Understanding the evolution of phenotypical characters in the *Micarea prasina* group (Pilocarpaceae) and descriptions of six new species within the group

Beata Guzow-Krzemińska¹, Emmanuël Sérusiaux², Pieter P.G. van den Boom³, A. Maarten Brand⁴, Annina Launis⁵, Anna Łubek⁶, Martin Kukwa¹

¹ University of Gdańsk, Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
² Evolution and Conservation Biology Unit, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
³ Arafuna 16, NL-5691 JA Son, The Netherlands
⁴ Klipperwerf 5, NL-2317 DX Leiden, The Netherlands
⁵ Botany unit, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
⁶ The Jan Kochanowski University in Kielce, Institute of Biology, Świętokrzyska 15, PL-25-406 Kielce, Poland

Corresponding author: Beata Guzow-Krzemińska (beata.guzow@biol.ug.edu.pl)

Academic editor: Pradeep Divakar | Received 22 January 2019 | Accepted 9 July 2019 | Published 31 July 2019

Citation: Guzow-Krzemińska B, Sérusiaux E, van den Boom PPG, Brand AM, Launis A, Łubek A, Kukwa M (2019) Understanding the evolution of phenotypical characters in the *Micarea prasina* group (Pilocarpaceae) and descriptions of six new species within the group. MycoKeys 57: 1–30. https://doi.org/10.3897/mycokeys.57.33267

Abstract

Six new *Micarea* species are described from Europe. Phylogenetic analyses, based on three loci, i.e. mtSSU rDNA, *Mcm7* and ITS rDNA and ancestral state reconstructions, were used to evaluate infra-group divisions and the role of secondary metabolites and selected morphological characters on the taxonomy in the *M. prasina* group. Two main lineages were found within the group. The *Micarea micrococca* clade consists of twelve species, including the long-known *M. micrococca* and the newly described *M. microsorediata*, *M. nigra* and *M. pauli*. Within this clade, most species produce methoxymicareic acid, with the exceptions of *M. levicula* and *M. viridileprosa* producing gyrophoric acid. The *M. prasina* clade includes the newly described *M. azorica* closely related to *M. prasina s.str.*, *M. aeruginoprasina* sp. nov. and *M. isidioprasina* sp. nov. The species within this clade are characterised by the production of micareic acid, with the exception of *M. herbarum* which lacks any detectable substances and *M. subviridescens* that produces prasinic acid. Based on our reconstructions, it was concluded that the ancestor of the *M. prasina* group probably had a thallus consisting of goniocysts, which were lost several times during evolution, while isidia and soredia evolved independently at multiple times. Our research supported the view that the ancestor of *M. prasina* group did not produce any secondary substances, but they were gained independently in different lineages, such as methoxymicareic acid which is restricted to *M. micrococca* and allied species or micareic acid present in the *M. prasina* clade.
Keywords
Ancestral state reconstruction, lichenised fungi, morphology, mtSSU rDNA, secondary metabolites, taxonomy

Introduction
Traditionally, morpho-anatomical characters, together with secondary metabolites, have played an important role in the lichen classification (e.g. Brodo 1978, 1986; Lumbsch 1998). With the introduction of molecular data, powerful tools for reconstructing phylogenetic relationships have become available. Furthermore, molecular phylogenies can serve as a backbone for tracing the evolution of morphological and chemical characters by reconstructing their ancestral states. Such interpretations of character evolution usually open new perspectives to the evolutionary history (Lumbsch et al. 2006).

Secondary metabolites have been traditionally used in the taxonomy of lichens at different taxonomic levels, although their values have been questioned by many authors (Lumbsch et al. 2006; Leavitt et al. 2011; Lutsak et al. 2017). In many cases, molecular data do not correspond with the chemical variation and, therefore, the correlation between them has to be evaluated for each taxonomic group de novo (e.g. Goffinet and Miadlikowska 1999; Kroken and Taylor 2001; Molina et al. 2004; Divakar et al. 2005, 2006; Elix et al. 2009; Buschbom and Mueller 2006; Nelsen and Gargas 2008; Nelsen et al. 2008; Lendemer et al. 2015; Ossowska et al. 2018). Moreover, the production of certain secondary metabolites might be triggered by the environment (e.g. climate, edaphic factors, associated symbionts) (Stribille et al. 2016; Lutsak et al. 2017).

The genus *Micarea* Fr., comprising ca. 100 species, is a cosmopolitan group of lichens which has been extensively studied in Europe by Coppins (1983) and Czarnota (2007). Phenotypical diversity in this group of lichens is not limited to morphological characters, but also includes diverse secondary metabolites and, hence, chemical variation plays an important role in their taxonomy. Recently, *Micarea* has received more attention and numerous species have been described based on anatomical, morphological and chemical characters and, in some cases, also molecular data (e.g. Czarnota and Guzow-Krzemińska 2010; Svensson and Thor 2011; Cáceres et al. 2013; Aptroot and Cáceres 2014; Brand et al. 2014; van den Boom and Ertz 2014; Guzow-Krzemińska et al. 2016; McCarthy and Elix 2016; van den Boom et al. 2017; Kantvilas 2018; Launis et al. 2019a, b).

Species delimitation within *Micarea* has been especially difficult in the *M. prasina* group which was first characterised by Coppins (1983) based on morphological, anatomical and chemical features. At first, the group included *M. prasina* Fr., the type species of the genus, as well as *M. hedlundii* Coppins and *M. levicula* (Nyl.). Coppins (1983) also suggested that *M. misella* (Nyl.) Hedl., *M. melanobola* (Nyl.) Coppins and *M. synotheoides* (Nyl.) Coppins might be related to *M. prasina*; however, as supported by recent molecular studies, *M. misella* and *M. synotheoides* do not belong to this group (Czarnota and Guzow-Krzemińska 2010; van den Boom et al. 2017; Launis et al. 2019a). *Micarea melanobola* was synonymised with *M. prasina* (Czarnota 2007), but recently found to be a distinct species (Launis et al. 2019b).
Coppins (1983) treated *M. prasina* in a wide sense including specimens with variable morphology and chemistry, which later were distinguished as distinct species, i.e. *M. micrococca* (Körb.) Gams ex Coppins for the methoxymicareic acid chemotype, *M. prasina* s.str. for the micareic acid chemotype and *M. subviridescens* (Nyl.) Hedl. for the prasinic acid chemotype (Coppins 2009). Further studies showed even higher chemical variation within the *M. prasina* group and *M. xanthonica* Coppins & Tønsberg with xanthones (thiophanic acid with satellites) and *M. viridileprosa* Coppins & van den Boom containing gyrophoric acid (Coppins and Tønsberg 2001; van den Boom and Coppins 2001) were recognised. Later, more new species were discovered, such as *M. nowakii* Czarnota & Coppins, *M. soralifera* Guzow-Krzemińska, Czarnota, Łubek & Kukwa and *M. meridionalis* van den Boom, Brand, Coppins & Sérus. producing micareic acid. Moreover, *M. byssacea* (Th. Fr.) Czarnota, Guzow-Krzemińska & Coppins, *M. czarnotae* Launis, van den Boom, Sérusiaux & Mylly, *M. laeta* Launis & Mylly, *M. microareolata* Launis, Pykälä & Mylly and *M. pseudomicrococca* Launis & Mylly containing methoxymicareic acid, as well as *M. tomentosa* Czarnota & Coppins and *M. herbarum* Brand, Coppins, Sérus. & van den Boom lacking any lichen substances detectable by thin layer chromatography (TLC), were added to this group (Czarnota 2007; Czarnota and Guzow-Krzemińska 2010; Guzow-Krzemińska et al. 2016; van den Boom et al. 2017; Launis et al. 2019a). These species were described, based on phenotypic characters and molecular data. Recently crystalline granules studied in polarised light were also presented as a novel species-level character for *Micarea* spp. (Launis et al. 2019b). During the preparation of the final version of this paper, several other species within *M. prasina* group have also been described (Launis et al. 2019b), but those have not been included in our analyses.

Moreover, several other new species likely to belong to the *M. prasina* group have been described. Two such species were described from Réunion, i.e. *M. melanoprasina* Brand, van den Boom & Sérus. producing a substance probably related to micareic acid and *M. hyalinoxanthonica* Brand, van den Boom & Sérus. containing a xanthone (probably thiophanic acid) (Brand et al. 2014). Furthermore, one species was described from Brazil, i.e. *M. corallothallina* M. Cáceres, D. A. Mota & Aptroot lacking any lichen substances (Cáceres et al. 2013) and yet another from South Australia, i.e. *M. kartana* Kantvilas & Coppins containing gyrophoric acid (Kantvilas 2018). However, the phylogenetic relationships of these species are still uncertain due to the lack of molecular data. These studies also show that phenotypical variation within the *M. prasina* group may still be underestimated and requires further studies.

This study is based on specimens from years of collection in Belgium, France, Germany, Portugal (including Madeira and the Azores), Poland, Romania and the Netherlands. Using these collections for a phylogenetic reconstruction, six new species, belonging to the *M. prasina* group, are described by means of morphological, anatomical, chemical and molecular data. Moreover, by reconstructing ancestral states, the evolution of diagnostic traits, that are traditionally used for the taxonomic classification of species belonging to the *M. prasina* group, were investigated. Infra-group divisions and
the role of secondary metabolites for species taxonomy within the *M. prasina* group were also evaluated. The production of selected secondary metabolites is further analysed (i.e. gyrophoric, methoxymicareic, micareic, prasinic and thiophanic acids), as well as the presence of several pigments in the apothecia commonly used in lichen taxonomy (Meyer and Printzen 2000) (i.e. Sedifolia-grey, Elachista-brown, Cinereorufa-green and Superba-brown). Ancestral state reconstruction of morphological characters i.e. goniocysts, isidia and soredia is also performed.

Materials and methods

Materials

Material of the new species, including samples used for DNA analyses, is deposited in KTC, UGDA and LG, with additional specimens stored in private herbaria of van den Boom and Brand.

Morphology and chemistry

Apothecial sections and squashed thallus preparations were studied in tap water with or without the addition of C (commercial bleach) and K (water solution of potassium hydroxide) (Orange et al. 2001). Dimensions of all anatomical features were measured in water. Thin layer chromatography (TLC) was used for the determination of lichen substances according to the standard methods (Orange et al. 2001). All samples were studied in solvent C. The nomenclature of apothecial pigments follows Meyer and Printzen (2000). Crystalline granules were studied in polarised light (see Launis et al. 2019a, b).

Taxon sampling for DNA

A total of 63 new sequences were generated for this study (Suppl. material 2, Table S1). Additional sequences of mtSSU, *Mcm7* and ITS rDNA from specimens of the *Micarea prasina* group were obtained from GenBank (Suppl. material 2, Table S1). Moreover, sequences of the above-mentioned markers from specimens of *M. adnata* Coppins, *M. elachista* (Körb.) Coppins & R. Sant., *M. globulosella* (Nyl.) Coppins, *M. misella*, *M. peliocarpa* (Anzi) Coppins & R. Sant., *M. pycnidiophora* Coppins & P. James, *M. stipitata* Coppins & P. James and *M. synotheoides* (Suppl. material 2, Table S1), which were shown to be outside the group (e.g. Launis et al. 2019a) were also obtained from GenBank. In total, sequences of 119 specimens were subjected to analyses. *Micarea peliocarpa* (Anzi) Coppins & R. Sant. was chosen as the outgroup, based on the study of Launis et al. (2019a).
DNA extraction, PCR amplification and DNA sequencing

DNA was extracted directly from pieces of thalli using a modified CTAB method (Guzow-Krzemińska and Węgrzyn 2000). DNA extracts were used for PCR amplification and 25 μl of PCR mix contained 1U of Taq polymerase (Thermo Scientific) or 1U of DreamTaq polymerase (Thermo Scientific) and appropriate buffer, 0.2 mM of each of the four dNTPs, 0.5 μM of each primer and 10–50 ng of genomic DNA. PCR amplifications were performed using a Mastercycler (Eppendorf).

Amplifications of mtSSU rDNA, employing mrSSU1 and mrSSU3R primers (Zoller et al. 1999), were performed using the following conditions: initial denaturation at 95 °C for 10 min followed by 6 cycles at 95 °C for 1 min, 62 °C for 1 min and 72 °C for 105 s and then 30 cycles at 95 °C for 1 min, 56 °C for 1 min and 72 °C for 1 min, with a final extension step at 72 °C for 10 min.

Amplifications of the Mcm7 region employing Mcm7_AL1r and Mcm7_AL2f primers (Launis et al. 2019a) were performed using the following conditions: initial denaturation at 94 °C for 5 min, followed by 38 cycles at 94 °C for 45 s (denaturation), 56 °C for 50 s (annealing) and 72 °C for 1 min (extension), with the final extension at 72 °C for 5 min.

Amplifications of the ITS region employed the following primer pairs: ITS1F (Gardes and Bruns 1993) and ITS4 (White et al. 1990) or ITS 5 and ITS4A (Kroken and Taylor 2001) or nu-SSU-1626-5’ (Gargas and DePriest 1996) and nu-LSU-136-3’ (Döring et al. 2000). The following PCR cycling parameters were applied to amplify nuclear ITS region: an initial denaturation at 94 °C for 3 min, followed by 35 cycles at 94 °C for 30 s, 54 °C for 30 s (for ITS1F and ITS4 or nu-SSU-1626-5’ and nu-LSU-136-3’ primers) or 62 °C for 30 s (for ITS5 and ITS4A primers) and 72 °C for 1 min, with a final extension at 72 °C for 7 min. PCR products were visualised on agarose gels in order to determine DNA fragment lengths. Subsequently, PCR products were purified using Clean-up Concentrator (A&A Biotechnology) following the manufacturer’s protocol or 10 μl of PCR products were treated with a mixture of 20 units of Exonuclease I and 2 units of FastAP Thermosensitive Alkaline Phosphatase enzymes (Thermo Scientific) to remove unincorporated primers and nucleotides. Treatment with those enzymes was carried out at 37 °C for 15 min, followed by incubation at 85 °C for 15 min to completely inactivate both enzymes. Sequencing of each PCR product was performed in Macrogen (www.macrogen.com) using the PCR primers.

Sequence alignment and phylogenetic analysis

The newly generated sequences (GenBank accession numbers are given in Suppl. material 2, Table S1) were compared to the sequences available in the GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/) using BLASTn search (Altschul et al. 1990) in order to confirm their identity. The sequences of each marker were aligned with se-
quences of selected representatives of the genus *Micarea* obtained from GenBank (list of specimens and GenBank Accession Numbers are given in Suppl. material 2, Table S1). Alignment was performed using Seaview software (Galtier et al. 1996; Gouy et al. 2010) employing the Muscle option, followed by manual optimisation. Portions of the alignment with ambiguous positions that might not have been homologous and terminal ends were excluded from the analyses. As the gene trees for each marker did not show any strongly supported conflicts, three datasets were combined into a concatenated matrix in the Seaview software (Galtier et al. 1996; Gouy et al. 2010) and the final alignment was deposited in Treebase (Accession No. S24731).

Partition Finder 2 (Lanfear et al. 2016), implemented at CIPRES Science Gateway (Miller et al. 2010), was used to determine the best substitution model for each partition under Akaike Information Criterion (AIC) and greedy search algorithm (Lanfear et al. 2012). The following models were found: TVM+I+G+X for mtSSU, TRN+I+G+X for *Mcm7* and GTR+I+G+X for ITS regions.

The data were analysed using a Bayesian approach (MCMC) in MrBayes 3.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) and best models determined by Partition Finder 2 were employed. Two parallel runs were performed, each using four independent chains and 10 million generations, sampling trees every 1,000th generation. Tracer v. 1.5 (Rambaut and Drummond 2007) was used to ensure that stationarity was reached by plotting the log-likelihood values of the sample points against generation time. Posterior probabilities (PP) were determined by calculating a majority-rule consensus tree generated from the 15,002 post-burn-in trees of the 20,002 trees sampled by the two MCMC runs, using the sumt option of MrBayes.

Maximum likelihood analyses were performed using RaxML HPC v.8 on XSEDE (Stamatakis 2014) under the GTRGAMMAI model on CIPRES Science Gateway (Miller et al. 2010). Rapid bootstrap analyses were performed with 1,000 bootstrap replicates (BS). The RAXML tree did not contradict the Bayesian tree topology for the strongly supported branches. Therefore, only the maximum likelihood tree is shown with the posterior probabilities (PP) of the Bayesian analysis and the bootstrap support values added near the internal branches. BS ≥ 70 and PP ≥ 0.95 were considered significant. Phylogenetic trees were visualised using FigTree v. 1.4.2, in which the clades for previously described taxa are collapsed (Rambaut 2012).

Ancestral character state reconstruction

Morphological and chemical characters from taxa of the *Micarea prasina* group and selected outgroup taxa were obtained from herbarium material and complemented with data from literature. In order to reduce the number of missing data in our dataset, we did not include *M. pycnidiophora*, *M. stipitata* and *M. synotheoides*, which do not belong to the *M. prasina* group and for which mtSSU sequences were only available and *Micarea* sp. lineage A, which represents a single specimen that has not been formally described. The following secondary metabolites were analysed: gyrophoric,
Understanding the evolution of phenotypical characters in the *Micarea prasina* ... methoxymicareic, micareic, prasinic and thiophanic acids. The presence of apothecial pigmentation was also analysed and the following pigments were noted: Sedifolia-grey, Elachista-brown, Cinereorufa-green and Superba-brown. The presence of selected morphological characters was also analysed, i.e. goniocysts, isidia and soredia. The morphological and chemical characters were coded as a multistate data matrix (Suppl. material 2, Table S2) and a binary dataset (Suppl. material 2, Table S3) and subjected to ancestral character state reconstruction using the parsimony model with characters treated as unordered and the likelihood method (Mk1 model) in Mesquite v.3.5 (Maddison and Maddison 2018). Ancestral state reconstructions were based on the topology of the consensus tree obtained using Mr Bayes 3.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003).

Results

The final DNA alignment consisted of sequences obtained from 119 individual specimens and three markers, i.e. mtSSU, *Mcm7* and ITS rDNA, with a total of 1784 characters. Since the topologies from the maximum likelihood and Bayesian analyses did not show any strongly supported conflict, the maximum likelihood tree (RaxML Optimisation Likelihood was -14426.795913) is presented in Figure 1 with added posteriori probabilities from Bayesian analysis (Harmonic mean was -13101.16). In order to reduce the size of the tree, highly supported clades were collapsed for previously described taxa.

The phylogenetic reconstruction (Fig. 1) shows that the *M. prasina* group is highly supported and monophyletic (100 BS and 1 PP) and it agrees with previous phylogenies based on a mtSSU marker (e.g. Czarnota and Guzow-Krzemińska 2010; Guzow-Krzemińska et al. 2016) or three loci (Launis et al. 2019a). Two main lineages are further distinguished, i.e. the *M. micrococca* clade and the *M. prasina* clade with sequences of *M. tomentosa* forming a highly supported lineage, basal to the two clades (Fig. 1). Moreover, *M. hedlundii* and *M. xanthonica* are closely related (82 BS) and sister to the *M. micrococca* clade (Fig. 1).

The *Micarea micrococca* clade in Figure 1 (99 BS and 1 PP) consists mostly of species containing methoxymicareic acid. This group accommodates the newly described species *M. microsorediata*, *M. nigra* and *M. pauli*, as well as *M. byssacea*, *M. czarnotae*, *M. laeta*, *M. levicula*, *M. microareolata*, *M. micrococca*, *M. pseudomicrococca*, *M. viridileprosa* and an undescribed *Micarea* sp. (lineage A in Launis et al. 2019a). The closest relatives to *M. pauli* are *M. viridileprosa* and *M. levicula* (99 BS and 1 PP), while the relationships of *M. micrococca*, *M. microsorediata* and *M. nigra* remain unresolved.

The *Micarea prasina* clade (93 BS and 1 PP) consists mostly of species containing micareic acid and accommodates the newly described *M. aeruginoprasina*, *M. azorica* and *M. isidioprasina*, as well as *M. berbarum*, *M. meridionalis*, *M. nowakii*, *M. prasina*, *M. soralifera* and *M. subviridescens*. Several highly supported lineages are further distinguished within this clade. The newly described *M. azorica* forms a highly
Figure 1. Maximum likelihood tree based on three-loci dataset. Bootstrap supports ≥ 70 for ML and posterior probabilities ≥ 0.95 (second value) for Bayesian methods are indicated near the branches. The highly supported clades with previously described species represented by numerous sequences are collapsed. Herbarium collection numbers for newly sequenced specimens precede the names of species and type specimens are marked. Newly described species are marked in **bold**.

Micarea micrococca (orange) and *M. prasina* (blue) clades are indicated with shading. Ancestral states for selected characters reconstructed based on binary or multistate datasets using maximum parsimony (MP) or maximum likelihood methods (ML) are marked for the main clades: *M. prasina* group, *M. micrococca* clade and *M. prasina* clade using red (= present/significant) and white (= absent/insignificant) boxes or ? (= uncertain).
Understanding the evolution of phenotypical characters in the *Micarea prasina* ...

supported group with the type species of *M. prasina* s.str. (100 BS and 1 PP), whereas specimens of *M. prasina* form a well-supported group (87/0.99). Furthermore, they are sister to *M. nowakii* and *M. herbarum*, which are the only species within the *M. prasina* group developing almost entirely an endosubstratal thallus with only a few areoles. With the exception of *M. herbarum* and *M. nowakii*, this lineage (97 BS and 1 PP) also includes a sequence which seems to be different from both species (EF453665) and may indicate the existence of an undescribed taxon. Specimens of the newly described *M. isidioprasina* form a highly supported group (100 BS and 1 PP) with a single sequence from North America originally assigned to *M. prasina* (AY756452; see Andersen and Ekman 2005), but genetically more similar to *M. isidioprasina*. This sample is also morphologically similar to *M. isidioprasina* due to the isidioid thallus and pale apothecia (Czarnota and Guzow-Krzemińska 2010) and, therefore, is named here as *M. cf. isidioprasina* in Figure 1. *Micarea meridionalis, M. soralifera* and *M. subviridescens* form a highly supported group (80 BS and 1PP).

To investigate the diagnostic traits traditionally used for the taxonomic classification within the *M. prasina* group, we focused both on the *M. micrococca* and the *M. prasina* clades separately and the whole *M. prasina* together (Fig. 1) and employed both maximum parsimony and Mk1 models, based on the multistate and binary datasets (Suppl. material 2, Tables S2–S3 and Suppl. material 1, Figs S1–S15). The likelihoods for each set of characters are given in Suppl. material 2, Table S4. Our analyses found that the presence of methoxymicareic acid is restricted to the *M. micrococca* clade that accommodates several species containing this substance. However, *M. levicula* and *M. viridileprosa* are exceptions by producing gyrophoric acid (Suppl. material 1, Fig. S13). The ancestral state reconstructions show that the presence of methoxymicareic acid is the most parsimonious and the most likely ancestral state for the *M. micrococca* clade (Fig. 1, Tables 1–3 and Suppl. material 1, Figs S3, S13). On the other hand, micareic acid is the ancestral state for *M. prasina* clade in all analyses (Fig. 1, Tables 1–3, Suppl. material 1, Figs S2, S13). However, the reconstructions of ancestral state for the whole *M. prasina* group show the lack of any secondary metabolites in their ancestors in most of the analyses. However, the maximum likelihood analysis, based on the multistate dataset, suggests uncertainty as both the lack of any secondary metabolites and the presence of micareic acid are more likely than other states (Fig. 1, Tables 1–3 and Suppl. material 1, Figs S2, S13).

The evolution of pigments, present in the apothecia, was also analysed, but some of the results remain uncertain in our analyses. Parsimony reconstructions, based on the binary dataset, suggest the lack of any pigment in the apothecia, while other analyses do not exclude the possibility that Sedifolia-grey pigment was present in the ancestor of *M. prasina* group (Fig. 1, Tables 1–3, Suppl. material 1, Figs S9–S12, S14). Moreover, the results obtained for the *M. micrococca* clade, using two different methods, are not fully consistent. Maximum parsimony analyses suggest a lack of pigments in their ancestors therefore resulting in multiple gains of Sedifolia-grey pigment and a single gain of Cinereorufa-green pigments in this lineage. However, maximum likelihood analyses show that both the lack of pigments in apothecia and the presence of Sedifolia-grey pigment may have occurred in their ancestor (Fig. 1, Tables 1–3, Suppl.
Table 1. Most parsimonious ancestral character states for selected subclades of the *M. prasina* group. The results that differ between maximum likelihood and maximum parsimony methods for each dataset are marked with *.

<table>
<thead>
<tr>
<th>Characters</th>
<th>M. prasina group</th>
<th>M. micrococcata clade</th>
<th>M. prasina clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological characters</td>
<td>goniocysts</td>
<td>goniocysts</td>
<td>goniocysts</td>
</tr>
<tr>
<td>Secondary metabolites</td>
<td>lack of any substance*</td>
<td>methoxymicareic acid</td>
<td>micareic acid</td>
</tr>
<tr>
<td>Presence of apothecial pigments</td>
<td>uncertain (lack of pigments OR Sedifolia-grey)</td>
<td>lack of pigments or unknown*</td>
<td>Sedifolia-grey</td>
</tr>
<tr>
<td>Goniocysts</td>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Isidia</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Soredia</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Gyrophoric acid</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Methoxymicareic acid</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Micareic acid</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Prasinic acid</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Thiophanic acid</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Cinereorufa-green</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Sedifolia-grey</td>
<td>absent*</td>
<td>absent*</td>
<td>present*</td>
</tr>
<tr>
<td>Superba-brown</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
</tbody>
</table>

Table 2. Most likely ancestral character states in multistate analysis and their likelihoods for selected subclades of *M. prasina* group. Values for the most likely states are given in **bold**. The results that differ between maximum likelihood and maximum parsimony methods are marked with *.

<table>
<thead>
<tr>
<th>Characters</th>
<th>State</th>
<th>M. prasina group</th>
<th>M. micrococcata clade</th>
<th>M. prasina clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological characters</td>
<td>other or unknown</td>
<td>0.03672198</td>
<td>0.00009398</td>
<td>0.00056073</td>
</tr>
<tr>
<td></td>
<td>goniocysts</td>
<td>0.95494636</td>
<td>0.99972253</td>
<td>0.99844142</td>
</tr>
<tr>
<td></td>
<td>soredia</td>
<td>0.00411906</td>
<td>0.00009117</td>
<td>0.00008044</td>
</tr>
<tr>
<td></td>
<td>isidia</td>
<td>0.00421261</td>
<td>0.00009232</td>
<td>0.00091742</td>
</tr>
<tr>
<td>Secondary metabolites</td>
<td>lack of any substances</td>
<td>0.78962855</td>
<td>0.05876201</td>
<td>0.00749498</td>
</tr>
<tr>
<td></td>
<td>prasinic acid</td>
<td>0.01031084</td>
<td>0.00358938</td>
<td>0.00092042</td>
</tr>
<tr>
<td></td>
<td>micareic acid</td>
<td>0.117972*</td>
<td>0.01320396</td>
<td>0.98892236</td>
</tr>
<tr>
<td></td>
<td>methoxymicareic acid</td>
<td>0.04762568</td>
<td>0.90867382</td>
<td>0.00176536</td>
</tr>
<tr>
<td></td>
<td>gyrophoric acid</td>
<td>0.01528514</td>
<td>0.00349062</td>
<td>0.00050881</td>
</tr>
<tr>
<td></td>
<td>thiophanic acid</td>
<td>0.01917779</td>
<td>0.01248021</td>
<td>0.00078808</td>
</tr>
<tr>
<td>Presence of apothecial pigments</td>
<td>lack of pigment or unknown</td>
<td>0.39914052</td>
<td>0.73149364</td>
<td>0.03357191</td>
</tr>
<tr>
<td></td>
<td>Sedifolia-grey</td>
<td>0.44528926</td>
<td>0.21519349*</td>
<td>0.95640101</td>
</tr>
<tr>
<td></td>
<td>Cinereorufa-green</td>
<td>0.04803049</td>
<td>0.02251569</td>
<td>0.00295747</td>
</tr>
<tr>
<td></td>
<td>Elachista-brown</td>
<td>0.05745307</td>
<td>0.01546335</td>
<td>0.00302814</td>
</tr>
<tr>
<td></td>
<td>Superba-brown</td>
<td>0.05008665</td>
<td>0.01533383</td>
<td>0.00406148</td>
</tr>
</tbody>
</table>

In case of the *M. prasina* clade, maximum likelihood analyses, based on the binary dataset, give uncertain results as both presence and absence of Sedifolia-grey are equally likely; however parsimony analysis for the binary dataset and both analyses for the multistate dataset show the presence of Sedifolia-grey pigment in apothecia of their ancestor.

Morphological characters, i.e. the presence of goniocysts observed in many species of the *M. prasina* group, soredia observed in *M. microsorediata*, *M. sonalifera* and *M. viridileprosa* and isidia present in *M. aeruginoprasina*, *M. isidioprasina*, *M. nigra* and *M. pauli* were also evaluated (Fig. 1, Tables 1–3, Suppl. material 1 Figs S9–S12, S14). It was found that the presence of goniocysts is the most parsimonious and the most likely state for the ancestor of the *M. prasina* group in all analyses (Fig. 1, Tables 1–3 and...
Understanding the evolution of phenotypical characters in the *Micarea prasina* ... Suppl. material 1, Figs S6, S15). However, this character has been lost in the lineage represented by *M. herbarum* and *M. nowakii* lacking goniocysts (Fig. 1, Tables 1–3 and Suppl. material 1, Figs S6, S15). Isidia and soredia evolved independently at multiple times in the *M. prasina* group resulting in the formation of isidiate thalli in the studied species, i.e. *M. aeruginoprasina*, *M. isidioprasina*, *M. nigra* and *M. pauli* or sorediate thalli in *M. microsorediata*, *M. soralifera* and *M. viridileprosa* (Fig. 1, Tables 1–3 and Suppl. material 1, Figs S7, S8, S15).

