<th>Host</th>
<th>Insect</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptographium brevisporum</td>
<td>38888 1 386507</td>
<td>China</td>
<td>Pinus strobus</td>
<td>–</td>
<td>MN516697 MN517641 MN517672 MN517707 MN517742</td>
</tr>
<tr>
<td></td>
<td>38889 3</td>
<td>386508</td>
<td>China</td>
<td>Pinus strobus</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>38890</td>
<td>China</td>
<td>Pinus strobus</td>
<td>–</td>
<td>MN516699 MN517643 MN517674 MN517709 MN517744</td>
</tr>
<tr>
<td>L. couplenum</td>
<td>23289 3 128834</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Dryocosmus autographus</td>
<td>MN516701 MN517644 JF279994 MN517710 MN517745</td>
</tr>
<tr>
<td></td>
<td>23295</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Dryocosmus autographus</td>
<td>MN516702 MN517645 JF279993 MN517711 JF280036</td>
</tr>
<tr>
<td></td>
<td>23315 14</td>
<td>128923</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Dryocosmus autographus</td>
</tr>
<tr>
<td></td>
<td>23316</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Hylastes brunneus</td>
<td>MN516703 MN517647 JF279990 MN517713 MN517747</td>
</tr>
<tr>
<td>L. cucullatum</td>
<td>1440-1141 14 218.83</td>
<td>Norway</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>AJ538335 MN517619 JF280000 MN517685 MN517724</td>
</tr>
<tr>
<td></td>
<td>1871</td>
<td>Japan</td>
<td>Pinus jenisseis</td>
<td>Ips typographus</td>
<td>MN516704 MN517620 JF280001 MN517686 MN517725</td>
</tr>
<tr>
<td></td>
<td>5022</td>
<td>Austria</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>MN516705 MN517621 JF280002 MN517687 MN517726</td>
</tr>
<tr>
<td></td>
<td>23123 128299</td>
<td>Russia</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>MN516706 MN517622 JF280003 MN517688 JF280042</td>
</tr>
<tr>
<td></td>
<td>23190</td>
<td>Russia</td>
<td>Pinus sylvestris</td>
<td>Ips typographus</td>
<td>MN516707 MN517623 JF280005 MN517689 JF280043</td>
</tr>
<tr>
<td></td>
<td>27983</td>
<td>Russia</td>
<td>Picea abies</td>
<td>Dryocosmus autographus</td>
<td>MN516708 MN517624 MN517658 MN517690 MN517727</td>
</tr>
<tr>
<td></td>
<td>27984</td>
<td>Russia</td>
<td>Picea abies</td>
<td>Dryocosmus autographus</td>
<td>MN516709 MN517625 MN517659 MN517691 MN517728</td>
</tr>
<tr>
<td></td>
<td>36623</td>
<td>Russia</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>MN516710 MN517626 MN517660 MN517692 MN517729</td>
</tr>
<tr>
<td>L. davidsonii</td>
<td>790 14</td>
<td>Canada</td>
<td>Pseudotsuga menziesii</td>
<td>–</td>
<td>MN516711 MN517627 MN517661 MN517693 MN517730</td>
</tr>
<tr>
<td></td>
<td>3094</td>
<td>Canada</td>
<td>Picea sp.</td>
<td>unknown bark beetle</td>
<td>MN516712 MN517628 MN517662 MN517694 MN517731</td>
</tr>
<tr>
<td></td>
<td>3095</td>
<td>Canada</td>
<td>Picea sp.</td>
<td>unknown bark beetle</td>
<td>MN516713 MN517629 MN517663 MN517695 MN517732</td>
</tr>
<tr>
<td></td>
<td>40672 14</td>
<td>278.54</td>
<td>Sweden</td>
<td>Pinus sylvestris</td>
<td>–</td>
</tr>
<tr>
<td>L. firmae, grunewaldii</td>
<td>445 14</td>
<td>356.77 Germany</td>
<td>Quercus sp.</td>
<td>Hylastes dermestoides</td>
<td>MN516715 MN517618 MN517657 MN517684 MN517723</td>
</tr>
<tr>
<td></td>
<td>23348</td>
<td>128836</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Ips typographus</td>
</tr>
<tr>
<td></td>
<td>23350</td>
<td>128837</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Ips typographus</td>
</tr>
<tr>
<td></td>
<td>28090</td>
<td>Russia</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>MN516719 MN517632 MN517666 MN517698 MN517733</td>
</tr>
<tr>
<td></td>
<td>31059 3 138.51</td>
<td>Sweden</td>
<td>Pinus sylvestris</td>
<td>–</td>
<td>MN516716 MN517633 JF279997 MN517699 MN517734</td>
</tr>
<tr>
<td></td>
<td>31060</td>
<td>152.54</td>
<td>Sweden</td>
<td>–</td>
<td>MN516720 MN517634 JF279998 MN517700 MN517735</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>503.86</td>
<td>USA</td>
<td>–</td>
<td>MN516721 MN517635 MN517667 MN517701 MN517736</td>
</tr>
<tr>
<td></td>
<td>116 4</td>
<td>503.86</td>
<td>USA</td>
<td>–</td>
<td>MN516722 MN517636 MN517668 MN517702 MN517737</td>
</tr>
<tr>
<td>L. pseudoalbicum</td>
<td>40671 14</td>
<td>276.54</td>
<td>Sweden</td>
<td>Pinus sylvestris</td>
<td>Tomicus piniperda</td>
</tr>
<tr>
<td>L. rhizaidum</td>
<td>22809 14</td>
<td>136512</td>
<td>Spain</td>
<td>Pinus radiata</td>
<td>Hylogenes ater</td>
</tr>
<tr>
<td></td>
<td>22810 3</td>
<td>136513</td>
<td>Spain</td>
<td>Pinus radiata</td>
<td>Hylogenes ater</td>
</tr>
<tr>
<td></td>
<td>22811</td>
<td>Spain</td>
<td>Pinus radiata</td>
<td>Hylastes attenatus</td>
<td>MN516726 MN517650 MN517677 MN517716 MN517750</td>
</tr>
<tr>
<td></td>
<td>22812</td>
<td>Spain</td>
<td>Pinus radiata</td>
<td>Hylastes palliatus</td>
<td>MN516727 MN517651 MN517678 MN517717 MN517751</td>
</tr>
<tr>
<td>L. sagmatosporum</td>
<td>34135 8 113452</td>
<td>Canada</td>
<td>Pinus strobus</td>
<td>–</td>
<td>MN516728 MN517637 MN517669 MN517703 MN517738</td>
</tr>
<tr>
<td>L. syringis</td>
<td>23300 3 128833</td>
<td>Finland</td>
<td>Picea abies</td>
<td>Ips typographus</td>
<td>MN516729 MN517639 JF279996 MN517705 MN517740</td>
</tr>
<tr>
<td></td>
<td>34140 7 136511</td>
<td>Poland</td>
<td>Pinus sylvestris</td>
<td>–</td>
<td>MN516730 MN517640 MN517671 MN517706 MN517741</td>
</tr>
<tr>
<td></td>
<td>34186 8</td>
<td>800.73</td>
<td>USA</td>
<td>Picea engelmannii</td>
<td>Ips pini, Dryocoetus engelmannii</td>
</tr>
<tr>
<td>L. xiningense</td>
<td>38891 3</td>
<td>136509</td>
<td>China</td>
<td>Pinus strobus</td>
<td>Pinus bungeana, Polyporus poliporus</td>
</tr>
<tr>
<td></td>
<td>39237 3</td>
<td>136510</td>
<td>China</td>
<td>Pinus strobus</td>
<td>Polyporus poliporus</td>
</tr>
<tr>
<td></td>
<td>39238</td>
<td>China</td>
<td>Pinus strobus</td>
<td>Polyporus poliporus</td>
<td>MN516734 MN517654 MN517681 MN517720 MN517754</td>
</tr>
</tbody>
</table>

1 Bold type = new species in the present study.
2 CMW = Culture Collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; CBS = Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. 14 = ex-holotype; 8 = ex-epitype; 7 = ex-paratype
3 ITS2 = the internal transcribed spacer 2 region of the nuclear ribosomal DNA gene; LSU = the 28S large subunit of the rDNA gene; ACT = Actin; TUB = Beta-tubulin; CAL= Calmodulin; TEF-1α = Translation elongation factor 1-alpha; Bold type = Genbank accession numbers of sequences obtained in the present study.
of the complex within the genus. Sequences of *Fragosphaeria purpurea* and *F. reniformis* were used to represent the outgroup taxa. Four protein coding gene regions (ACT, TUB, CAL, and TEF-1α) were sequenced (Table 1) for 39 isolates (Table 1) in order to delineate closely related species in the *L. olivaceum* complex. Sequences for *L. procerum* and *L. profanum* from the study of Yin et al. (2015) were selected to represent the outgroup taxa for the four protein-coding gene regions as well as in the combined dataset.

Alignments of loci were conducted in MAFFT 7.0 online (Katoh and Standley 2013), then checked manually in MEGA X (Kumar et al. 2018) and compared with the gene maps (Yin et al. 2015) to ensure that introns and exons were aligned appropriately. Three methods were used for phylogenetic analyses including Maximum parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI). A partition homogeneity test was conducted in PAUP* 4.0b10 (Swofford 2002) to consider the congruence of the four protein-coding gene regions before analyses of the combined dataset. The most important parameters used in phylogenetic analyses and statistical values related to all datasets analyzed are presented in Table 2.

MP analyses were executed in PAUP* 4.0b10 (Swofford 2002) with heuristic searches of 1000 replicates and tree bisection and reconnection (TBR) branch swapping options. Gaps were treated as the fifth base. Bootstrap analysis (1000 pseudo replicates) was performed to determine the confidence levels of the branch nodes. Tree length (TL), consistency Index (CI), retention Index (RI), Homoplasy Index (HI), and Rescaled Consistency Index (RC) were recorded after generating the trees.

The best substitution models (Table 2) for the two likelihood methods (ML and BI analyses) were selected congruously in jModelTest 2.1.1 (Pasoda 2008). MEGA X (Kumar et al. 2018) was used for ML analyses with Nearest-Neighbor-Interchange (NNI) branch swapping option. Node support values were determined using analysis of 1000 bootstrap pseudo replicates.

For BI analyses, the Markov Chain Monte Carlo (MCMC) method was used in MrBayes 3.2 (Ronquist et al. 2012). Four MCMC chains were simultaneously run from a random starting tree for five million generations. Trees were sampled every 100 generations. Burn-in values were determined in Tracer v1.7 (Rambaut et al. 2018). Trees sampled in the burn-in phase were discarded and posterior probabilities were calculated from all the remaining trees.