Discussion

Challenges in species delimitation within *M. prasina* group were already mentioned by Coppins (1983) and other authors (e.g. Czarnota 2007; Czarnota and Guzow-Krzemińska 2010; van den Boom et al. 2017; Launis et al. 2019a, b). Since Coppins (1983), who treated *M. prasina* in a wide sense with morphologically variable chemical races which were further recognised as distinct species, the introduction of molecular data revealed even greater variability within this group and numerous other species were described based on phenotypic and molecular data (e.g. Czarnota and Guzow-Krzemińska 2010; Guzow-Krzemińska et al. 2016; van den Boom et al. 2017; Launis et al. 2019a, b). Many species within this group have goniocystoid thallus, micareoid

Table 3. Most likely ancestral character states based on analysis of binary dataset and their likelihoods for selected subclades of *M. prasina* group. Values for the most likely states are given in **bold**. The results that differ between maximum likelihood and maximum parsimony methods are marked with *

<table>
<thead>
<tr>
<th>Characters</th>
<th>State</th>
<th>M. prasina group</th>
<th>M. microcoeca clade</th>
<th>M. prasina clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goniocysts</td>
<td>Present</td>
<td>0.85180046</td>
<td>0.99078786</td>
<td>0.93297055</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.14819954</td>
<td>0.00922124</td>
<td>0.06702945</td>
</tr>
<tr>
<td>Isidia</td>
<td>Present</td>
<td>0.00354307</td>
<td>0.00079891</td>
<td>0.01513079</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99645693</td>
<td>0.99920109</td>
<td>0.98486921</td>
</tr>
<tr>
<td>Soredia</td>
<td>Present</td>
<td>0.00099039</td>
<td>0.00020816</td>
<td>0.00004518</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99900961</td>
<td>0.99979184</td>
<td>0.99995482</td>
</tr>
<tr>
<td>Gyrophoric acid</td>
<td>Present</td>
<td>0.00499412</td>
<td>0.00058456</td>
<td>0.00011577</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99500588</td>
<td>0.99941544</td>
<td>0.99988423</td>
</tr>
<tr>
<td>Methoxy micareic acid</td>
<td>Present</td>
<td>0.0023099</td>
<td>0.85313833</td>
<td>0.00010697</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.9986901</td>
<td>0.14686167</td>
<td>0.99989303</td>
</tr>
<tr>
<td>Micareic acid</td>
<td>Present</td>
<td>0.02913989</td>
<td>0.00055219</td>
<td>0.98044653</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.97086011</td>
<td>0.9994781</td>
<td>0.01955347</td>
</tr>
<tr>
<td>Prasinic acid</td>
<td>Present</td>
<td>0.00002438</td>
<td>0.0000051</td>
<td>0.00000103</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99997562</td>
<td>0.9999949</td>
<td>0.99999987</td>
</tr>
<tr>
<td>Thiophanic acid</td>
<td>Present</td>
<td>0.0000248</td>
<td>0.00000102</td>
<td>0.00001393</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.9999752</td>
<td>0.99999898</td>
<td>0.99998607</td>
</tr>
<tr>
<td>Cinereorufa-green</td>
<td>Present</td>
<td>0.00002408</td>
<td>0.0000016</td>
<td>0.00000099</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99997592</td>
<td>0.9999984</td>
<td>0.99999901</td>
</tr>
<tr>
<td>Elachista-brown</td>
<td>Present</td>
<td>0.00002503</td>
<td>0.0000052</td>
<td>0.00000102</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99997497</td>
<td>0.9999948</td>
<td>0.99999988</td>
</tr>
<tr>
<td>Sedifolia-grey</td>
<td>Present</td>
<td>0.49999914*</td>
<td>0.49994168*</td>
<td>0.50492012</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.50000086</td>
<td>0.50005832</td>
<td>0.49507988*</td>
</tr>
<tr>
<td>Superba-brown</td>
<td>Present</td>
<td>0.00050986</td>
<td>0.00004725</td>
<td>0.00000944</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>0.99949014</td>
<td>0.99995275</td>
<td>0.99999056</td>
</tr>
</tbody>
</table>
photobiont and Sedifolia-grey pigment in the apothecia, however a high variation in secondary metabolites production, which are treated as diagnostic characters, is observed within the *M. prasina* group. In the phylogenetic tree (Fig. 1) two main clades were distinguished; *M. micrococca* clade which groups mainly taxa containing methoxymicareic acid and *M. prasina* clade which mainly comprises species containing micareic acid. However, there are some exceptions as other substances may be produced by selected representatives of the group, e.g. gyrophoric, prasinic or thiophanic acids or some taxa do not produce any secondary metabolites. Within this group, numerous phenotypic differences are applied to distinguish species, e.g. size and shape of apothecia, size and type of paraphyses, size of ascospores, thallus structure including the vegetative diaspores and presence of pigments. Recently introduced crystalline granules showed to be valuable traits in the taxonomy of the group (Launis et al. 2019a, b). However, the application of molecular data seems to be essential to support delimitation of species within this group (e.g. Launis et al. 2019a, b; this study).

The evolution of new morphological characters involves multiple subsequent evolutionary steps. In our study, ancestral state reconstructions showed that the presence of goniocysts is the most parsimonious and most likely state for the ancestor of the *M. prasina* group (Fig. 1, Tables 1–3 and Suppl. material 1, Figs S6, S15). However, the development of goniocysts was apparently lost in some lineages during evolution as several species within the group do not develop such structures but produce other vegetative diaspores (soredia and/or isidia). Whether the structures from which soredia and isidia develop are goniocysts or areoles is not easy to assign. Based on literature, goniocysts are more or less round vegetative diaspores (therefore similar to soredia) and are produced from the endosubstratal parts of thalli multiple times to form a layer as in *M. prasina* s.str. (Coppins 1983; Barton and Lendemer 2014). As the thallus parts developing isidioid or soredioid diaspores did not resemble goniocysts as defined in previous works, we determined all these structures as areoles, as already proposed by Guzow-Krzemińska et al. (2016). Although soredia in the newly described *M. microsorediata* and recently recognised *M. soralifera* (Guzow-Krzemińska et al. 2016) may resemble goniocysts, they are at least at the beginning produced in delimited soralia over the thallus and differ in the structure and colour from the non-sorediate parts of thalli.

In our study, ancestral state reconstructions suggest that isidia evolved independently multiple times in this group of lichens resulting in the formation of almost entirely isidiate thalli in four species, i.e. *M. aeruginoprasina*, *M. isidioprasina*, *M. nigra* and *M. pauli* (Suppl. material 1, Figs S6–S8, S15). Prieto et al. (2013) suggested that losing an existing character could be expected to occur much more rapidly and in fewer steps than gaining a new character. A similar case is represented by sorediate species and the production of soredia developed in unrelated lineages. Only one lineage lost the ability to produce goniocysts or any other lichenised vegetative diaspores (i.e. *M. herbarum* and *M. nowakii*). Species belonging to this clade develop thin episubstratal thalli with few areoles or merely an endosubstratal layer (Czarnota 2007; van den Boom et al. 2017). The acquisition of different thallus organisation may have resulted from adaptation to drier ecological niches. Many collections of the species from this clade were found in
drier and open habitats (Czarnota 2007; van den Boom et al. 2017). In comparison, taxa developing distinct episubstratal thalli seem to be confined to more humid and shaded localities (Czarnota 2007). However, this hypothesis needs further ecological studies.

Secondary metabolites have been extensively used in the chemotaxonomy of lichens. The Micarea prasina group shows a high variation in chemistry even in closely related species (e.g. Czarnota 2007; Czarnota and Guzow-Krzemińska 2010). Species belonging to this group produce gyrophoric, micareic, methoxymicareic and prasinic acids, as well as xanthones (Elix et al. 1984; Coppins and Tønsberg 2001; van den Boom and Coppins 2001). Gyrophoric acid is the simplest tri depside comprising three orsellinic units which originate from condensation of one acetyl-CoA and three malonyl-CoA units as shown by Mosbach (1964). Although gyrophoric acid is commonly produced in the genus Micarea (e.g. Coppins 1983; Czarnota 2007), in the M. prasina group, it is only present in M. levicula and M. viridileprosa and the still unsequenced M. kartana (Kantvilas 2018). Both M. levicula and M. viridileprosa belong to the M. micrococca clade which is otherwise characterised by the production of methoxymicareic acid.

Micareic and methoxymicareic acids are the most common secondary metabolites produced by species of the M. prasina group. They are structurally related diphenyl ethers (‘pseudodepsidones’) (Huneck and Yoshimura 1996), but they have a distinctly different substitution pattern and probably also biosynthetic origin (Elix et al. 1984). As numerous diphenyl ethers co-occur with structurally related depsidones, it was hypothesised that they are biosynthesis precursors or catabolites of similarly substituted depsidones (Huneck and Yoshimura 1996). In the work on the secondary metabolites of chemical races of the M. prasina s.l., Elix et al. (1984) suggested that enzymatically induced Smiles rearrangement of para-depside prasinic acid might lead to the formation of micareic acid, a very likely biosynthetic pathway for this metabolite. They also pointed out that other rearrangements, such as nuclear hydroxylation followed by O-methylation, are necessary for the formation of methoxymicareic acid, but the actual order of those processes remain unknown. However, the chemical races of M. prasina s.l. they studied actually represent several species which were later distinguished as M. micrococca (methoxymicareic acid chemotype), M. prasina s.str. (micareic acid chemotype) and M. subviridescens (prasinic acid chemotype) (Coppins 2009); furthermore, other new species have also been recognised within the M. prasina group. Both micareic and methoxymicareic acids are produced by several species within the M. prasina group, while prasinic acid has only been reported from M. subviridescens. So far, no co-occurrence of any of those substances has been observed in any species within the M. prasina group.

Reconstructions of the ancestral state for the whole M. prasina group suggest that the most recent common ancestor did not produce any secondary metabolites. This may suggest that the production of a wide range of secondary metabolites in this group of lichens could have resulted from independent gains of ability to biosynthesise various substances during evolution. The scenario, in which the ability to produce micareic acid in the ancestor of M. prasina clade or methoxymicareic acid in the ancestor of M. micrococca clade being gained only once during evolution, seems to be reasonable since losing an existing character could be expected to occur more rapidly and in fewer
steps than gaining a new character (e.g. Prieto et al. 2013). Those evolutionary events could have been followed with the loss of those traits in some lineages and successive independent gains of ability to biosynthesise prasinic (M. subviridescens) or gyrophoric acids (M. leviaca and M. viridileprosa) in some species.

To summarise, our study showed that phenotypical variation within the Micarea prasina group has been previously underestimated and, based on field work and laboratory studies, six new species within this group are described (see Taxonomy).

Taxonomy

Micarea aeruginoprasina van den Boom, Guzow-Krzemińska, Brand & Sérus., sp. nov.
MycoBank No.: MB 831821
Fig. 2A

Diagnosis. Species characterised by inconspicuous, pale brownish to moderately brownish, isidiate thallus, branched to coralloid isidia, emarginate, adnate to slightly convex apothecia measuring 0.1–0.5 mm in diam., which are pale cream to pale brown or aeruginose with pigment (Sedifolia-grey, K+ violet, C+ violet) present in hypothecium, (0–)1-septate ascospores measuring 9–14 × 4.5–5.5 μm and the production of micareic acid.

Type. PORTUGAL. Azores, Terceira, NW of Angra do Heroismo, W of Pico Gordo, Mistério dos Negros (N), trail from Lagoa do Negro to the West, 550 m alt., 38°44.15’N, 27°16.30’W, ± damp Juniperus brevifolia forest, with some young Vaccinium cylindraceum, on Juniperus brevifolia, 28 June 2014, P. & B. van den Boom 51445 (holotype LG; isotypes UGDA, hb v.d. Boom, mtSSU GenBank accession number: MK562024, Mmem7 GenBank accession number: MN105888).

Description. Thallus indeterminate, inconspicuous, thin, endosubstratal to epischistral in non-isidiate parts as a thin film over the substrate or minutely granular, pale to moderately brown, isidiate; prothallus not visible; granules vertically proliferating to form isidia; isidia branched to coralloid, crowded or separated, up to 250 μm tall and 25 μm wide, with a distinct and complete hyphal layer; apothecia abundant, adnate to slightly convex, emarginate, rounded to slightly irregular, pale cream to pale brown or aeruginose, often different colours in a single apothecium, 0.1–0.5 mm in diam.; excipulum sometimes paler, instinct; hymenium 40–50 μm high, hyaline; hypothecium hyaline to pale aeruginose brownish (Sedifolia-grey), K+ violet, C+ violet; paraphyses, sparse, branched, 1.0–1.2(–1.5) μm wide, tips not widened and not pigmented; asci cylindrical to clavate, 35–40 × 11–14 μm, 8-spored; ascospores ellipsoidal to ovoid, (0–)1-septate, 9–14 × 4.5–5.5 μm; pycnidia not observed; crystalline granules (studied in polarised light) visible in hypothecium and in thallus, soluble in K.

Photobiont micareoid, cells thin walled, 6–9 μm in diam., clustered in compact groups.

Chemistry. Micareic acid detected by TLC. Sedifolia-grey in apothecia (hymenium), its presence sometimes indistinct.
Habitat and distribution. In the type locality *Micarea aeruginoprasina* grows abundantly on trunks of *Juniperus brevifolia*, in a subnatural degraded forest, dominated by *J. brevifolia* shrubs and trees. In other localities, it was found on *Cryptomeria* and *Erica* trunks, also in forested areas.

The new species is only known from the island Terceira in the Azores, where it is known from several localities.

Etymology. The epithet refers to the often aeruginose colour of the apothecia and the resemblance in secondary chemistry to *M. prasina*.

Additional specimens examined. PORTUGAL. Azores, Terceira, NW of Angra do Heroismo, south edge of Reserva Florestal da Lagoa das Patas, area around a pond ‘Lagoa das Patas’, mature *Cryptomeria* trees and some *Camellia* shrubs, on *Cryptomeria*,

Figure 2. Morphology of newly described *Micarea* species A *M. aeruginoprasina* (holotype) B *M. azorica* (holotype) C *M. isidioprasina* (holotype) D *M. microsorediata* (holotype) E *M. nigra* (holotype) F *M. pauli* (holotype). Scale bars: 200 μm (A–C, E); 300 μm (D, F).
38°43.01’N, 27°17.32’W, 520 m alt., 28 June 2014, P. & B. van den Boom 51878 (hb v.d. Boom); NW of Angra do Heroismo, NNE of Santa Bárbara, Serra de Santa Bárbara, road to the summit, forests with mainly Cryptomeria trees, trees at edge of forest, on Cryptomeria, 38°43.49’N, 27°19.33’W, 800 m alt., 1 July 2014, P. & B. van den Boom 51622 (hb v.d. Boom); NE of Serreta, north trail to Lagoínha, forest with Cryptomeria japonica, Myrica faya, Erica, etc., on Erica, 38°45.28’N, 27°20.50’W, 500 m alt., 2 July 2014, P. & B. van den Boom 51691 (hb v.d. Boom).

Notes. This species is unique within the group due to the presence of the Sedifolia-grey pigment in hypothecium. It is similar to M. prasina because of its production of micareic acid, but the latter has Sedifolia-grey pigment in the epihymenium and its thallus consists of goniocysts (isidiate in M. aeruginoprasina). However, it is not closely related to M. prasina, being resolved as basal in the M. prasina clade and the sequences of their molecular markers are very different. In the Azores archipelago, the most widespread prasina-like species is M. azorica, newly described in this paper, which, however, is not isidiate and contains Superba-brown in the apothecia. Micarea aeruginoprasina resembles M. byssacea, which can have somewhat the same coloured and adnate apothecia; however, M. byssacea is not isidiate, contains methoxymicareic acid and the apothecial pigment is absent in hypothecium (Czarnota and Guzow-Krzemińska 2010). Morphologically, the new species is similar to M. levicula, especially due to the finely isidiose thallus and the adnate apothecia, which are, however, paler in M. levicula and that species contains gyrophoric acid (Coppins 1983; Brand et al. 2014).

Micarea isidioprasina, M. nigra and M. pauli also have isidiate thalli, but only M. aeruginoprasina has pale cream to pale brown or aeruginose apothecia. Micarea isidioprasina and M. pauli are often sterile and, to date, M. aeruginoprasina and M. nigra have always been found with apothecia, but, based only on the thallus characters, M. nigra and M. pauli can be distinguished due to the production of methoxymicareic acid and M. isidioprasina has green isidia (shades of brown in M. aeruginoprasina).

Micarea azorica van den Boom, Guzow-Krzemińska, Brand & Sérus., sp. nov.
MycoBank No.: MB 831822
Fig. 2B

Diagnosis. Species characterised by pale to moderately brownish thallus consisting of goniocysts, convex to subglobose, emarginate, pale greyish-brown to dark brown (with Superba-brown pigment) apothecia measuring 0.1–0.3 mm in diam., (0–)1-septate, narrowly ellipsoidal to ovoid ascospores measuring 9–11 × (2.5–)3–4 μm, sessile to slightly stalked, pale to moderately brown mesopycnidia, bacillar mesoconidia measuring 6.5–8 × 0.9–1.1 μm and the production of micareic acid.

Type. PORTUGAL. Azores, Terceira, NW of Angra do Heroismo, south edge of Reserva Florestal da Lagoa das Patas, area around a pond ‘Lagoa das Patas’, 520 m alt., 38°43.01’N, 27°17.32’W, mature Cryptomeria trees and Camellia shrubs, on
Cryptomeria japonica, 28 June 2014, P. & B. van den Boom 51468 (holotype LG; isotypes UGDA, hb v.d.Boom, mtSSU GenBank accession number: MK562026, Mcm7 GenBank accession number: MN105891).

Description. Thallus inconspicuous, thinly scurfy to somewhat farinose-granular, pale to moderately brownish and consisting of goniocysts; prothallus not seen; apothecia abundant, convex to subglobose, emarginate, pale greyish-brown to dark brown, often unevenly coloured in a single apothecium (partly dark, partly pale), 0.1–0.3 mm in diam.; hymenium ca. 32–40 μm tall; epithecium with grey-brown pigment, K−, C− (Superba-brown); hypothecium hyaline; paraphyses, abundant, branched, ca. 1.0–1.5(−1.8) μm wide, tips not widened and not pigmented; asci 25–35 × 11–14 μm, 8-spored; ascospores narrowly ellipsoidal to ovoid, (0–)1-septate, 9–11 × (2.5–)3–4 μm; mesopycnidia occasionally abundant, sessile to slightly stalked, 40–60 μm in diam., pale to moderately brown, the ostiole sometimes gaping; mesoconidia bacillar, simple, 6.5–8 × 0.9–1.1 μm; crystalline granules (studied in polarised light) visible in epithecium and in thallus, soluble in K.

Photobiont micareoid, cells thin-walled, 4–10 μm in diam., clustered in compact groups.

Chemistry. Micareic acid detected by TLC. Superba-brown in apothecia (epithecium).

Habitat and distribution. To date, known only from the Azores archipelago (Terceira island) from three localities where it was found on bark of trees.

Etymology. The name refers to the archipelago of the Azores, where the species occurs.

Additional specimens examined. PORTUGAL. Azores, Terceira, NW of Angra do Heroismo, Reserva Florestal Viveira da Falca, 460 m alt., 38°42.90’N, 27°16.78’W, picnic area with many mature Cryptomeria trees, some Acer trees and Camellia, on Cryptomeria, 28 June 2014, P. & B. van den Boom 51330 (hb. v.d. Boom); N of Serreta, Reserva Florestal da Serreta, 80 m alt., 38°46.27’N, 27°21.42’W, picnic area in open forest with mixed trees and shrubs, on tree, 2 July 2014, P. & B. van den Boom 51733 (hb. v.d. Boom).

Notes. The new species is resolved as sister to *M. prasina* s.str. with strong support, being morphologically and chemically similar to that species, but differing in the absence of the Sedifolia-grey pigment, responsible for the typical reaction K+ violet in *M. prasina* s.str (Coppins 1983; Czarnota 2007; Launis et al. 2019a). Instead of Sedifolia-grey pigment, Superba-brown is present in *M. azorica*.

The identity of *M. prasina* s.str. has been recently solved by Launis et al. (2019a, b) and its occurrence is confirmed from boreal and temperate Europe (Finland, Germany, Poland) and Eastern North America (Canada: New Brunswick and USA: Maine) (Launis et al. 2019b; this paper). Other records need confirmation as, previously, other species have been included in the variation of *M. prasina*.

Micarea azorica resembles *M. lithinella* (Nyl.) Hedl. due to its brownish, convex to subglobose small apothecia, but the latter is mainly a saxicolous species, has smaller conidia, 4–5.5 × 0.5–1 μm and does not contain secondary metabolites (Coppins 1983; Czarnota 2007).
Micarea isidioprasina Brand, van den Boom, Guzow-Krzemińska, Sérus. & Kukwa, sp. nov.
MycoBank No.: MB 831823
Fig. 2C

Diagnosis. Species characterised by granular-isidiate thallus, pale grey to grey-beige apothecia, 0–1-septate, ovoid, ellipsoidal or oblong ascospores measuring 7–13 × 3.5–4.5 μm and the presence of micareic acid.

Description. Thallus crustose, granular-isidiate, indeterminate, endosubstratal to rarely episubstratal in non-isidiate parts and then as a thin greenish film over the substrate or minutely areolate, isidiate; prothallus not seen; areoles up to 0.05 mm in diam., green, soon developing isidia; isidia abundantly branched and coralloid, crowded and forming an almost continuous layer locally over the substrate, but in younger parts of thalli separated, green to olive green (Sedifolia-grey, K+ violet), up to 250 μm tall and 25 μm wide, with a distinct and complete hyphal layer; apothecia rarely developed, white to beige, some patchily grey, up to 0.45 mm in diam., convex; excipulum poorly developed, as a narrow, hyaline zone, hyphae radiating, branched and anastomosing; hymenium up to 50 μm tall, hyaline; epihymenium and hypothecium hyaline; paraphyses of one type, 1–1.5 μm thick, sparse, mostly apically branched and anastomosed, hyaline throughout; asci cylindrical-clavate, 30–45 × 12–15 μm, 8-spored; ascospores, 0–1-septate, ovoid, ellipsoidal or oblong, 11–14 × 3.5–4.5 μm; pycnidia not seen; crystalline granules (studied in polarised light) present rather sparsely in hymenium (as strands between asci and paraphyses) and abundantly in isidia, soluble in K.

Photobiont chlorococcoid, micareoid, cells globose to ellipsoidal, 4–7 μm in diam.

Chemistry. Micareic acid detected by TLC. Sedifolia-grey pigment present in outermost parts of some isidia.

Habitat and distribution. The species grows on wood (decomposing logs) and acidic bark of trees in various forest communities in well preserved forest.

To date, it is known from Belgium, Germany, France, Poland and Romania.

Etymology. The name of the new species refers to the presence of isidia and the chemistry of *M. prasina*.

Additional specimens examined. BELGIUM. Herbeumont, forest by the Semois river, 265 m alt., 49°45’N, 05°13’E, on *Quercus* tree in forest, 2013, E. Sérusiaux 3609 (L.G). FRANCE. Vosges, Dépt. Haut-Rhin, Hohneck, Frankenthal nature preserve, 48°02’N, 07°01’E, 1100 m alt., on dead *Fagus* in forest, 2013, E. Sérusiaux LG DNA 3437 (L.G). GERMANY. Niedersachsen, S of Goslar, Rammelsberg, 360 m alt., 51°53.01’N, 10°25.23’E, trail along *Picea* forest and brooklet with *Acer*, *Alnus* and *Betula* trees, 12 May 2015, P. & B. van den Boom 53248 (hb. v.d. Boom). POLAND.
Roztocze Środkowe, Roztoczański National Park, S of Zwierzyniec village, Bukowa Góra nature reserve, 50°35’47”N, 22°57’48”E, ca. 280 m alt., beech forest, on wood of log, 15 Sept 2015, M. Kukwa 17493 (UGDA); Równina Bielska, Białowieża Primeval Forest, Białowieża National Park, forest section no 256, Carici elongatae-Alnetum, on wood of logs, bark Picea abies and Alnus glutinosa, Aug 2014, M. Kukwa 14030, 14038, 14107, 14112, A. Łubek (KTC, UGDA); ibidem, Circaeo-Alnetum, on wood of log, Aug 2014, M. Kukwa 13299, A. Łubek (KTC, UGDA); ibidem, Tilio-Carpinetum, on wood of log, Aug & Oct 2014, M. Kukwa 13418, 14358, A. Łubek (KTC, UGDA); ibidem, Circaeo-Alnetum, on wood of snag, Oct 2014, M. Kukwa 14243, A. Łubek (KTC, UGDA). ROMANIA. W of Brasov, S of Zarnesti, Praia Craiului National Park, 1350 m alt., 45°31’N, 25°16’E, on Fagus inside forest, 2016, E. Sérusiaux LG DNA 6260 & 6265 (LG).

Notes. Micarea isidioprasina is an isidiate species of the M. prasina group containing micareic acid as the main secondary metabolite. It is usually sterile and in Poland often grows in similar habitats with M. pauli, a species described in this paper, from which it can be separated with certainty by analyses of secondary metabolites, as the latter contains methoxymicareic acid.

Micarea aeruginoprasina and M. nigra also develop similar isidiate thalli, but M. aeruginoprasina has pale cream to pale brown or aeruginose apothecia (often mottled with all colours in the same apothecium) and M. nigra develops dark greyish to black apothecia. When sterile, all three species may be more difficult to separate, especially M. aeruginoprasina which also produces micareic acid (M. nigra contains methoxymicareic acid), but that species has pale brown isidia. Additionally, the so far known distributions of all three species do not overlap and M. aeruginoprasina and M. nigra are known from the Azores and continental Portugal, respectively.

Micareic acid is also the main secondary metabolite in the somewhat morphologically similar M. prasina, but the latter is not isidiate, often richly fertile and its thallus consists of goniocysts (Czarnota 2007; Launis et al. 2019a, b).

Micarea microsorediata Brand, van den Boom, Guzow-Krzemińska, Sérus. & Kukwa, sp. nov.
Mycobank No. MB 831824

Fig. 2D

Diagnosis. Species morphologically similar to Micarea viridileprosa, characterised by sorediate thallus, delimited or diffuse and confluent soralia with green or locally bluish soredia produced from the thallus areoles, white and immarginate when mature apothecia, 0.2–0.3 mm in diam., cylindrical to ellipsoidal (0–)1-septate ascospores measuring 9.5–13 × 2.8–3.5 μm and the presence of methoxymicareic acid.

Type. POLANd. Wysoczyzna Żarnowiecka, Pużyckie Łęgi nature reserve, 54°38’N 17°51’E, Circaeo-Alnetum, on wood of log, 12 Aug 2015, M. Kukwa 17053 (holotype UGDA, ITS GenBank accession number: MN095791, mtSSU GenBank accession number: MK562012, Mcm7 GenBank accession number: MN105906).
Description. Thallus diffuse, up to 10 cm wide, consisting of finely granular soredia, often with a powdery appearance, vivid green or green, sometimes with bluish tinge; prothallus not seen; areoles up to 25 μm in diam., green, soon bursting to produce soredia; soralia at first delimited, produced from small, convex areoles, soon fused and confluent, sometimes forming a sorediate continuous layer; soredia simple, up to 20 μm in diam., sometimes slightly elongated or in more or less rounded consoredia up 35 μm in diam. apothecia rarely present, adnate, first with indistinct margin, then immarginate, 0.2–0.3 mm in diam., white or slightly brownish; excipulum in young apothecia present, 15–25 μm wide, of thin irregular hyphae; hymenium ca. 30–42 μm tall; epihy- menium and hypothecium hyaline; paraphyses thick (in K), branched and anastomosing, ca. 1.2–1.5 μm wide; asci 29–35 × 7–10 μm, 8-spored; ascospores cylindrical to ellipsoidal, 9.5–13 × 2.8–3.5 μm, (0–)1-septate; micropycnidia present in some specimens, ca. 60 μm in diam., with dark brown tops (K–); microconidia narrow fusiform to bacilliform, 7 × 0.8 μm; mesopycnidia, mesoconidia 3.8 × 1.4 μm; crystalline granules (studied in polarised light) visible in hymenium and in thallus, soluble in K.

Photobiont micareoid, cells thin-walled, 4–8(–9) μm in diam.

Chemistry. Methoxymicareic acid detected by TLC. Soredia in exposed habitats with Sedifolia-grey pigment, K+ violet.

Habitat and distribution. The new species occurs on acidic bark of various trees such as *Alnus, Betula, Fagus* and *Quercus*, usually in humid forests, also on decaying wood (logs and stumps) and rarely on terrestrial decaying mosses in, for example, steep slopes in heath and dunes. It is a very common species in the south of the Netherlands and some areas in Poland and is mostly found on microhabitats where only few other lichens species co-occur. On several occasions, *Normandina pulchella* (Borrer) Nyl. and squamules of *Cladonia* spp. are the only accompanying lichens.

To date, the species has been found in Belgium, Germany, the Netherlands, Poland and Portugal.

One specimen of *Micarea microsorediata* was invaded by *Nectriopsis micareae* Diedrich, van den Boom & Ernst (see below additional specimens examined).

Etymology. The epithet refers to the production of soredia and the similarity to *M. micrococca* due to the same secondary chemistry.

Additional specimens examined. BELGIUM. Limburg, N of Achel, Rozendaal, 51°17.0’N, 5°29.9’E, 35 m alt., *Pinus* forest with *Betula* and *Quercus* trees, on wood of fallen decaying trunk, 28 Dec. 2018, P. & B. van den Boom 58046 (hb v.d. Boom); NE of Achel, near Tomp, 51°16.10’N, 5°29.8’E, 35 m alt., along small road, *Pinus* forest with *Betula* and *Quercus* trees, on *Betula*, 28 Dec. 2018, P. & B. van den Boom 58052 (hb v.d. Boom); NE of Lommel, Kolonie, E of ‘Afwateringskanaal’, 51°14.40’N, 5°23.6’E, 50 m alt., *Pinus* forest, on *Prunus*, 28 Dec. 2018, P. & B. van den Boom 58054 (hb v.d. Boom); ENE of Lommel, E of Kolonie, 51°15.50’N, 5°24.35’E, 40 m alt., between edge of *Pinus* forest and edge of reserve Hageven, on *Betula* and *Quercus robur*, 28 Dec. 2018, P. & B. van den Boom 58055, 58056 (hb v.d. Boom). GERMANY. Nedersaksen, N of Bentheim, NE of Wengsel, Isterberg, 52°21.4’N, 7°9.0’E,
tional Palace de la Pena, mixed (mature) trees and shrubs, on tree-fern, 38°47.23’N, 9°23.42’W, 490 m alt., 20 Oct. 2015, P. & B. van den Boom 53907 (hb v.d. Boom).

THE NETHERLANDS. Noord-Brabant, NE of Oirschot, Woekensesteeg, grid-ref. 51.23.23, trail in mixed forest, on wood of fallen trunk, 4 Oct. 2014, P. & B. van den Boom 51991 (hb v.d. Boom, hb Brand 67113); N of Oirschot, De Mortelen, grid-ref. 51.23.12, trail in damp mixed forest, on Fagus sylvatica, 5 June 2017, P. & B. van den Boom 56372 (hb v.d. Boom); E of Best, S side of Wilhelmina channel, grid-ref. 51.24.53, trail in Pinus forest, on Quercus rubra, 22 July 2018, P. & B. van den Boom 57647 (hb v.d. Boom); ENE of Oostelbeers, Oostelbeerse Heide, grid-ref. 51.32.34, forest, on Pseudotsuga, 26 May 2016, P. & B. van den Boom 55028 (hb v.d. Boom); NNW of Wintelre, S side of Straatsche Heide, grid-ref. 51.33.51, Pinus forest at edge of Calluna heathland with some Quercus robur trees, on Quercus robur, 14 April 2016, P. & B. van den Boom 54996 (hb v.d. Boom); W of Son, E of Nieuwe Heide, grid-ref. 51.24.45, E side of trail in Pinus forest, on Betula, 22 June 2014, P. & B. van den Boom 51315 (hb v.d. Boom); S of Best, Aarlesche Heide, S of high-way, grid-ref. 51.33.25, in Pinus forest, on Quercus robur, 1 Nov. 2014, P. & B. van den Boom 52515 (hb v.d. Boom); S of Best, Aarlesche Heide, S of highway, grid ref. 51.34.21, grassy Calluna heathland, with scattered trees, on Quercus robur, 24 Jan. 2014, P. & B. van den Boom 50279 (hb v.d. Boom).