Morphology and growth studies

In order to describe their morphology, isolates of new species were inoculated on to 2% water agar (WA, 20 g Difco agar and 1000 ml deionized water) amended with sterilized pine twigs (*Pinus pinaster*) and examined microscopically as described by Yin et al. (2015). Culture characteristics were recorded on Oatmeal agar (OA, 30 g oatmeal, 20 g Difco Bacto malt extract, from Becton, Dickinson and Company, and 1000ml deionized water) incubated at 25 °C for 10–14 days. Color descriptions were defined using the charts of Rayner (1970). Growth studies were conducted on 2 % Malt extract agar (MEA) following the procedure described by Yin et al. (2015).
Results

Phylogenetic analyses

The phylogenetic trees arising from the analyses of the ITS2-LSU data for *Leptographium* s.l. showed the *L. olivaceum* complex grouping between the *L. galeiformis* and *L. procerum* complexes with strong statistical support (Fig. 1). Within the complex, the ITS2-LSU sequences could not distinguish between some of the species, e.g. between *L. rhizoidum* and *L. sagmatosporum*; *L. davidsonii* and *L. vescum*; *L. conplurium*, *L. pseudoalbum* and *L. erubescens*. *Leptographium francke-grosmanniae* grouped peripheral to other species in the complex, but remained part of a strongly supported lineage including all the species under consideration.

The ACT data matrix included part of exon 5 (sites 1–678), intron 5 (sites 679–785) and part of exon 6 (sites 786–809). The intron/exon composition of this gene region was congruent with that of the *L. procerum* complexes (Yin et al. 2015). Analyses of this gene region (Fig. 2) separated all known species and revealed six new taxa in the complex.

The TUB dataset included part of exon 4 (sites 1–41), intron 4 (sites 42–113), exon 5 (114–168) and part of exon 6 (sites 169–288). Intron 5 was lacking in the *L. olivaceum* complex, corresponding with most other species complexes in *Leptographium* s.l. (De Beer and Wingfield 2013). In the resulting phylogenies (Fig. 2), most known species and all new taxon could be separated, apart from the *L. davidsonii* and *L. vescum* isolates that formed a single clade.

Table 2. Parameters used and statistical values related to all phylogenetic analyses in the present study.

<table>
<thead>
<tr>
<th></th>
<th>ITS2-LSU</th>
<th>ACT</th>
<th>βT</th>
<th>CAL</th>
<th>TEF-Iα</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of taxa</td>
<td>59</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>603</td>
<td>809</td>
<td>288</td>
<td>579</td>
<td>781</td>
<td>2457</td>
</tr>
<tr>
<td>Constant</td>
<td>456</td>
<td>622</td>
<td>209</td>
<td>435</td>
<td>479</td>
<td>1785</td>
</tr>
<tr>
<td>Uninformative</td>
<td>46</td>
<td>20</td>
<td>8</td>
<td>22</td>
<td>45</td>
<td>95</td>
</tr>
<tr>
<td>Informative</td>
<td>101</td>
<td>127</td>
<td>71</td>
<td>122</td>
<td>257</td>
<td>577</td>
</tr>
<tr>
<td>Number of trees</td>
<td>396</td>
<td>13</td>
<td>4</td>
<td>15</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Tree length</td>
<td>289</td>
<td>276</td>
<td>154</td>
<td>404</td>
<td>619</td>
<td>1486</td>
</tr>
<tr>
<td>CI</td>
<td>0.740</td>
<td>0.812</td>
<td>0.786</td>
<td>0.884</td>
<td>0.837</td>
<td>0.821</td>
</tr>
<tr>
<td>RI</td>
<td>0.934</td>
<td>0.935</td>
<td>0.933</td>
<td>0.956</td>
<td>0.941</td>
<td>0.935</td>
</tr>
<tr>
<td>RC</td>
<td>0.691</td>
<td>0.759</td>
<td>0.733</td>
<td>0.845</td>
<td>0.787</td>
<td>0.767</td>
</tr>
<tr>
<td>HI</td>
<td>0.259</td>
<td>0.188</td>
<td>0.214</td>
<td>0.116</td>
<td>0.163</td>
<td>0.179</td>
</tr>
<tr>
<td>Model tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Models</td>
<td>GTR+I+G</td>
<td>HKY+I+G</td>
<td>HKY+G</td>
<td>HKY+I</td>
<td>HKY+G</td>
<td>HKY+I +G</td>
</tr>
<tr>
<td>ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-inv</td>
<td>0.378</td>
<td>0.527</td>
<td>–</td>
<td>0.623</td>
<td>–</td>
<td>0.441</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.257</td>
<td>0.287</td>
<td>0.179</td>
<td>–</td>
<td>0.618</td>
<td>0.712</td>
</tr>
<tr>
<td>BI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn-in</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Taxonomic re-evaluation of the *Leptographium olivaceum* complex

The aligned DNA sequences for the CAL gene region included exon 3 (sites 1–16), intron 3 (sites 17–165), exon 4 (sites 166–291), intron 4 (sites 292–451), exon 5 (452–526), and part of exon 6 (sites 527–579). The intron/exon arrangement corresponded with that of the *L. clavigerum* and *L. procerum* complexes (Yin et al. 2015), with intron 5 lacking in this complex. Phylogenetic analyses of the CAL dataset (Fig. 2) recovered all currently accepted species in the complex.

The TEF-1α gene region used in phylogenetic analyses, included part of exon 3 (sites 1–9), intron 3 (sites 10–461), exon 4 (462–599), intron 4 (600–686), and part of exon 5 (687–781). Intron 4 of the TEF-1α gene was present in the *L. olivaceum* complex as is also true for the *L. procerum*, *L. galeiformis*, *L. wageneri* and *L. serpens* complexes, while it is absent in several other species complexes in *Leptographium* s. l. (De Beer and Wingfield 2013, Yin et al. 2015). Analysis of the TEF-1α dataset (Fig. 2) made it possible to separate all species in the complex.
Figure 2. ML trees of the *L. olivaceum* complex generated from DNA sequences of four protein-coding gene regions. Bold branches indicate posterior probabilities values ≥0.95. Bootstrap values ≥75% are recorded at nodes as ML/MP. * Bootstrap values <75%. Scale bar represents nucleotide substitutions.

The partition homogeneity test conducted on the combined data set for the four protein coding genes (ACT, TUB, CAL and TEF-1α) resulted in a P-value of 0.081, indicating that these regions could be combined. The MP, ML, and BI analyses gener-
ated were consistent with each other. Fourteen species with significant statistical support were defined in the *L. olivaceum* complex (Fig. 1), including eight known species (*L. cucullatum*, *L. davidsonii*, *L. vesum*, *L. olivaceapini*, *L. erubescens*, *L. olivaceum*, *L. sagmatosporum*, and *L. francke-grosmanniae*) and six new species from Europe and China.

Morphology and growth studies

Isolates of the six new species emerging from this study were similar in growth in culture, with colors initially hyaline, later turning pale yellowish or pale olivaceous. Mononematous synnemata were common in the cultures and hyphae were superficial on the agar. The droplets containing conidia were initially hyaline, becoming yellowish with age. Morphological differences among all these new species are discussed in the *Notes* sections provided with the new species descriptions in the Taxonomy section. A sexual state was induced only in isolates of *L. sylvestris* after incubation at 25 °C for three weeks.

Other than *L. sylvestris* that grew fastest at 30 °C, the optimal growth temperature for all isolates of the new species was 25 °C. None of the isolates of the new species grew at 5 °C or 35 °C, only *L. rhizoidum* was able to grow (2.5 mm/d) at 35 °C.

Taxonomy

Sequence data for 39 isolates included in the present study revealed 14 taxa in the *L. olivaceum* complex. One of these species, *L. erubescens*, was previously treated as a synonym of *L. cucullatum* but our data distinguished clearly between the two species. A new combination is thus provided for *L. erubescens*. Lectotypes and epitopes are designated here for *L. olivaceum*, *L. sagmatosporum* and *L. erubescens*. The remaining six taxa in the complex represented novel species and descriptions are provided for them.

Leptographium breviscapum M.L. Yin, Z.W. de Beer & M.J. Wingf., sp. nov.
MycoBank No: 823576
Fig. 3

Etymology. The epithet (brevius-, short, and -scapum, branch) refers to very short conidiophores.

Figure 3. **Leptographium breviuscapum** sp. nov. (CMW 38888) a fourteen-days old culture on OA with black background b synnematous asexual state on wood tissue on WA c–d conidiophore e conidiogenous cells f conidia. Scale bars: 100 µm (b), 25 µm (c), 25 µm (d), 10 µm (e), 5 µm (f).

Description. Sexual state not observed. **Conidiophores** occasionally observed on wood of WA, macronematous, synnematous, short, wide at the stipe, light brown to yellowish, expanding branches at the apex, 150–230 µm in length including conidiogenous apparatus, 20–25 µm wide at base, 40–45 µm wide at apex, 100–150 µm wide at conidiogenous apparatus. **Conidiogenous cells** discrete, hyaline, cylindrical, percurrent proliferation, (8–)9–13(–15) × 1.8–2.5 µm. **Conidia** hyaline, one-celled, smooth, ellipsoidal, (3.7–)4–4.5(–5) × 2.5–3 µm. **Culture characteristics:** Colonies on OA, hyaline at first, later becoming light yellowish in the center, mycelium superficial on agar. Mostly mycelium observed in culture, synnemata sparse. Optimal temperature for growth 25 °C, growth reduced at 10 °C and 30 °C, no growth at 35 °C.

Host tree. *Picea crassifolia.*

Insect vector. *Polygraphus poligraphus.*

Distribution. Qinghai, China.

Note: The asexual state of *L. breviuscapum* has very short conidiophores making it very easy to distinguish from that of other species in the complex.

Leptographium conplurium M.L. Yin, Z.W. de Beer & M.J. Wingf., sp. nov.
Mycobank No: 823572
Fig. 4

Etymology. The epithet refers to synnemata produced abundantly in culture.

Description. Sexual state not observed. Conidiophores macronematous, synnematus, 300–700 µm including conidiogenous apparatus, synnema occasionally swollen at the base, frequently swollen at the stipe, expanding branches at the apex, (25–)40–50(–80) µm in width, abundantly produced in culture. Conidiogenous cells discrete, terminal, hyaline, cylindrical, (8–)12–17(–20) × 1.5–2.3 µm. Conidia hyaline, one-celled, ellipsoidal to cylindrical, (3.9–)4.3–4.9(–6.3) × 1.9–2.5 µm. Culture characteristics: colonies on OA, hyaline at first, later becoming light yellowish in the center, concentric rings present, hyphae hyaline, appressed and immersed. Optimal growth temperature is 25 °C with radial growth rate 2.5 (± 0.5) mm/d, growth reduced at 10 °C and 30 °C, no growth at 35 °C.

Host tree. Picea abies.

Insect vectors. Dryocoetes autographus, Hylastes brunneus.

Distribution. Finland.

Notes. All isolates of this species were initially recognized as a cryptic species closely related to L. cucullatum and L. olivaceapini by Linnakoski et al. (2012). Our results confirmed that they represent an undescribed taxon.

Leptographium cucullatum (H. Solheim) M.L. Yin, Z.W. de Beer & M.J. Wingf., comb. nov.
MycoBank No: 831546

Host trees. *Picea abies*, *Picea jezoensis*, *Pinus sylvestris*.

Distributions. Europe (Austria, Norway, Poland, Russia), Japan

Notes. Harrington et al. (2001) suggested that *Phialographium erubescens* represented the asexual state of *L. cucullatum*. Comprehensive data from the present study distinguish between the two species. See details under *L. erubescens*.

MycoBank No: 831547

Type. CANADA, British Columbia, Seymour Arm, from *Pseudotsuga menziesii*, 1971, J. Reid, (WIN (M) 71-30-holotype, ex-holotype cultures: CMW 790 = IMI 176524 = JCM 7867).

Host trees. *Abies veitchii*, *Picea sp*, *Pseudotsuga menziesii*.

Insect vector. *Dryocoetus hectographus*.

Distribution. USA, Japan.

Notes. The orange section shaped to hemispherical ascospores makes this species distinct from others in the complex (Ohtaka et al. 2002). This fungus was also reported associated with *Dryocoetus hectographus* on *Abies veitchii* in Japan based on morphology (Ohtaka et al. 2002), but the identity of the Japanese isolates needs to be verified with DNA sequences.
Additional material examined. CANADA, British Columbia, Lake Louise, from small Scolytinae sp. in Picea sp. Aug 1994, M. J. Wingfield, (cultures: CMW 3094, CMW 3095).

MycoBank No: 823577

Type. SWEDEN, from pine poles and board, *A. Mathiesen-Käärik, lectotype* designated here, represented by line drawings (fig. 8b, p. 58; fig. 9d–f, p. 61) from Mathiesen-Käärik (1953), MBT 379456; Uppland, Skutskär, from piled timber of *Pinus sylvestris*, 1952, *A. Mathiesen-Käärik*, (Isotype CBS H-7193, CBS H-7194, ex-type cultures: CMW 40672 = CBS 278.54 = JCM 9747 = No. Sk 13-52).

Host tree. *Pinus sylvestris*.

Insect vector. unknown.

Distribution. Sweden.

Notes. This species was first described by Mathiesen-Käärik (1953) from pine timber in Sweden. No specimen numbers and very little detail (e.g. no host locality or collection dates) were provided in the protologue. Furthermore, no specimen number and little detail are listed under this species name in the herbarium of the Museum of Evolution, Uppsala, which incorporated Mathiesen-Käärik’s collection. However, in 1954 she deposited an isolate (No. Sk 13-52) in the CBS labeled as *L. erubescens*. Two dried specimens (CBS H-7193, CBS H-7194) are linked to this isolate and these are labeled as isotypes. It is reasonable to assume that this isolate represents the original material, but there is no conclusive evidence that this is true. We have thus designated the line drawings from the protologue (Mathiesen-Käärik 1953) as the lectotype.

Harrington et al., (2001) suggested that *Graphium erubescens* (as *Phialographium erubescens*) represented the asexual state of *L. cucullatum* (as *O. cucullatum*) based on ITS sequences. However, based on sequences produced in the present study, the ex-type culture of *L. erubescens* differs from that of *L. cucullatum* in 1bp in ITS2-LSU, 17 bp in ACT, 17 bp in BT, 30 bp in CAL, and 48 bp in TEF-1α. We have thus treated these species as distinct and have provided a new combination for *L. erubescens*.

MycoBank No: MB375135

≡ *Ceratocystis francke-grosmanniae* R.W. Davidson, Mycologia 63: 6 (1971). (Basionym)

Descriptions. Davidson (1971, pp 6–7, figs 1, 10, 11, 17); Upadhyay (1981, p. 45, figs 73–78); Mouton et al. (1992, figs 1–11); Wingfield (1993, p. 48, figs 6–7); Jacobs and Wingfield (2001, pp 99–102, figs 73–75).

Host tree. *Quercus* sp.

Insect vector. *Hylecoetus dermestoides*.

Distribution. Germany.

Notes. *Leptographium francke-grosmanniae* groups peripheral to other species in the *L. olivaceum* complex (Figs 1–3). Morphologically, the ascospores are almost cylindrical and its ascomatal necks correspond with other species in the complex. But *L. francke-grosmanniae* produces mononematous conidiophores, in contrast to the synne-
mata produced by the other species, which also explains why it is the only species in the complex previously treated in *Leptographium*. The mode of conidiogenesis of *L. francke-grosmanniae* (Mouton et al. 1992) appears similar to that of other species where the conidiogenous cells that appear phialidic under a light microscope arise from percurrent proliferation (Wingfield et al. 1989, Wingfield et al. 1991, Mouton et al. 1993). However, the apices of the apparent “phialides” are substantially more flared than those of other species in the complex and they could be more different than assumed by Mouton et al. (1993). *Leptographium francke-grosmanniae* is also unusual in the *L. olivaceum* complex in having an angiosperm host.

Leptographium francke-grosmanniae was originally described as *Ceratocystis francke-grosmanniae* from larval galleries of *Hylecoetus dermestoides* on *Quercus* sp. in Germany (Davidson 1971). De Beer and Wingfield (2013) showed that sequences for this species produced in different studies were inconsistent. Based on comparisons of the ITS2 region, the sequences of ex-holotype generated in the present study are consistent with those produced by Mullineux and Hausner (2009) for ATCC 22061 and Hamelin et al. (unpublished) for CBS 356.77, but differ substantially from sequences produced by Jacobs et al. (2001a). In the LSU gene region, our sequences are identical to those of Hausner et al. (2000), but they differed from that of Jacobs et al. (2001a, b) for CMW 445. In the β-tubulin gene region, the sequence of CMW 445 in the present study was consistent with that provided by Kim et al. (2004) for CMW 445 and Hamelin et al. (unpublished sequence in GenBank) for CBS 356.77. We thus suggest that the two sequences for *L. francke-grosmanniae* produced by Jacobs et al. (2001a, b) are incorrect. Sequences of another isolate from the USA (CMW 2975), previously identified as *L. francke-grosmanniae* (Zipfel et al. 2006), differ substantially from the ex-holotype culture. Thus, this isolate (CMW 2975) does not represent *L. francke-grosmanniae*, and its taxonomic placement needs reconsideration.

Leptographium olivaceum (Math.-Käärik) M.L. Yin, Z.W. de Beer & M.J. Wingf., comb. nov.
MycoBank No: 831548

Type. SWEDEN, Hällnäs, Västerbotten, from the galleries of *Acanthocinus aedilis* in pine wood, *A. Mathiesen-Käärik*, lectotype designated here, represented by line drawings (fig. 2a–g, p. 213) from Mathiesen-Käärik (1951), **MBT 379459**; from dead wood of *Pinus sylvestris*, Jan 1949, *A. Mathiesen-Käärik*, (ex-type cultures: CMW 31059 = CBS 138.51, MBT 2063).

Descriptions. Mathiesen-Käärik (1950, p. 298); Mathiesen-Käärik (1951, pp 212–215, fig. 2); Hunt (1956, pp 29–30); Griffin (1968, pp 707–708, figs 49–52,
Host trees. *Betula papyrifera*, *Picea abies*, *Picea mariana*, *Pinus sylvestris*.

Insect vectors. *Acanthocinus aedilis*, *Dendroctonus rufipennis*, *Ips typographus*, *Polygraphus rufipennis*.

Distributions. Canada, Finland, Russia, Sweden, USA.

Notes. This species was first described invalidly (no Latin diagnosis) from *Pinus sylvestris* infested by a longhorn beetle *Acanthocinus aedilis* in Sweden (Mathiesen-Käärik 1950). Mathiesen-Käärik (1951) then validated the name with a more detailed description accompanied by a Latin diagnosis. In the original descriptions of *L. olivaceum* by Mathiesen-Käärik (1950, 1951), the host tree, beetle and location of the collection was noted, but no mention was made of a specimen. The herbarium specimens of Mathiesen-Käärik were initially curated in the herbarium of the Statens Skogsforsknings institut, Experimentalfältet, Sweden. The collection was later incorporated into the herbarium of the Museum of Evolution, Uppsala. Only one herbarium specimen (UPS:BOT:F-130986) of *L. olivaceum*, collected from the same host, beetle and location by T. Hedquist, is available from that collection. However, an isolate of *L. olivaceum* (No. 297-49 = CBS 138.51), collected in 1949, also from the original host and location, was deposited in the CBS by Mathiesen-Käärik in 1951. Although we were not able to confirm that this isolate was from the original collection, it was treated as the ex-type culture of the species in previous studies (Duong et al. 2012, Linnakoski et al. 2012, De Beer and Wingsfield 2013). In view of the absence of concrete evidence that this isolate represents the original material, we have designated the line drawings from the protologue (Mathiesen-Käärik 1951) as lectotype.

More recently, it was reported from *Picea abies* and *Pinus sylvestris* infested by *Ips typographus* and *Dryocoetes autographus* in Finland and Russia, in a study where the identities were confirmed using DNA sequence analyses (Linnakoski et al. 2012). Griffin (1968) reduced *L. vescum* to synonymy with *L. olivaceum*, but data from the present study confirmed that these two species are phylogenetically distinct.

MycoBank No: 831549

≡ *Ceratocystis olivaceapini* R.W. Davidson, Mycologia 63: 7 (1971). (Basionym)
Type. USA, New Mexico, Santa Fe, from Pinus ponderosa tree infested Dendroctonus sp. and other bark beetles, 10 July 1964, R.W. Davidson, (holotype BPI 595910 = RWD 548D; BPI 595914 = RWD 548D isotype); USA, Arizona, Flagstaff, from Pinus ponderosa infested with Dendroctonus sp., 24 July 1964, R.W. Davidson, (BPI 596223= RWD 581-D isotype); Arizona, Flagstaff, from P. ponderosa infested with Dendroctonus sp., 3 Oct 1986, T. Hinds, (epitype PREM 61051, designated here, ex-epitype cultures CBS 504.86 = CMW 116 = COLO 479, MBT 379458).

Descriptions. Davidson (1971, pp 7–10, figs 2, 12, 18); Upadhyay (1981, p. 54, figs 122–129); Mouton et al. (1993, pp 372–373, figs 1–4).

Host trees. Pinus ponderosa.

Insect vectors. Dendroctonus sp.

Distribution. USA.

Notes. No living culture associated with the holotype (BPI 595910) or isotype (BPI 595914) of L. olivaceapini exists. However, T. Hinds, a collaborator of R.W. Davidson and later curator of the RWD culture collection, provided an isolate (COLO 479) labeled as C. olivaceapini to M.J. Wingfield, who later deposited this in the CBS (CBS 504.86). The species name and origin provided by Hinds with the isolate corresponds to a second specimen mentioned by Davidson (1971, p. 10) in the protologue (RWD 581-D = BPI 596223). In our opinion, the isolate (COLO 479) most probably originated from the specimen (RWD 581-D). We could not confirm with certainty that BPI 296223 originated from RWD 581-D and thus designated a dried culture of COLO 479 as the epitype for L. olivaceapini.