Specimen of Nectriopsis micareae. The NETHERLANDS. Noord-Brabant, S of Best, Aarlesche Heide, S of highway, grid ref. 51.34.21, grassy Calluna heathland, with scattered trees, on Micarea microsorediata growing on Quercus robur, 24 Jan. 2014, P. & B. van den Boom 50278 (hb v.d. Boom).

Notes. The new species is morphologically similar to *M. viridileprosa* and *M. soralifera*, but those species differ in their contents of secondary lichen metabolites: *M. viridileprosa* contains gyrophoric acid, whereas *M. soralifera* produces micareic acid (van den Boom and Coppins 2001; Guzow-Krzemińska et al. 2016). *Micarea microsorediata* produces methoxymicareic acid, a substance present in *M. byssacea, M. nigra, M. pauli* and other species of the *M. micrococca* clade (Fig. 1), but these species are not sorediate and some of them also have darker apothecia containing the Sedifolia-grey pigment (Czarnota 2007; Czarnota and Guzow-Krzemińska 2010; Launis et al. 2019a; this paper).

Micarea nigra van den Boom, Guzow-Krzemińska, Brand & Sérus., sp. nov.
MycoBank No.: MB 831825
Fig. 2E

Diagnosis. Species characterised by the production of branched isidia, dark greyish to almost black apothecia containing Cinereorufa-green pigment and measuring 0.15–0.5 mm in diam., (0–)1-septate, narrowly ellipsoidal to clavate ascospores measuring 7.5–12 × (2.5–)3–4.5 μm and the production of methoxymicareic acid.
Type. PORTUGAL. Estremadura, W of Lisbon, W of Sintra, Park de la Monserrate, 200 m alt., 38°47.30′N, 9°25.07′W, parkland with mixed (mature) trees and shrubs, on fern tree, 15 Oct. 2015, P. & B. van den Boom 53726 (holotype LG; isotypes UGDA, hb v.d. Boom, mtSSU GenBank accession number: MK562029).

Description. Thallus inconspicuous, thin, consisting of often branched and vertically proliferating fine isidia; prothallus not seen; areoles up to 0.1 mm in diam.; isidia developing from small areoles, vertically branched and coralloid, in some parts crowded and forming almost a continuous layer, but separated in younger parts of thalli, brownish-green, up to 500 μm tall and 30 μm wide, with a distinct and complete hyphal layer; apothecia abundant, adnate, flat to moderately convex, emarginate, 0.15–0.5 mm in diam., dark greyish to almost black, sometimes with a pale greyish rim; hymenium greenish, with pale brownish streaks, K–, C–, 30–40 μm tall; epihymenium aeruginose greenish, with Cinereorufa-green pigment, K+ green intensifying; hypothecium hyaline; paraphyses sparse, branched, tips not widened and not pigmented, ca. 1.0–1.5 μm wide; asci cylindrical to clavate, 24–28 × 9–12 μm, 8-spored; ascospores narrowly ellipsoid to clavate, 7.5–12 × (2.5–)3–4.5 μm, (0–)1-septate; micropycnidia inconspicuous, rare, 30–60 μm in diam., with dark brown top (K–, C–); microconidia bacilliform, sometimes slightly curved, aseptate, 7–10 × 0.5–0.9 μm; crystalline granules (studied in polarised light) not visible in apothecium, but detected in isidia (sometimes isidia very abundant and sometimes very few), insoluble in K.

Photobiont micareoid, cells thin-walled, 4–8 μm in diam., clustered in compact masses.

Chemistry. Methoxymicareic acid detected by TLC. Cinereorufa-green in apothecia (epihymenium).

Habitat and distribution. Abundantly present on a trunk of a fern tree in a parkland where many tropical and exotic fern and tree species have been introduced.

To date, it is only known from the type locality in Portugal (Sintra).

Etymology. The epithet chosen for this species refers to its very dark appearance, the thallus being dark greenish and the apothecia mostly blackish.

Notes. This species is resolved in the *M. micrococca* group (Fig. 1) and is unique because of its dark grey to almost black apothecia and the presence of Cinereorufa-green pigment in epihymenium.

Micarea nigra resembles *M. aeruginoprasina*, *M. isidioprasina* and *M. pauli*. *Micarea aeruginoprasina* and *M. isidioprasina* differ in the presence of micareic acid instead of methoxymicareic acid and paler apothecia. In addition, *M. aeruginoprasina* produces different pigment in the apothecia (Sedifolia-grey). *Micarea pauli* differs in the production of methoxymicareic acid, Sedifolia-grey pigment in the apothecia and different distribution (see under that species).

Some morphs of *M. prasina* can also have dark apothecia, but this species contains micareic acid and Sedifolia-grey in the apothecia (Coppins 1983; Czarnota 2007; Laurin et al. 2019a, b). *Micarea subviridescens* can have blackish apothecia and is sometimes epiphytic, but it produces prasnic acid (Coppins 1983).
Micarea pauli Guzow-Krzemińska, Łubek & Kukwa, sp. nov.

MycoBank No.: MB 831826

Fig. 2F

Diagnosis. Species characterised by isidiate thallus, pale grey to grey beige apothecia with Sedifolia-grey pigment, 0–1-septate, ovoid, ellipsoidal or oblong ascospores measuring 7–13 × 3.5–4.5 μm and the presence of methoxymicareic acid.

Description. Thallus crustose, indeterminate, endosubstratal to rarely episubstratal in non-isidiate parts and then as a thin greenish film over the substrate or minutely areolate, isidiate; prothallus not evident; areoles up to 0.1 mm in diam., green, soon developing isidia; isidia branched and coralloid, crowded and forming almost a continuous layer over the substrate, but separated in younger parts of thalli, green to olive green, up to 0.5 mm tall and 30 μm wide, with a distinct and complete hyphal layer; apothecia rarely developed (in 2 specimens only), beige with spots of grey pigment, pale grey to grey-beige, up to 0.5 mm in diam., irregular in shape, convex, with a white rim; excipulum as a narrow, hyaline zone, hyphae radiating, branched and anastomosing; hymenium up to 45 μm tall; epihymenium partly olive-grey due to the presence of Sedifolia-grey pigment (K+ violet, C+ violet) confined to the gel matrix; hypothecium hyaline to pale straw coloured in upper part; paraphyses 1–1.5 μm thick, sparse, mostly apically branched and anastomosing, hyaline throughout; asci cylindrical-clavate, 30–35 × 9–12 μm, 8-spored; ascospores, 0–1-septate, ovoid, ellipsoidal or oblong, 7–13 × 3.5–4.5 μm; pycnidia not seen; crystalline granules (studied in polarised light) abundant in hymenium and isidia, soluble in K.

Photobiont chlorococcoid, micareoid, cells globose to ellipsoidal, 4–7 μm in diam.

Chemistry. Methoxymicareic acid detected by TLC. Sedifolia-grey in apothecia (epihymenium).

Habitat and distribution. This species is so far known only in Poland from Białowieża Forest, where it grows in deciduous forests on bark of *Alnus glutinosa* (5 specimens), *Tilia cordata* (1 specimen) and on wood (2 specimens).

Etymology. The species is named after our friend, Paweł Czarnota, specialist in the genus who monographed it in Poland.

M. Kukwa 13308 (KTC, UGDA); *Pino-Quercetum*, on wood of snag, 1 Oct. 2015, M. Kukwa 17582a, A. Łubek (KTC); *Pino-Quercetum*, on wood of log, 2 Oct. 2015, M. Kukwa 17619, A. Łubek (KTC, UGDA); *Carici elongatae-Alnetum*, on *Alnus glutinosa*, 3 Oct. 2015, M. Kukwa 17621, A. Łubek (KTC, UGDA).

Notes. *Micarea pauli* is an isidiate species with Sedifolia-grey pigment in its apothecia. It can be separated from the similar *M. isidioprasina*, with which it grows in Białowieża Forest, by the presence of methoxymicareic acid.

Micarea aeruginoprasina and *M. nigra* are also similar in thallus morphology, but they differ in the pigmentation of apothecia. *Micarea aeruginoprasina* develops pale cream to pale brown or aeruginose apothecia, which are often mottled in colour in one apothecium, whereas in *M. nigra* the apothecia are dark greyish to black. Without apothecia, they can be difficult to separate from *M. pauli*, especially *M. nigra* which also contains methoxymicareic acid (*M. aeruginoprasina* produces micareic acid), but so far, *M. aeruginoprasina* and *M. nigra* are only known from the Azores and continental Portugal, respectively.

Methoxymicareic acid is the main secondary metabolite, also found in *M. byssacea*, *M. micrococca* and other species in the *M. micrococca* clade (Fig. 1), but those species are never isidiate (Czarnota 2007; Czarnota and Guzow-Krzemińska 2010; Launis et al. 2019a).

Acknowledgements

We thank Dr Jacek Pokrzywnicki (University of Gdańsk) for the help with the Latin name of *Micarea pauli*. Prof. Mark R.D. Seaward is acknowledged for language correction of the final version of the manuscript. We are grateful to Heidi Lee Andersen and the anonymous reviewer for their constructive comments that improved the manuscript. Martin Kukwa and Anna Łubek received funding for the research from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No Pol-Nor/196829/87/2013.

Conflict of interest: The authors declare that they have no conflict of interest.

References

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological...

Supplementary material 1

Figures S1–S15 presenting ancestral character state reconstructions
Authors: Beata Guzow-Krzemińska, Emmanuël Sérisiaux, Pieter P. G. van den Boom, A. Maarten Brand, Annina Launis, Anna Łubek, Martin Kukwa
Data type: PDF file
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.57.33267.suppl1

Supplementary material 2

Tables S1–S4
Authors: Beata Guzow-Krzemińska, Emmanuël Sérisiaux, Pieter P. G. van den Boom, A. Maarten Brand, Annina Launis, Anna Łubek, Martin Kukwa
Data type: PDF file
Explanation note: Additional tables with list of specimens used in this study, data matrices for ancestral character state reconstructions and probabilities of reconstructions with model Mk1.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.57.33267.suppl2
Neotypification of Protoparmeliopsis garovagliai and molecular evidence of its occurrence in Poland and South America

Katarzyna Szczepańska¹, Pamela Rodriguez-Flakus², Jacek Urbaniak¹, Lucyna Śliwa³

¹ Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50–363 Wrocław, Poland ² Laboratory of Molecular Analyses, W. Szafer Institute of Botany, Polish Academy of Sciences, Łubicz 46, PL-31–512 Kraków, Poland ³ Department of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Łubicz 46, PL-31–512 Kraków, Poland

Corresponding author: Katarzyna Szczepańska (katarzyna.szczepanska@upwr.edu.pl)

Academic editor: Garima Singh | Received 13 March 2019 | Accepted 25 June 2019 | Published 1 August 2019

Abstract

Protoparmeliopsis garovagliai is a widely distributed placodioid lichen, which develops a distinctly rosette thallus, composed of elongated and strongly inflated to sinuous-plicate lobes. The taxon is characterised by high morphological plasticity and varied composition of secondary metabolites. However, the epithet was never typified. As such, the identity of P. garovagliai, in its strict sense, was unknown for a long time. Our phylogenetic ITS rDNA analyses, including newly generated sequences, show that European (Austria, Poland), North American (USA) and South American (Bolivia, Peru) specimens of P. garovagliai are placed in a strongly supported monophyletic clade, sister to P. muralis. We provide the first molecular evidence of the occurrence of P. garovagliai in South America (Bolivia and Peru) and the second record in Central Europe (Poland) was also provided. Furthermore, we neotypify P. garovagliai and it is reported here for the first time from Poland.

Keywords

Geographical distribution, ITS rDNA, lichenised fungi, phylogeny, taxonomy, typification

Copyright Katarzyna Szczepańska et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The genus, *Protoparmeliopsis* Choisy, belongs to the large family of lichenised fungi Lecanoraceae. It includes species with a placodioid or umbilicate type of thallus, growing on siliceous rocks or on soil (Zhao et al. 2016). They produce lecanorine apothecia and *Lecanora*-type asci, specifically containing hyaline, simple ascospores. Their centre of distribution is concentrated in semi-arid regions of the northern Hemisphere. Although well established at present, owing to their treatment by Zhao et al. (2016), the history of the genus taxonomy and nomenclature is very complicated.

The *Protoparmeliopsis* genus was proposed by Choisy in 1929 with *Protoparmeliopsis muralis* indicated as a type species. However, the generic concept was not followed and, consequently, the majority of the lecanoroid species with characteristic placodioid thallus morphology were, for decades, included into the *Lecanora* subg. *Placodium* sect. *Placodium* group. This section was proposed by Ryan and Nash (1993) for the *Lecanora* species characterised by an areolate-squamulose, lobate or subfoliose thallus, usually with a true cortex and loose medulla. Modern insights into the genus taxonomy afforded by molecular studies, however, revealed that thallus morphology in lecanoroid lichens does not reflect phylogenetic relationships. Moreover, the genus, *Lecanora* sensu lato, as well as subgenus, *Placodium*, turned out to be highly heterogeneous and polyphyletic (Poelt and Grube 1993; Arup and Grube 1998; Pérez-Ortega et al. 2010; Kondratyuk et al. 2014b; Leavitt et al. 2016). Still, the *Protoparmeliopsis* genus was not accepted as a separate genus in the family, Lecanoraceae, for a long time, based on the molecular data (Lumbsch and Huhndorf 2007, 2010). Recent studies have identified it as a well-supported, monophyletic clade nested within *Lecanora* s.l. and it has been subsequently posited to be accepted at the generic level (Kondratyuk et al. 2014b; Miadlikowska et al. 2014; Zhao et al. 2016).

During independent research, concentrated on the biodiversity of saxicolous lichens in Bolivia and Peru, as well as southern Poland, an interesting placodioid representative of Lecanoraceae has been found. Morphology and chemistry of the species suggested that it belongs to the *Protoparmeliopsis* genus. However, establishing its epitet turned out to be challenging. The scope of our study was to explain the systematic position of the lichen with application of integrated taxonomy tools. The survey revealed that the collection represents *P. garovaglii* and the status of the species is briefly discussed. As the epithet was never typified, a herbarium query was performed and, as a result, the species is neotypified herein.

Material and methods

Morphology and chemistry

This study is based on collections from the following herbaria: ASU, KRAM, L, MIN and WRSL, as well as the first author’s private material (hb. Szczepańska). The mor-
Neotypification of *Protoparmeliopsis garovaglii* and molecular evidence of its occurrence.

Phylogeny and anatomy of the specimens were studied with a dissecting and light microscope according to routine techniques. For light microscopy, vertical, free-hand sections of apothecia were cut by a razor blade and mounted in water. Hymenium measurements were made in water and ascospores measurements in 10% potassium hydroxide – KOH (K). The structure and conglutination of paraphyses were also studied in K. The solubility of granules in epihymenium was tested with K and N (50% nitric acid). At least 10 measurements of the morphological variables were made for each sample and 20 spores from different specimens were assessed, as well as their minimum and maximum values being calculated.

Chemical examination included colour reactions and thin-layer chromatography (TLC). Spot test reactions of thalli, apothecial margins and discs were made with K, sodium hypochlorite [commercial laundry bleach] (C) and paraphenylenediamine [solution in 95% ethyl alcohol] (PD). The TLC analyses were undertaken in solvent system A, B’ and C using the standardised method of Culberson (1972) and following Orange et al. (2001).

Descriptions of the species are based on our own observations, measurements and TLC analyses made while examining the specimens cited in this paper. All specimens presented in the manuscript as in “Specimens examined” and included in the molecular analysis were studied; however, the morphological description of *Protoparmeliopsis garovaglii* is primarily based on the proposed neotype specimen. The terminology used in the descriptions of the species is based on Ryan et al. (2004).

DNA extraction, amplification and sequencing

Genomic DNA was extracted from lichen thalli using the CTab method (Cubero and Crespo 2002). Dried tissues were frozen using liquid nitrogen and disrupted using Mixer Mill MM400 (Retsch; Haan, Germany). The isolated DNA was visualised on 1% TBE agarose gel. The fungal Internal Transcribed Spacer (ITS) rDNA region, which is a commonly used universal barcode marker in studies of non-lichenised and lichenised fungi, has been used in our study. ITS rDNA regions were amplified using primers ITS1F (Gardes and Bruns 1993) and ITS4 (White et al. 1990). The PCR reaction mix included (in the total volume of 20 μl): 1U Taq recombinant polymerase (Thermo-Fisher Scientific, USA), 10X Taq Buffer, 1 mM MgCl2, 0.5 μM of each primer, 0.4 mM dNTP and 1 μl DNA template. The PCR cycle was undertaken with a Veriti Thermal Cycler (Life Technologies; Carlsbad, CA, USA) with the following parameters: 8 min at 95 °C, followed by 32 cycles: 45 s at 95 °C, 45 s at 52 °C (annealing), 1 min at 72 °C, with a final extension step of 10 min at 72 °C. Prior to sequencing, PCR products were purified using GeneMATRIX PCR/DNA Clean Up Purification Kit (Eurx; Gdańsk, Poland). Sequencing, post-reaction purification and readings were undertaken by the sequencing service Genomed (Genomed S.A.; Warsaw, Poland), using an ABI 377XL Automated DNA Sequencer (Applied Biosystems; Carlsbad, CA, USA).
Phylogenetic analysis

The obtained ITS rDNA sequences were assembled and manually edited using Geneious Pro, version 8.0. (Biomatters Ltd) and we also compared our fragments against the BLAST database in order to avoid potential contamination of other fungi (Altschul et al. 1990). We selected ITS sequences of Protoparmeliopsis garovaglii, P. achariana, P. macrocyclus, P. muralis, P. peltata, P. zareii and related genera (Myriolecis, Protoparmelia and Rhizoplaca), newly obtained in this study or downloaded from GenBank. Detailed information regarding sequences including GenBank accession numbers and specimen localities are found in Table 1. Subsequently, the final alignment was performed on the GUIDANCE 2 webserver (Sela et al. 2015) using the MAFFT algorithm (Katoh et al. 2005). The unreliable sites were removed (ca. 90% of sites remain in the alignment) in order to reduce errors caused by ambiguous sites (Penn et al. 2010). The nucleotide substitution models were separately searched for each subset of the partition of the ITS region (ITS1, 5.8S, ITS2) to find the best-fitting model using the corrected Akaike information criterion (AICc) as an optimality model criterion for a greedy algorithm search, as implemented in PartitionFinder version 1.0.1 (Lanfear et al. 2012).

The phylogenetic construction was generated using the Maximum Likelihood (ML) bootstrap tree with simultaneous heuristic search, as implemented in RaxmlGUI version 0.9 beta 2 (Stamatakis 2006; Silvestro and Michalak 2012) under the GTRGAMMA substitution model and 200 bootstrap re-samples. Bayesian Inference was carried out with Markov Chain Monte Carlo (MCMC) implemented in MrBayes

Table 1. The species and specimens studied; newly generated sequences for this study are in bold.

<table>
<thead>
<tr>
<th>Species</th>
<th>Isolate</th>
<th>Locality</th>
<th>Collector (-s)</th>
<th>Voucher specimens (herbarium)</th>
<th>GenBank no. (ITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myriolecis contractula</td>
<td>AFTOL-ID 877</td>
<td>USA, Washington country</td>
<td>Brodo</td>
<td>Brodo 31501 (DUKE)</td>
<td>HQ650604</td>
</tr>
<tr>
<td>Myriolecis dispersa</td>
<td>USA, Illinois</td>
<td>Leavitt</td>
<td>Leavitt 12-002 (BRY-C)</td>
<td>KT453733</td>
<td></td>
</tr>
<tr>
<td>Protoparmeliopsis achariana</td>
<td></td>
<td>United Kingdom</td>
<td>Hill s.n.</td>
<td>KT453734</td>
<td></td>
</tr>
<tr>
<td>Protoparmeliopsis garovaglii</td>
<td>Austria</td>
<td></td>
<td>U155</td>
<td>AF070019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>USA, Idaho</td>
<td>Leavitt 078 (BRY-C)</td>
<td>KU934540</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>USA, Idaho</td>
<td>Leavitt 078 (BRY-C)</td>
<td>KU934541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>USA, Idaho</td>
<td>Leavitt 079 (BRY-C)</td>
<td>KT453728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>USA, Idaho</td>
<td>Leavitt 095 (BRY-C)</td>
<td>KU934542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>USA, Idaho</td>
<td>Leavitt 104 (BRY-C)</td>
<td>KU934544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>USA, Idaho</td>
<td>Leavitt 105 (BRY-C)</td>
<td>KU934545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>USA, Idaho</td>
<td>Leavitt 106 (BRY-C)</td>
<td>KU934546</td>
<td></td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>USA, Idaho</td>
<td>Leavitt 107 (BRY-C)</td>
<td>KU934547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>USA, Idaho</td>
<td>Leavitt 108 (BRY-C)</td>
<td>KU934548</td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>USA, Idaho</td>
<td>Leavitt 109 (BRY-C)</td>
<td>KU934549</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>USA, Idaho</td>
<td>Leavitt 110 (BRY-C)</td>
<td>KU934553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>USA, Idaho</td>
<td>Leavitt 116 (BRY-C)</td>
<td>KU934550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>USA, Utah</td>
<td>Leavitt 139 (BRY-C)</td>
<td>KU934551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>USA, Utah</td>
<td>Leavitt 140 (BRY-C)</td>
<td>KU934553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>USA, Utah</td>
<td>Leavitt 142 (BRY-C)</td>
<td>KT453729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>USA, Utah</td>
<td>Leavitt 142 (BRY-C)</td>
<td>KU934536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>USA, Utah</td>
<td>Leavitt 145 (BRY-C)</td>
<td>KT453727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>USA, Utah</td>
<td>Leavitt 199 (BRY-C)</td>
<td>KU934537</td>
<td></td>
</tr>
</tbody>
</table>
Neotypification of *Protoparmeliopsis garovaglii* and molecular evidence of its occurrence...

<table>
<thead>
<tr>
<th>Species</th>
<th>Isolate</th>
<th>Locality</th>
<th>Collector (-s)</th>
<th>Voucher specimens (herbarium)</th>
<th>GenBank no. (ITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protoparmeliopsis garovaglii</td>
<td>L21</td>
<td>Poland</td>
<td>Szczepańska</td>
<td>Szczepańska 1240 (WRSL)</td>
<td>MK084624</td>
</tr>
<tr>
<td></td>
<td>L88</td>
<td>Bolivia</td>
<td>Flakus</td>
<td>Flakus 17529 (KRAM)</td>
<td>MK084625</td>
</tr>
<tr>
<td></td>
<td>L89</td>
<td>Bolivia</td>
<td>Flakus</td>
<td>Flakus 21175 (KRAM)</td>
<td>MK084626</td>
</tr>
<tr>
<td></td>
<td>L90</td>
<td>Bolivia</td>
<td>Flakus</td>
<td>Flakus 21118 (KRAM)</td>
<td>MK084627</td>
</tr>
<tr>
<td></td>
<td>L91</td>
<td>Peru</td>
<td>Flakus</td>
<td>Flakus 9540 (KRAM)</td>
<td>MK084629</td>
</tr>
<tr>
<td></td>
<td>L92</td>
<td>Peru</td>
<td>Flakus</td>
<td>Flakus 9603 (KRAM)</td>
<td>MK084628</td>
</tr>
<tr>
<td>Protoparmeliopsis macrocyclos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protoparmeliopsis muralis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA 9890	Germany, Saxony	Scholz	Scholz 0275697 (M)	KTI81623	
SK 765	Romania	J.-S. Hur	J.-S. Hur (RO11-130)	KOLRI	KF059048
Russia	Vondrak	Vondrak 106a (PRA)	KU934559		
Russia	Vondrak	Vondrak 106b (PRA)	KU934560		
Russia	Vondrak	Vondrak 9405 (PRA)	KU934556		
Russia	Vondrak	Vondrak 9417 (PRA)	KU934557		
Russia	Vondrak	Vondrak 9417 (PRA)	KU934557		
77	USA, Utah	Leavitt	Leavitt 077 (BRY-C)	KU934552	
141	USA, Utah	Leavitt	Leavitt 141 (BRY-C)	KU934572	
143	USA, Utah	Leavitt	Leavitt 143 (BRY-C)	KU934554	
Protoparmeliopsis peliata					
Iran	Sohrabi	Sohrabi 1036 (personal herbarium)	KU934739		
Iran	Sohrabi	Sohrabi 10361pelt (personal herbarium)	KU934721		
Iran	Sohrabi	Sohrabi 10363 (personal herbarium)	KU934722		
Iran	Sohrabi	Sohrabi 10364 (personal herbarium)	KU934723		
Kazakhstan	Kaz 12921c		KU934745		
Kazakhstan	Kaz 13085pelt		KU934746		
Kazakhstan	Kaz 12943		KU934747		
Kazakhstan	Kaz 12948		KU934748		
Kazakhstan	Kaz 13082		KU934749		
Kyrgyzstan	?Lommi,	Samps	H920340	KU934720	
Kyrgyzstan	H9203329		KU934719		
Kyrgyzstan	H9203118		KU934735		
Kyrgyzstan	H9203304		KU934736		
Kyrgyzstan	H9203334		KU934737		
Kyrgyzstan	H9203194		KU934738		
Russia	Vondrak	Vondrak 9987 (PRA)	KU934725		
Russia	Vondrak	Vondrak 9997 (PRA)	KU934726		
Russia	Vondrak	Vondrak 10016 (PRA)	KU934727		
Russia	Vondrak	Vondrak 10022 (PRA)	KU934728		
Russia	Vondrak	Vondrak 10041 (PRA)	KU934729		
Russia	Vondrak	Vondrak 10130 (PRA)	KU934730		
Russia	Vondrak	Vondrak 9423 (PRA)	KU934740		
Russia	Vondrak	Vondrak 9127 (PRA)	KU934751		
Russia	AsLap	951		KU934742	
Russia	AitLap	876		KU934744	
Russia	Sar	937		KU934743	
Turkey	Vondrak	Vondrak 9783 (PRA)	KU934724		
USA	Leavitt	Leavitt 601 (BRY-C)	KU934734		
USA	Leavitt	Leavitt 663 (BRY-C)	KU934741		

| U198 | USA, Arizona | cf. ASU | AF159925 |
| | USA, Utah | | KTI453722 |

Protoparmeliopsis zareii

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Locality</th>
<th>Collector (-s)</th>
<th>Voucher specimens (herbarium)</th>
<th>GenBank no. (ITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>Iran</td>
<td>B. Zarei-Darki</td>
<td>Zarei-Darki 11111 (SK)</td>
<td>KP059049</td>
</tr>
<tr>
<td>480</td>
<td>Iran</td>
<td>B. Zarei-Darki</td>
<td>Zarei-Darki 11111 (SK)</td>
<td>KP059049</td>
</tr>
</tbody>
</table>
v3.2.3 (Ronquist et al. 2011). MrBayes was set to three independent parallel runs, each with four incrementally heated chains started, the run length was settled to 40M generations and, to infer convergence, the average standard deviation of the split frequencies was printed every 1000th generation, discarding the first 50% of the trees sampled as a burn-in fraction. The analyses were stopped after 1M generations when the standard deviation had dropped below 0.01. The resulting phylogenetic trees were visualised in Figtree software (Rambaut 2014).

Results

Phylogeny

A total of 77 sequences were analysed in this study. The final alignment matrix contained eight OTUs and 545 unambiguously aligned nucleotides positions. The phylogeny shows highly supported clades [bootstrap support (BS) = 75%, posterior probability (PP) = 1] inferred from a single locus phylogeny, clearly delimiting the Lecanoraceae as separate from *Myriolecis* (outgroup) (Fig. 1). *P. garovaglii* forms a monophyletic clade highly supported (BS = 95%, PP = 1) within *Protoparmeliopsis*. The newly generated sequence from Poland is placed in a monophyletic clade [BS = 100%, PP = 1] together with the Austrian sequence. South American (Bolivian and Peru; for the first time molecularly confirmed in this study) and USA populations are placed in different clades but lack statistical support.

Taxonomy

Protoparmeliopsis garovaglii (Körb.) Arup, Zhao Xin & Lumbsch; *Fungal Diversity* 78: 301 (2016) [2015].

Mycobank: 387928

Figs 2a–b

Description. Thallus lichenised, placodioid, thick, usually distinctly circular, up to 12 cm diam., not very closely attached to the substrate, prothallus not present. Marginal lobes elongated, distinctly convex, swollen, sinuous, smooth 0.4–1.8 mm wide and 3–10 mm long, broadened and rounded at the ends (Figs. 2c–d). Thallus centre
Neotypification of *Protoparmeliopsis garovaglii* and molecular evidence of its occurrence...

Figure 1. Bayesian Inference of the phylogenetic relationship within *Protoparmeliopsis* species, based on ITS rDNA sequences. High bootstrap support values are shown above thickened branches and bold numbers representing clades (ML – BP ≥ 70%, Bayesian analysis – PP ≥ 0.9). Highlighted squares represent *P. garovaglii* populations in Europe, South and North America. Parmeliaceae species were selected as the outgroup.

more or less areolate. Areoles convex, irregular, overlapping, 0.25–1.0 mm diam. Upper surface mat, pale yellowish-green to greyish-green, tending to be darker in the central part of the thallus, sometimes shining and darker also at the edges of the marginal lobes. Lower surface pale brown. Medulla white, in older lobes distinctly hollow in
the middle part. Apothecia sessile to constricted at base, dispersed to clustered towards thallus centre, 0.5–2.0 mm diam., circular, older angular, proper margin persistent, paler or concolorous with thallus, matte, slightly radially cracked, flexuose in older and disappearing in mature apothecia. Disc pale brown to yellowish-brown, becoming darker in the centre of thallus, epruinose, flat. Hymenium colourless, 50–60 μm high, hypothecium colourless, epihymenium orange-brown with small granules soluble in K and insoluble in N. Asci clavate, eight-spored. Paraphyses simple or weakly branched with swollen apices. Ascospores hyaline, simple, ellipsoid to oblong-ellipsoid, 10–12 × 6–7 μm. Pycnidia not seen.

Chemistry. thallus K+ pale yellow, C−, KC+ yellow, P−; medulla K+ pale yellow, C−, KC+ yellow, P−. Secondary metabolites detected by TLC: ± isousnic, +usnic and ±placodiolic acids (cortex); +zeorin and ± unidentified terpenoides (medulla).

Distribution. the species is widely distributed in the world. It occurs in Europe, Asia, Africa (Morocco; Egea 1996), North America (Canada; Freebury 2014 and USA; Ryan et al. 2004) and South America (Feuerer et al. 1998; Feuerer and Sipman 2005). In Asia, it has been noted in Afghanistan (Poelt and Wirth 1968), India (Upreti and Chatterjee 1998; Singh and Sinha 2010), Iran (Sohrabi et al. 2010), Mongolia (Schubert and Klement 1971), Pakistan (Poelt 1961), Russia (Vondráková and Vondrák 2015), Tajikistan (Kudratov and Mayrhofer 2002) and Turkey (Halici and Candan 2007). In Europe, its records are derived so far from Armenia (Gasparyan et al. 2016),
Neotypification of *Protoparmeliopsis garovaglii* and molecular evidence of its occurrence...