Leptographium pseudoalbum M.L. Yin, Z.W. de Beer and M.J. Wingf., sp. nov.

Mycobank No: 823571

Fig. 5

Etymology. The epithet refers to the previous, incorrect identification of the ex-holotype isolate of this species as Graphium album.

Type. SWEDEN, from Pinus sylvestris infested by Tomicus piniperda, 1953, Mathiesen-Käärik, (PREM 61050-holotype, ex-holotype cultures: CBS 276.54 = CMW 40671 = JCMW 9774 = C 1225).

Description. Sexual state not observed. Conidiophores macronematous, synnematos, 120–270 µm including conidiogenous apparatus, synnemata frequently swollen at base, frequently wider at stipe, expanding branches at apex, brown to hyaline, (11–)25–34(–40) µm in width. Conidiogenous cells discrete, terminal, percurrent and phialidic proliferation, hyaline, cylindrical, (9–)10–14(–18) × 1.8–2.8 µm. Conidia hyaline, one-celled, ellipsoidal to cylindrical, (3.5–)4.3–5.2(–6.5) × 2.4–3.3 µm. Cultural characteristics: Colonies on OA, hyaline at first, later becoming white and gray in
Mingliang Yin et al. / MycoKeys 60: 93–123 (2019)

Figure 5. *Leptographium pseudoalbum* sp. nov. (CBS 276.54) a fourteen-days old culture on OA with black background; b. synnematous asexual state on wood tissue on WA c–d conidiophore e conidiogenous cells f conidia. Scale bars: 200 µm (b), 25 µm (c), 25 µm (d), 10 µm (e), 5 µm (f).

the center, hyphae hyaline, appressed and immersed, aerial mycelium frequently present on wood tissue, phialoagraphium-like asexual morph abundant. Optimal growth temperature on MEA:25 °C with radial growth rate 3.0 (± 0.5) mm/d, while growth slightly reduced at 10 °C and 30 °C, and no growth occurred at 35 °C.

Host. *Pinus sylvestris.*

Insect vector. *Tomicus piniperda.*

Distribution. Sweden.

Notes. This species was initially identified as *Graphium album* (Corda) Sacc. by Mathiesen-Käärik (1953). However, Okada et al. (2000) and Harrington et al. (2001) questioned the identification by Mathiesen-Käärik (1953) and showed that this isolate belonged in the Ophiostomatales and grouped close to *L. erubescens*. This study showed that Mathiesen-Käärik’s isolate representing an undescribed species in the *L. olivaceum* complex, for which we have provided the name *L. pseudoalbum*.

Leptographium rhizoidum M.L. Yin, Z.W. de Beer and M.J. Wingf., sp. nov.

MycoBank No: 823575

Fig. 6

Etymology. The epithet refers to the rhizoid-like structures at the synnematal bases.

Type. SPAIN, Morga, from *Pinus radiata* infested by *Hylastes ater*, July. 2004, P. Romon & X.D. Zhou, (PREM 60922-holotype, ex-holotype cultures: CBS 136512 = CMW 22809); Morga, from *Pinus radiata* infested by *Hylastes attenuatus*, July. 2004,
Taxonomic re-evaluation of the *Leptographium olivaceum* complex

Description. Sexual state not observed. Conidiophores macronematous, synnematous, 200–350 µm including conidiogenous apparatus, synnemata frequently swollen at the base, frequently wider at the stipe, brown to light brown, expanding branches at the apex, (15–)35–45(–70) µm in width. Conidiogenous cells discrete, terminal, percurrent and phialidic proliferation, hyaline, cylindrical,(10–)14–17(–19) × 2–3 µm. Conidia hyaline, one-celled, cylindrical to obovoid, (5.1–)6.5–7.8(–10.5) × 2.1–3.5 µm. **Cultural characteristics:** Colonies on OA, hyaline at first, later becoming olivaceous in the center, hyphae hyaline, appressed and immersed, aerial mycelium frequently present on wood tissue, synnemata abundant in WA cultures, Optimal growth temperature on MEA is 25 °C with radial growth rate 6.0 (± 0.5) mm/d, growth slightly reduced at 10 °C and 35 °C.

Host tree. *Pinus radiata.*

Insect vectors. *Hylastes ater, H. attenuatus, Hylurgops palliatus, Ips sexdentatus.*

Distribution. Spain.

Note: Isolates of *L. rhizoidum* from pine-infesting bark beetles in Spain were initially identified as *L. olivaceum* based on ITS sequences by Romon et al. (2007). Our data showed them to be distinct from that species. This species produced more abundant and longer rhizoids than others in the complex.

Leptographium sagmatosporum (E.F. Wright & Cain) M.L. Yin, Z.W. de Beer & M.J. Wingf., comb. nov.
MycoBank No: 831550

Host trees. *Pinus strobus*, *Picea mariana*.

Insect vectors. unknown bark beetle species.

Distribution. Canada.

Notes. This species was originally described from bark beetle galleries and freshly cut surfaces of *Picea mariana*, *Pinus resinosa* and *Pinus strobus* in Canada (Wright and Cain 1961). The Royal Ontario Museum Fungarium (TRTC), Canada, informed the authors of this study that the holotype (TRTC 36427) of *L. sagmatosporum* was permanently lost. There is also no living culture available from the holotype. We have thus designated the line drawings in the protologue as the lectotype. An isolate (CMW 34135), also from pine in Ontario, identified as *L. sagmatosporum* based on morphology (K. Jacobs, unpublished) and used in previous studies to represent the species (Duong et al. 2012, Linnakoski et al. 2012, De Beer and Wingfield 2013), its dry specimen is designated here as the epitype.

Leptographium sylvestris M.L. Yin, Z.W. de Beer and M.J. Wingf., sp. nov.
MycoBank No: 823574
Fig. 7

Etymology. The epithet refers to the host species where the holotype was collected.

Description. Sexual state develop on wood on WA in 14–21 days. Perithecia superficial on wood and agar, base brown to black, globose, unornamented, 91–110 µm in diameter, necks dark brown, cylindrical, slightly curved, 200–480 µm long (including ostiolar hyphae), 26–32 µm wide at base, 15–21 µm wide at the tip. Ostiolar hyphae present, pale brown, straight, septate, numerous, divergent, tapering at the tip, up to 190 µm long. Asci not seen. Ascospores one-celled, hyaline, fusiform to orange section shaped in side view, ellipsoidal in face view, globose in end view, (4.0–)4.5–5.5(–5.8) × (2.5–)2.8–3.7(–3.9) µm including hyaline gelatinous sheath, 0.3–0.6 µm thick. Conidiophores macronematic, synnematous, swollen at the base, occasionally wider at the stipe, brown to light brown, expanding branches at the apex, 260–500 × 14–57 µm including conidiogenous apparatus. Conidiogenous cells discrete, hyaline, cylindrical, 2–3 per branch, percurrent proliferation, (10–)11–15(–18) × 1.5–2.5 µm. Conidia hyaline, obovate to clavate, (3.6–)4.5–4.9(–5.2) × (1.6–)1.7–1.9(–2.1) µm. Cultural characteristics: Colonies on OA, hyaline at first, later becoming dark yellowish in the center, mycelium appressed and immersed, Perithecia and Pesotum-like asexual morph co-occur in culture. Optimal growth temperature is 30 °C, radial growth rate 5.0 (± 0.5) mm/d, growth reduced at 10 °C, no growth at 35 °C.

Host trees. Pinus sylvestris, Picea abies.

Insect vector. Ips typographus.

Distributions. Poland, Finland.

Notes. The Finnish isolate (CMW 23300) was considered by Linnakoski et al. (2012) to be the same undescribed species as the isolates described above as L. conplurium. The addition of a newly obtained isolate from Poland in the present study, confirmed that the two isolates represented a distinct taxon, clearly separated from all other species in the complex. This is the only new species for which ascomata were obtained in culture. Single ascospore isolates of this species produced ascomata in culture, suggesting that the species is homothallic. The common characters of sexual states of species in this complex are having ascomata with sheath and ostiolar hyphae on the top of neck. This species differs from others by its fusiform to orange section shaped ascospores and slightly curved neck.
Figure 7. *Leptographium sylvestris* sp. nov. (CMW 34140) a fourteen-days old culture on OA with black background b synnematous asexual state on wood tissue on WA c conidiophore d conidiogenous apparatus e conidiogenous cells f conidia g–h the sexual state on wood tissue on WA i ascoma j ostiolar hyphae k ascomatal base l ascospores. Scale bars: 100 µm (b), 50 µm (c), 25 µm (d), 10 µm (e), 5 µm (f), 100 µm (g), 100 µm (h), 50 µm (i), 25 µm (j), 20 µm (k), 5 µm (l).

MycoBank No: 831551

≡ *Ceratocystis vescra* R.W. Davidson, Mycologia 50: 666. (1958) (Basionym)
Taxonomic re-evaluation of the Leptographium olivaceum complex

Descriptions. Davidson (1958, p. 666); De Hoog and Scheffer (1984, p. 295, fig. 2); Samuels (1993, p. 16, fig. 1C–F).

Host tree. *Picea engelmannii.*

Insect vectors. *Ips pilifrons, Dendroctonus engelmanni.*

Distribution. USA.

Notes. The perithecia of *L. vescum* are smaller than in related species and ascospores are different in shape and size. This species was treated as a synonym of *L. olivaceum* by various authors (Griffin 1968, Olchowecki and Reid 1974, Upadhyay 1981). However, the sequences produced by Hausner et al. (1993, 2000), confirmed by our results, showed that the two species are distinct.

Leptographium xiningense M.L. Yin, Z.W. de Beer and M.J. Wingf., sp. nov.

MycoBank No: 823573

Fig. 8

Etymology. The epithet refers to the locality where the species was first collected.

Description. Sexual state not observed. Conidiophores macronematous, synnematous, 450–550 µm including conidiogenous apparatus, synnemata occasionally slightly swollen at the base, wider at the stipe, black to brown, expanding branches at the apex, light brown to hyaline, (25–)39–44(–50) µm in width. Conidiogenous cells discrete, terminal, percurrent and phialidic proliferation, hyaline, cylindrical, (11–)15–18(–19) × 2–3 µm. Conidia hyaline, one-celled, cylindrical to ovoid, (3.9–)4.2–4.5(–4.8) × 1.8–2.4 µm. Cultural characteristics: Colonies on OA, spore drops hyaline at first, later becoming light to dark yellowish in the center, hyphae hyaline, appressed and immersed, synnemata predominant, aerial mycelium occasionally present on wood tissue, Optimal growth temperature on MEA is 25 °C with radial growth rate 2.0 (± 0.5) mm/d, growth reduced at 10 °C, no growth at 30 °C.

Host tree. *Picea crassifolia.*

Insect vector. *Polygraphus poligraphus.*

Distribution. China.

Note. This species groups closely with *L. conplurium* and *L. erubescens*, but can be distinguished by its dark conidial droplets. In addition, the synnematous...
conidiophores of this species were shorter, and its conidia were bigger than that of *L. erubescens*.

Discussion

Among the five loci used in the phylogenetic analyses, ACT, CAL, and TEF-1α were able to distinguish among all species in the *L. olivaceum* complex. In contrast, TUB sequences could not distinguish between *L. davidsonii* and *L. vescum*. Although ITS2-LSU sequences provided reasonable resolution for species complexes at the genus level, this region could not be used to distinguish among closely related species. Of the five gene regions, TEF-1α had the most variable sites and this is consistent with the results of Yin et al. (2015) for the *L. procerum* complex. This also supports their suggestion that TEF-1α is suitable for use as a barcoding gene for accurate species identification in *Leptographium*.

In this study, we have clarified the previous confusion related to the ex-type isolate of *L. francke-grosmanniae*, and although our phylogenetic data placed it close to the complex, it grouped separated from all other species. This is consistent with its mon-
onematous morphology that distinguishes it from all other species in the complex that produce synnematous asexual states. Furthermore, it is unique in that it does not come from the galleries of a conifer-infesting scolytine bark beetle like the other species, but from the large timberworm beetle, *Hylecoetus dermestoides* (Coleoptera: Lymexylidae), infesting a *Quercus* sp. (Davidson 1971). Some beetles in the latter genus are known to vector ambrosial yeasts (Batra and Francke-Grosmann 1961), but the role and biology of *L. francke-grosmanniae* in these galleries on oak remains unknown. If these beetle ecosystems in hardwoods are explored further, it seems reasonable to expect that additional species related to *L. francke-grosmanniae* could be discovered. These would most likely emerge as a species complex distinct from the *L. olivaceum* complex.

All species in the *L. olivaceum* complex, with the exception of *L. francke-grosmanniae*, share various characteristics. Apart from similar sexual and asexual morphology (as discussed in the introduction), these species are all associated with scolytine bark beetles infesting primarily species of pine (*Pinus*) and spruce (*Picea*). Only *L. davidsonii* has been reported from another conifer genus, namely *Pseudotsuga* (Douglas-fir). However, there is no evidence for strong host or beetle specificity among these fungi. The European spruce bark beetle, *Ips typographus*, for example, infests various species of spruce and pine, and *L. cucullata*, *L. olivacea*, and *L. poloniae*, have been isolated from this beetle or its galleries. Nothing is known regarding the pathogenicity of any of the species in the complex, but Griffin (1968) and Davidson (1958) showed that some species were responsible for the blue-stain of the timber.

In terms of the distribution of species in the *L. olivaceum* complex, our data suggest that most of these taxa are geographically restricted to the continents from which they have been recorded. Four species have been reported only from North America, namely *L. davidsonii*, *L. olivaceapini*, *L. sagmatosporum*, and *L. vescum*, while *L. olivaceum*, *L. erubescens* and four of the new species have been found only in Europe and western Russia. Two of the new species originate from China. Only *L. cucullatum* has been found in Europe and East Asia, specifically Japan.

The results of this study incorporating data for morphology, ecology, and phylogenetic inference based on DNA sequences for five loci have confirmed that the *L. olivaceum* complex is a well-defined species complex in *Leptographium*. Moreover, this integrative approach has been recently employed to resolve lower-level taxonomy in several other groups of fungi such as the Ophiocordycipitaceae (Araújo et al. 2015), Pyronemataceae (Sochorová et al. 2019), Laboulbeniaceae (Haelewaters et al. 2018), Geastraceae (Sousa et al. 2017), and Helvellaceae (Skrede et al. 2017). The combination of multiple properties as independent lines of evidence (e.g., morphology, DNA, substratum, and/or geography) is the way to move forward in fungal taxonomy in general.

Conclusions

In the present study, DNA sequences for five loci were amplified and used to reconstruct phylogenies for species in the *L. olivaceum* complex. Multilocus phylogenies
distinguished clearly among the eight previously described species and also revealed six species: *L. breviuscapum*, *L. conplurium*, *L. pseudoalbum*, *L. rhizoidum*, *L. sylvestris*, and *L. xiningense* that are newly described. TEF-1α was recognized as the best candidate gene to distinguish all species in the complex. For several of the previously known species, problems relating to type specimens were identified, and to resolve these, seven new combinations, two epitypes and three lectotypes have been designated. Following the “one fungus one name” principles, this study provided a model solution to resolving interspecific relationships within the species complexes in the Ophiostomatales. More work should be done on other unresolved species complexes of *Leptographium* and other lineages in the Ophiostomatoid fungi in the future.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31600025), Guangdong Province Natural Science Foundation of China (2017A030313138), as well as special funds for the cultivation of scientific and technological Innovation of college students in Guangdong Province (pdjh2019b0085). We acknowledge three reviewers (Prof. Yuichi Yamaoka, Prof. Georg Hausner, and Dr. Chase G. Mayers) for providing valuable comments that improved the paper. We are also grateful for support from members of the Tree Protection Cooperation Programme (TPCP) and the University of Pretoria, South Africa.

Reference

Taxonomic re-evaluation of the *Leptographium olivaceum* complex

Supplementary material 1

The sequence alignment of combined four protein-coding gene regions
Authors: Mingliang Yin, Michael J. Wingfield, Xudong Zhou, Riikka Linnakoski, Z. Wilhelm de Beer
Data type: phylogenetic data.
Explanation note: The alignment was generated from MAFFT V7 Online, and it contained sequences of four protein coding genes (actin, beta-tubulin, calmodulin, and translation elongation factor 1 alpha) of all the isolates in the Leptographium olivaceum complex.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.60.39069.suppl1

Supplementary material 2

The sequence alignment of ITS2-LSU gene region
Authors: Mingliang Yin, Michael J. Wingfield, Xudong Zhou, Riikka Linnakoski, Z. Wilhelm de Beer
Data type: phylogenetic data.
Explanation note: The alignment was generated from MAFFT V7 Online, and it contained sequences of Internal transcribed spacer 2 and large-subunit rRNA genes of all isolates used in this study.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.60.39069.suppl2
The genus *Massalongia* (lichenised ascomycetae) in the Southern Hemisphere

Per M. Jørgensen¹, Heidi L. Andersen¹, Arve Elvebakk²

¹ Dept. of Natural History, University Museum of Bergen, Allégt. 41, N-5017, Bergen, Norway ² Tromsø University Museum, University of Tromsø – the Arctic University of Norway, PO Box 5060 Langnes, N-9037, Tromsø, Norway

Corresponding author: Heidi L. Andersen (Heidi.Andersen@uib.no)

Abstract

The species of *Massalongia* recorded and described from the Southern Hemisphere are revised and it is shown that only one is present; *M. patagonica* which is widespread, with populations in Australia and New Zealand that differ from the South American populations, but at present best regarded as part of the variation of that species. Records from this hemisphere of all other species placed in the genus are incorrect. The type species, *M. carnosus*, is restricted to the Northern Hemisphere. Two species, *M. antarctica* and *M. novozelandica* cannot be identified precisely due to lack of sufficient type material and with the types as the only collections known of these, but none belongs in *Massalongia* according to available data. *Massalongia griseolobata* (from Gough Isl.) is shown here to belong in the Pannariaceae and is part of the parmelioid clade. *M. intricata* (from South Georgia) and *M. olechiana* (from South Shetland) have both recently been correctly transferred to the genus *Steinera* in the Arctomiaceae.

Keywords

Peltigerales, Massalongiaceae, phylogeny, taxonomy, South Hemisphere

Introduction

The genus *Massalongia* was described by Körber (1855), based on the species *Lichen carnosus* described by J. Dickson in 1790 on material collected in Scotland, but later often called *Pannaria muscorum* (Ach.) Duby, an illegitimate, superfluous name. This reflects the difficulties which the early lichenologists had in classifying the species. Mo-
Molecular studies (Wedin et al. 2007; Muggia et al. 2011) have shown that Massalongia does not belong in the Pannariaceae, but is best placed in a family of its own, Massalongiaceae, in the Peltigerales. There is, however, only one major study of the species and their variation, made by Henssen (1963) covering North America. She accepts two species; the widespread, variable M. carnosa and the nearly crustose, microphylline, local Californian endemic M. microphyllizans (Hasse ex Nyl.) Henssen. Jørgensen (2000), whilst revising the Pannariaceae, had studied the type of Massalongia fauriei (Hue) Zahlbr. and found the poor type (the only material existing) to belong in Fusco-pannaria leucophaea s.lat., now transferred to the genus Vahliella (Jørgensen 2008; Wedin et al. 2010). An additional Asian species has been recorded from the Philippines based on Rehm (1916). This is, however, based on a misunderstanding of Massalongiella imperatae Rehm., which is a non-lichenised ascomycete as originally described.

In Europe, Harmand recognised a variety which Gyelnik (1940), in his notorious treatment of the Pannariaceae in Rabenhorst’s Kryptogamenflora, raised to species rank as Massalongia meiospora, only representing a form with somewhat longer, 3-septate spores. In addition, he established a new Massalongia rabenhorstiana, the type of which has disappeared. It is most certainly only a synonym of M. carnosa, still the only species on the Northern Hemisphere in addition to M. microphyllizans, a species in need of a phylogenetic study.

The situation in the Southern Hemisphere is different, though it took a long time before any species in the genus was recognised. Zahlbruckner (1917) was the first when he recorded Massalongia carnosa from the Falkland Islands, followed by Lamb (1958) who recorded it from Patagonia. Later, it was mentioned from several regions in the Southern Hemisphere (Smith and Corner 1973; Lindsay 1974; Galloway 1985; Redon 1985; Jørgensen 1986; Jørgensen and Elix 1988; Øvstedal and Smith 2001). In addition, several new species were described from the Southern Hemisphere; M. antarctica Dodge (from the Antarctic Peninsula, Dodge 1971), M. novozelandica Dodge (from subantarctic New Zealand, Dodge 1971), M. griseolobata Øvstedal (from Gough Isl., Øvstedal and Gremmen 2010), M. intricata Øvstedal (from South Georgia, Øvstedal and Smith 2001) and M. olechiana Alstrup & Sochting (from South Shetland, Alstrup and Sochting 2011).

During fieldwork in Chile in 2015, one of the authors (A.E.) discovered a strange Pannaria-like lichen which, on closer inspection, proved to be a Massalongia with some differences from M. carnosa, as known by us from Norway. However, since this is a variable species, we felt that a more detailed study, including molecular screening, would be useful. This being done and the distinction of this material proven, we found it necessary to check on the surprisingly high number of species of Massalongia described from the Southern Hemisphere. This proved to be time-consuming and complicated, since it was difficult to get hold of suitable material and, when molecularly checked, often not giving clear results and involving quite unrelated lichen families. Fortunately, Ertz et al. (2017) solved some of our problems and, eventually, this new species was named by Kitaura and Lorenz in Liu et al. (2018). However, our project
contains more data than their work includes and we present these here in an attempt to give full clarification of the taxonomic situation for the genus in the Southern Hemisphere. Some additional phylogenetic data were also added on the genus in the Northern Hemisphere.