Austria (Hafellner and Türk 2001), the Czech Republic (Vězda and Liška 1999), Germany (Wirth 1995), Greece (Grube et al. 2001), Italy (Nimis 2016), Netherlands (Aptroot 2011), Portugal and Spain (Llimona and Hladun 2001), as well as Ukraine (Kondratyuk et al. 1996). Here, the species is reported for the first time from Poland.

Ecology. *Protoparmeliopsis garovaglii* is widespread, occurring mostly in dry and warm Mediterranean to mountain areas, foothills and submontane sites (Ryan et al. 2004). It prefers slightly calcareous or basic silicate rocks (limestone, basalt, rhyolite, schist, pumice, volcanic ash, sandstone) and usually occupies sunny habitats, especially steep surfaces (Wirth 1995; Ryan et al. 2004). However, it is noteworthy that, on its northernmost locality in the Netherlands, the species was recorded on a tombstone (Aptroot 2011). In Poland, it was found in mountain areas with outcrops of basalt rocks in the form of a volcanic chimney, surrounded by granite casing. It occupied a lit, warm and dry place on the horizontal surface of the basalt rock with a southern exposure and was accompanied by other lichens such as *Acarospora fuscata*, *Candelariella coralliza*, *Protoparmeliopsis muralis*, *Lecanora rupicola* and *Rhizocarpon geographicum*. During the present study in Bolivia and Peru, *P. garovaglii* was recorded in high Andean open-vegetative regions and in open semi-desert montane areas.

Exiccates examined. Pišut, *Lichenes Slovakiae exsiccati* 36, as *Lecanora garovaglii* (KRAM); Suza, *Lichenes Bohemoslovakiae exsiccati* 233, as *Lecanora garovaglii* (KRAM); Weber, *Lichenes exsiccati* 118, as *Lecanora garovaglii* (KRAM).

Additional specimens examined. Austria. Lower Austria: sunny slate rocks near Krems on the Danube River, 250 m alt., 3 Jan. 1897, Baumgarten (L). USA. Arizona. *Coconino Co.*: Grand Canyon National Forest, top of Hermit Trail, pinyon-juniper woodland, on limestone, 1950 m alt., 11 July 1994, T.H.Nash III 35474 (ASU); ibid., South Kaibab Trail, on sandstone, 1950 m alt., 29 June 1991, M.Boykin 2053 (ASU); *Greenlee Co.*: Apache National Forest, Juan Miller Canyon camp-ground, along the Blue River, ponderosa pine forest with riparian sp., on acid rock, 1740 m alt., 6 June 1998, T.H.Nash III 41809 (ASU); *Maricopa Co.*: Crater Range, along AZ 85, 42 km S of Gila Bend Sonoran Desert, on granite, 425 m alt., 27 Feb. 1998, T.H.Nash III 40608 (ASU); *Santa Cruz Co.*: Coronado National Forest, hillsides to S of Pena Blanca Lake (ca. 15 km WNW of Nogales) and just S of Ruby-Nogales Rd., oak woodland steep slope with rhyolite, on rhyolite, 1200 m alt., 2 June 1998, T.H.Nash III 41656 (ASU). Idaho. *Twin Falls Co.*: E side of U.S. Hwy 30, 6.8 km S of Bills, on

Discussion

Protoparmeliopsis garovaglii was traditionally characterised by its typically elongate and strongly inflated-plicate lobes of the thalli. For most details, the species was studied by Ryan and Nash (1993), who treated it as a single frequent widespread and extremely variable taxon – *Lecanora garovaglii* s.l., including *L. cascadensis* H. Magn., *L. nevadensis* H. Magn. and *L. peruviana* (Müll. Arg.) Zahlbr. By examining hundreds of specimens, the authors were deeply involved in discussions about the species’ variety concerning colour of apothecial discs and associated epihymenial features. They finally concluded that the set of mentioned phenotypic traits is often not clearly expressed and does not exhibit clear correlations with other characters, such as secondary chemistry. Moreover, both disc colour and cortical chemistry correlate with habitat and distribution, respectively, rather than directly with each other. According to us, this serves as evidence of possible phenotypic plasticity, not taxon speciation. The cortical chemistry variation throughout the geographical range of *L. garovaglii* with three cortical substances (isousnic, usnic and placodiolic acids) in different combinations is a separate, interesting problem, discussed in the paper by Ryan and Nash (1993) and ending with the statement that the name cannot be unambiguously assigned to any of the known chemotypes as it is not typified. In this situation, the authors referred to the only specimen under the name, *Placodium garovaglii*, available at that time in the Körber “Typenherbar” in L, originating from “Vel Furva” (Valfurva city, Italy) and containing isousnic and usnic acids in the cortex. However, Körber’s collection is kept in the Leiden Herbarium as two different parts. Specimens from the first (Hauptssammlung) are labelled as “Koerber Stammherbar” and those from the second (Typensammlung) as “Koerber Typenherbar” (Liška 2013). It is not clear if Ryan and Nash (1993) searched for original material in both collections or only in the “Typenherbar”.

During our study, we tried to trace the original collection of the species. Type citation in the protologue is: ‘An basaltigem Gestein “in monte supra Varzi” von Garovaglio gesammelt (Herb. Heufl.)’ [Italy, Prov. Pavia, Region of Lombardy, the mountain above Varzi city, on basalt rock, leg. Garovaglio] (Körber, 1859–1865). Heufler’s herbarium was sold after his death and currently the final destination of the samples is unknown. We started our enquiries at IBF where Haufler deposited much of his herbarium material during his lifetime. This did not bring any resolution as our double request did not elicit a response. We also requested the specimens of *P. garovaglii*
from L herbarium. Subsequent to the request, we received the historical collection of *P. garovaglii* from the locality: Lower Austria, sunny slate rocks near Krems on the Danube River, alt. 250 m, 3 Jan. 1897, leg. Baumgarten. Obviously, the species cannot be lectotypified, as there is only one locality cited in the protologue and the original collection of the species from *locus classicus* could not be located at any herbaria and may have been lost. For name typification, we considered the collection available at L, however, its lowland origin and cortical chemistry (usnic and placodiolic acids) indicate that it would not be the best choice. We have also made a request at WRSL herbarium knowing that some small part of Körber’s collection is also located there. However, none of Körber’s specimens representing *P. garovaglii* was available. The most appropriate material for the neotype of the historical collections seen by us is apparently the exsiccate from WRSL, collected in the mountain area of Hungary and it was designated there. This specimen is well preserved, was collected from the basalt rock, has typical morphology suitable to the description given in the protologue and the following cortical chemistry: isousnic, usnic and placodiolic acids (the most frequent chemotype in Europe, according to Ryan and Nash (1993)).

The species most closely related and likely to be confused with *P. garovaglii* is *P. muralis*. In contrast to *P. garovaglii*, the thallus of *P. muralis* is smaller and much more strongly attached to the substrate. Furthermore, thallus lobes of the latter species are distinctly shorter, flattened and thinner and not swollen or sinuous-plicate as they are in the case of *P. garovaglii*. Both species can also be distinguished by their chemistry. *Protoparmeliopsis muralis* contains usnic acid and zeorin but also atranorin, leucotylin, murolic and psoromic acids; the latter are not produced by *P. garovaglii* (Wirth 1995; Ryan et al. 2004; Edwards et al. 2009). To some extent, *P. garovaglii* may also be mistaken with *Rhizoplaca subdiscrepans* (Nyl.) R. Sant., especially as both species have similar colour of the upper surface of the thallus and prefer similar, warm and dry habitats (Wirth 1995; Hafellner and Türk 2001). However, in contrast to *P. garovaglii*, the thallus of *R. subdiscrepans* is usually verrucose-squamulose, polyphyllous, without distinct lobes at the margin and pruinose apothecial discs (Ryan 2001). Both species also have similar cortical chemistry with isousnic, usnic and placodiolic acids in the upper cortex, but *P. garovaglii* additionally contains zeorin in the medulla.

Protoparmeliopsis garovaglii was included in previous phylogenetic frameworks focused on European, North American and Asian populations (Arup and Grube 1998, 2000; Leavitt et al. 2016; Kondratyuk et al. 2014a, b). In this study, we included new sequences from South America and they are placed in a single, highly supported, species-level lineage (BS = 100%, PP = 1). There is a geographical differentiation tendency based on our molecular output. The Polish specimen is placed in a monophyletic clade with a highly supported group (BS = 100%, PP = 1) together with the Austrian sequence. Bolivian, Peruvian and North American populations are placed in different clades but, in most cases, the internal node lacks statistical support. This tendency may follow a population geographical disjunction of different organisms, including lichens, in which the morphological and chemical characters are highly variable in a single species, making a real challenge for species delimitation and, in most cases, these species are treated as a ‘complex’. In the case of lichenised fungi, some previous extensive
studies on molecular population or/and phylogeography analyses on species recognition boundaries, such as *Usnea perpusilla* (Wirtz et al. 2008), *Leptogium furfuraceum* (Otálora et al. 2010) *Xanthoparmelia pulla* (Amo de Paz et al. 2012), were performed.

In our study, we analysed differences in morphology, anatomy and chemistry of specimens representing different clades. European material is characterised by a pale green colour of the thallus with elongated, distinctly convex and swollen marginal lobes, which is not very closely attached to the substrate. The apothecial discs are epruinose, bright to dark brown in colour. Within material originating from Bolivia and Peru, we found very similar morphology of the apothecia and thallus, however the thallus colour of Bolivian specimens is more pale yellow than green. In North American, the thallus in many cases is smaller and more closely attached to the substrate, with flat, shorter and narrower marginal lobes (0.3–1.2 mm wide and 2–6 mm long) and is additionally pruinose at the ends. The colour of the discs is usually brown but also yellow-green or yellow-orange, when the upper surface of the thallus has more orange tint. No significant differences were found in the colour or height of the hymenium and epihymenium, nor the paraphyses or shape and size of spores in the specimens representing different clades. Furthermore, we have not found any correlation between secondary chemistry of the thallus and species distribution. Both specimens from Europe, South and North America (Bolivia, Peru and USA) contain zeorin and usnic acids as solid components, when isousnic and placodiolic acids, as well as unidentified terpenoides may be present or absent; however, no sample from South America contained isousnic acid.

Based on these observations, we may confirm great phenotypic variation of specimens representing *P. garovaglii* s.l., also observed by Ryan and Nash (1993). However, we cannot unambiguously correlate perceivable morphotypes with appropriate clades. In particular, morphological differentiation may also greatly reflect responses of individuals to diversity of habitat conditions. Moreover, any far-reaching conclusions must be based on a larger sampling size and should be statistically supported.

We do not claim to assign any taxonomic resolutions concerning *P. garovaglii* s.l. until further molecular population studies provide evidence for species delimitation within the species-complex. The intention of the current study was to genetically support the identification of *P. garovaglii* in collections from areas of research interest to the authors. As a result, molecular evidence of the species occurrences in Poland and South America (Bolivia and Peru) was supplied. Typification of the epithet *P. garovaglii*, via this work, should be useful for further circumscription of related taxa.

Acknowledgements

The curators of ASU, L, MIN and WRSL are gratefully acknowledged for loan of specimens. PRF is greatly indebted to the Director of Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, for generous cooperation. We are grateful to Adam Flakus (Kraków) and Martin Kukwa (Gdańsk) for
helpful assistance with TLC analyses. This work was supported by statutory funds of Wroclaw University of Environmental and Life Sciences and the W. Szafer Institute of Botany, Polish Academy of Sciences as well as by National Science Centre, Poland, project 2016/21/B/NZ8/02463.

References

Neotypification of *Protoparmeliopsis garovaglii* and molecular evidence of its occurrence...

Phylogeny and taxonomy of two new *Plectosphaerella* (Plectosphaerellaceae, Glomerellales) species from China

Zhi-Yuan Zhang¹, Wan-Hao Chen², Xiao Zou¹, Yan-Feng Han¹, Jian-Zhong Huang³, Zong-Qi Liang¹, Sunil K. Deshmukh⁴

¹ Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China ² Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China ³ Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China ⁴ TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road 110003, New Delhi, India

Corresponding author: Yan-Feng Han (swallow1128@126.com)

Academic editor: Danny Haelewaters | Received 30 May 2019 | Accepted 28 July 2019 | Published 7 August 2019

Abstract
The genus *Plectosphaerella* is the largest genus in the family Plectosphaerellaceae. Some species are plant pathogens, whereas others are soil-borne. Seven *Plectosphaerella* isolates were collected from various locations in the southwest of China. Using multi-locus phylogenetic (LSU, ITS, EF1α, RPB2) analyses combined with morphological characteristics, two new species, *Plectosphaerella guizhouensis* sp. nov. and *Plectosphaerella nauculaspora* sp. nov. are described, illustrated and compared with related species.

Keywords
Filamentous fungi, Plectosphaerellaceae, Multi-locus, Morphology, Taxonomy

Introduction
The genus *Plectosphaerella* Kleb., established in 1929, is the largest genus in the family Plectosphaerellaceae (Sordariomycetes, Glomerellales) (Giraldo and Crous 2019), consisting of some plant pathogen and soil-borne species. Previously, *Plectosphaerella* was
proposed as a member of Hypocreaceae (Sordariomycetes, Hypocreales) (Gams and Gerlagh 1968, Barr 1990) or Sordariaceae (Sordariomycetes, Sordariales) (Uecker 1993). Zare et al. (2007) established the family Plectosphaerellaceae to accommodate Acrostalangmus Corda, Gibellulopsis Bat. & G. Maia, Plectosphaerella and Verticillium Nees. At that time, there were only five species in the genus Plectosphaerella, i.e. *P. cucumerina* (Lindf.) W. Gams, *P. cucumeris* Kleb., *P. himantia* (Pers.) Kirschst., *P. melana* (Fr.) Kirschst. and *P. silenes* (Niessl) Kirschst. Carlucci et al. (2012) transferred all species of the anamorphic genus *Plectosporium* M.E. Palm, W. Gams & Nirenberg to *Plectosphaerella*. Subsequently, several new species and new combinations were introduced and transferred to the genus. To date, the genus *Plectosphaerella* contains 14 accepted species (Carlucci et al. 2012, Liu et al. 2013, Crous et al. 2015, Su et al. 2017, Wijayawardene et al. 2017, Giraldo and Crous 2019, Phookamsak et al. 2019).

Members of the genus *Plectosphaerella* are isolated from different habitats throughout the world, including plants, animals and soil. For example, *P. tabacinum* (J.F.H. Beyma) M.E. Palm, W. Gams & Nirenberg (the anamorph of *P. cucumerina*) has a cosmopolitan distribution with reports in Canada and the USA (North America), Belgium, England, Italy, The Netherlands and Switzerland (Europe), Egypt (Africa) etc. (Raimondo and Carlucci 2018, Giraldo and Crous 2019). It has been isolated from 11 species in 9 different plant genera: *Arabidopsis thaliana*, *Arabidopsis* sp., *Cucumis melo*, *Calium spurius*, *Hydilla verticillate*, *Nicotiana tabacum*, *Pyrus malus*, *Solanum lycopersicon*, *Viola odorata*, *Viola tricolor*, *Austropotamobius pallipes* etc. (Alderman and Polglase 1985, Palm et al. 1995, Smith-Kopperl et al. 1999, Domsch et al. 2007, Giraldo and Crous 2019). Another common species, *P. plurivora* A.J.F. Phillips, Carlucci & M.L. Raimondo, has been reported from Australia, Belgium, Germany, Italy, The Netherlands, New Zealand, UK, the USA etc. and is isolated from soil, *Lolium perenne*, *Nicotiana tabacum*, *Solanum lycopersicum*, *Solanum tuberosum* etc. (Giraldo and Crous 2019). Raimondo and Carlucci (2018) reported that *Plectosphaerella* spp. could result in root and collar rot, plus vascular and leaf symptoms. Only two species, *P. oligotrophica* T.T. Liu, D.M. Hu & L. Cai and *P. humicola* Giraldo López & Crous, have been isolated from soils (Liu et al. 2013, Giraldo and Crous 2019).

During the investigation of keratinolytic fungi from different soils in China, seven isolates in the genus *Plectosphaerella* were obtained in Guizhou Province, China. The aim of our project was to identify these isolates, based on combined molecular phylogeny and morphological characteristics.

Materials and methods

Isolates and Morphology

Soil samples were collected from Qianlingshan Park (26°60′N, 106°69′E), Guiyang city and the affiliated hospital of Zunyi Medical University (27°70′N, 106°94′E), Zunyi city, Guizhou Province, China by Zhi-Yuan Zhang on 10 Sept. 2016. Samples were collected 3–10 cm below the soil surface and placed in Ziploc plastic bags. Isola-
tion and purification of strains were undertaken according to methods described by Zhang et al. (2019). Sterile chicken feathers and human hairs were combined with the soil samples. Samples were placed in sterile Petri dishes, which were moistened with ddH₂O. The baited soil sample Petri dishes were incubated at 25 °C for 1 month and remoistened as necessary. Two grams of sample were added to test tubes containing 9 ml of ddH₂O. The mixture was then diluted to 1:10⁴ and 1 ml of suspension was evenly spread on plates containing Sabouraud's dextrose agar (SDA, 10 g of peptone, 40 g of dextrose, 20 g of Agar, 1 litre of ddH₂O) with anti-bacterial chloramphenicol and cycloheximide medium. Plates were incubated at 25 °C for 5 d. The axenic strains were then transferred to potato dextrose agar (PDA, Bio-way, China) plates for purification and to test-tube slants for storage at 4 °C.

Type collections of the novel species are deposited in the Mycological Herbarium of the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS). The ex-type living cultures and other strains of our study are deposited in the China General Microbiological Culture Collection Center (CGMCC) and the Institute of Fungus Resources, Guizhou University (GZAC). The axenic strains were incubated on PDA and Czapek agar (CA, Bio-way, China) at 25 °C in darkness. Macroscopic characterisation was undertaken after 14 d of incubation and the colony colours (surface and reverse) were observed. Preparations were mounted in ddH₂O to study the mycelial morphology, conidiogenous cells, conidial structures and other microstructures from PDA cultures. Photomicrographs of diagnostic structures were made using an OLYMPUS BX53 microscope equipped with differential interference contrast (DIC) optics, an OLYMPUS DP73 high-definition colour camera and cellSens software v.1.18.

DNA extraction, PCR amplification and Sequencing

Total genomic DNA was extracted from fresh fungal mycelia using the BioTeke Fungus Genomic DNA Extraction Kit (DP2032, BioTeke, China), following the manufacturer’s instructions. The internal transcribed spacer (ITS) regions and the 5’ end of the 28S nrRNA locus (LSU) were amplified and sequenced with the primer pairs ITS1/ITS4 (White et al. 1990) and LR0R/LR7 (Vilgalys and Hester 1990, Vilgalys and Sun 1994), respectively. Fragments of the translation elongation factor 1-alpha (EF1α) and the RNA polymerase II (RPB2) genes were amplified with primer sets EF1-983F/EF-2218R (Rehner and Buckley 2005) and RPB2-5F/RPB2-7cR (Liu et al. 1999), respectively. Polymerase chain reaction (PCR) was performed in 25 μl reactions containing 1.0 μl DNA template, 1.0 μl of each forward and reverse primers (10 μmol/l), 12.5 μl 2× MasterMix (Aidlab Biotechnologies Co. Ltd., Beijing, China) and 8.5 μl ddH₂O. Cycling conditions were as follows: initial denaturation at 94 °C for 5 min; followed by 35 cycles at 94 °C for 45 s, annealing depending on the locus (54 °C for ITS, LSU and EF1α, 56 °C for RPB2) for 45 s and extension at 72 °C for 60 s; and a final extension at 72 °C for 10 min. Sequencing was performed by TSINGKE Biological Technology (Kunming, China), using the corresponding primers.
Phylogenetic Analyses

The DNA sequences, generated in this study, were assembled using Lasergene software (version 6.0, DNASTAR). Sequence data, mostly from Giraldo and Crous (2019), were downloaded from NCBI GenBank for molecular phylogenetic analyses (Table 1). Two sequences of *Brunneochlamydosporium nepalense* (isolates CBS 277.89 and CBS 971.72) were chosen as outgroup taxa. Sequences of each locus were aligned through MAFFT v.7.407 (Katoh and Standley 2013), using the default parameters and manually corrected in MEGA 6.06 (Tamura et al. 2013). The aligned sequences of multiple loci were concatenated by SequenceMatrix v.1.7.8 (Vaidya et al. 2011).

Maximum likelihood (ML) analyses were constructed with IQ-TREE v. 1.6.11 (Nguyen et al. 2015). The best-fit model of substitution for each locus was estimated using IQ-TREE’s ModelFinder function (Kalyaanamoorthy et al. 2017) under the Bayesian Information Criterion (BIC). The selected models were TIMe+R2 for LSU, TNe+R2 for ITS, TIM2+F+R3 for EF1α and TN+I+G4 for RPB2. Bootstrap analyses was performed using the ultrafast bootstrap approximation (Minh et al. 2013) with 1,000 replicates and a bootstrap support (BS) ≥ 95% was considered as statistically significant.

For Bayesian Inference (BI), a Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees with Bayesian probabilities using MrBayes v.3.2 (Ronquist et al. 2012) for the combined sequence datasets. The selection of the best-fit nucleotide substitution model for each locus was calculated by the Akaike Information Criterion (AIC) with Modeltest v.3.7 (Posada and Crandall 1988). The GTR+I+G model was selected for all datasets (LSU, ITS, EF1α, RPB2). Two runs were executed simultaneously for 5,000,000 generations and sampled every 500 generations. After the BI analyses, both runs were examined with T racer v.1.5 (Drummond and Rambaut 2007) to determine burn-in and check for convergence. The final tree was submitted to TreeBASE, submission ID: 24412 (http://www.treebase.org).

Results

Phylogenetic analyses

Fifty-five strains (including the seven with new sequence data) were included in our multi-locus dataset (Table 1), which comprised 2536 positions, of which 322 were phylogenetically informative (35 of LSU, 54 ITS, 76 EF1α, and 157 RPB2). Tree topology of the Bayesian analyses was similar to that of the Maximum likelihood analyses.

The analyses of concatenated dataset (Figure 1) showed that our isolates CGMCC 3.19658, CGMCC 3.19659 and CGMCC 3.19660 clustered in a single clade with maximum support (BI pp = posterior probability 1, ML BS 100). Similarly, the isolates CGMCC 3.19656 and CGMCC 3.19657 clustered in another single clade with high support (BI pp 1, ML BS 100). Furthermore, our isolates CGMCC 3.19654 and CGMCC 3.19655 clustered with other *Plectosphaerella plurivora* isolates from CBS in a single subclade supported by BI pp = 0.92.
<table>
<thead>
<tr>
<th>Species</th>
<th>Strain No.</th>
<th>GenBank Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSU</td>
<td>ITS</td>
</tr>
<tr>
<td>Brunneochlamydosporium</td>
<td>CBS 277.89</td>
<td>LR025812</td>
</tr>
<tr>
<td>nepalense</td>
<td>CBS 971.72 T</td>
<td>LR025813</td>
</tr>
<tr>
<td>Plectosphaerella alismatis</td>
<td>CBS 113362 T</td>
<td>LR025932</td>
</tr>
<tr>
<td>P. cucumerina</td>
<td>CBS 131740</td>
<td>LR025933</td>
</tr>
<tr>
<td></td>
<td>CBS 131741 T</td>
<td>LR025934</td>
</tr>
<tr>
<td></td>
<td>CBS 137.33</td>
<td>LR025935</td>
</tr>
<tr>
<td></td>
<td>CBS 137.37 T</td>
<td>LR025936</td>
</tr>
<tr>
<td></td>
<td>CBS 139.60</td>
<td>LR025937</td>
</tr>
<tr>
<td></td>
<td>CBS 286.64</td>
<td>LR025938</td>
</tr>
<tr>
<td></td>
<td>CBS 355.36</td>
<td>LR025939</td>
</tr>
<tr>
<td></td>
<td>CBS 367.73</td>
<td>LR025940</td>
</tr>
<tr>
<td></td>
<td>CBS 400.58</td>
<td>LR025941</td>
</tr>
<tr>
<td></td>
<td>CBS 567.78</td>
<td>LR025942</td>
</tr>
<tr>
<td></td>
<td>CBS 619.74</td>
<td>LR025943</td>
</tr>
<tr>
<td></td>
<td>CBS 632.94</td>
<td>LR025944</td>
</tr>
<tr>
<td></td>
<td>CBS 101014</td>
<td>LR025945</td>
</tr>
<tr>
<td></td>
<td>CBS 116708 T</td>
<td>LR025948</td>
</tr>
<tr>
<td></td>
<td>CBS 131739</td>
<td>LR025947</td>
</tr>
<tr>
<td></td>
<td>CBS 139623</td>
<td>LR025949</td>
</tr>
<tr>
<td></td>
<td>CBS 423.66 T</td>
<td>LR025950</td>
</tr>
<tr>
<td></td>
<td>CBS 489.96 T</td>
<td>LR025951</td>
</tr>
<tr>
<td></td>
<td>CBS 525.93</td>
<td>LR025952</td>
</tr>
<tr>
<td></td>
<td>NJM 0662 T</td>
<td>AB425974</td>
</tr>
<tr>
<td></td>
<td>NJM 0665</td>
<td>AB425975</td>
</tr>
<tr>
<td></td>
<td>CBS 131744</td>
<td>LR025953</td>
</tr>
<tr>
<td></td>
<td>CBS 131745 T</td>
<td>LR025954</td>
</tr>
<tr>
<td></td>
<td>CBS 101.87</td>
<td>LR025955</td>
</tr>
<tr>
<td></td>
<td>CBS 215.84</td>
<td>LR025956</td>
</tr>
<tr>
<td></td>
<td>CBS 260.89</td>
<td>LR025957</td>
</tr>
<tr>
<td></td>
<td>CBS 261.89</td>
<td>LR025958</td>
</tr>
<tr>
<td></td>
<td>CBS 291.38</td>
<td>LR025959</td>
</tr>
<tr>
<td></td>
<td>CBS 292.66</td>
<td>LR025960</td>
</tr>
<tr>
<td></td>
<td>CBS 386.68</td>
<td>LR025961</td>
</tr>
<tr>
<td></td>
<td>CBS 417.81</td>
<td>LR025962</td>
</tr>
<tr>
<td></td>
<td>CBS 642.63</td>
<td>LR025964</td>
</tr>
<tr>
<td></td>
<td>CBS 757.68</td>
<td>LR025965</td>
</tr>
<tr>
<td></td>
<td>CBS 101607</td>
<td>LR025966</td>
</tr>
<tr>
<td></td>
<td>CBS 131742 T</td>
<td>LR025967</td>
</tr>
<tr>
<td></td>
<td>CBS 131806 T</td>
<td>LR025968</td>
</tr>
<tr>
<td></td>
<td>CBS 143233 T</td>
<td>MG386133</td>
</tr>
<tr>
<td></td>
<td>CGMCC 3.19654 = GZUIFR-H265.1 T</td>
<td>MK880436</td>
</tr>
<tr>
<td></td>
<td>CGMCC 3.19655 = GZUIFR-H265.2 T</td>
<td>MK880437</td>
</tr>
<tr>
<td></td>
<td>CBS 139623 T</td>
<td>KR476783</td>
</tr>
<tr>
<td></td>
<td>CBS 139624</td>
<td>MH878144</td>
</tr>
<tr>
<td></td>
<td>CBS 131743</td>
<td>LR025969</td>
</tr>
<tr>
<td></td>
<td>CBS 131861 T</td>
<td>LR025970</td>
</tr>
<tr>
<td></td>
<td>ACCC 39144</td>
<td>KX527892</td>
</tr>
<tr>
<td></td>
<td>ACCC 39145 T</td>
<td>KX527891</td>
</tr>
<tr>
<td></td>
<td>CGMCC 3.19656 = GZUIFR-QL8.12.1 T</td>
<td>MK880424</td>
</tr>
<tr>
<td></td>
<td>CGMCC 3.19657 = GZUIFR-QL8.12.2 T</td>
<td>MK880425</td>
</tr>
</tbody>
</table>

Table 1. Strains included in the phylogenetic analyses.

- Table 1: Strains included in the phylogenetic analyses.
 - **Table Note**: T = type strain, strains and sequences generated in this study are shown in bold. ACCC: Agricultural Culture Collection of China, Beijing, China; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center; GZAC: Guizhou University, Institute of Fungus Resources; “–” represents the absence of GenBank accession.
Figure 1. Phylogenetic tree of *Plectosphaerella* species derived from Bayesian analyses and Maximum Likelihood analyses, based on the combined sequences dataset of LSU+ITS+EF1α+RPB2. Bayesian posterior probabilities (BI pp) greater than 0.7 and Maximum Likelihood bootstrap support values (ML BS) greater than 95% are shown above branches. New isolates are in bold and blue. The tree used *Brunneochlamydosporium nepalense* (CBS 277.89 and CBS 971.72) as outgroup.
Phylogeny and taxonomy of two new Plectosphaerella... 53

Taxonomy

Plectosphaerella guizhouensis Zhi.Y. Zhang, Y.F. Han & Z.Q. Liang, sp. nov.
MycoBank: MB 830971
Figure 2

Etymology. Referring to Guizhou, the province where the isolate was collected.

Description. *Sexual morph* not observed. *Asexual morph* on CA. *Mycelium* hyaline, smooth, septate, branched and thin-walled, 1–2 μm (x = 1.5 μm) wide. *Conidiophores* solitary, unbranched or rarely branched, hyaline, smooth, thin-walled, sometimes radiating out from hyphal coils. *Conidiogenous cells* growing from a short branch or directly from mycelia, phialides, discrete, polymorphic, cylindrical, sub-cylindrical or ampulliform; terminal or lateral, hyaline, smooth, solitary, straight at the apex, sometimes bent or helicoid, gradually tapering to the apex, 3.5–17 × 0.5–2 μm (x = 9.5 × 1.5 μm, n = 20), collarette cylindrical, 0.5–1 μm deep. *Conidia* aggregating in slimy heads, non-septate or 1-septate, fusiform or cylindrical, sometimes rounded at both ends, hyaline, smooth, thin-walled; 2–6.5 × 1.5–5 μm (x = 5.5 × 2 μm, n = 10) (1-septate), 3–5 × 1–1.5 μm (x = 4 × 1.5 μm, n = 10) (non-septate). *Chlamydospores* absent.

Culture characteristics. Colonies on PDA reaching 74–75 mm diam. in 14 d at 25 °C, milk white, flat, aerial hyphae sparse, floccose at periphery, sub-rounded, margin regular, reverse milk white. Colonies on CA reaching 65–67 mm diam. in 14 d at 25 °C, white to milk white, flat, floccose, margin weakly undulate to faintly fimbriate, reverse milk white.