Material and methods

The specimens

Specimens of *Massalongia* were obtained from various herbaria for phylogenetic analyses, see Tables 1 and 2. In addition, we microscopically studied material from the following herbaria: BAA, BG, BM, C, CANB, CANL, CHR, F, FH, H, MSC, NY, TROM and UPS. A total of 130 ascospores from collections from both hemispheres were drawn in detail and measured for comparison.

DNA extraction, Amplification and Sequencing

Total genomic DNA was extracted using DNeasy Plant Mini Kit (Qiagen). Four DNA markers were amplified; the mitochondrial small subunit rDNA (mtSSU rDNA: primers mrSSU1 and mrSSU3R (Zoller et al. 1999)), the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal RNA gene (primers ITS1f (Gardes and Bruns 1993), ITS4 (White et al. 1990), LSU155 and LSU362 (Döring et al. 2000), LSU635/LR3 and LSU1125/LR6 (Vilgalys and Hester 1990)) and the gene coding for the largest subunit of RNA polymerase II (RPB1: primers PRB1-BCR (Wedin et al. 2009), gRPB1-A (Stiller and Hall 1997) and fRPB1-C (Matheny et al. 2002)).

PCR reactions consisted of 1× GeneAmp PCR Buffer II (Applied Biosystems), 2.5 µM MgCl₂ (Applied Biosystems), 20 µM dNTPs (Promega), 0.4 µM of each primer, 0.03 U AmpliTaq DNA Polymerase (Applied Biosystems), 2–5.0 µl of genomic DNA extract and distilled water to a total volume of 25 µl. PCR reactions were performed on a C1000 Touch thermal cycler (Bio-Rad Laboratories), with the following temperatures; initial denaturation at 94 °C for 4 min, followed by a 62–56 °C touchdown annealing for the first 6 cycles, ending with 30 cycles at 56 °C for 30 sec, polymerisation at 72 °C for 1 min 45 sec and a final elongation at 72 °C for 10 min.

Direct sequencing of PCR products was run with the PCR primers using a Big-Dye Terminator Cycle Sequencing kit (Applied Biosystems) on an ABI Prism 3700XL DNA analyser (Applied Biosystems) at the DNA Sequencing Facility (UiB), Norway. Sequences were assembled and edited using Geneious v.11.0.2 (Kearse et al. 2012).

Newly generated sequences with GenBank accession numbers are listed in Tables 1, 2, together with sequences downloaded from GenBank.
Table 1. List of specimens used for phylogenetic analyses of the broad analysis of the *Massalongiaceae* and *Pannariaceae*, with vouchers and accession numbers from GenBank. Bold accession numbers are new in this study.

<table>
<thead>
<tr>
<th>Species and ID</th>
<th>Voucher</th>
<th>mtSSU</th>
<th>RPB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austrella arachnoidea</td>
<td>Jørgensen 8200 (BG)</td>
<td>KC608054</td>
<td>KC608108</td>
</tr>
<tr>
<td>Collema furfuraceum</td>
<td>Wedin 6187 (BM)</td>
<td>AY340488</td>
<td>GQ259048</td>
</tr>
<tr>
<td>Collema nigrescens</td>
<td>Wedin 7046 (UPS)</td>
<td>GQ259020</td>
<td>GQ259049</td>
</tr>
<tr>
<td>Collema parvum</td>
<td>Nordin 5500 (UPS)</td>
<td>GQ259021</td>
<td>GQ259050</td>
</tr>
<tr>
<td>Degelia duplomarginata</td>
<td>Wedin 8023 (S)</td>
<td>KC608058</td>
<td>–</td>
</tr>
<tr>
<td>Degelia durietzii</td>
<td>Elvebakk 02-296 (TROM)</td>
<td>KC608059</td>
<td>–</td>
</tr>
<tr>
<td>Degelia gayana</td>
<td>Wedin 6112 (UPS)</td>
<td>AY652619</td>
<td>–</td>
</tr>
<tr>
<td>Degetilella musulata</td>
<td>Galloway 840b (BG)</td>
<td>KC608063</td>
<td>–</td>
</tr>
<tr>
<td>Degetilella verricolor</td>
<td>Galloway 840a (BG)</td>
<td>KC608064</td>
<td>–</td>
</tr>
<tr>
<td>Erioderma pedicellatum</td>
<td>mrSSU: MacPitcher s.n. 2007 (BG-L85909), RPB1: MacPitcher s.n. 2007 (BG-L85911)</td>
<td>KC608065</td>
<td>KC608110</td>
</tr>
<tr>
<td>Erioderma verruculosum</td>
<td>AFTOL-ID 337</td>
<td>DQ972990</td>
<td>DQ973062</td>
</tr>
<tr>
<td>Fuscoderma aplatanatum</td>
<td>Tibell 19076 (BG)</td>
<td>KC608112</td>
<td>KC608066</td>
</tr>
<tr>
<td>Fuscopannaria pacifica</td>
<td>Tønsberg 29359 (BG)</td>
<td>KC608074</td>
<td>KC608118</td>
</tr>
<tr>
<td>Fuscopannaria praetermissa</td>
<td>mrSSU: Tønsberg 36838 (BG) RPB1: Wedin 7671 (UPS)</td>
<td>KC608075</td>
<td>GQ259056</td>
</tr>
<tr>
<td>Jørgensenia cephalodina</td>
<td>Passo 269 (BCRU 4895)</td>
<td>EU885330</td>
<td>–</td>
</tr>
<tr>
<td>Leidea fuscoatra</td>
<td>Wedin 6860 (UPS)</td>
<td>AY756401</td>
<td>AY756408</td>
</tr>
<tr>
<td>Leitophyllum furfuraceum</td>
<td>Nordin 5695 (UPS)</td>
<td>GQ259028</td>
<td>GQ259058</td>
</tr>
<tr>
<td>Leioderma erythrocarpum</td>
<td>Schumm and Frahm s.n. 2009 (BG, dupl of hb. Schumm 15583)</td>
<td>KC608078</td>
<td>–</td>
</tr>
<tr>
<td>Leioderma pschornorum</td>
<td>Tønsberg 29087 (BG)</td>
<td>DQ900632</td>
<td>GQ259060</td>
</tr>
<tr>
<td>Leptochidium albociliatum</td>
<td>Muggia TSB3886</td>
<td>JF381919</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Spribille 20997 (COLO)</td>
<td>JF381919</td>
<td>–</td>
</tr>
<tr>
<td>Lobaria pulmonaria</td>
<td>mrSSU: Wedin 6167 (UPS) RPB1: Wedin 5092(UPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobaria scrobiculata</td>
<td>AFTOL-ID 128</td>
<td>AY584621</td>
<td>DQ883736</td>
</tr>
<tr>
<td>Massalongia carnosa</td>
<td>Tønsberg 44267 (BG)</td>
<td>MN708314</td>
<td>MN714653</td>
</tr>
<tr>
<td></td>
<td>Tønsberg 45410 (BG)</td>
<td>MN708315</td>
<td>MN714654</td>
</tr>
<tr>
<td></td>
<td>Johnsen L-86694 (BG)</td>
<td>MN708316</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ezkhin 1289 (SAK)</td>
<td>MN708317</td>
<td>MN714655</td>
</tr>
<tr>
<td></td>
<td>Spribille 22021 (COLO)</td>
<td>JF382025</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Haikonen 20961 (H)</td>
<td>EU558817</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Hermansson 8916 (UPS)</td>
<td>AY340509</td>
<td>GQ259071</td>
</tr>
<tr>
<td></td>
<td>Spribille 21565 (COLO)</td>
<td>JF38204</td>
<td>–</td>
</tr>
<tr>
<td>Massalongia patagonica</td>
<td>Elvebakk 99:775 (TROM)</td>
<td>MN708318</td>
<td>MN714656</td>
</tr>
<tr>
<td></td>
<td>Elvebakk 15:033 (SGO)</td>
<td>MN708319</td>
<td>MN714657</td>
</tr>
<tr>
<td></td>
<td>Buck 60287 (NY)</td>
<td>MN708320</td>
<td>MN714658</td>
</tr>
<tr>
<td></td>
<td>Gremmen K-789 (BG)</td>
<td>MN708321</td>
<td>MN714659</td>
</tr>
<tr>
<td></td>
<td>Galloway 5616 (CHR)</td>
<td>MN708322</td>
<td>MN714660</td>
</tr>
<tr>
<td></td>
<td>Galloway s.n. (CHR)</td>
<td>MN708323</td>
<td>MN714661</td>
</tr>
<tr>
<td></td>
<td>Kitaura 4181 (CGMS)</td>
<td>MG243608</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Kitaura 4188 (CGMS)</td>
<td>MG243607</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Kitaura 4168 (CGMS)</td>
<td>MG243609</td>
<td>–</td>
</tr>
<tr>
<td>Massalongia griseolobata</td>
<td>Gremmen 2006-91 (BG)</td>
<td>MN708324</td>
<td>–</td>
</tr>
<tr>
<td>Nephrroma parile</td>
<td>Wedin 6169 (UPS)</td>
<td>AY340512</td>
<td>GQ259072</td>
</tr>
<tr>
<td>Pannaria hookeri</td>
<td>Jørgensen s.n. (BG)</td>
<td>KC608083</td>
<td>KC608124</td>
</tr>
<tr>
<td>Pannaria immixta</td>
<td>Elvebakk 02-352b (BG)</td>
<td>KC608084</td>
<td>KC608125</td>
</tr>
<tr>
<td>Pannaria rubiginella</td>
<td>Thor 10050 (S)</td>
<td>GQ259037</td>
<td>GQ259074</td>
</tr>
<tr>
<td>Parmeliella appalachensis</td>
<td>Lendemer 578 and Smith (BG)</td>
<td>KC608090</td>
<td>–</td>
</tr>
<tr>
<td>Parmeliella miradorensis</td>
<td>Tønsberg 23053 (BG)</td>
<td>KC608094</td>
<td>KC608136</td>
</tr>
<tr>
<td>Parmeliella nigrocincta</td>
<td>Elvebakk 02-356 (BG)</td>
<td>KC608095</td>
<td>KC608137</td>
</tr>
</tbody>
</table>
Massalongia in The Southern Hemisphere

<table>
<thead>
<tr>
<th>Species and ID</th>
<th>Voucher</th>
<th>Area</th>
<th>ITS</th>
<th>LSU</th>
<th>mtSSU</th>
<th>RPB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parmeliella pannosa</td>
<td>Ståhl s.n. 1999 (BG)</td>
<td>USA: Alaska</td>
<td>MN708327</td>
<td>MN708327</td>
<td>MN708314</td>
<td>MN714553</td>
</tr>
<tr>
<td>Parmeliella triopsylla</td>
<td>Wedin 7037 (UPS)</td>
<td>USA: Alaska</td>
<td>MN708328</td>
<td>MN708328</td>
<td>MN708315</td>
<td>MN714564</td>
</tr>
<tr>
<td>Pectenia atlantica</td>
<td>Lindblom and Blom L251 (BG)</td>
<td>Norway</td>
<td>MN708329</td>
<td>MN708329</td>
<td>MN708316</td>
<td>–</td>
</tr>
<tr>
<td>Pectenia cyanoloma</td>
<td>Purvis, James and Smith 1995 (BM)</td>
<td>East Russia</td>
<td>MN708330</td>
<td>MN708330</td>
<td>MN708317</td>
<td>MN714555</td>
</tr>
<tr>
<td>Pectenia plumbea</td>
<td>AFTOL-ID 1046</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>JF938205</td>
<td>–</td>
</tr>
<tr>
<td>Placynthium nigrom</td>
<td>Wedin 6778 (BM)</td>
<td>Sweden</td>
<td>–</td>
<td>–</td>
<td>AY340554</td>
<td>AY340509</td>
</tr>
<tr>
<td>Pseudocyphellaria aurata</td>
<td>Purvis, James and Smith 7/5/1995 (BM)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>AM243601</td>
<td>AY340567</td>
</tr>
<tr>
<td>Pororma hypnorum</td>
<td>Ihlen 453 (BG)</td>
<td>Greenland</td>
<td>MG243603</td>
<td>MG243610</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Santessonella arctophila</td>
<td>Kristinsson s.n. (BG)</td>
<td>Greenland</td>
<td>MG243603</td>
<td>MG243610</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sistotrema fuliginosa</td>
<td>Wedin 6078 (BM)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>AY340529</td>
<td>GQ259089</td>
</tr>
<tr>
<td>Vahlia carniformis</td>
<td>Tønsberg 26316 and Goward (BG)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>HQ268594</td>
<td>HQ268593</td>
</tr>
<tr>
<td>Vahlia leucophora</td>
<td>Wedin 6849 (UPS)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>AY652621</td>
<td>GQ259090</td>
</tr>
<tr>
<td>M. patagonica</td>
<td>Elvebakk 99:775 (TROM)</td>
<td>Chile</td>
<td>MN708331</td>
<td>MN708331</td>
<td>MN708318</td>
<td>MN714565</td>
</tr>
<tr>
<td>Elvebakk 15:033 (SGO)</td>
<td>Chile</td>
<td>MN708332</td>
<td>MN708332</td>
<td>MN708319</td>
<td>MN714567</td>
<td></td>
</tr>
<tr>
<td>Buck 60287 (NY)</td>
<td>Chile</td>
<td>MN708333</td>
<td>MN708333</td>
<td>MN708320</td>
<td>MN714568</td>
<td></td>
</tr>
<tr>
<td>Gremmen K-789 (BG)</td>
<td>Australia</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MN708321</td>
<td>MN714569</td>
</tr>
<tr>
<td>Galloway 5616 (CHR)</td>
<td>New Zealand</td>
<td>MN708334</td>
<td>MN708334</td>
<td>MN708322</td>
<td>MN714660</td>
<td></td>
</tr>
<tr>
<td>Galloway s.n. (CHR)</td>
<td>New Zealand</td>
<td>MN708335</td>
<td>MN708335</td>
<td>MN708323</td>
<td>MN714661</td>
<td></td>
</tr>
<tr>
<td>Kitaura 4181 (CGMS)</td>
<td>Argentina</td>
<td>MG243604</td>
<td>MG243617</td>
<td>MG243608</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Kitaura 4188 (CGMS)</td>
<td>Argentina</td>
<td>MG243606</td>
<td>MG243619</td>
<td>MG243607</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Kitaura 4168 (CGMS)</td>
<td>Argentina</td>
<td>MG243605</td>
<td>MG243618</td>
<td>MG243609</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>P. muscicola</td>
<td>Obermayer 8547 (UPS)</td>
<td>Austria</td>
<td>–</td>
<td>–</td>
<td>DQ900647</td>
<td>DQ900634</td>
</tr>
<tr>
<td>L. albociliatum</td>
<td>Tønsberg 29087 (BG)</td>
<td>USA</td>
<td>–</td>
<td>–</td>
<td>DQ900644</td>
<td>DQ900632</td>
</tr>
</tbody>
</table>

Table 2. List of specimens used for phylogenetic analyses of the species delimitation in Massalongia, M. referring to Massalongia, P. to Polychidium and L. to Leptochidium, with vouchers and accession numbers from GenBank. Bold accession numbers are new in this study.

Phylogenetic analyses

To align the sequences, MAFFT v7.309 (Katoh et al. 2002; Katoh and Standley 2013) implemented in Geneious v.11.0.2 (Kearse et al. 2012) was used with default settings, followed by manual adjustments. Suitable substitution models for the separate datasets were identified using MrAIC v.1.4.6 (Nylander 2004).

Two different datasets were analysed; one broad analysis of Massalongiaceae and Pannariaceae to test whether the included species is part of Massalongia (Table 1) and a
second analysis for species delimitation within *Massalongia* (Table 2). For the broader dataset, mtSSU and RPB1 were concatenated, using *Lecidea fuscoatra* as outgroup and for the species delimitation in *Massalongia*, mtSSU, LSU, ITS and RPB1 was concatenated using *Polychidium muscicola* as outgroup.

Separate analyses of all genes and concatenated datasets were run as Bayesian MCMC searches using MrBayes v.3.2.1 (Ronquist and Huelsenbeck 2003) with default options; substitution model GTR+G+I, 10 million generations starting with a random tree, four simultaneous chains and using the default temperature of 0.2. Every 1000th tree was saved. Phylogenetic trees were visualised using Geneious v. 11.0.2 (Kearse et al. 2012).

Results

Phylogeny

The two resulting concatenated datasets consisted for the broad analysis of *Massalongiaceae* and *Pannariaceae* of 63 taxa with 1435 characters, whereas for the species delimitation in *Massalongia*, of 21 taxa with 2983 characters (details in Table 3).

The resulting phylogenetic consensus tree from the broad analysis of *Massalongiaceae* and *Pannariaceae* are given in Fig. 1. Both *Massalongia carnosa* and *M. patagonica* are with high support a part of the *Massalongiaceae*, together with *Polychidium muscicola* and *Leptochidium albociliatum*. *M. griseolobata* is a part of the *Pannariaceae*, in the “Parmelielloid” clade 1 from Ekman et al. (2014) with high support. Within this clade, *M. griseolobata* is a part of a supported group with no internal resolution, including *Degeliella rosulata*, *Degeliella versicolor*, *Leioderma*, *Erioderma* and *Joergensenia*.

The resulting phylogenetic consensus tree from the species delimitation analysis of *Massalongia* is given in Fig. 2. *M. patagonica* from the Southern Hemisphere and *M. carnosa* from the Northern Hemisphere are nicely separated in two sister groups with high support.

The samples of *M. patagonica* from New Zealand are grouped in a separate subclade from the rest of the samples from Australia, Chile and Argentina. The phylogenetic tree indicates a high genetic variance within *M. patagonica* throughout the Southern Hemisphere, but further studies are necessary to evaluate these differences.

The samples from the Northern Hemisphere make a monophyletic clade with little variation between the samples and a sample from Sweden is practically identical to those analysed from Alaska and Greenland.

Table 3. List of numbers of characters, taxa and constant variables, from the two concatenated datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Numbers of characters</th>
<th>Numbers of taxa</th>
<th>Number of constant characters</th>
<th>Number of variable characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad analysis of the Massalongiaceae and Pannariaceae</td>
<td>1435</td>
<td>63</td>
<td>724</td>
<td>711</td>
</tr>
<tr>
<td>Species delimitation in Massalongia</td>
<td>2983</td>
<td>32</td>
<td>2745</td>
<td>238</td>
</tr>
</tbody>
</table>
The only species from the Southern Hemisphere which, according to our data, belongs in Massalongia, is *M. patagonica*, the details of which are as follows:

Massalongia patagonica Kitaura & Lorenz in Liu et al.
MycoBank No: 824006

Description. *M. patagonica* (Fig. 3) is morphologically similar to *M. carnosa*. Generally, spore characters are the best distinguishing characters (Fig. 4). The spores of *M. carnosa* are longer and 92% of 72 measured spores were in the range 23–35 µm. By contrast, 70% of 58 measured spores of *M. patagonica* were in the range 15–22 µm. This means that there is an overlap in sizes between these two species. However, the spores of *M. patagonica* are often two-septate, sometimes three-septate, which is very rare in *M. carnosa*. Here follows a more detailed treatment of *Massalongia patagonica* Kitaura & Lorenz:

Thallus foliose, forming rosettes up to 3 cm, mostly muscicolous; *lobes* 0.5–1.5 mm broad, up to 1 cm long, irregularly and repeatedly divided with isidioid marginal outgrowths, simple to sparingly branched, sometimes developing into branched lobule systems, lobules, 0.1 mm wide. *Upper surface* brown, glabrous and glossy; *upper cortex* 20–30 µm thick, paraplectenchymatic, of thick-walled (ca. 1.5–2 µm wide) cells with 7–12 µm large lumina; *photobiont layer* 40–60 µm thick, often also developed in the subhymenium; *cyanobiont Nostoc*, cells bluish-green, irregularly

Figure 2. The phylogenetic tree of a concatenated dataset for species delimitation of *Massalongia*, resulting from Bayesian MCMC searches.
subglobose to ellipsoid, 5–9 × 6–11 µm in size, arranged within 20–40 µm large glo-
meruli without visible chain structures, chain structures visible in some liberated cells; medulla loose, 60–80 µm thick; lower cortex absent, with scattered rhizohyphae.

Apothecia common to scattered, substipitate, laminal, 1–2 mm wide; thalline excipulum lacking, true excipulum weakly prominent; epithecium 5–10 µm thick, of protruding brown and strongly swollen, pyriform paraphyse end cells, 4–6 µm wide, 7–10 µm long, paraphyses undivided to sparingly divided, 2–4 µm thick; hymenium ca. 60 µm thick, IKI + blue; asci clavate 50–70 × 10–15 µm, 8-spored, with distinct internal apical IKI + blue sheath-like structures, sometimes also with weak tube structures; ascospores narrowly ellipsoid, occasionally asymmetric, 1- to 2 (3)-septate, (13) 20–25 (28) × 5–7.5 µm. Hypothecium ca. 60 µm thick, weakly brownish, IKI nega-
tive. Conidiomata not seen.

Chemistry. All reactions negative, no lichen substances detected by TLC.