Typification. CHINA, Guizhou, Guiyang, Qianlingshan Park, 26°60’N, 106°69’E, 1210 m a.s.l., on soil, 10 Sep. 2016, collected and isolated by Zhi-Yuan Zhang, HMAS 255618 (holotype), ex-type CGMCC 3.19658 (= GZUIFR-QL9.9.1); ex-isotype CGMCC 3.19659 (= GZUIFR-QL9.9.2) and CGMCC 3.19660 (= GZUIFR-QL9.9.3).

Notes. Based on multi-locus phylogenetic analyses (Figure 1, see Results) and similar morphological characteristics, the three strains are regarded as the same species, which cluster together very well and form a single clade separated from other species of *Plectosphaerella* (Figure 1). Morphologically, *Plectosphaerella guizhouensis* differs from others species by the fusiform or cylindrical conidia, non-septate conidia (average 4 × 1.5 μm) and separate conidia (5.5 × 2 μm) (see Key). Therefore, based on combined phylogenetic and morphological evidence, *P. guizhouensis* is identified as a new species of *Plectosphaerella*.

Plectosphaerella nauculaspora Zhi.Y. Zhang, Y.F. Han & Z.Q. Liang, sp. nov.
MycoBank: MB 830972
Figure 3

Etymology. From “naucula”, referring to the navicular conidia.

Description. *Sexual morph* not observed. *Asexual morph* on CA. *Mycelium* hyaline, smooth, septate, branched and thin-walled, 1–1.2 μm (x = 1.5 μm) wide. *Conidiophores*...
solitary, unbranched or rarely branched, hyaline, smooth, thin-walled, hyphal coils not observed. Conidiogenous cells growing from short branch or directly from mycelia, phialides, discrete, polymorphic, cylindrical, sub-cylindrical or ampulliform; terminal or lateral, hyaline, smooth, gradually tapering to the apex, straight at the apex, sometimes bent or helicoid, 3–37 × 0.5–2 μm (x = 11 × 1 μm, n = 10), collarette minute, cylindrical, 0.5–1 μm deep. Conidia aggregating in slimy heads, 1- or 2-celled, mostly navicular, rarely fusiform or cylindrical, sometimes swollen at both ends, hyaline, smooth, thin-walled, 4–7 × 1–2 μm (x = 5 × 1.5 μm, n = 10) (1-septate), 3–5 × 1–1.5 μm (x = 4 × 1.5 μm, n = 6) (non-septate). Chlamydospores not observed.

Culture characteristics. Colonies on PDA reaching 75–76 mm diam. in 14 d at 25 °C, milk white, flat, sub-rounded, margin regular, reverse milk white. Colonies on CA reaching 63–65 mm diam. in 14 d at 25 °C, milk white, aerial hyphae sparse, flat, margin weakly undulate to faintly fimbriate, reverse milk white.

Typification. CHINA, Guizhou, Guiyang, Qianlingshan Park, 26°60’N, 106°69’E, 1220 m a.s.l., on soil, 10 Sep. 2016, collected and isolated by Zhi-Yuan Zhang, HMAS
Phylogeny and taxonomy of two new Plectosphaerella...

248154 (holotype), ex-type CGMCC 3.19656 (= GZUIFR-QL8.12.1); ex-isotypes CGMCC 3.19657 (= GZUIFR-QL8.12.2).

Notes. Phylogenetically, our two isolates CGMCC 3.19656 and CGMCC 3.19657 cluster together very well and form a single clade separated from the other species of *Plectosphaerella* (Figure 1). Morphologically, *Plectosphaerella nauculaspora* is the only species that produces navicular conidia in this genus. Therefore, based on both morphological and phylogenetic evidence, *P. nauculaspora* is proposed as a novel species.

Discussion

In the present study, seven strains of *Plectosphaerella* fungi were isolated from soil in the Guizhou Province, China. Multi-locus phylogenetic analyses in combination with morphological data were used for identification. Our study resulted in the description of two new species, *P. guizhouensis* (3 isolates) and *P. nauculaspora* (2 isolates). In addition, our two isolates CGMCC 3.19654 and CGMCC 3.19655 closely clustered with
P. plurivora and their morphological characters are similar to the original description P. plurivora (Carlucci et al. 2012).

Plectosphaerella spp. have diverse life styles and habitat sources – including pathogens of several plants, endophytes of plants, pathogens of animals (mainly involving Austropotamobius pallipes and Oratosquilla oratoria) and saprophytes on soil (Alderman and Polglase 1985, Palm et al. 1995, Domsch et al. 2007, Duc et al. 2009, Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017, Liang et al. 2017, Raimondo and Carlucci 2018, Giraldo and Crous 2019). Although Plectosphaerella spp. were initially isolated from plants (from healthy or symptomatic tissue), subsequent studies found that they also widely distributed on soils and do not necessarily exhibit host specificity (Carlucci et al. 2012, Raimondo and Carlucci 2018, Giraldo and Crous 2019). However, P. oratosquillae can only be isolated from animals and it exhibits host specificity (Duc et al. 2009). Likewise, some species (mainly P. oligotrophica and P. humicola) have so far only been isolated from soils. In comparison with these previous studies, our two new species and one known species of Plectosphaerella were obtained from the soil beside a park road by the baiting technique (a method specifically designed for isolating keratinophilic fungi, Zhang et al. 2019). More studies are needed to assess whether our new species could be isolated from other habitats.

At present, more and more studies use combined data from morphological characteristics and molecular phylogeny for identifying new species (e.g. Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017, Giraldo and Crous 2019, Phookamsak et al. 2019). Throughout the years, several loci have been used in the phylogenetic analyses of Plectosphaerella and its allies, containing ITS, LSU, EF1α, β-tubulin, CaM and RPB2 (Zare et al. 2007, Duc et al. 2009, Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017). Giraldo and Crous (2019) revised the Plectosphaerellaceae and their results suggested that the phylogeny based on LSU+ITS+EF1α+RPB2 can be used for resolving intergeneric and interspecific relationships within the family Plectosphaerellaceae. As a result, we also used the LSU+ITS+EF1α+RPB2 dataset for phylogenetic analyses of Plectosphaerella.

Key to the species of Plectosphaerella

1 Growing on crustaceans ...P. oratosquillae
 – On other substrates ..2
2 Teleomorph known ...3
 – Teleomorph unknown ..5
3 Ascomata globose or subglobose to pyriform ..P. kunmingensis
 – Ascomata subglobose to ovoid, or obpyriform ...P. cucumerina
4 Asci 50–80 × 6–9 μm ...P. plurivora
 – Asci 31.4–43 × 6.2–8.2 μm ..P. plurivora
5 Chlamydospores present ...6
 – Chlamydospores absent ...8
6 Conidia mostly septate .. 7
 – Conidia mostly aseptate .. P. melonis
7 Conidia 13–19.5 × 2.5–3 μm ... P. alismatis
 – Conidia 6–10 × 1.5–4 μm .. P. sinensis
8 Phialides branched at tip .. 9
 – Phialides not branched at tip .. 11
9 Phialides 0–3-septate .. P. ramiseptata
 – Phialides 0–1-septate .. P. pauciseptata
10 Oligotrophic, polyphialides infrequently seen, collarette 1–2.5 μm P. oligotrophica
 – Non-oligotrophic, polyphialides frequently seen, collarette minute P. pauciseptata
11 Conidia ellipsoidal ... 12
 – Conidia cylindrical, ellipsoidal, fusiform, navicular 14
12 Conidia mostly septate .. P. delsorboi
 – Conidia aseptate .. 13
13 Conidia av. 4 × 2 μm .. P. populi
 – Conidia av. 7.9 × 3.5 μm .. P. citrullae
14 Conidia mostly navicular .. P. nauculaspora
 – Conidia mostly cylindrical or fusiform ... 15
15 Septate conidia 2–6.5 × 1.5–5 μm, aseptate conidia 3–5 × 1–1.5 μm P. guizhouensis
 – Septate conidia 7.5–11 × 2.5–3.5 μm, aseptate conidia 5–8 × 2.1–3.3 μm P. humicola

Acknowledgements

We are grateful to the editor Danny Haelewaters (Purdue University, Indiana, USA) and the reviewers – Martina Réblová (Czech Academy of Sciences, Průhonice, Czech Republic) and Yong-Chun Niu (Chinese Academy of Agricultural Sciences, Beijing, China) for comments on the manuscript. This work was financially supported by the Ministry of Science and Technology of China (2013FY110400), Guangdong Technological Innovation Strategy of Special Funds (key areas of research and development programme) (2018B020205003), the National Natural Science Foundation of China (31460010, 31860002) and Construction Program of Biology First-class Discipline in Guizhou (GNYL[2017]009).

References

Phylogeny and taxonomy of two new Plectosphaerella...

Crassisporus gen. nov. (Polyporaceae, Basidiomycota) evidenced by morphological characters and phylogenetic analyses with descriptions of four new species

Xing Ji¹, Dong-Mei Wu², Shun Liu¹, Jing Si¹, Bao-Kai Cui¹

¹ Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China ² Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences / Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi, Xinjiang 832000, China

Corresponding author: Bao-Kai Cui (cuibaokai@yahoo.com)

Abstract

A new poroid wood-inhabiting fungal genus, Crassisporus gen. nov., is proposed on the basis of morphological characters and molecular evidence. The genus is characterized by an annual growth habit, effused-reflexed topileate basidiocarps with pale yellowish brown to yellowish brown, concentrically zonate or sulcate, and velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues turning to dark in KOH, oblong to broadly ellipsoid, hyaline, smooth, and slightly thick-walled basidiospores. Phylogenetic analysis based on ITS+nLSU sequences indicate that Crassisporus belongs to the core polyporoid clade. The combined ITS+nLSU+mtSSU+EF1-α+RPB2 sequences dataset of representative taxa in the Polyporaceae demonstrate that Crassisporus is grouped with Haploporus but forms a monophyletic lineage. In addition, four new species of Crassisporus, C. imbricatus, C. leucoporus, C. macroporus, and C. microsporus are described.

Keywords

core polyporoid clade, molecular phylogeny, polypore, taxonomy, wood-decaying fungi

Introduction

Polyporales is one of the most diverse orders of Basidiomycota including more than 1800 described species in 216 genera and 13 families (Kirk et al. 2008). In the last 10 years, many new genera in Polyporales have been established, such as Datroniella B.K.

During the investigations of species diversity and phylogeny of Polyporales, four new species were found that did not belong to any known genus, for which reason, a new genus is established to accommodate them. Morphologically, these four taxa do not fit any of the known polypore taxa. To confirm the position of the new genus, phylogenetic analyses of the new genus and related taxa within Polyporales were carried out based on the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit mitochondrial rRNA gene sequences (mtSSU), the translation elongation factor 1-α gene (EF1-α), and the second largest subunit of RNA polymerase II (RPB2).

Materials and methods

Morphological studies

The studied specimens were deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC). Macro-morphological descriptions are based on the field notes and measurements of herbarium specimens. Color terms follow Petersen (1996). Micro-morphological data were obtained from the dried specimens and observed under a light microscope following Shen et al. (2019). Sections were studied at magnifications up to 1000× using a Nikon E80i microscope and phase contrast illumination (Nikon, Tokyo, Japan). Drawings were made with the aid of a drawing tube. Microscopic features, measurements, and drawings were made from slide preparations stained with cotton blue and Melzer's reagent. Spores were measured from sections cut from the tubes. In presenting the variation of spore size, 5% of measurements were excluded from each end of the range, and were given in parentheses. The following abbreviations were used: **KOH**, 5% potassium hydroxide; **IKI**, Melzer’s reagent; **IKI-**, neither amyloid nor dextrinoid; **CB**, cotton blue; **CB+**, cyanophilous; **CB-**, acyanophilous; **L**, mean spore length (arithmetic average of all spores); **W**, mean spore width (arithmetic average of all spores); **Q**, variation in the L/W ratios between the specimens studied; **n** (**a/b**), number of spores (**a**) measured from given number (**b**) of specimens.

DNA extraction and sequencing

A CTAB rapid plant genome extraction kit (Aidlab Biotechnologies Co. Ltd, Beijing) was used to extract total genomic DNA from dried specimens, and performed the polymerase chain reaction (PCR) according to the manufacturer’s instructions with
Crassisporus gen. nov.

some modifications (Chen et al. 2015). The ITS region was amplified with primer pairs ITS5 and ITS4 (White et al. 1990). The nLSU region was amplified with primer pairs LR0R and LR7 (http://www.biology.duke.edu/fungi/mycolab/primers.htm). The mtSSU region was amplified with primer pairs MS1 and MS2 (White et al. 1990). Part of EF1-α was amplified with primer pairs EF1-983F and EF1-1567R (Rehner and Buckley 2005). RPB2 was amplified with primer pairs fRPB2-5F and fRPB2-7cR or bRPB2-6F and bRPB2-7R (Liu et al. 1999; Matheny 2005). The PCR procedure for ITS, mtSSU and EF1-α was as follows: initial denaturation at 95 °C for 3 min, followed by 34 cycles at 94 °C for 40 s, 54 °C for ITS and mtSSU, 54–56 °C for EF1-α for 45 s, 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 34 cycles at 94 °C for 30 s, 50 °C for 1 min, 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for RPB2 was as follows: initial denaturation at 94 °C for 2 min, followed by 10 cycles at 94 °C for 40 s, 60 °C for 40 s and 72 °C for 2 min, then followed by 37 cycles at 94 °C for 45 s, 55–57 °C for 1.5 min and 72 °C for 2 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Beijing Genomics Institute, China, with the same primers. All newly generated sequences were submitted to GenBank (Table 1).

Phylogenetic analyses

Sequences used for phylogenetic analyses in this study are listed in Table 1. Sequences of ITS, nLSU, mtSSU, EF1-α, and RPB2 were aligned initially in MAFFT 7 (Katoh and Standley 2013; http://mafft.cbrc.jp/alignment/server/) and then manually adjusted in BioEdit (Hall 1999). Finally, these gene fragments were concatenated with Mesquite 3.2 (Maddison and Maddison 2017) for further phylogenetic analyses. Phylogenies were inferred from the combined 2-gene dataset (ITS+nLSU) and 5-gene dataset (ITS+nLSU+mtSSU+EF1-α+RPB2). *Heterobasidion annosum* (Fr.) Bref. and *Stereum hirsutum* (Willd.) Pers. obtained from GenBank were used as outgroups to root trees in the 2-gene based analysis. *Laetiporus montanus* Černý ex Tomšovský & Jankovský and *L. sulphureus* (Bull.) Murrill were selected as outgroups to root trees in the 5-gene based analysis. The final concatenated sequence alignments were deposited in TreeBase (https://treebase.org/treebase-web/home.html; submission ID 23521).

Phylogenetic analyses used in this study followed the approach of Zhu et al. (2019) and Song and Cui (2017). Maximum parsimony (MP) analysis was performed in PAUP* v. 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1000 replicates.
<table>
<thead>
<tr>
<th>Species</th>
<th>Sample no.</th>
<th>Locality</th>
<th>GenBank accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ITS</td>
</tr>
<tr>
<td>Abortiporus biennis</td>
<td>EL 65-03</td>
<td>Sweden</td>
<td>JN649325</td>
</tr>
<tr>
<td>Abundisporus fuscoparensis</td>
<td>Cui 10950</td>
<td>China</td>
<td>KC456254</td>
</tr>
<tr>
<td>A. pubertatis</td>
<td>Dai 11310</td>
<td>China</td>
<td>KC787568</td>
</tr>
<tr>
<td>A. sclerosetosus</td>
<td>Dal 11927</td>
<td>China</td>
<td>KC787569</td>
</tr>
<tr>
<td>A. violaceus</td>
<td>Ryvarden</td>
<td>Finland</td>
<td>KF018127</td>
</tr>
<tr>
<td>Antrodia albida</td>
<td>CBS 308.82</td>
<td>USA</td>
<td>DQ491414</td>
</tr>
<tr>
<td>A. macra</td>
<td>MUAF 887</td>
<td>Czech Republic</td>
<td>EU340898</td>
</tr>
<tr>
<td>Bjerkandera adusta</td>
<td>NBRC 4983</td>
<td>Unknown</td>
<td>AB733156</td>
</tr>
<tr>
<td>Cineromyces lindbladii</td>
<td>KHL 12078</td>
<td>Norway</td>
<td>FN907906</td>
</tr>
<tr>
<td>Climacocystis borealis</td>
<td>KHL 11318</td>
<td>Estonia</td>
<td>JQ031126</td>
</tr>
<tr>
<td>C. brunneolucia</td>
<td>Cui 13911</td>
<td>China</td>
<td>MK116480</td>
</tr>
<tr>
<td>C. polyzona</td>
<td>Dai 12810</td>
<td>China</td>
<td>KC867414</td>
</tr>
<tr>
<td>C. retropicta</td>
<td>Cui 13849</td>
<td>China</td>
<td>MK116481</td>
</tr>
<tr>
<td>C. leucopus</td>
<td>Dai 16801</td>
<td>Australia</td>
<td>MK116488</td>
</tr>
<tr>
<td>C. macroporus</td>
<td>Dai 14465</td>
<td>China</td>
<td>MK116485</td>
</tr>
<tr>
<td>C. microsporus</td>
<td>Dai 16221</td>
<td>China</td>
<td>MK116486</td>
</tr>
<tr>
<td>Daedaleopsis confragosa</td>
<td>Bkw004</td>
<td>Ghana</td>
<td>JN164978</td>
</tr>
<tr>
<td>D. hainanensis</td>
<td>Cui 14303</td>
<td>China</td>
<td>MK116482</td>
</tr>
<tr>
<td>Earliella scabra</td>
<td>PR1209</td>
<td>Puerto Rico</td>
<td>JN164979</td>
</tr>
<tr>
<td>Fomes fomentarius</td>
<td>ES 2008-3</td>
<td>Sweden</td>
<td>JX109860</td>
</tr>
<tr>
<td>Fomitellia napina</td>
<td>JV0610</td>
<td>Guatemala</td>
<td>KF274645</td>
</tr>
<tr>
<td>F. napina</td>
<td>Ryvarden</td>
<td>Puerto Rico</td>
<td>KF274643</td>
</tr>
<tr>
<td>Fragiliporia fragilis</td>
<td>Dai 13080</td>
<td>China</td>
<td>KJ734260</td>
</tr>
<tr>
<td>F. fragilis</td>
<td>Dai 13559</td>
<td>China</td>
<td>KJ734261</td>
</tr>
<tr>
<td>Yuan 5516</td>
<td>Cui 14486</td>
<td>China</td>
<td>KJ734263</td>
</tr>
<tr>
<td>Funaia gallica</td>
<td>Dai 10777</td>
<td>China</td>
<td>KC867378</td>
</tr>
<tr>
<td>E trogii</td>
<td>RLG4286Sp</td>
<td>USA</td>
<td>JN164993</td>
</tr>
<tr>
<td>Gelatoporia subvermispora</td>
<td>BRNU 592909</td>
<td>Czech Republic</td>
<td>FJ496069</td>
</tr>
<tr>
<td>Grammaphelopsis sub tropica</td>
<td>Cui 9035</td>
<td>China</td>
<td>JQ845094</td>
</tr>
<tr>
<td>H. latisporus</td>
<td>Dai 11873</td>
<td>China</td>
<td>KU941847</td>
</tr>
<tr>
<td>H. adorus</td>
<td>Yuan 2365</td>
<td>China</td>
<td>KU941846</td>
</tr>
<tr>
<td>H. subrametens</td>
<td>Dai 11296</td>
<td>China</td>
<td>KU941845</td>
</tr>
<tr>
<td>H. aporia</td>
<td>Dai 4222</td>
<td>China</td>
<td>KU941849</td>
</tr>
<tr>
<td>H. hirta</td>
<td>Cui 10656</td>
<td>China</td>
<td>KU941850</td>
</tr>
<tr>
<td>Heterobasidion annosus</td>
<td>PFC 5327</td>
<td>Greece</td>
<td>KC492915</td>
</tr>
<tr>
<td>Hexagonia apiaria</td>
<td>Cui 6447</td>
<td>China</td>
<td>KC867362</td>
</tr>
<tr>
<td>H. aporia</td>
<td>Dai 10784</td>
<td>China</td>
<td>KX090063</td>
</tr>
<tr>
<td>H. hirta</td>
<td>Cui 4051</td>
<td>China</td>
<td>KC867359</td>
</tr>
<tr>
<td>Hormodermopus latisimus</td>
<td>Dai 6625</td>
<td>China</td>
<td>HQ876604</td>
</tr>
<tr>
<td></td>
<td>Dai 12054</td>
<td>China</td>
<td>KC090063</td>
</tr>
<tr>
<td>Species</td>
<td>Sample no.</td>
<td>Locality</td>
<td>GenBank accessions</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Crassisporus gen. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ITS nLSU mtSSU EF1-α RPB2</td>
</tr>
<tr>
<td>H. martius</td>
<td>MUCL 41677</td>
<td>Argentina</td>
<td>FJ411092 FJ393859 – – –</td>
</tr>
<tr>
<td></td>
<td>MUCL 41678</td>
<td>Argentina</td>
<td>FJ411093 FJ393860 – – –</td>
</tr>
<tr>
<td>Hydnopolyporus fimbriatus</td>
<td>LR 40855</td>
<td>Puerto Rico</td>
<td>JN649347 JN649347 – – –</td>
</tr>
<tr>
<td>Hypocorticium lyndoniae</td>
<td>NL 041031</td>
<td>UK</td>
<td>JX124704 JX124704 – – –</td>
</tr>
<tr>
<td>Lazetis montanus</td>
<td>Cui 10011</td>
<td>China</td>
<td>KP951274 KP951315 KX354570 KX354617 KX894790</td>
</tr>
<tr>
<td>L. sulphureus</td>
<td>Cui 12388</td>
<td>China</td>
<td>KR187105 KX354486 KX354560 KX354607 KX354652</td>
</tr>
<tr>
<td>Lensites betulina</td>
<td>HHHB9942Sp</td>
<td>USA</td>
<td>JN164983 JN164794 – JN164895 JN164860</td>
</tr>
<tr>
<td>Megaspora ellipoides</td>
<td>Cui 13854</td>
<td>Argentina</td>
<td>MK116483* MK116492* MK116501* MK122981* MK122988*</td>
</tr>
<tr>
<td>M. major</td>
<td>Cui 10253</td>
<td>China</td>
<td>JQ314366 JQ780437 MK116502* – – –</td>
</tr>
<tr>
<td>Megaspororia rhododendri</td>
<td>Cui 10745</td>
<td>China</td>
<td>MK116484* MK116493* MK116503* MK122982* MK122989*</td>
</tr>
<tr>
<td>M. subcavernulae</td>
<td>Cui 14247</td>
<td>China</td>
<td>MG847213 MG847222 MG847234 MG867705 MG867685</td>
</tr>
<tr>
<td>Microsporus affinis</td>
<td>Cui 7714</td>
<td>China</td>
<td>JX569739 JX569746 KX880696 – KP951274</td>
</tr>
<tr>
<td>M. vernicipes</td>
<td>Dai 9283</td>
<td>China</td>
<td>KX880618 KX880658 KX880701 KX880926 – –</td>
</tr>
<tr>
<td>M. xanthopus</td>
<td>Dai 8284</td>
<td>China</td>
<td>JX290074 JX290071 KX880703 KX880878 JX559313</td>
</tr>
<tr>
<td>Neodatronia sinensis</td>
<td>Dai 11921</td>
<td>China</td>
<td>JX559272 JX559283 – JX559320 –</td>
</tr>
<tr>
<td>Neofomitella fumosipora</td>
<td>Cui 8816</td>
<td>China</td>
<td>JX569734 JX569741 KX900664 KX900714 KX900848 KX900815</td>
</tr>
<tr>
<td>N. rhodophala</td>
<td>TFR 414</td>
<td>Unknown</td>
<td>EU232216 EU232300 – – –</td>
</tr>
<tr>
<td>Obba rivulosa</td>
<td>KCTC 6892</td>
<td>Canada</td>
<td>JG969693 JG969710 – – –</td>
</tr>
<tr>
<td>Perenniporia hainaniana</td>
<td>Cui 6364</td>
<td>China</td>
<td>JQ861743 JQ861759 KF051044 KF181138 –</td>
</tr>
<tr>
<td>P. hainaniana</td>
<td>Cui 6365</td>
<td>China</td>
<td>JQ861744 JQ861760 KF051045 KF181139 –</td>
</tr>
<tr>
<td>P. medulla-panis</td>
<td>MUC 49581</td>
<td>Poland</td>
<td>FJ411088 JF393876 – – –</td>
</tr>
<tr>
<td>P. substaminosa</td>
<td>Cui 10177</td>
<td>China</td>
<td>JQ001852 JQ001844 KF051046 KF181140 –</td>
</tr>
<tr>
<td></td>
<td>Cui 10191</td>
<td>China</td>
<td>JQ001853 JQ001845 KF051047 KF181141 –</td>
</tr>
<tr>
<td>Perenniporiella chaquenia</td>
<td>MUC 47648</td>
<td>Argentina</td>
<td>FJ411084 FJ393856 – HM467610</td>
</tr>
<tr>
<td>P. micropora</td>
<td>MUC 43581</td>
<td>Cuba</td>
<td>FJ411086 FJ393858 – HM467608</td>
</tr>
<tr>
<td>P. neofulva</td>
<td>MUC 45091</td>
<td>Cuba</td>
<td>FJ411080 FJ393852 – HM467599</td>
</tr>
<tr>
<td>P. pendula</td>
<td>MUC 46034</td>
<td>Cuba</td>
<td>FJ411081 FJ393853 – HM467601</td>
</tr>
<tr>
<td>Phanerochaete chrysosporium</td>
<td>BKM-F-1767</td>
<td>USSR</td>
<td>HQ188436 GQ470643 – – –</td>
</tr>
<tr>
<td>Phlebia unica</td>
<td>KHL 11786</td>
<td>Sweden</td>
<td>EU118657 EU118657 – – –</td>
</tr>
<tr>
<td>Pycnoporus cinnabarinus</td>
<td>Dai 14386</td>
<td>China</td>
<td>KX880629 KX880667 KX880712 KX880885 KX880854</td>
</tr>
<tr>
<td>Skeletocutis amorpha</td>
<td>Miettinen 11038</td>
<td>Finland</td>
<td>FN907913 FN907913 – – –</td>
</tr>
<tr>
<td>Stereum hirsutum</td>
<td>NBRC 6520</td>
<td>Unknown</td>
<td>AB733150 AB733325 – – –</td>
</tr>
<tr>
<td>Trametes conchifer</td>
<td>FF106793Sp</td>
<td>USA</td>
<td>JN164924 JN164797 – JN164887 JN164849</td>
</tr>
<tr>
<td>T. pubescens</td>
<td>FF101414Sp</td>
<td>USA</td>
<td>JN164963 JN164811 – JN164889 JN164851</td>
</tr>
<tr>
<td>T. tephroblus</td>
<td>Cui 7987</td>
<td>China</td>
<td>KC848293 KC848378 KX880755 KX880934 KX880869</td>
</tr>
<tr>
<td>T. versicolor</td>
<td>FF135156Sp</td>
<td>USA</td>
<td>JN164919 JN164809 – JN164878 JN164850</td>
</tr>
<tr>
<td>Truncospora detrita</td>
<td>MUC 42649</td>
<td>French Guyana</td>
<td>FJ411099 JF393866 – – –</td>
</tr>
<tr>
<td>T. macropora</td>
<td>Cui 8106</td>
<td>China</td>
<td>JX941573 JX941596 KX880763 KX880920 KX880871</td>
</tr>
<tr>
<td></td>
<td>Yuan 3777</td>
<td>China</td>
<td>JX941574 JX941597 – – –</td>
</tr>
<tr>
<td>T. ochroleucodia</td>
<td>MUCL 39726</td>
<td>China Taiwan</td>
<td>FJ411098 JF393865 – – –</td>
</tr>
<tr>
<td></td>
<td>Cui 5671</td>
<td>China</td>
<td>JX941584 JX941602 KF218309 KF286315 –</td>
</tr>
<tr>
<td>T. obiensis</td>
<td>MUCL 41036</td>
<td>USA</td>
<td>FJ411096 JF393863 – – –</td>
</tr>
<tr>
<td>Tyromyces chioneus</td>
<td>Cui 10225</td>
<td>China</td>
<td>KF698756 KF698745 – – –</td>
</tr>
<tr>
<td>T. kmetii</td>
<td>Pentillia 1347</td>
<td>China</td>
<td>KF705040 KF705041 – – –</td>
</tr>
<tr>
<td>Vanderbylia fraxinea</td>
<td>DP 83</td>
<td>Italy</td>
<td>AM269789 AM269853 – – –</td>
</tr>
<tr>
<td></td>
<td>MUC 39326</td>
<td>France</td>
<td>FJ411094 JF393861 – – –</td>
</tr>
<tr>
<td>V. robiniiophila</td>
<td>Cui 5644</td>
<td>China</td>
<td>HQ876609 JF706342 KF051051 KF181145 MG867691</td>
</tr>
<tr>
<td></td>
<td>Cui 7144</td>
<td>China</td>
<td>HQ876608 JF706341 KF051052 KF181146 –</td>
</tr>
<tr>
<td>V. vicina</td>
<td>MUCL 44779</td>
<td>Ethiopia</td>
<td>FJ411095 JF393862 – – –</td>
</tr>
<tr>
<td>Whitfordia scopulosa</td>
<td>Dai 10739</td>
<td>China</td>
<td>KC867364 KC867482 KX880766 KX880922 MG867692</td>
</tr>
</tbody>
</table>

* Newly generated sequences for this study
Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated for each maximum parsimonious tree generated.

RAxML v. 7.2.6 (Stamatakis 2006) was used to perform maximum likelihood (ML) analysis involved 200 ML searches under the GTR+GAMMA model and only the best tree from all searches was kept. In addition, 200 rapid bootstrap replicates were run with the GTR+CAT model to assess the reliability of the nodes.

MrModeltest v. 2.3 (Posada and Crandall 1998; Nylander 2004) was used to determine the best fit evolution model for the combined multi-gene dataset for Bayesian inference (BI). Bayesian inference was calculated with MrBayes v. 3.1.2 with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist and Huelsenbeck 2003). Four Markov chains were run for two runs from random starting trees for 2 million generations (ITS+nLSU), for 5 million generations (ITS+nLSU+mtSSU+EF1-α+RPB2) until the split deviation frequency value <0.01, and trees were sampled every 100 generation. The first quarter generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated.

Phylogenetic trees were viewed using FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Branches that received bootstrap support for maximum parsimony (MP), maximum likelihood (ML) and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported, respectively.

Results

Molecular phylogeny

The combined 2-gene dataset included sequences from 68 fungal samples representing 59 taxa. The dataset had an aligned length of 2111 characters, of which 1249 characters were constant, 196 were variable and parsimony-uninformative, and 666 were parsimony-informative. MP analysis yielded 37 equally parsimonious trees (TL = 4143, CI = 0.345, RI = 0.617, RC = 0.213, HI = 0.655). Best model for the combined 2-gene dataset estimated and applied in the BI was GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). MP, ML and BI analyses yielded similar tree topologies with an average standard deviation of split frequencies = 0.006293 (BI), and the ML topology is shown in Figure 1. The phylogeny (Fig. 1) inferred from the combined ITS+nLSU sequences demonstrated seven major clades for 59 species of the Polyporales. The new genus Crassisporus embed in the core polyporoid clade and grouped with Haploporus Bondartsev & Singer.

The combined 5-gene (ITS, nLSU, mtSSU, EF1-α, RPB2) dataset included sequences of 82 fungal samples representing 57 taxa. The dataset had an aligned
Figure 1. Phylogeny of *Crassisporus* and related genera in Polyporales based on combined ITS and nLSU sequences. Topology is from ML analysis with parsimony bootstrap support values (≥50 %), maximum likelihood bootstrap support values (≥50%) and Bayesian posterior probability values (≥0.95).

Figure 2. A further phylogeny (Fig. 2) inferred from the combined 5-gene dataset was obtained for more representative taxa in the Polyporaceae and showed that the new genus grouped within *Haploporus* clade but distinctly formed a monophyletic lineage.
Figure 2. Phylogeny of *Crassisporus* and related species obtained for more representative taxa in the Polyporaceae based on combined sequences dataset of ITS+nLSU+mtSSU+EF1-α+RPB2. Topology is from ML analysis with parsimony bootstrap support values (≥50 %), maximum likelihood bootstrap support values (≥50 %), and Bayesian posterior probability values (≥0.95).
Taxonomy

Crassisporus B.K. Cui & Xing Ji, *gen. nov.*
MycoBank: MB 828486

Notes. Differs from other genera by the combination of effused-reflexed to pileate basidiocarps, pale yellowish brown to yellowish brown, concentrically zonate or sulcate, velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues darkening in KOH, and oblong to broadly ellipsoid, hyaline, smooth and slightly thick-walled basidiospores.

Etymology. *Crassisporus* (Lat.): referring to thick-walled basidiospores.

Type species. *Crassisporus macroporus* B.K. Cui & Xing Ji.

Basidiocarps annual, effused-reflexed to pileate. Pileal surface pale yellowish brown, yellowish brown to umber-brown when dry, concentrically zonate or sulcate, velutinate. Pore surface usually white, cream buff to cinnamon-buff when fresh, buff, pale yellowish brown to yellowish brown when dry. Context pale yellowish brown to yellowish brown, leathery to corky when dry. Tubes concolorous with the context, corky when dry. Hyphal system trimitic with clamped generative hyphae, skeletal hyphae hyaline to pale yellowish brown, binding hyphae hyaline to pale yellowish brown, negative in Melzer’s reagent, tissues turning to black in KOH. Cystidia absent, thin-walled cystidioles usually present. Basidiospores oblong to broadly ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-. Causing a white rot.

Crassisporus imbricatus B.K. Cui & Xing Ji, *sp. nov.*
MycoBank: MB 828487
Figs 3, 4

Notes. *Crassisporus imbricatus* is characterized by imbricate basidiocarps, pale greyish-brown pore surface when dry, round to angular pores (3–5 per mm), and oblong ellipsoid basidiospores (10–14 × 4.5–6.2 μm).

Holotype. CHINA. Hainan Province, Changjiang County, Bawangling Nature Reserve, on dead angiosperm tree, 9 May 2009, Dai 10788 (BJFC).

Etymology. *Imbricatus* (Lat.): referring to the imbricate basidiocarps.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, imbricate, soft corky, without odor or taste when fresh, leathery to corky upon drying. Pilei semicircular or elongated, projecting up to 1.5 cm, 3.5 cm wide, and 2.5 mm thick at base. Pileal surface yellowish brown, velutinate, concentrically zonate. Pore surface buff when fresh, becoming pale greyish brown when dry; sterile margin indistinct, pores round to angular, 3–5 per mm; dissepiments slightly thick, entire to slightly lacerate.
Context yellowish brown, leathery, up to 2.5 mm thick. Tubes concolorous with context, corky, up to 1.5 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, 2–3.5 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, rarely branched, straight, interwoven, occasionally simple-septate, 2.5–5.5 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 1.2–2.5 μm in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1.5–3 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled, occasionally branched, strongly interwoven, rarely simple-septate, 1.5–3.5 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 1–2 μm in diam. Cystidia and cystidioles absent. Basidia clavate, bearing four sterigmata and a basal clamp connection, 19–32 × 9–12 μm; basidioles dominant, in shape similar to basidia, but distinctly smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, slightly thick-walled, smooth, IKI-, CB-, 10–14(−15) × 4.5–6.2(−6.6) μm, L = 12.33 μm, W = 5.34 μm, Q = 2.27–2.36 (n = 60/2).

Type of rot. White rot.

Additional specimen (paratype) examined. CHINA. Hainan Province, Changjiang County, Bawangling Nature Reserve, on fallen branch of Pinus latteri, 10 May 2009, Cui 6556 (BJFC).
Figure 4. Microscopic structures of *Crassisporus imbricatus* (drawn from the holotype) A basidiospores B basidia and basidioles C hyphae from trama D hyphae from context.
Crassisporus leucoporus B.K. Cui & Xing Ji, sp. nov.
Mycobank: MB 828488
Figs 5, 6

Notes. *Crassisporus leucoporus* is characterized by a white pore surface when fresh, round to angular pores (3–4 per mm) and oblong ellipsoid basidiospores (8.4–11.2 × 4.2–5.4 μm).

Holotype. AUSTRALIA. Queensland, Cairns, Roadside of Mount Whitfield Park, on fallen angiosperm branch, 18 May 2018, Cui 16801 (BJFC).

Etymology. *Leucoporus* (Lat.): referring to the white pore surface when fresh.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, corky, without odor or taste when fresh, soft leathery to corky upon drying. Pilei semicircular or elongated, projecting up to 1.5 cm, 3 cm wide, and 6 mm thick at base. Pileal surface yellowish brown to umber-brown, finely velutinate, concentrically sulcate. Pore surface white when fresh, becoming cream, clay buff to pale yellowish brown when dry; sterile margin distinct, cream to pale yellowish brown, up to 1.5 mm wide; pores round to angular, 3–4 per mm; dissepiments slightly thick, entire. Context pale yellowish brown to fulvous, leathery, up to 3 mm thick. Tubes pale yellowish brown, corky, up to 2.5 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, 1.1–2.6 μm in diam.; skeletal hyphae in context dominant, pale yellowish brown, thick-walled with a narrow to wide lumen, unbranched, straight, interwoven, occasionally simple-septate, 1.8–3.9 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.7–2.2 μm in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1–2.8 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow to wide lumen, occasionally branched, more or less straight, strongly interwoven, 0.9–3.3 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.1 μm in diam. Cystidia absent, cystidioles fusoid, sometimes septate at the tips, hyaline, thin-walled, 16.7–28.1 × 5.1–6.3 μm. Basidia clavate, bearing four sterigmata and a basal clamp connection, 18.1–29.2 × 6.4–9.8 μm; basidioles dominant, in shape similar to basidia, but smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, (7.9–)8.4–11.2(–11.5) × (4–)4.2–5.4(–5.7) μm, L = 9.49 μm, W = 4.79 μm, Q = 1.99 (n = 60/1).

Type of rot. White rot.
Crassisporus gen. nov.

Figure 5. Basidiocarps of *Crassisporus leucoporus*. Scale bars: 1 cm (A); 2 cm (B).

Crassisporus macroporus B.K. Cui & Xing Ji, sp. nov.
MycoBank: MB 828489
Figs 7, 8

Notes. *Crassisporus macroporus* is characterized by cream-buff to cinnamon-buff colored pore surface with distinct sterile margin when fresh, large pores (2–3 per mm) with thin dissepiments, a trimitic hyphal system with cyanophilous skeletal hyphae, the presence of fusoid cystidioles, and oblong ellipsoid basidiospores (9.5–13.2 × 4–6.2 μm).
Figure 6. Microscopic structures of *Crassisporus leucoporus* (drawn from the holotype) A basidiospores B basidia and basidioles C cystidioles D hyphae from trama E hyphae from context.
Crassisporus gen. nov.

Figure 7. Basidiocarps of *Crassisporus macroporus*. Scale bars: 2 cm.

Holotype. CHINA. Guangxi Autonomous Region, Huanjiang County, Mulun Nature Reserve, on fallen angiosperm branch, 10 July 2017, Cui 14468 (BJFC).

Etymology. *Macroporus* (Lat.): referring to the large pores.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, corky to leathery, without odor or taste when fresh, soft leathery upon drying. Pilei flabelliform, semicircular or elongated, projecting up to 1.5 cm, 4 cm wide and 5 mm thick at base; resupinate part up to 7 cm long, 4 cm wide, and 5 mm thick at center. Pileal surface buff to yellowish brown when fresh, becoming yellowish brown upon drying, finely velutinate, concentrically sulcate. Pore surface cream, buff to cinnamon-buff when fresh, becoming buff, pale yellowish brown to yellowish brown when dry; sterile margin distinct, buff to pale yellowish brown, up to 2 mm wide; pores round to angular,
Figure 8. Microscopic structures of *Crassisporus macroporus* (drawn from the holotype) A basidiospores B basidia and basidioles C cystidioles D hyphae from trama e hyphae from context.
Crassisporus gen. nov.

2–3 per mm; dissepiments thin, entire to lacerate. Context yellowish brown to pale yellowish brown, leathery, up to 1.5 mm thick. Tubes pale yellowish brown, corky, up to 2 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB+; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, 1.5–3.5 μm in diam.; skeletal hyphae dominant, pale yellowish brown, thick-walled with a narrow lumen to subsolid, unbranched, more or less straight, interwoven, occasionally simple-septate, 2–5.5 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 1–3 μm in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1–2 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, occasionally branched, more or less straight, strongly interwoven, 1.5–3 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2 μm in diam. Cystidia absent, cystidioles fusoid, hyaline, thin-walled, 13–20 × 4.5–6 μm. Basidia clavate, bearing four sterigmata and a basal clamp connection, 17–28 × 7–8 μm; basidioles dominant, in shape similar to basidia, but smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, 9.5–13.2(–14) × 4–6.2(–6.5) μm, L = 11.24 μm, W = 4.96 μm, Q = 2.26–2.31 (n = 60/2).

Type of rot. White rot.

Additional specimen (paratype) examined. CHINA. Guangxi Autonomous Region, Huanjiang County, Mulun Nature Reserve, on dead angiosperm tree, 10 July 2017, Cui 14465 (BJFC).

Crassisporus microsporus B.K. Cui & Xing Ji, sp. nov.

Mycobank: MB 828514
Figs 9, 10

Notes. Crassisporus microsporus is characterized by pileate basidiocarps, small pores (5–7 per mm), and small, broadly ellipsoid basidiospores (4–5 × 3–3.7 μm).

Holotype. CHINA. Yunnan Province, Ruili, Mori Tropical Rainforest Park, on living angiosperm tree, 17 September 2017, Cui 16221 (BJFC).

Etymology. Microsporus (Lat.): referring to the small basidiospores.

Description. Fruitbody: Basidiocarps annual, pileate, sessile, corky, without odor or taste when fresh, soft leathery to corky upon drying. Pilei semicircular, projecting up to 2 cm, 4 cm wide, and 4.5 mm thick at base. Pileal surface pale yellowish brown to yellowish brown, finely velutinate, concentrically sulcate. Pore surface cream, buff to cinnamon-buff when fresh, buff, pale yellowish brown to yellowish brown when dry; sterile margin distinct, buff, up to 1 mm wide; pores round to angular, 5–7 per mm;
Figure 9. Basidiocarps of Crassisporus microsporus. Scale bars: 1 cm.

dissepiments slightly thick, entire. Context pale yellowish brown to yellowish brown, leathery to corky when dry, up to 1.5 mm thick. Tubes concolorous with context, soft corky to corky, up to 3 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to deep brown in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1.2–3.5 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen, rarely branched, straight, interwoven, occasionally simple-septate, 2.5–6 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.5 μm in diam.
Figure 10. Microscopic structures of *Crassisporus microsporus* (drawn from the holotype) **A** basidiospores **B** basidia and basidioles **C** cystidioles **D** hyphae from trama **E** hyphae from context.
Tubers: Generative hyphae infrequent, hyaline, thin-walled, rarely branched, 1.2–3 μm in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, moderately branched, more or less straight, strongly interwoven, 1.5–3 μm in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.5 μm in diam. Cystidia absent, cystidioides fusoid, hyaline, thin-walled, 12.5–18 × 4–5.5 μm. Basidia clavate, bearing four sterigmata and a basal clamp connection, 14–21 × 4.5–6 μm; basidioles in shape similar to basidia, but distinctly smaller.

Spores: Basidiospores broadly ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, 4–5(−5.2) × (−2.8)3–3.7(−3.9) μm, L = 4.5 μm, W = 3.23 μm, Q = 1.4 (n = 60/1).

Type of rot. White rot.

Discussion

In the present study, Crassisporus is proposed based on morphological characters and phylogenetic analyses. In the ITS+nLSU analysis, Crassisporus was nested in the core polyporoid clade with strong support (100% MP, 100% ML, 1.00 BPP; Fig. 1). A further study based on combined ITS+nLSU+mtSSU+EF1-α+RPB2 sequences data indicated that Crassisporus grouped with Haploporus with low support, but formed a monophyletic lineage with a strong support (100% MP, 100% ML, 1.00 BPP; Fig. 2). Morphologically, Crassisporus is characterized by the combination of an annual growth habit, effused-reflexed to pileate basidiocarps, pale yellowish brown to yellowish brown, concentrically zonate or sulcate pilei, velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues turning to dark in KOH, oblong to broadly ellipsoid, hyaline, smooth and slightly thick-walled basidiospores.

Morphologically, the four Crassisporus species can be easily distinguished from each other. Crassisporus microsporus differs from other species by its small pores (5–7 per mm), and small broadly ellipsoid basidiospores (4–5 × 3–3.7 μm). Except for C. imbricatus, C. leucoporus, C. macroporus, and C. microsporus, all have fusoid cystidioles in the hymenium; moreover, C. imbricatus produces imbricate basidiocarps. Previously, the type specimen of C. imbricatus was identified as Coriolopsis byrsina (Mont.) Ryvarden based on morphological characters (Li and Cui 2010). After careful examination of the basidiospores along with DNA sequences analyses, the specimen was found to represent an unknown taxon. Here, we describe it as a new species of Crassisporus based on morphological characters and phylogenetic analysis. Crassisporus macroporus may be confused with C. leucoporus due to their similarity in effused-reflexed to pileate basidiocarps and oblong ellipsoid basidiospores, but C. leucoporus is distinguished from C. macroporus by its smaller pores (3–4 per mm), white pore surface when fresh, and acyanophilous skeletal and binding hyphae.

Phylogenetically, Haploporus groups together with Crassisporus (Figs 1, 2), but the former differs by its annual to perennial growth habit, dimitic to trimitic hyphal system, and ornamented, cyanophilous basidiospores (Shen et al. 2016; Cui et al. 2019).

Crassisporus is similar to Hexagonia Fr. and Neofomitella Y.C. Dai, Hai J. Li & Vlasák, because these genera share pileate brown basidiocarps, a trimitic hyphal system
with clamped generative hyphae, and tissues becoming dark in KOH. However, *Hexagonia* is distinguished from *Crassisporus* by its larger hexagonal pores and thin-walled basidiospores (Núñez and Ryvarden 2001). *Neofomitella* differs from *Crassisporus* in having crusted basidiocarps with the cuticle developing from base to margin, and smaller, thin-walled basidiospores (Li et al. 2014b).

Both *Perenniporia* Murrill and *Crassisporus* have hyaline and thick-walled basidiospores, but species of *Perenniporia* have cyanophilous, and variable dextrinoid skeletal hyphae. In addition, *Perenniporia* usually has truncate basidiospores (Gilbertson and Ryvarden 1987; Núñez and Ryvarden 2001; Zhao et al. 2013; Cui et al. 2019).

Truncospora Pilát is similar to *Crassisporus* in having pileate basidiocarps and variable presence of cystidioles. However, *Truncospora* is distinguished from *Crassisporus* by variable dextrinoid and cyanophilous skeletal hyphae and truncate, strongly dextrinoid basidiospores (Zhao and Cui 2013; Cui et al. 2019).

Abundisporus Ryvarden and *Crassisporus* share effused-reflexed or pileate basidiocarps, but *Abundisporus* differs by its pale-umber to deep-purplish-brown or greyish- to umber-brown context, dimitic hyphal system, and pale-yellowish basidiospores (Ryvarden 1998; Zhao et al. 2015; Cui et al. 2019).

Perenniporiella Decock & Ryvarden also has annual, pileate basidiocarps, and hyaline, thick-walled basidiospores, but it differs from *Crassisporus* in having a dimitic hyphal system (Decock and Ryvarden 2003).

Grammothelopsis Jülich is similar to *Crassisporus* in having thick-walled basidiospores; however, it differs from *Crassisporus* in its resupinate to effused basidiocarps with shallow irregular pores, and variable dextrinoid skeletal hyphae (Robledo and Ryvarden 2007; Zhao and Cui 2012).

Key to species of Crassisporus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cystidioles absent ..C. imbricatus</td>
</tr>
<tr>
<td>–</td>
<td>Cystidioles present ...2</td>
</tr>
<tr>
<td>2</td>
<td>Basidiospores broadly ellipsoid..C. microsporus</td>
</tr>
<tr>
<td>–</td>
<td>Basidiospores oblong ellipsoid..3</td>
</tr>
<tr>
<td>3</td>
<td>Pore surface cream, buff to cinnamon-buff when fresh, pores 2–3 per mm..C. macroporus</td>
</tr>
<tr>
<td>–</td>
<td>Pore surface white when fresh, pores 3–4 per mm.................................C. leucoporus</td>
</tr>
</tbody>
</table>

Acknowledgments

We express our gratitude to Drs Tom May (Royal Botanic Gardens Victoria, Australia) and Yu-Cheng Dai (Beijing Forestry University) for arrangement of and assistance during field collections. The research was financed by the National Natural Science Foundation of China (Project Nos. 31670016, 31870008) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019JQ03016).
References

Zhao CL, Cui BK (2013) *Truncospora macrospora* sp. nov. (Polyporales) from southwest China based on morphological and molecular data. Phytotaxa 87: 30–38. https://doi.org/10.11646/phytotaxa.87.2.2

Two new agaricoid species of the family Clavariaceae (Agaricales, Basidiomycota) from China, representing two newly recorded genera to the country

Ming Zhang¹, Chao-Qun Wang¹, Tai-Hui Li¹

¹ State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China

Corresponding author: Tai-Hui Li (mycolab@263.net)

Academic editor: Zai-Wei Ge | Received 22 May 2019 | Accepted 16 July 2019 | Published 21 August 2019

Citation: Zhang M, Wang C-Q, Li T-H (2019) Two new agaricoid species of the family Clavariaceae (Agaricales, Basidiomycota) from China, representing two newly recorded genera to the country. MycoKeys 57: 85–100. https://doi.org/10.3897/mycokeys.57.36416

Abstract
Two new lamellar species, Camarophyllopsis olivaceogrisea and Hodophilus glaberripes, of the family Clavariaceae were discovered in the subtropical zone of China. Camarophyllopsis olivaceogrisea is morphologically characterized by its hygrophanous basidiomata, greenish gray to dull green pileus, shortly decurrent lamellae, broadly elliptic basidiospores 4–5.5 × 3.5–4.5 μm in size, and cutis-like pileipellis composed of cylindrical cells. Hodophilus glaberripes is mainly characterized by its white to brownish pileus, glabrous stipe, slight yam bean smell, broadly elliptic basidiospores 5–6.5 × 4–5 μm in size, and epithelium-like pileipellis composed of inflated cells. Phylogenetic placement of the two species was determined by the combined analyses of a DNA data matrix containing ITS and LSU, and showed that collections of the two species formed two independent lineages in the Camarophyllopsis and Hodophilus clades respectively. The delimitation of C. olivaceogrisea and H. glaberripes were evaluated using molecular, morphological, and ecological methods. This is the first report of the genera Camarophyllopsis and Hodophilus in China.

Keywords
Camarophyllopsis, Hodophilus, phylogenetic analysis, subtropical zone, taxonomy

Copyright Ming Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Clavariaceae Chevall. (Agaricales, Basidiomycota) is a genetically monophyletic but morphologically diverse family. Members of this family show variations in the macro-morphology of their sporocarps and are pendant-hydnoid, cylindrical, clavate, coralloid, resupinate, pileate, or lamellate-stipitate (Larsson et al. 2004; Dentinger and McLaughlin 2006; Matheny Curtis et al. 2006; Larsson 2007; Birkebak et al. 2013). Generally, Clavariaceae was known as a coral fungal group, including club-like (clavarioid) genera such as Clavaria Vaill. ex L., and Clavulinopsis Overeem, and branch-form (coralloid) genera, such as Ramariopsis (Donk) Corner (Birkebak et al. 2013, 2016). However, some agaricoid genera, such as Camarophyllopsis Herink, Hodophilus R. Heim ex R. Heim and Lamelloclavaria Birkebak & Adamčík, showed phylogenetic affinity within Clavariaceae (Matheny Curtis et al. 2006; Birkebak et al. 2013), thus have been added to the family based on phylogenetic analyses in recent years (Birkebak et al. 2016).

Camarophyllopsis can be easily distinguished from other genera in the family by its small agaricoid basidiomata, hygrophanous pileus, subglobose to broadly ellipsoidal basidiospores, and epithelium pileipellis composed of chains of erect, ascending or repent, subcylindrical to ellipsoid terminal cells (Arnolds 1986; Young 2005). Hodophilus differs from Camarophyllopsis in the hymeniderm pileipellis composed of typically perpendicular, broadly inflated, globose, and obpyriform to sphaero-pendunculate terminal elements (Birkebak et al. 2016). Lamelloclavaria can be distinguished from the above genera by its rimulose non-hygrophanous pileus and cutis pileipellis (Birkebak et al. 2016).

In this study, some agaricoid collections were identified in China. Morphological observation and phylogenetic analyses confirmed that they are two novel taxa in the genera Camarophyllopsis and Hodophilus. This is the first report of these two genera in China.

Materials and methods

Morphological studies

Photographs of basidiomata were taken in type localities when collected. Macro-morphological characteristics were recorded for fresh specimen. Specimens were dried and then deposited in the Fungal Herbarium of Guangdong Institute of Microbiology (GDGM). Methods used for morphological descriptions were followed Zhang et al. (2015). Colors were recorded and described in general terms according to the method of Kornerup and Wanscher (1978). Microstructures were observed from rehydrated materials, and the notation “basidiospores (n/m/p)” indicates that the measurements were conducted for n basidiospores from m basidiomata of p collections. Line drawings were prepared by free hand.
DNA extraction, PCR amplification, and sequencing

Total genomic DNA of each voucher specimen was extracted from silica-gel-dried materials using the Sangon Fungus Genomic DNA Extraction kit (Sangon Biotech, Shanghai, China) according to the manufacturer’s instructions. Primer pairs ITS1/ITS4 (White et al. 1990) and LR0R/LR5 (Vilgalys and Hester 1990) were used to amplify the internal transcribed spacer (ITS) region and the large subunit nuclear ribosomal RNA (nrLSU) region, respectively. PCR protocol and sequencing were conducted following the method of Zhang et al. (2015).

Phylogenetic analyses

Newly generated sequences, related sequences used in previous studies (Adamčík et al. 2018) and a few sequences retrieved from GenBank by a Blast search were used to reconstruct phylogenetic trees. Detailed information on the newly sequenced samples, including the taxon names, voucher numbers, localities and GenBank accession numbers, is shown in Table 1.

ITS and LSU sequences were respectively aligned using Clustal X v1.81 (Thompson et al. 1997) and manually modified where necessary in Bioedit v7.0.9 (Hall 1999), and a combined matrix of ITS and LSU sequences was obtained. The combined dataset was then analyzed using RAxML v7.2.6 (Stamatakis 2006) and MrBayes v3.1.2 software (Ronquist and Huelsenbeck 2003) for maximum likelihood (ML) and Bayesian inference (BI) analyses, respectively. For both BI and ML analyses, the substitution model for the two gene partitions was individually determined using the Akaike Information Criterion (AIC) complemented in MrModeltest v2.3 (Nylander 2004). For ML analysis, all parameters were kept at default values, except for choosing the GTRGAMMAI model, and statistical support was obtained using rapid nonparametric bootstrapping with 1000 replicates. BI analysis using selected models and 4 chains was conducted by setting the number of generations to 3 million and stoprun com-

Table 1. Information on newly generated DNA sequences used in this study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher</th>
<th>Country</th>
<th>ITS</th>
<th>LSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camarophyllopsis olivaceogrisea</td>
<td>GDGM44497</td>
<td>China</td>
<td>MK894563</td>
<td>MK894551</td>
</tr>
<tr>
<td></td>
<td>GDGM44519</td>
<td>China</td>
<td>MK894564</td>
<td>MK894552</td>
</tr>
<tr>
<td>Camarophyllopsis sp.</td>
<td>GDGM44501</td>
<td>China</td>
<td>MK894565</td>
<td>MK894553</td>
</tr>
<tr>
<td>Hodophilus glaberripes</td>
<td>GDGM45940</td>
<td>China</td>
<td>MK894566</td>
<td>MK894554</td>
</tr>
<tr>
<td></td>
<td>GDGM52374</td>
<td>China</td>
<td>MK894567</td>
<td>MK894555</td>
</tr>
<tr>
<td></td>
<td>GDGM52530</td>
<td>China</td>
<td>MK894568</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>GDGM52545</td>
<td>China</td>
<td>MK894569</td>
<td>MK894556</td>
</tr>
<tr>
<td></td>
<td>GDGM52583</td>
<td>China</td>
<td>MK894570</td>
<td>MK894557</td>
</tr>
<tr>
<td></td>
<td>GDGM55689</td>
<td>China</td>
<td>MK894571</td>
<td>MK894558</td>
</tr>
<tr>
<td></td>
<td>GDGM70329</td>
<td>China</td>
<td>MK894572</td>
<td>MK894559</td>
</tr>
<tr>
<td></td>
<td>GDGM70331</td>
<td>China</td>
<td>MK894573</td>
<td>MK894560</td>
</tr>
<tr>
<td></td>
<td>GDGM72434</td>
<td>China</td>
<td>MK894574</td>
<td>MK894561</td>
</tr>
<tr>
<td></td>
<td>GDGM72518</td>
<td>China</td>
<td>MK894575</td>
<td>MK894562</td>
</tr>
</tbody>
</table>
mand with the stopval value set to 0.01. Trees were sampled every 100 generations. The first 25% of generations were discarded as burn-ins and posterior probabilities (PP) were calculated from the posterior distribution of the retained Bayesian trees.

Results

Molecular phylogenetic results

For phylogenetic analyses, 25 sequences (13 ITS and 12 LSU) were newly generated from 13 collections, 219 related sequences (123 ITS and 96 LSU) were retrieved from GenBank, and *Ramariopsis corniculata* (Schaeff.) R.H. Petersen selected as an outgroup based on previous studies (Birkebak et al. 2016; Adamčík et al. 2016, 2018). The combined matrix of 137 samples with 1614 nucleotide sites was constructed for phylogenetic analyses and the final alignment was submitted to TreeBASE (Submission ID 24440). SYM+I and SYM+G were chosen as the best substitution models for ITS and LSU, respectively. The ML and BI analyses generated nearly identical tree topologies with minimal variation in statistical support values; thus, a ML tree was selected for display (Figure 1).

The tree topologies generated in this study are similar to those obtained by Adamčík et al. (2018) and are therefore not described in detail here, except for the results relevant to the two new species. The two monophyletic genera *Camarophyllopsis* and *Hodophilus* were highly supported (Figure 1). Two collections (GDGM44497 and GDGM44519) formed an independent lineage with strong statistical support (BS = 100, PP = 1), located within the *Camarophyllopsis* clade, and presented as a sister group to a collection numbered as GDGM44501 from China (with low statistical support). Ten collections (GDGM45940, GDGM52374, GDGM52530, GDGM52545, GDGM52583, GDGM55689, GDGM70329, GDGM70331, GDGM72434 and GDGM72518) were grouped together with strong statistical supports (BS = 100, PP = 1) and formed an independent lineage in the *Hodophilus* clade, and were revealed as a sister group to *H. indicus* K.N.A. Raj, K.P.D. Latha & Manim. with significant statistical support (BS = 100, PP = 1).

Taxonomy

Camarophyllopsis olivaceogrisea Ming Zhang, C.Q. Wang & T.H. Li, sp. nov.

MycoBank MB 831122

Figs 2a–b, 3

Etymology. The epithet “olivaceogrisea” refers to the olive-gray pileus color.

Diagnosis. This new species is morphologically distinguished from other taxa in the genus by its smaller basidiomata, greenish gray to dull green pileus, white and short decurrent lamellae, and broadly elliptic basidiospores.
Figure 1. Phylogenetic placements of *Camarophyllopsis olivaceogrissa* and *Hodophilus glaberripes* inferred from the combined ITS and LSU dataset using RAxML. *Ramariopsis corniculata* was selected as an outgroup. The lineages with new species were shown in bold. BS ≥ 50% and PP ≥ 0.90 were indicated around the branches.
Figure 2. a, b Basidiomata of *Camarophyllopsis olivaceogrisea* (GDGM44519, holotype) c–f basidiomata of *Hodophilus glaberripes* (e. GDGM72518, holotype). Scale bars: 20 mm (a, b); 50 mm (c–f).

Type. CHINA. Guizhou Province: Leishan County, Leigongshan National Nature Reserve, alt. 1260 m, 22 July 2014, M. Zhang (holotype: GDGM44519!).

Description. Basidiomata small-sized. Pileus 7–12 mm broad, hemispherical, convex to plano-convex at first, then gradually appplanate, becoming depressed at disc when mature, non-striate to weakly striate; margin slightly inflexed at first, soon straight, slightly crenate or lacerate when mature; surface matt, velvety, hygrophanous, greenish gray (or olive gray) to dull green (27D 2–30D2, 27D3–30D3, 27E2–30E2, 27E3–30E3), often paler at margin. Flesh 1–3 mm thick in the stipe, white to grayish
Two new agaricoid species of the family Clavariaceae from China, representing... white, unchanging when exposed. Lamellae 1–2 mm deep, L = 20–34, l = 1–3, short to moderately decurrent, white to weakly grayish white (1A1–1B1) at first, white to weakly greenish white (27A2–30A2) when mature, unchanging when bruised; edge entire, concolorous with the sides. Stipe 13–25 × 1.5–2.5 mm, central, cylindrical and becoming narrower downwards; glabrous and shiny, hardly tomentulose or pruinose, hygrophanous, white to greenish white at first (28A1–28A2, 29A1–29A2), becoming greenish white to light greenish gray (28A2–28B2, 29A2–29B2) when mature and in dry condition. Odor none. Taste mild.