Habitat and distribution. This is a species of wet to dry rock surfaces or boul-
ders, usually growing in between mosses or on plant remains. It has a widely scattered
distribution in South America, ranging from the temperate forests of south-central Chile, including the Juan Fernandez Islands and Patagonia, with two widely separated

Figure 3. Massalongia patagonica, AE 15-033. Scale bar: 1 cm.
collections from southernmost Chile and Argentinean Tierra del Fuego. In addition, it is known from the Falkland Islands, Antarctica, mountains of SE Australia, where it is rare and from several localities in New Zealand.

Specimens examined. **ANTARCTICA:** South Shetland Islands, King George Isl., Admiralty Bay, creeping slopes above Paradise Cove, 26 Jan 1980, *R. Ochyra* 1224/80 (BG, H); Urbanek, Crag between Polar Committee Glacier and Ladies Icefall, in Ezcurra Inlet, 20 Feb 1980, *R. Ochyra* 2319/80 (BG, H).

ARGENTINA: Patagonia: Chubut, Lago Verde, near Futalaufquen, 1 Feb 1950, *I. M. Lamb* 5877 (over mosses on a rock in open scrub, about 30 m above the lake), 5880 (over mosses on a rock in open forest about 15 metres above the lake) (CANL, UPS).

AUSTRALIA: New South Wales, near the summit of Mt. Guthrie, Kosciusko National Park, on moss over granite rocks, 9 Feb 1978, *J.A. Elix* 4360 (CANB); Kosciusko National Park, near Digger's Creek, 21 Jan 1976, *J. A. Elix* 1722 (CANB); Île Australia near Kerguelen Isl., on moss cushions, 492823S, 695329E, 45 m alt., 31 Dec 2003, *NJM Gremmen*, K-789 (BG).

CHILE: IX Región de la Araucanía: Reserva Nacional Malalcahuello, W bank of Río Colorado, 500 m W of the Entrance/CONAF building and 200 m S of the junction between the paths Sendero Coloradito and Sendero Sierra de Colorado; 38°25′45″S, 71°32′44″W, 1380 m alt., over *Grimmia* mosses on a S-facing rock outcrop in a *Nothofagus dombeyi-Araucaria araucana* forest, probably affected by river water during high flooding events, 9 Jan 2015, *A. Elvebakk* 15:033 (SGO, BG, UPS, BM, TROM); Archipiélago de Juan Fernandez: Isla Alejandro Selkirk (Mas Afora), Los Innocentes, 4 Dec 1965, *H. Imshaug* (MSC); Valdivia, Corral, *R. Thaxter* (MSC); XII Región de

Figure 4. Masalongia ascospores, patagonica above, carnosa below. Scale bar: 20 µm.
Magallanes y de la Antártica Chilena, Provincia Magallanes, Morro Chico, 52°03’S, 71°28’W, 200 m alt., on acrocarpous mosses on a NW-facing rocky slope, 28 Nov 1999, A. Elvebakk 99:775 (TROM); Provincia Antártica Chilena, Comuna Cabo de Hornos, Isla Grande de la Tierra del Fuego, Bahía Yendeagia, NNE shore opposite Caleta Ferrari, 54°50’28”S, 68°47’52”W, 13 Jan 2013, W.R. Buck 60287 (NY 01886528).

Falkland Islands: W. Falkland, Chartres, Luxton NNR, 30 Jan 2015, A. Fryday 10999 (MSC).

New Zealand: Canterbury, Cass, between Sugar Loaf and Cass Hill, 761 m alt., 18 Feb 1991, A. J. Fife 9761 (CHR); Banks Peninsula, Mt. Sinclair, summit, 5 Feb 1970, D. J. Galloway (CHR); Mt. Cook National Park, D. J. Galloway (CHR); Otago, Deep Stream, above DCC water intake, 13 Feb 1998, D. J. Galloway 0170 (CHR); Otago, Old Man Range, N of Obelisk, 5 Feb 2009, D. J. Galloway 404009 (CHR); St. Mary’s Range, Anakin’s Skifield, 22 Feb 2006, D. J. Galloway (CHR); Lake Onslow near huts, amongst moss in drainage cracks of schist rock in grassland, 30 Jul 1998, D. J. Galloway 404012 (CHR); Otago, Pomahaka River- Hukarere, rock slabs above river, 13 Apr 1998, D. J. Galloway 404011 (CHR); North Rough Ridge, near “Great Tor”, 12 Apr 1998, D. J. Galloway (CHR).

The other taxa originally described from the Southern Hemisphere as *Massalongia* species, are listed alphabetically, according to the epithet at the end of the discussion.

Discussion

The result of the phylogenetic analyses of *Massalongia* (Fig. 2) show that *Massalongia carnosa* and *M. patagonica* are located in different supported clades, as separate species as also described by Kitaura and Lorenz in Liu et al. (2018), *M. patagonica* being restricted to the Southern Hemisphere, whereas *M. carnosa* occurs only in the Northern Hemisphere. The clade with *M. carnosa* includes one circumarctic and circumboreal species, with low genetic diversity, whereas *M. patagonica* is more variable and shows a geographic pattern within this species. The material from New Zealand groups in a distinct branch within the *M. patagonica* clade and is superficially much more similar to the material of *M. carnosa*, but has extra short ascospores measured in two samples from New Zealand, all spores were shorter than 23 µm. This could be a result of the preference for moist, mossy habitats (Galloway 2007) as opposed to the drier, often exposed habitats in Chile. The material from Australia and New Zealand is, therefore, best classified as part of the *M. patagonica* complex.

That species is also found as far west as the Juan Fernandez Islands and is also possibly present on the Antarctic Peninsula and the Bouvet Island, but the material examined was sparse, sterile and too old for molecular studies.

Still, *M. patagonica* is not morphologically easily distinguished from *M. carnosa*; the two species have different spores, although there is an overlap zone in both length and degree of septation. Both species have a gross morphology showing high variation, probably due to habitat modifications, depending on light exposure, competition, moisture and water availability.
Chilean material of *M. patagonica* tends to have thicker, narrower and clearly radiating lobes than most material of *M. carnosa*. However, in cases where habitat information is available, they appear to be dry, but exposed to nutrient supplies by spring flooding (the Río Colorado collection), wind-transported saline lake dust (the Morro Chico collection) or seashore spray (the Tierra del Fuego collection). The New Zealand material, on the other hand, treated as *M. carnosa*, is cited as widespread and from moist habitats by Galloway (2007).

This detailed phylogenetic signal within *M. patagonica* is the result of a long history of evolution and isolation in austral areas, although shorter than the split-up between *M. carnosa* and *M. patagonica*. There is a record of *M. carnosa* from Mt. Kinabalu on Borneo (Sipman 1993) which could have indicated a migration route between a northern and a southern distribution area of the genus; however, a check of the material deposited at herbarium B revealed that it instead represents a sterile, richly squamulose specimen of a *Parmeliella* species. Future studies should investigate phylogeographic relationships between the three accepted species and the molecular distances between *M. patagonica* in New Zealand, Australia and South America/West Antarctica.

The examination of all relevant material from the Southern Hemisphere, shows the following, treated alphabetically according to the epithet:

Massalongia antarctica Dodge is a species only known from the type specimen from Lambda Island at the tip of the Antarctic Peninsula (Siple 380c-2, FH!). The type specimen is minute and sterile and consists of two different species, none of which belongs in *Massalongia*. The one fitting best with the description has a crustose, hemigelatinous thallus in accordance with species of the Arctomiaceae. There are no apothecia present in the collection and the description of the apothecia, given by Dodge (1968), is at variance with characters of *Massalongia*, indicating a species of the Arctomiaceae, most probably in *Arctomia*. There is, however, no known species with such a distinctly crustose thallus. More material is needed to identify this taxon more exactly. The sample also contains squamules with a trebouxioid photobiont and this is possibly *Pertusaria corallifera* Vain. as pointed out by Castello and Nimis (1995).

Massalongia griseolobata Øvstedal is a species only known from the type specimen (from Gough Isl., coll. Gremmen 2006-91, BG!). Even if only incipient apothecia were found, we do not hesitate to place this species in the Pannariaceae, based on morphology and the original description of the asci. They are recorded to have apically blue in tholus in iodine with a weak ring-structure. (*Massalongia* has sheet-like structures, Jørgensen 2007). The molecular study confirms this (Fig. 1). The species groups in the parmelioid clade (Clade 1) in the tree by Ekman et al. (2014), with *Degeliella*, *Leiderma*, *Erioderma* and *Joergensiana*. This is an unresolved group of subantarctic taxa (Jørgensen and Andersen 2015) in need of further studies.

Massalongia intricata Øvstedal was correctly transferred to the genus *Steinera* by Ertz et al. (2017). *S. intricata* has a semi-gelatinous thallus producing apothecia on special lobules, just as species in the Arctomiaceae.

Massalongia novozelandica Dodge was recorded by Galloway (2007), but the holotype (the only material) has not been possible to obtain. However, the original descrip-
tion of the spores being brownish at maturity with disappearing septae (clearly pseudoseptae) is at variance with characters found in Massalongia. We agree with Galloway that this is probably a parasite growing on the thallus of a species in the Pannariceae.

Massalongia olechiana Alstrup and Socht. was correctly transferred to the genus Steinera in the Arctomiaceae by Ertz et al. (2017).

Massalongia patagonica Kitaura and Lorenz, the recently described species (Fig. 3), belongs in the genus and, according to our phylogenetic tree (Figs 1, 2), prove to be distinct from *M. carnosa*, the latter being restricted to the Northern Hemisphere. The two species are morphologically variable due to the ecological conditions, but have different spores (Fig. 4), usually shorter than 25 µm in *M. patagonica*, but variable both in length and number of septae in both species. Chilean material of *M. patagonica* tends to have thicker, narrower and clearly radiating lobes than most material of *M. carnosa*.

Conclusion

From these facts, we conclude that there is only one, widespread species of Massalongia in the Southern Hemisphere, *M. patagonica*, though the populations in Australia and New Zealand differ somewhat molecularly, but more data is necessary to decide their taxonomic status. *M. patagonica* has a wider distribution than indicated in the original paper, also southwards and westwards. Previous records of several species in the Southern Hemisphere proved incorrect, most of them belonging in other genera.

The type species *M. carnosa* is restricted to the Northern Hemisphere, where it is widespread and variable, but without distinct molecular groupings requiring taxonomic recognition. There is also a local endemic, *M. microphyllizans* in California.

Acknowledgements

We are indebted to the directors and curators of the cited herbaria, to Louise Lindblom, Univ. Bergen for technical assistance and Mari Karlstad, Tromsø University Museum for photographs. Our sincerest thanks to all of you. Corporación Nacional Forestal (CONAF) in Chile kindly granted permission to collect there and the Olaf Grolle Olsen Fund generously gave financial support.

References

Körber GW (1855) Systema Lichenum Germaniae. Breslau.

Lamb IM (1958) La vegetacion liquenica de los parques nacionales patagonicos. Anales de parques nacionales VII.