Basidiospores [60/2/2] 4–5.5(–6) × 3.5–4.5(–5) μm, av. 4.6 × 3.8 μm, Q = (1.12)1.14–1.28(1.43), av. Q = 1.21 ± 0.08, broadly ellipsoid, hyaline, smooth, inamylloid, thin-walled. Basidia 4-spored, occasionally 2-spored, (10–)15–26(–30) × 5–7 μm,
av. 24.5 × 5.8 μm, hyaline, narrowly clavate, attenuated and flexuous toward base, sternetig mata up to 4 μm long. Basidioles cylindrical to narrowly clavate, often flexuous, obtuse, (18–)20–37.5(–40) × 6–8 μm, av. 23 × 6.8 μm. Pleurocystidia absent. Marginal cells on the lamellar edges not well differentiated, similar to basidioles on lamellar sides. Lamellar trama composed of sub-parallel or occasionally interwoven and irregularly inflated hyphae (23–)35–50(–104) × 4–8(–10) μm, av. 46.5 × 7 μm. Pilepellis a cutis of numerous repent branched hyphal 4–8 μm wide, with terminal chains of ellipsoid or cylindrical cells. Pileus trama composed of cylindrical and occasionally branched hyphae (23–)35–50(–70) × (4–)6–10 μm, av. 45.5 × 7.6 μm. Stipitipellis formed of parallel, thin-walled and narrow hyphae 3–8 μm diam. Caulocystidia not observed. Clamp connections absent in all tissues.

Habit, ecology and distribution. Solitary, scattered on soil in mixed forests; currently only known from the Guizhou Province of China.

Hodophilus glaberripes Ming Zhang, C.Q. Wang & T.H. Li, sp. nov.
MycoBank MB 831125
Figs 2c–f, 4

Etymology. The epithet refers to the glabrous stipe.

Diagnosis. This species is easily distinguished from other species in the genus Hodophilus by its larger basidiomata, white, brownish orange to brown pileus, glabrous stipe, slightly yam bean smell and broadly elliptic basidiospores.

Type. CHINA. Guangdong Province: Shaoguan City, Danxiashan National Nature Reserve, alt. 240 m, 10 May 2018, M. Zhang (holotype: GDGM72518!).

Description. Basidiomata small to medium-sized. Pileus 15–50 mm broad, hemispherical, convex to plano-convex at first, then becoming broadly convex or plano-convex but hardly fully expanded to plane, often depressed at disc when old; white to yellowish white at first, then gradually becoming orange white, pale yellow, pale orange, brownish orange, light brown, brown to reddish brown (5A2, 3A3–5A3, 5C4–7C4, 5D5–9D5) when mature and dry, hygrophanous; margin first slightly inflexed, soon straight, slightly crenate when mature, non-striate or indistinctly translucently striate up to one third when wet; surface matt, velvety and later with fine and darker granules or pruina, at first even, but becoming rugose or rough towards the center when mature, often concentrically cracked in dry conditions. Flesh 0.5–2 mm thick in half radius of the pileus, white, pinkish white to pale beige; Lamellae 3–5 mm deep, distant to subdistant, L = 21–32, l = 1–3, short decurrent, notched, orange white to pinkish white (5A2–10A2) when young, brownish orange, light brown, reddish brown to brownish red (5C4–7C4, 5D6–10D6) when mature, unchanging when bruised; edge entire, concolorous or slightly paler than lamella sides. Stipe (50) 80–100 × 3–5 mm, central, usually flexuous, cylindrical and slightly
narrower downwards; glabrous smooth and shiny, hygrophanous, white to yellowish white at first, becoming pale yellow to pale orange when mature and in dry condition. Odor none or slight yam bean smell, taste mild.

Basidiospores \[210/9/9\] \((4.5)5–6.5(7) \times 4–5(5.5) \, \mu m\], av. \(5.9 \times 4.7 \, \mu m\), \(Q = (1.0)1.11–1.37(1.4)\), av. \(Q = 1.20 \pm 0.11\), broadly ellipsoid to subglobose, hyaline, smooth, inamyloid, thin-walled. Basidia 4-spored, occasionally 2-spored, \((32–)36–46(–66) \times (4–)4.5–6(–7) \, \mu m\], av. \(39.5 \times 5.9 \, \mu m\), tenuated and flexuous towards base, with sterigmata up to 7 \, \mu m\ long. Basidioles cylindrical to narrowly clavate, obtuse, often flexuous, \((31–)34–42(–60) \times (4–)6–8(–10) \, \mu m\], av. \(40.5 \times 6.9 \, \mu m\). Pleurocystidia absent. Marginal cells on the lamellar edges usually not well differentiated, similar to basidioles on lamellar sides. Lamellar trama composed of sub-parallel or occasionally interwoven and irregularly inflated branched hyphae with elongate cells.

Figure 4. Hodophilus glaberripes. a Basidiospores b basidia c basidioles d hyphal terminations in pileipellis e hyphal terminations in stipitipellis. Scale bars: 10 \, \mu m (a–c); 20 \, \mu m (d, e).
(38–)52–98(–160) × (4–)6–14(–20) μm, av. 88 × 9.5 μm. Subhymenium poorly developed. Pileipellis a transition from hymeniderm to epithelium, with hyphal elements 3–10 μm wide, thin-walled, hyaline, terminations usually composed of 1–3 inflated cells; terminal cells obpyriform, subglobous or ellipsoid, rarely sphaero-pedunculate or broadly clavate, (15–)19–46(–50) × (7–)12–22(–30) μm, av. 38.5 × 18 μm. Pileus trama composed of subparallel hyphae (34–)46–89(–130) × (4–)5.5–10 μm, av. 74 × 7.6 μm. Stipitipellis formed of parallel, thin-walled and narrow hyphae 3–6 μm diam. Caulocystidia usually in dense fascicles or patches, thin-walled, repent or ascending; with terminal cells mainly clavate, occasionally subcapitate or obpyriform, obtuse, often pedicellate and flexuous, measuring (18–)22–53(–60) × (4–)5.5–13 μm, av. 43 × 7.5 μm. Clamp connections absent in all tissues.

Habit, ecology and distribution. Solitary, scattered on soil in broadleaf forests and mixed forests; currently only known from China.

Additional specimens examined. CHINA. Guangdong Province: Huizhou City, Xiangtoushan National Nature Reserve, alt. 640 m, 18 May 2016, H. Huang (GDGM45940); Shaoguan City, Nanling National Nature Reserve, 800 m, 29 July 2017, M. Zhang (GDGM70329 and GDGM70331); Shaoguan City, Danxiashan National Nature Reserve, 200 m, 27 April 2019, X.R. Zhong (GDGM76367 and GDGM76337), J.P. Li (GDGM76300); Jiangxi Province: Jinggangshan Botanical Garden, 884 m, 20 June 2016, H. Huang (GDGM52374), Z.P. Song (GDGM52545); same location, 21 June 2016, Z.P. Song (GDGM52530 and GDGM52583); Hunan Province: Chenzhou City, Jiulongjiang National Forest Park, alt. 230 m, 14 May 2018 X. R. Zhong (GDGM55689).

Discussion

Key to the species of Camarophyllopsis and Hodophilus

1. Basidiomata agaricoid; pileipellis an epithelium composed of chains of subcylindrical to ellipsoid terminal elements .. 2 Camarophyllopsis
 – Basidiomata agaricoid; pileipellis a hymeniderm composed of broadly inflated, globose, and obpyriform to sphaero-pedunculate terminal elements 12 Hodophilus

2. Pileus diameter usually < 30 mm .. 3
 – Pileus diameter usually ≥ 30 mm 11

3. Pileus hygrophanous or subhygrophanous 4
 – Pileus not hygrophanous ... 5

4. Pileus greenish gray to dull green; lamellae white, decurrent; basidiospores 4–5.5 × 3.5–4.5 μm .. 1. C. olivaceogrisea
 – Pileus rugulose, buffy brown to dark hazel; lamellae decurrent, pinkish to hazel; stipe olive brown or grayer; basidiospores globose av. 4 × 5 μm .. 2. C. rugulosoides
Two new agaricoid species of the family Clavariaceae from China, representing...

5 Lamellae always with pink tinct, pale pink to pink, decurrent; pileus pale pink to whitish, matt; stipe pale pink to whitish; basidiospores av. 7 × 4.5 μm. C. roseola

- Lamellae without pink tinct

6 Lamellae white, unchanging when mature

- Lamellae whitish to grayish or brownish

7 Basidiospores < 6 μm; pileus brownish to dark brown, submentosus, depress in central when mature; stipe concolorous with pileus or slightly faded

.. C. atrovelutina

- Basidiospores usually ≥ 6 μm

8 Pileus gray, manifestly cleaving at margin when dry; stipe white; basidiospores 5.5–8.5 × 4–5.5 μm. C. leucopus

- Pileus gray, sub-velvety; stipe pale gray; basidiospores 7–8 × 5.5–6.5 μm

.. C. tetraspora

9 Basidiospores ≥ 7 μm; pileus fuliginous brown, subfibrillose to fibrillose, infundibuliform; lamellae deep decurrent; stipe brown

.. C. araguensis

- Basidiospores < 7 μm

10 Pileus dark brown, submentosus; lamellae light grayish, decurrent; stipe white, smooth, basidiospores 5–6.5 × 4–5 μm

.. C. albipes

- Pileus yellowish cinnamon to brownish cinnamon or chocolate gray, silky-tomentose or velvet; lamellae decurrent, whitish to grayish or brownish; stipe concolorous with pileus; basidiospores 4–5 × 4–4.5 μm

.. C. schulzeri

11 Pileus brownish gray to grayish brown; lamellae adnate to subdecurrent, white; stipe smooth, white; basidiospores 5–7 × 3.5–4.5 μm

.. C. pedicellata

- Pileus pearl gray to drab, often rivulose-cracking; lamellae light gray; stipe light gray, slightly longitudinally fibrillose-striped; basidiospores 5–7 × 3.5–5.2 μm

.. C. dennisiana

12 Basidiomata with a naphthalene or an unpleasant odor

.. see Adamčík et al. (2016, 2017)

- Basidiomata without naphthalene odor

13 Stipe with dark dots on surface

- Stipe never with dark dots on surface

14 Lamellae white to grayish white, pileus pale brown; basidiospores 4.5–6 × 4.0–5 μm, pileipellis an epithelium composed of globose to pyriform elements

.. ’C. kearneyi’

- Lamellae with orange, brown or light brown tinct

15 Pileus yellowish gray to brown when fresh, light brown, orange gray to beige when mature; lamellae beige or orange gray at first, changing to brownish orange to yellowish brown when mature, basidiospores 4.6–5.4 × 3.5–4.2 μm. H. atropunctus

- Pileus dark brown to pale brown; lamellae light brown to grayish brown when young, changing brown to dark brown when mature; basidiospores 4.8–5.4 × 3.9–4.5 μm

.. H. variabilipes

16 Stipe with yellow tinct

- Stipe without yellow tinct

.. see Adamčík et al. (2018)
17 Species has south hemisphere distribution, pileus creamy buff-brown or pinkish fawn; lamellae decurrent, pale pinkish; basidiospores 4.5–6.0 × 4.5–5.5 μm; pileipellis an epithelium of globose or pyriform elements; known from Australia ...‘C. darminensis’

– Species has north hemisphere distribution ...

18 Pileus yellowish white, brownish orange to reddish brown; lamellae orange white to brownish red; basidiospores 5–6.5 × 4–5 μm; known from China

..H. glaberripes

– Pileus grayish brown to brownish orange; lamellae subdecurrent, pale orange; stipe grayish orange, glabrous; basidiospores 4–5 × 3–5 μm; known from India...

..H. indicus

Phylogenetic relationships of the genera within Clavariaceae have been investigated in several studies, and Camarophyllopsis and Hodophilus were well supported as two independent groups at generic level (Birkebak et al. 2013, 2016; Adamčík et al. 2017, 2018). In the present study, phylogenetic analyses based on ITS and LSU showed that the two clades Camarophyllopsis and Hodophilus were well supported with high phylogenetic values (BS/BPP = 100/1), and collections from China formed two strongly supported terminal branches in the two clades. The sequences generated in this study did not match any previously described sequences, validating with strong support the recognition of C. olivaceogrisea and H. glaberripes as two distinct species based on their phenotypic features.

According to the phylogram (Figure 1), C. olivaceogrisea nested well into the Camarophyllopsis clade and formed a sister group of an unidentified Chinese collection (GDGM44501) with low statistical support. Because of the low number of specimens, GDGM44501 was not described here, but it can be easily separated from C. olivaceogrisea by branch distance. The other three species in the phylogenetic tree, C. atrovelutina, C. deceptive and C. schulzeri, also can be easily separated from C. olivaceogrisea. The closest relatives of the new species remain unresolved in this study because of the lack of significant statistical supports and the few available sequences of Camarophyllopsis used in phylogenetic analysis.

In the Hodophilus clade, H. glaberripes is closely related to H. indicus K.N.A. Raj, K.P.D. Latha & Manim., and together formed a well-supported branch, which is a sister clade to the yellow stipe clade (or H. micaceus superclade) as defined by Adamčík et al. (2017, 2018), but with limited statistical support. However, the recently described Indian species, H. indicus, show smaller and brownish orange basidiomata, subdecurrent and pale orange lamellae, and slightly smaller basidiospores (4–5 × 3–5 μm) (Crous et al. 2017).

Morphologically, the most distinctive features of C. olivaceogrisea are the small basidiomata with a greenish gray to dull green pileus, white and decurrent lamellae, broadly ellipsoid basidiospores, narrowly clavate basidia, and a cutis pileipellis composed of chains of cylindrical cells. Camarophyllopsis microspora (A.H. Sm. & Hesler) Bon is similar to C. olivaceogrisea to some extent. However, C. microspora, originally
Two new agaricoid species of the family Clavariaceae from China, representing... reported in Michigan, differs on account of its fuscous pileus and stipe, dark grayish context and smaller basidiospores (4–4.5 × 2.5–3 μm) (Hesler and Smith 1963). Considering species with a pileus diameter of 10–30 mm, *C. olivaceogrisea* is similar to *C. albipes* and *C. leucopus* (Singer) Boertm. However, *C. albipes* mainly differs on account of its brown and subtomentose pileus, grayish lamellae with slight veins at the margin, robust stipe, and slightly larger basidiospores (5–6.5 × 4–5 μm) (Singer 1973); *C. leucopus* mainly differs on account of its gray and sulcate pileus and larger basidiospores (5–8.5 × 4–5.5 μm) (Singer 1973).

Hodophilus glaberripes is characterized by its larger basidiomata, hygrophanous pileus with white, brownish orange to brown color, glabrous stipe, larger and broadly elliptic basidiospores, epithelium-like pileipellis with obpyriform or subglobous terminal cells, and slightly yam bean smell. The combination of these characteristics makes *H. glaberripes* easily distinguishable from other members of the genus. *Hodophilus glaberripes* is somewhat similar to *H. albofloccipes* (Kovalenko, E.F. Malysheva & O.V. Morozova) Looney and Adamčík, *H. anatinus* Dima, Adamčík & Jančovičová, *H. subfoetens* Adamčík, Jančovičová & Looney, and *H. pallidus* Adamčík, Jančovičová & Looney in morphology. However, *H. albofloccipes* mainly differs by its smaller basidiomata, ochre or ochre yellow to pale olives pileus, yellow to brownish stipe covered with white pruina or squamula, smaller basidiospores (4–5.7 × 3.5–5 μm), and naphthalene-like odor (Kovalenko et al. 2012); *H. anatinus* differs by its smaller basidiomata, grayish brown pileus, grayish yellow to brown stipe, and smaller basidiospores (4.8–5.5 × 3.8–4.4 μm) (Adamčík et al. 2018); *H. subfoetens* differs by its smaller and grayish brown to brownish black basidiomata, with a naphthalene odor, and smaller basidiospores (5–5.7 × 3.9–4.5 μm) (Adamčík et al. 2017a); *H. pallidus* differs by its smaller basidiomata with a strong naphthalene odor, orange-gray to grayish orange pileus, orange gray to orange brown stipe, and smaller basidiospores (5.1–5.7 × 3.9–4.6 μm) (Adamčík et al. 2017a).

Ecologically, very little is known about the ecology of *Camarophyllopsis* species, as for most species only a few verified collections are known and little molecular data is available. *Camarophyllopsis* species are widely distributed in the southern and northern hemispheres, from tropical zones to cool temperate zones, and in monsoon forest, bushy forest, and grassland habitats, and some species have been shown to be saprotrophic (Young 1999, 2005; Boertmann 2002; Kovalenko et al. 2012). *Camarophyllopsis olivaceogrisea* was collected from subtropical regions in southwest China at altitudes of over 1000 m, and is typically found in wet areas with moss under mixed forest, which is mainly dominated by broadleaf plants (*Castanopsis* spp., *Fagus* spp. and *Schima* spp.) with few conifer (*Pinus massoniana* Lamb. and *Pinus* spp.). This study expands the geographic distribution of the genus *Camarophyllopsis* to China.

Hodophilus taxa were mainly reported in temperate to boreal zones of the northern hemisphere and can be found in forest, bushy forest margin, grassland and bare soil habitats (Adamčík et al. 2016, 2017a, 2017b, 2018), and a recent study reported a new tropical distribution in India (Crous et al. 2017). In this study, collections of *H. glaberripes* were distributed from 23°N to 26°N in the subtropical zone of southern
China and at altitudes of 200–800 m, mostly occurred in the margin of broadleaf forest (mainly dominated by Fagaceae, Hamamelidaceae and Theaceae plants) and mixed forest (dominated by broadleaf tree mixed with few conifer as *Pinus massoniana* Lamb., *Pinus* spp. and *Cunninghamia* spp.), commonly along the sides of cement road in the forest and preferentially in heavy clay soil to humus. This study revealed an expanded geographic distribution of *Hodophilus* species to subtropical regions.

Acknowledgments

Sincere acknowledgements are expressed to Dr. J. Xu, Mr. H. Huang, J.P. Li, Z.P. Song, X.R. Zhong and S.H. Zhou (Guangdong Institute of Microbiology, China) for their kind help during the field trips. This study was supported by the National Natural Science Foundation of China (Nos. 31700021, 31770014, 31670029), the Science and Technology Project of Guangdong Province (2017A030303050, 2018B030324001) and the GDAS’ Special Project of Science and Technology Development (2019GDASYL-0104009).

References

Two new agaricoid species of the family Clavariaceae from China, representing...

Sanghuangporus toxicodendri sp. nov. (Hymenochaetales, Basidiomycota) from China

Sheng-Hua Wu¹, Chiung-Chih Chang¹, Chia-Ling Wei¹, Guo-Zheng Jiang², Bao-Kai Cui³

¹ Department of Biology, National Museum of Natural Science, Taichung 40419, Taiwan ² Paoshantang Medicinal Herbs Development Co., Ltd, Xizang 850100, China ³ Institute of Microbiology, Beijing Forestry University, Beijing 100083, China

Corresponding author: Sheng-Hua Wu (shwu@mail.nmns.edu.tw)

Academic editor: Teodor T. Denchev | Received 21 May 2019 | Accepted 12 August 2019 | Published 22 August 2019

Abstract
Sanghuangporus toxicodendri (Hymenochaetales) is described as new based on collections made from Shennongjia Forestry District, Hubei Province, China. All studied basidiocarps grew on living trunks of Toxicodendron sp. This new species is characterized by having perennial, effused-reflexed to pileate basidiocarps; pore surface brownish yellow or yellowish brown, pores 7–9 per mm; context 1–5 mm thick or almost invisible; setae ventricose, dark brown, 26–42 × 7–10 μm; basidia 4-sterigmate or occasionally 2-sterigmate; basidiospores broadly ellipsoid, smooth, brownish yellow, slightly thick-walled, mostly 3.5–4 × 2.8–3 μm. Maximum likelihood and Bayesian inference phylogenies inferred from internal transcribed spacer (ITS) region of rDNA indicated that Sanghuangporus spp. formed a monophyletic clade and resolved as a sister to Tropicoporus spp., and six strains of S. toxicodendri formed a monophyletic group which is sister to S. quercicola. An identification key to known species of Sanghuangporus is provided.

Keywords
Inonotus, taxonomy, Tropicoporus, wood-decaying fungi

Introduction
Sanghuangporus Sheng H. Wu et al. and Tropicoporus L.W. Zhou et al. were recently segregated from the broad generic concept of Inonotus P. Karst (Zhou et al. 2016). The former two genera differ from Inonotus s. str. chiefly in having dimitic hyphal system. Sanghuangporus is characterized by perennial and effused-reflexed to pileate...
basidiomata, occurring in a variety of climate environment, whereas *Tropicoporus* is distinguished by annual to perennial basidiomata, and a tropical distribution (Zhou et al. 2016). Zhu et al. (2019) showed the molecular phylogeny strongly supports the monophyly of *Sanghuangporus* spp.; they also indicated that the maximum crown age of *Sanghuangporus* is approximately 30.85 million years, and East Asia is the likely ancestral area. *Sanghuangporus* spp. usually have host-specificity relationships with their host trees. *Sanghuangporus* accommodates some important medicinal fungal species generally are called “Sanghuang” (means yellow organism grows on *Morus*) in China and Korea, and “Meshimakobu” in Japan. *Sanghuangporus sanghuang* (Sheng H. Wu et al.) Sheng H. Wu et al., the generic type, was detected by Wu et al. (2012) as the genuine Sanghuang species growing exclusively on *Morus* in the wild. Before this study, 13 species of *Sanghuangporus* were known (Ghobad-Nejad 2015; Tomsovsky 2015; Zhou et al. 2016; Zhu et al. 2017). In this study, we present a new species of *Sanghuangporus* sp. growing on *Toxicodendron* sp. collected from Shennongjia Forestry District, Hubei Province of China.

Materials and methods

Morphological studies

All studied specimens are deposited in the herbarium of National Museum of Natural Science, ROC (TNM). The description is based on dried basidiocarps. Freehand and thin sections of fruiting bodies were prepared in three media for microscopic studies: 5% (w/v) potassium hydroxide (KOH) with 1% (w/v) phloxine was used for observation and measurement of microscopic characters; Melzer’s reagent was applied to check amyloidity and dextrinoidity; Cotton blue was used to test cyanophily. The abbreviations in the text were used as followed: L = mean spore length (arithmetical average for all spores), W = mean spore width (arithmetical average for all spores), n = total number of spores measured from a specimen, Q = variation in the L/W ratio between the studied specimens. When presenting the variation in the dimensions of spores, 5% of the measurements were rejected from each edge of the range and were given in parentheses.

DNA extraction and sequencing

Genomic DNA were extracted from dried samples with the Plant Genomic DNA Extraction Miniprep System (Viogene-Biotek Corp., New Taipei, Taiwan) following the manufacturer’s protocol. Nuclear ribosomal internal transcribed spacer (ITS) region was amplified with primer pair ITS1/ITS4 (White et al. 1990). The PCR protocols for ITS regions were as follows: initial denaturation at 95 °C for 5 min, followed by 40 cycles at 94 °C for 45 s, 53 °C for 45 s and 72 °C for 45 s, and a final extension of 72 °C for 10 min. PCR products were purified and sequenced by the MB Mission Biotech Company (Taipei, Taiwan). Newly obtained sequences were assembled and manually
Sanghuangporus toxicodendri sp. nov. from China

adjusted when necessary using BioEdit (Hall 1999). The sequences were then submitted to Genbank.

Alignment and phylogenetic analyses

Zhu et al. (2017) conducted ITS-based phylogenetic analysis for all previously known 13 species of Sanghuangporus. The ingroup strains of the Sanghuangporus spp. and Tropicoporus spp. employed in their analysis were basically adopted in the present analysis. We added newly generated sequences of six strains of the new species (Table 1). Inonotus rickii (Pat.) D.A. Reid, the outgroup in Zhu et al.’s analysis was not adopted, as this root failed to separate all Sanghuangporus spp. from the Tropicoporus spp. We consulted the study of Zhou et al. (2016) and chose Inocutis tamaricis (Pat.) Fiasson & Niemelä as the outgroup, which was successful in constructing the tree with a satisfactory result. The dataset was aligned using MAFFT 7 with Q-INS-i strategy. The aligned sequences were manually adjusted in BioEdit (Hall 1999) when necessary. Parsimony informative sites were calculated using MEGA 7 (Kumar et al. 2016). Phylogenetic trees were inferred from Bayesian inference (BI) and Maximum Likelihood (ML) methods using MrBayes v. 3.2.6. (Ronquist et al. 2012) at the CIPRES Science Gateway (http://www.phylo.org/) and PhyML 3.0 (Guindon et al. 2010), respectively. The best fit model for both algorithms was estimated by jModelTest2 (Darriba et al. 2012) using the Bayesian information criterion (BIC). For ML analysis, bootstrap (BS) values were calculated after running 1000 replicates. The BI analysis was conducted with 10 million generations initiated from random starting trees. Trees were sampled every 1000 generations, and the first 2500 trees were discards as burn-in. The Posterior Probability (PP) values were calculated from the remaining trees. Only the phylogram inferred from ML analysis was shown because both BI and ML analyses yield similar topologies. The statistical supports were shown on nodes of the ML tree when BS ≥ 70 and PP ≥ 0.7. The final phylogenetic trees and alignment were submitted to TreeBASE (submission number 24234; http://www.treebase.org).

Results

Phylogeny results

The ITS dataset consisted of 48 taxa and 1117 sites including gaps, of which 306 sites were parsimony informative. The HKY+G was selected as the best fit model for both the ML and BI analyses. The BI analysis was terminated when the average standard deviation of split frequencies fell to 0.009547. The ML tree shows that Sanghuangporus spp. formed a monophyletic clade (BS = 93%, PP = 1) and resolved as a sister to Tropicoporus spp. (BS = 92%, PP = 1) (Fig. 1). Six strains of Sanghuangporus toxicodendri formed a monophyletic group with statistical supports (BS = 78%, PP = 1), which was sister to S. quercicola L. Zhu & B.K. Cui with significant support (BS = 98%, PP = 1) (Fig. 1).
Table 1. List of species, specimens and ITS sequences used in this study. Sequences generated in this study are shown in boldface type.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Specimen or strain no.</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanghuangporus alpinus</td>
<td>Cui9646</td>
<td>JQ860313</td>
</tr>
<tr>
<td></td>
<td>Cui9658</td>
<td>JQ860310</td>
</tr>
<tr>
<td></td>
<td>Cui9666</td>
<td>JQ860311</td>
</tr>
<tr>
<td>Sanghuangporus baumii</td>
<td>Dai11903</td>
<td>KY328305</td>
</tr>
<tr>
<td></td>
<td>Dai3694</td>
<td>JN642569</td>
</tr>
<tr>
<td></td>
<td>Dai3684</td>
<td>JN642568</td>
</tr>
<tr>
<td>Sanghuangporus ligneus</td>
<td>Ghobad-Nejad 1157</td>
<td>KR073082</td>
</tr>
<tr>
<td></td>
<td>Ghobad-Nejad 1152</td>
<td>KR073081</td>
</tr>
<tr>
<td>Sanghuangporus lonicericola</td>
<td>Dai8376</td>
<td>JQ860308</td>
</tr>
<tr>
<td></td>
<td>MG281</td>
<td>KU213574</td>
</tr>
<tr>
<td></td>
<td>TAA55428</td>
<td>JN642575</td>
</tr>
<tr>
<td>Sanghuangporus microcystideus</td>
<td>AM19</td>
<td>JF895465</td>
</tr>
<tr>
<td></td>
<td>AM-08</td>
<td>JF895464</td>
</tr>
<tr>
<td>Sanghuangporus pilatii</td>
<td>BRNM 771989</td>
<td>KT428764</td>
</tr>
<tr>
<td>Sanghuangporus quercicola</td>
<td>Li445</td>
<td>KY328311</td>
</tr>
<tr>
<td></td>
<td>Li1149</td>
<td>KY328312</td>
</tr>
<tr>
<td>Sanghuangporus sanghuang</td>
<td>Dai12723</td>
<td>JQ860316</td>
</tr>
<tr>
<td></td>
<td>Wu0903-1</td>
<td>JN794061</td>
</tr>
<tr>
<td>Sanghuangporus toxicodendri</td>
<td>Wu 1805-2</td>
<td>MK400422</td>
</tr>
<tr>
<td></td>
<td>Wu 1805-3</td>
<td>MK400423</td>
</tr>
<tr>
<td></td>
<td>Wu 1805-5</td>
<td>MK400424</td>
</tr>
<tr>
<td></td>
<td>Wu 1807-2</td>
<td>MK729538</td>
</tr>
<tr>
<td></td>
<td>Wu 1807-3</td>
<td>MK729540</td>
</tr>
<tr>
<td></td>
<td>Wu 1807-4</td>
<td>MK729539</td>
</tr>
<tr>
<td>Sanghuangporus vaninii</td>
<td>Dai3624</td>
<td>JN642590</td>
</tr>
<tr>
<td></td>
<td>SFC 20001106-7</td>
<td>AF534070</td>
</tr>
<tr>
<td></td>
<td>SFCC 10209</td>
<td>AY558628</td>
</tr>
<tr>
<td>Sanghuangporus weigelae</td>
<td>Cui6012</td>
<td>JQ860319</td>
</tr>
<tr>
<td></td>
<td>WD-1667</td>
<td>JN642594</td>
</tr>
<tr>
<td></td>
<td>Dai11694</td>
<td>JQ860315</td>
</tr>
<tr>
<td>Sanghuangporus weirianus</td>
<td>CBS_618.89</td>
<td>AY558654</td>
</tr>
<tr>
<td>Sanghuangporus zonatus</td>
<td>Cui6631</td>
<td>JQ860305</td>
</tr>
<tr>
<td></td>
<td>Dai10841</td>
<td>JQ860306</td>
</tr>
<tr>
<td>Tropicoporus cubensis</td>
<td>MUCL47079</td>
<td>JQ860325</td>
</tr>
<tr>
<td>Tropicoporus dependens</td>
<td>JV 1207/3.4-J</td>
<td>KC778779</td>
</tr>
<tr>
<td>Tropicoporus dependens</td>
<td>JV 0409/20-J</td>
<td>KC778778</td>
</tr>
<tr>
<td>Tropicoporus guanacastensis</td>
<td>O19228</td>
<td>KP030794</td>
</tr>
<tr>
<td>Tropicoporus linteus</td>
<td>JV0904/64</td>
<td>JQ860322</td>
</tr>
<tr>
<td>Tropicoporus pseudolinteus</td>
<td>JV 0312/22.10-J</td>
<td>KC778780</td>
</tr>
<tr>
<td></td>
<td>JV0402/35-K</td>
<td>KC778781</td>
</tr>
<tr>
<td>Tropicoporus sideroxylicola</td>
<td>JV 1207/4.3-J</td>
<td>KC778783</td>
</tr>
<tr>
<td></td>
<td>JV 0409/30-J</td>
<td>KC778782</td>
</tr>
<tr>
<td>Tropicoporus tropicalis</td>
<td>CBS-617.89</td>
<td>AF534077</td>
</tr>
<tr>
<td>Inonotus compositus</td>
<td>Wang 552</td>
<td>KP030781</td>
</tr>
<tr>
<td>Inonotus hispidus</td>
<td>PST4</td>
<td>EU918125</td>
</tr>
<tr>
<td>Inocutis tamaricis</td>
<td>CBS 384.72</td>
<td>AY558604</td>
</tr>
</tbody>
</table>
Figure 1. The phylogenetic tree inferred from maximum likelihood and Bayesian analyses of the ITS dataset of *Sanghuangporus toxicodendri* and related species. Statistic supports are shown on internodes with bootstrap values $\geq 70\%$ and posterior probabilities ≥ 0.7. The presented new species are shown in boldface type.
Taxonomy

Sanghuangporus toxicodendri Sheng H. Wu, B.K. Cui & Guo Z. Jiang, sp. nov.
MycoBank MB 830791
Figures 2, 3

Type. CHINA. Hubei Province: Shennongjia Forestry District, Songbai Town, 1200 m, on living *Toxicodendron* sp. trunk, May 2018, *Wu* 1805-3 (holotype, TNM F0032663).

Figure 2. Basidiocarp. *Sanghuangporus toxicodendri* (holotype, *Wu* 1805-3).
Figure 3. Sanghuangporus toxicodendri (holotype, Wu 1805-3) A skeletal hyphae from context B generative hyphae from context C skeletal hyphae from trama D generative hyphae from trama E generative hyphae from dissepiments F setae G cystidioles H basidia I basidiospores. Scale bars: 10 μm.
Etymology. The epithet refers to the host genus.

Description. Basidiocarps perennial, effused-reflexed to pileate, applanate, semi-circular, adaxially slightly concave, woody hard. Pilei projecting 4–6 cm, up to 18 cm wide and up to 6 cm thick at base. Pileal surface grayish black to blackish brown, glabrous, occasionally cracked, concentrically zonate and sulcate; margin generally obtuse, concolorous or brownish yellow. Pore surface brownish yellow, yellowish brown, brownish or rusty brown, somewhat glancing, darkening in KOH; pores 7–9 per mm, circular. Context homogeneous, 1–5 mm thick or almost invisible, brownish yellow or brownish, with blackish crust at pileus parts. Tubes concolorous with pore surface, 1–5 cm thick, usually with several growth layers.

Hyphal system dimitic in both context and trama, generative hyphae simple-septate; tissue darkened in KOH. Context generative hyphae yellowish, brownish yellow or yellowish brown, moderately ramified, 2–3 μm diam., slightly thick-walled or with walls up to 1 μm thick; skeletal hyphae yellowish brown to brownish, fairly straight, rarely ramified, 2–4 μm diam., with 0.5–1.3 μm thick walls or subsolid. Tube generative hyphae yellowish brown to yellowish, moderately ramified, 2–3 μm diam., slightly thick-walled or with walls up to 1 μm thick; skeletal hyphae yellowish brown to brownish, fairly straight, rarely ramified, 2–4 μm diam., with 0.8–1.3 μm thick walls or subsolid. Hymenial setae ventricose, dark brown, 26–42 × 7–10 μm. Cystidioles with tapering or abruptly narrow apices, colorless, thin-walled, 10–20 × 3–3.5 μm. Basidia clavate, 10–12 × 4–4.5 μm, thin-walled, 4-sterigate or occasionally 2-sterigate; sterigmata up to 6 μm long. Basidiospores broadly ellipsoid, smooth, brownish yellow, slightly thick-walled, inamyloid, non-dextrinoid, somewhat cyanophilous, (3.2–)3.5–4 × (2.7–)2.8–3(–3.2) μm, L = 3.72±0.21 μm, W = 2.94±0.11 μm, Q = 1.27 (n = 30, holotype: Wu 1805-3).

Ecology and distribution. On trunk of *Toxicodendron* sp. Hitherto only known from Shennongjia Forestry District, Hubei province, China.

Additional specimens examined (paratypes). CHINA. Hubei Province: Shennongjia Forestry District, Songbai Town, 1200 m, on living *Toxicodendron* sp. trunk, May 2018, Wu 1805-1 (TNM F0032661), Wu 1805-2 (TNM F0032662), Wu 1805-4 (TNM F0032664), Wu 1805-5 (TNM F0032665); July 2018, Wu 1807-2 (TNM F0032666), Wu 1807-3 (TNM F0032667), Wu 1807-4 (TNM F0032668).

Discussion

Zhu et al.’s (2019) phylogenetic study showed the monophyly of the genus *Sanghuangporus* spp., and the result coincides with the present study (Fig. 1). The genus *Sanghuangporus* comprises 14 species (Ghobad-Nejhad 2015; Tomsovsky 2015; Zhou et al. 2016; Zhu et al. 2017), after including *S. toxicodendri* presented here. It is not easy to identify some species of *Sanghuangporus* spp., as there are not that many good morphological characteristics to separate them. Distribution, climatic adaptation, host preference, and DNA sequences are important for species recognition, apart from morphological study.
The present phylogenetic study indicated that S. toxicodendri is sister to S. quercicola with significant support (Fig. 1). Both species are distributed in central China; the former grows on Toxicodendron, while the latter occurs on Quercus. However, two morphological features can separate these species. The yellow or brownish-yellow wide marginal zone on the pileus surface of S. quercicola (Zhu et al. 2017: figs A, B) is lacking in S. toxicodendri. Secondly, the basidiospores of S. toxicodendri are mostly longer than 2.8 μm, but are generally shorter than 2.8 μm in S. quercicola.

Sanghuangporus lonicericola (Parmasto) L.W. Zhou & Y.C. Dai, S. quercicola, S. sanghuang, S. toxicodendri, S. vaninii (Ljub.) L.W. Zhou & Y.C. Dai, and S. zonatus (Y.C. Dai & X.M. Tian) L.W. Zhou & Y.C. Dai have comparatively smaller pores (>6 per mm) than other species. Sanghuangporus lonicericola is distributed in northeast China and the Russian Far-East, growing exclusively on Lonicera; moreover, it has smaller setae (12–22 × 4–8 μm; Dai 2010) than S. toxicodendri. Sanghuangporus sanghuang grows only on Morus and has distinctly larger basidiospores (4–4.9 × 3.1–3.9 μm; Wu et al. 2012) than S. toxicodendri. Sanghuangporus vaninii grows on Populus and also resembles S. quercicola in having a wide marginal yellow zone on pileus surface, but it has larger basidiospores (3.8–4.4 × 2.8–3.7 μm; Dai 2010) than S. toxicodendri. Sanghuangporus zonatus is a tropical species distributed in southern China and differs from S. toxicodendri in having thicker context and shorter setae (Tian et al. 2013).

Several Sanghuangporus spp. are used for medicinal application in China, Korea, Japan, and South Asian countries. Wu et al. (2012) indicated that S. sanghuang, the only Sanghuangporus sp. growing on Morus in the wild, is the genuine Sanghuang species. Comparing health-care effectiveness among the so-called Sanghuang species, Lin et al. (2017) proved that S. sanghuang has better medicinal properties than two other commercial species: S. baumii (Pilát) L.W. Zhou & Y.C. Dai and S. vaninii. Sanghuangporus vaninii grows on Populus davidiana in the wild and is widely cultivated in China, Korea, and Japan as a medicinal fungus. Sanghuangporus baumii, which grows on Syringa in the wild, is also served as medicinal fungus in China. The medicinal properties of many Sanghuangporus spp. are not understood. It is noted that S. toxicodendri and the recently described S. quercicola are closely related to the medicinal species S. sanghuang and S. vaninii (Zhu et al. 2019; this study, Fig. 1). The medicinal properties of these two species are worth studying.

Key to the accepted species of Sanghuangporus

1 Pores 3–5 per mm... 2
 – Pores > 5 per mm... 3
2 Basidiospores 3.5–4.5 × 3–3.5 μm; distribution in Central Asia..... S. lonicericinus
 – Basidiospores 4–4.8 × 3–3.8 μm; distribution in Europe........... S. pilatii
3 Pores 7–10 per mm... 4
 – Pores 5–8 per mm.. 6
4 Brownish yellow pileus surface marginal zone present; restricted to *Quercus*........
- Brownish yellow pileus surface marginal zone not present; not on *Quercus*...........5
5 Setae >25 μm long; restricted to *Toxicodendron*.................. *S. toxicodendri*
- Setae <25 μm long; restricted to *Lonicera*............................ *S. lonicericola*
6 Context very thin, <3 mm ...7
- Context very thick, >10 mm...8
7 Context duplex; distribution in the warm temperate zones *S. weigelae*
- Context homogeneous; distribution in alpinus zones *S. alpinus*
8 Setae mostly <20 μm long...9
- Setae mostly >20 μm long...12
9 Basidiomata with a sharp margin .. *S. zonatus*
- Basidiomata with an obtuse margin ...10
10 Basidiospores basically subglobose; distribution in Africa........ *S. microcystideus*
- Basidiospores broadly ellipsoid; distribution in Asia.......................11
11 Dissepiments distinctly thick; distribution in western Asia.......... *S. ligneus*
- Dissepiments distinctly thin to slightly thick (<¼ diameter of pores); distribution in eastern Asia.......................... *S. baumii*
12 Basidiospores basically subglobose; restricted to *Juglans*......... *S. weirianus*
- Basidiospores broadly ellipsoid; restricted to *Morus* or *Populus*........13
13 Basidiospores 3.8–4.4 × 2.8–3.7 μm; restricted to *Populus*........... *S. vaninii*
- Basidiospores 4–4.9 × 3.1–3.9 μm; restricted to *Morus*.................. *S. sanghuang*

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (no. 105-07.1-SB-18) from Council of Agriculture, Executive Yuan, ROC.

References

Sanghuangporus toxicodendri sp. nov. from China

Diaporthe species in south-western China

Hui Long¹, Qian Zhang¹, Yuan-Yuan Hao⁴, Xian-Qiang Shao⁵, Xiao-Xing Wei⁶, Kevin D. Hyde⁷, Yong Wang¹,², De-Gang Zhao²,³

¹ Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China ² Guizhou Key Laboratory Agro-Bioengineering, Guizhou University Guiyang, Guizhou, 550025, China ³ Guizhou Academy of Agricultural Sciences, Guiyang 550006, China ⁴ Administration Center of the Yellow River Delta Sustainable Development Institute of Shandong Province, Dongying, 257091, China ⁵ Dejiang County Chinese herbal medicine industry development office, Tongren, 565200, China ⁶ Academy of Animal and Veterinary Sciences, Qinghai University (Qinghai Academy of Animal and Veterinary Sciences), Xining, China ⁷ Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

Corresponding author: Yong Wang (yongwangbis@aliyun.com); De-Gang Zhao (dgzhao@gzu.edu.cn)

Academic editor: Andrew Miller | Received 15 April 2019 | Accepted 15 July 2019 | Published 23 August 2019

Abstract
Three strains of the genus Diaporthe were isolated from different plant hosts in south-western China. Phylogenetic analyses of the combined ITS, β-tubulin, tef1 and calmodulin dataset indicated that these strains represented three independent lineages in Diaporthe. Diaporthe millettiae sp. nov. clustered with D. hongkongensis and D. arecae, Diaporthe osmanthi sp. nov. grouped with D. arengae, D. pseudomangiferae and D. perseae and Diaporthe strain GUCC9146, isolated from Camellia sinensis, was grouped in the D. eres species complex with a close relationship to D. longicicola. These species are reported with taxonomic descriptions and illustrations.

Keywords Diaporthe, phylogeny, taxonomy, 2 new taxa

Introduction
Genus Diaporthe has been well-studied in recent years by Udayanga et al. (2011, 2012), incorporating morphological and molecular data and recommending appropriate genes to resolve species limitations in the genus. Since these revolutionary papers, 43 novel Diaporthe species have been described from China with morphological and

Three strains of *Diaporthe* were isolated from different medicinal plants collected in Guizhou and Guangxi during a survey of fungal diversity in south-western China. All the strains produced conidiomata containing alpha- and beta-conidia, typical of *Diaporthe*. This paper describes these three collections using molecular evidence, based on the analysis of combined ITS, β-tubulin, *tef1* and calmodulin datasets, as *Diaporthe millettiae* sp. nov. and *D. osmanthi* sp. nov. and *D. longicicola* with a new host record from *Camellia sinensis*.

Materials and methods

Isolation and morphological studies

The samples were collected from Guizhou and Guangxi provinces. The *Diaporthe* strains were isolated using the single-spore method (Chomnunti et al. 2014). Colonies, growing from single spores, were transferred to potato-dextrose agar (PDA) and incubated at room temperature (28 °C). Following 2–3 weeks of incubation, morphological characters were recorded as in Udayanga et al. (2011, 2015). Conidia and conidiophores were observed using a compound microscope (Olympus BX53). The holotype specimens are deposited in the Herbarium of Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). Ex-type cultures are deposited in the Culture Collection at the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC). Taxonomic information of the new taxa was submitted to MycoBank (http://www.mycobank.org) and Facesoffungi (http://www.facesoffungi.org).

DNA extraction and sequencing

Fungal cultures were grown on PDA medium until they nearly covered the whole Petri-dish (90 mm diam.) at 28 °C. Fresh fungal mycelia were scraped from the surface with sterilised scalpels. A BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416) was used to extract fungal genome DNA. DNA amplification was performed in a 25 μl reaction volume system which contained 2.5 μl 10 × PCR buffer, 1 μl of each primer (10 μM), 1 μl template DNA and 0.25 μl Taq DNA polymerase (Promega, Madison, WI, USA). Primers ITS4 and ITS5 (White et al. 1990) were used to amplify the ITS region. Three protein-coding gene fragments (β-tubulin, *tef1* and
calmoudulin) were amplified by the primers Bt2a/Bt2b (Glass and Donaldson 1995), CAL228F/CAL737R and EF1-728F/EF1-986R (Carbone and Kohn 1999). Gene sequencing was performed with an ABI PRISM 3730 DNA autosequencer using either a dRhodamine terminator or Big Dye Terminator (Applied Biosystems Inc., Foster 19 City, California). The sequences of both strands of each fragment were determined for sequence confirmation. The DNA sequences were submitted to GenBank and their accession numbers were provided in Table 1.

Table 1. GenBank accession numbers of isolates included in this study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Culture no.</th>
<th>GenBank no.</th>
<th>ITS</th>
<th>tef</th>
<th>β-tubulin</th>
<th>calmoudulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaporthe alleghaniensis</td>
<td>CBS 495.72</td>
<td>KC343007 KC343733 KC343975 KC343249</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ambigua</td>
<td>CBS 114015</td>
<td>AF230767 GQ250299 KC343978 KC343252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. anacardii</td>
<td>CBS 720.97*</td>
<td>KC343024 KC343750 KC343992 KC343266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. arecae</td>
<td>CBS 161.64</td>
<td>KC343432 KC343378 KC344000 KC343274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. arenariae</td>
<td>CBS 114979</td>
<td>KC343304 KC343376 KC344002 KC343276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. baccata</td>
<td>CBS 136972</td>
<td>KJ160565 KJ160597 MGF18509 MG281695</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. beilharzii</td>
<td>BIPR 54792</td>
<td>JX862529 JX862535 KF170921 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. betulae</td>
<td>CFCC 50470</td>
<td>KT732951 KT733017 KT733021 KT739298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. bicincta</td>
<td>CBS 121004</td>
<td>KC343134 KC343860 KC344102 KC343376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. bigutulatus</td>
<td>CGMCC 3.17081</td>
<td>KF576282 KF576257 KF576306 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. celastrina</td>
<td>CBS 139.27</td>
<td>KC343047 KC343773 KC344015 KC343289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. celeris</td>
<td>CBS 143349</td>
<td>MG281017 MG281538 MG281190 MG281712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. charlesworthii</td>
<td>BRIP 54884m*</td>
<td>KJ197288 KJ197250 KJ197268 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. cinerasceae</td>
<td>CBS 719.96</td>
<td>KC343050 KC343776 KC344018 KC343292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. cotonutri</td>
<td>CBS 439.82</td>
<td>FJ889450 GQ250341 JX275437 JX197429</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. decedens</td>
<td>CBS 109772</td>
<td>KC343059 KC343375 KC344007 KC343301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. elaeagni</td>
<td>CBS 504.72</td>
<td>KC343064 KC343790 KC344032 KC343306</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ellipolicola</td>
<td>CGMCC 3.17084</td>
<td>KF576270 KF576245 KF576291 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. eves</td>
<td>CBS 138594</td>
<td>KJ210529 KJ210550 KJ420799 KJ439999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. foeniculina</td>
<td>CBS 187.27</td>
<td>KC343107 KC343833 KC344075 KC343349</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. goulteri</td>
<td>BRIP 55657a</td>
<td>KJ197289 KJ197252 KJ197268 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. helianthi</td>
<td>CBS 592.81</td>
<td>KC343115 GQ250308 KC343841 JX197454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. honekongensis</td>
<td>CBS 115448</td>
<td>KC343119 KC343845 KC344087 KC343631</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. inconspicua</td>
<td>CBS 133813</td>
<td>KC343123 KC343849 KC344091 KC343635</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. longicaulis</td>
<td>GUCC9146</td>
<td>MK398676 MK480611 MK502091 MK502088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. longicola</td>
<td>CGMCC 3.17091</td>
<td>KF576267 KF576242 KF576291 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. macintoshii</td>
<td>BRIP 55064a*</td>
<td>KJ197290 KJ197251 KJ197269 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. millettii</td>
<td>GUCC9167</td>
<td>MK398674 MK480609 MK502089 MK502086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. oncostoma</td>
<td>CBS 589.78</td>
<td>KC343162 KC343888 KC344130 KC343404</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. osmanthiua</td>
<td>GUCC9165</td>
<td>MK398675 MK480610 MK502090 MK502087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. persea</td>
<td>CBS 151.73</td>
<td>KC343173 KC343899 KC344141 KC343415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. phragmatis</td>
<td>CBS 138897</td>
<td>KP004445 – KP004507 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. pseudomangiferae</td>
<td>CBS 101339</td>
<td>KC343181 KC343907 KC344149 KC343423</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. pseudophoenicicola</td>
<td>CBS 462.69</td>
<td>KC343184 KC343910 KC344152 KC343426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. rosicola</td>
<td>MFLU 17.0646</td>
<td>NR157515 MG829270 MG843877 MG829274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. saccarata</td>
<td>CBS 116311</td>
<td>KC343190 KC343916 KC344158 KC343432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. stirtica</td>
<td>CBS 370.54</td>
<td>KC343212 KC343936 KC344180 KC343454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. vaccinii</td>
<td>CBS 160.32</td>
<td>AF317578 GQ250326 KC344196 KC343470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valsa ambiens</td>
<td>CFCC 89894</td>
<td>KR045617 KU710912 KR046568 –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ex-type isolates were labeled with bold.
Phylogenetic analyses

DNA sequences from our three strains and reference sequences downloaded from GenBank (Dissanayake et al. 2017a, b), Guarnaccia et al. (2018) and Wanasinghe et al. (2018) were analysed by maximum parsimony (MP) and maximum likelihood (ML). Sequences were optimised manually to allow maximum alignment and maximum sequence similarity, as detailed in Manamgoda et al. (2012). MP analyses were performed in PAUP v. 4.0b10 (Swofford 2003), using the heuristic search option with 1,000 random taxa additions and tree bisection and re-connection (TBR) as the branch swapping algorithm. Maxtrees = 5000 was set to build the phylogenetic tree. The characters of the alignment document were ordered according to ITS+tef1+β-tubulin+CAL for GUCC9165 and GUCC9167 and tef1+β-tubulin for GUCC9146 with equal weight and gaps were treated as missing data. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were calculated for each tree generated. The resulting Phylip file was used to make ML and Bayesian trees by the CIPRES Science Gateway (https://www.phylo.org/portal2/login.action) and RAxML-XSEDE with 1000 bootstrap inferences.

Results

Phylogenetic analyses

Three *Diaporthe* strains isolated from different plant hosts were sequenced. PCR products of 456–465 bp (ITS), 292–303 bp (*tef1*), 666–690 bp (β-tubulin) and 336–345 bp (CAL) were obtained. By alignment with the single gene region and then combination according to the order of ITS, *tef1*, β-tubulin and CAL with *Valsa ambiens* (CFCC 89894), only 1833 characters were obtained, viz. ITS: 1–492, *tef1*: 493–801, β-tubulin: 802–1469, CAL: 1470–1833, with 500 parsimony-informative characters. This procedure yielded eleven parsimonious trees (TL = 2169, CI = 0.58, RI = 0.71, RC = 0.41 and HI = 0.42), the first one being shown in Figure 1. All *Diaporthe* species clustered together, although without credible support for bootstrap and BPP values (Figure 1). Phylogenetic analysis of strains GUCC9165 and GUCC9167, using the four gene loci, confirmed them as well-resolved species (Figure 1). Strain GUCC9165 formed an independent branch adjacent to *D. arecae* and *D. hongkongensis* (MP: 100%, ML: 94% and BPP: 1). Strain GUCC 9167 grouped with the branch which included *D. arengae*, *D. perseae* and *D. pseudomangiferae* (MP: 92%, ML: 98% and BPP: 1). Strain GUCC 9146 was aligned to the branch having *D. longicicola* and *D. rosicola* in the *Diaporthe eres* species-complex (Figure 2), with high statistical support (MP: 84%, ML: 93% and BPP: 1). This strain also showed a close relationship to *D. eres* and *D. cotoneastri*. In addition, we also compared the DNA base pair differences between our strains and related species in different gene regions (Suppl. material 1: Table S1). In *Diaporthe* strain GUCC9165, the four genes had 64 base pair differ-
Figure 1. Parsimonious tree obtained from a combined analyses of an ITS, β-tubulin, calmodulin and tef1 sequence dataset. MP, ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by “/”. The bootstrap values below 50% and BPP values below 0.90 were labelled with “-”. The tree is rooted with *Valsaambiens* (CFCC89894). The branch of our new *Diaporthe* species is in pink.
Figure 2. Parsimonious tree obtained from a combined analyses of a β-tubulin and tef1 sequence dataset (TL = 265, CI = 0.89, RI = 0.76, RC = 0.68 and HI = 0.11). MP, ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by “/”. The bootstrap values below 50% and BPP values below 0.90 were labelled with “-”. The tree is rooted with Diaporthe decedens (CBS 109772).

ences with D. arecae and 119 with D. hongkongensis, the main differences being with β-tubulin and tef1. Strain GUCC9167 had 52 base pair differences with D. arengae, 61 with D. perseae and 64 with D. pseudomangiferae, wherein the base distinction was
primarily in the β-tubulin and tef1 gene region. The β-tubulin sequences of D. eres and D. longicicola were apparently shorter than in strain GUCC 9146. The CAL sequences of D. rosicola were shorter than GUCC 9146. The DNA sequence of CAL for Diaporthe longicicola was not available (Gao et al. 2015). Integrating available DNA information, we discovered that 28 base pair differences were shown between GUCC 9146 and D. eres, 51 between GUCC 9146 and D. cotoneastri, 26 between GUCC 9146 and D. rosicola and 22 (only three genes) between GUCC 9146 and D. longicicola. Meanwhile, the phylogenetic analysis, based on only tef1 and β-tubulin for the D. eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with D. longicicola and D. rosicola which obtained support values of MP: 99%, ML: 100% and BPP: 1 and maintained a closer relationship with D. longicicola.

Taxonomy

Diaporthe millettiae H. Long, K.D. Hyde & Yong Wang bis, sp. nov.
MycoBank MB 829563

Figure 3

Diagnosis. Characterised by larger J-shaped β-conidia.

Type. China, Guangxi Province, Nanning City, from leaves of Millettia reticulata, 20 September 2016, Y. Wang, HGUP 9167, holotype, ex-type living culture GUCC 9167.

Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with feathery branches at margin, adpressed, with apparent aerial mycelium, with numerous irregularly zonate dark stromata, isabelline becoming lighter towards the margin; reverse similar to surface, with zonations. Conidiomata pycnidial, multilocular, scattered, abundant on PDA after 3 wks, subglobose to irregular, 1.5–1.8 mm diam., ostiolate, with up to 1 mm necks when present. Conidiophores formed from the inner layer of the locular wall, sometimes reduced to conidiogenous cells, when present 1-septate, hyaline to pale yellowish-brown, cylindrical, 10–23 × 1–2.5 μm. Conidiogenous cells cylindrical to flexuous, tapered towards apex, hyaline, 8–18 × 1.5–3 μm. Alpha conidia abundant, fusiform, narrowed towards apex and base, mostly biguttulate, hyaline, 4.5–9 × 2–3.5 μm. Beta conidia scarce to abundant, flexuous to J-shaped, hyaline, 17.5–32 × 1–2 μm. Perithecia not seen.

Habitat and distribution. Isolated from leaves of Millettia reticulata in China

Etymology. Species epithet millettiae, referring to the host, Millettia reticulata from which the strain was isolated.

Notes. Phylogenetic analysis combining four gene loci showed that Diaporthe millettiae (strain GUCC 9167) displayed a close relationship with D. arengae, D. pseudomangiferae and D. perseae with high bootstrap values (Figure 1). We compared the DNA base pair differences of the four gene regions, the main differences being in the β-tubulin and tef1 genes, especially tef1. Diaporthe millettiae produced two types of conidia (α, β), whereas D. pseudomangiferae only produced alpha conidia and D. perseae
produced three types of conidia (α, β, γ). The β-conidia of *D. arengae* were smaller (20–25 × 1.5 μm) than those of *Diaporthe millettiae* (17.5–32 × 1–2 μm). The shape of β-conidia was also different. Conidiophores of *D. arengae* (10–60 μm) with more septa (0–6), were longer than those of *D. millettiae* (10–23 × 1–2.5 μm; 0-1-septate) (Gomes et al. 2013).

Diaporthe osmanthi H. Long, K.D. Hyde & Yong Wang bis, sp. nov.
MycoBank MB 829564
Figure 4

Diagnosis. Characterised by size of α-conidia and β-conidia.
Type. China, Guangxi province, Nanning City, from leaves of *Osmanthus fragrans*, 20 September, 2016, Y. Wang, HGUP 9165, holotype, ex-type living culture GUCC 9165.
Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with feathery branches at margin, adpressed, without aerial mycelium, with numerous irregularly zonated dark stromata, isabelline becoming lighter towards the margin; re-
verse similar to the surface with zonations more apparent. *Conidiomata* pycnidial and multilocular, scattered, abundant on PDA after 3 wks, globose, subglobose or irregular, up to 1–1.5 mm diam., ostiolate, necks absent or up to 1 mm. *Conidiophores* formed from the inner layer of the locular wall, reduced to conidiogenous cells or 1-septate, hyaline to pale yellowish-brown, cylindrical, 20.5–61 × 1–3 μm. *Conidiogenous cells* cylindrical to flexuous, tapered towards apex, hyaline, 10–15 × 1.5–3 μm. *Alpha conidia* abundant, fusiform, narrowed towards the apex and base, apparently biguttulate, hyaline, 5.5–8.5 × 2–3 μm. *Beta conidia* scarce to abundant, flexuous to J-shaped, hyaline, 20–31.5 × 1–2.5 μm. *Perithecia* not seen.

Habitat and distribution. Isolated from leaves of *Osmanthus fragrans* in China.

Etymology. Species epithet *osmanthi*, referring to the host, *Osmanthus fragrans* from which our strain was isolated.

Notes. *Diaporthe osmanthi* (strain GUCC9165) formed an independent lineage, but was also related to *D. arecae* and *D. hongkongensis* (Figure 1). The sequences of β-tubulin and tefl included about two-three differences between *D. osmanthi* (GUCC9165) and *D. arecae* (42) and *D. hongkongensis* (78) and thus they were different species according to the guidelines of Jeewon and Hyde (2016). Additionally, *Diaporthe hongkongensis* produced three types of conidia, but *Diaporthe osmanthi* did...
not produce \(\gamma\)-conidia. In addition, \(\beta\)-conidia of *D. hongkongensis* (18–22 \(\mu\)m) were shorter than those of *Diaporthe osmanthi* (Gomes et al. 2013). According to original description Srivastava et al. (1962), *D. arecae* also produced two types of conidia. The \(\alpha\)-conidia (7.2–9.6 \(\times\) 2.4 \(\mu\)m) were longer than in *Diaporthe osmanthi*, but its \(\beta\)-conidia (14.4–24 \(\times\) 1.2 \(\mu\)m) were shorter and their shape also had some differences.

Figure 5

Description. Colonies on PDA attaining 9 cm diam. in 10 days; coralloid with feathery branches at margin, adpressed, without aerial mycelium, without numerous irregularly zonated dark stromata, isabelline becoming lighter towards the margin; reverse similar to the surface with zonations more apparent. *Conidiomata* pycnidial and multilocular, scattered, abundant on PDA after 20 d, subglobose or irregular, 1.5–1.8 mm diam., ostiolate and up to 1 mm long. *Conidiophores* formed from the inner layer of the locular wall, densely aggregated, hyaline to pale yellowish-brown, cylindrical, tapering towards the apex, 15–25 \(\times\) 1.5–2 \(\mu\)m. *Alpha conidia* abundant, ellipsoid to fusiform, apparently biguttulate, hyaline, 6–9 \(\times\) 2–3 \(\mu\)m. *Beta conidia* scarce to abundant, flexuous to J-shaped, hyaline, 25.5–35.5 \(\times\) 1–2.5 \(\mu\)m.

Habitat and distribution. Isolated from leaves of *Camellia sinensis* in Duyun, Guizhou Province, China.
Notes. Phylogenetic analyses (Figures 1, 2) indicated that GUCC 9146 has a close relationship with *D. longicicola*, *D. rosicola*, *D. eres* and *D. cotoneastri*. Morphological comparison indicated that this strain was most similar to *D. longicicola* but not a related species by the width of alpha conidia and length of beta conidia (Udayanga et al. 2014; Gao et al. 2015).

Discussion

Phylogenetic analysis and morphology provide evidence for the introduction of *Diaporthe millettiae* and *D. osmanthi* as new species. In order to support the validity of these new species, we followed the guidelines of Jeewon and Hyde (2016) in comparing base pair differences (Suppl. material 1: Table S1). In accordance with Udayanga et al. (2014), we also believed that the ITS fragment was problematic for the *D. eres* species-complex. When not considering ITS, integration with morphological comparison was helpful and we concluded that GUCC 9146 is *D. longicicola*. *Diaporthe longicicola* was firstly reported on *Lithocarpus glabra* in Zhejiang Province, but our strain (GUCC 9146) was recovered from *Camellia sinensis* in Guizhou Province. Thus, this is the report of a new host and new location in China for *D. longicicola*.

Acknowledgements

This research is supported by the project funding of National Natural Science Foundation of China (No. 31560489), Genetically Modified Organisms Breeding Major Projects of China [2016ZX08010-003-009], Agriculture Animal and Plant Breeding Projects of Guizhou Province [QNYZZ2013-009], Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau (2017-ZJ-Y12), Talent project of Guizhou science and technology cooperation platform ([2017]5788-5 and [2019]5641) and Guizhou science, technology department international cooperation base project ([2018]5806) and postgraduate education innovation programme of Guizhou Province (ZYRC[2014]004). Dr Kevin D. Hyde would like to thank “the future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, *Rhododendron* species and *Dracaena* species (DBG6080013)” and “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (RDG6130001)”.

References

based on their morphotypes and DNA sequence data from southern Thailand. Mycokeys 33: 25–67. https://doi.org/10.3897/mycokeys.32.23670

Supplementary material I

The DNA bases difference between our strains and related taxa on four gene regions
Authors: Hui Long, Qian Zhang, Yuan-Yuan Hao, Xian-Qiang Shao, Xiao-Xing Wei,
Kevin D. Hyde, Yong Wang, De-Gang Zhao
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODbL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.57.35448.suppl1