Two new endophytic *Colletotrichum* species from *Nothapodytes pittosporoides* in China

Sixuan Zhou¹², Lijun Qiao¹, Ruvishika S. Jayawardena³, Kevin D. Hyde³, Xiaoya Ma¹³, Tingchi Wen¹, Jichuan Kang¹

¹ Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education/College of Life Sciences, Guizhou University, Guiyuan, Guizhou Province 550025, China ² Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guiyuan, Guizhou province 550006, China ³ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

Corresponding author: Jichuan Kang (jckang@gzu.edu.cn)

Academic editor: T. Lumbsch | Received 25 November 2018 | Accepted 20 February 2019 | Published 11 March 2019

Abstract
Two new endophytic species, *Colletotrichum jishouense* sp. nov. and *C. tongrenense* sp. nov. were isolated from *Nothapodytes pittosporoides* in Guizhou and Hunan provinces, China. Detailed descriptions and illustrations of these new taxa are provided and morphological comparisons with similar taxa are explored. Phylogenetic analysis with combined sequence data (ITS, GAPDH, ACT and TUB2) demonstrated that both species formed distinct clades in this genus. This is the first record of *Colletotrichum* species from *N. pittosporoides* in China.

Keywords
Ascomycota, Multi-loci, Phylogeny, Morphology, Taxonomy

Introduction

Nothapodytes pittosporoides (Oliv.) Sleum (Icacinaceae) has been used as Traditional Chinese Medicine (TCM) and is mainly distributed in southern China (Fang 1981). It is quickly gaining attention as the characteristic compounds of camptothecin and its derivatives (CIDs) in *N. pittosporoides* (Dong et al. 2015) are used as anti-cancer drugs in the world market (Demain and Vaishnav 2011). It is recognised that endophytes reside in the internal tissues of living plants and potentially have the capability to produce the same functional compounds as their hosts (Stierle et al. 1993, 1995; Kusari et al. 1999).
Endophytic fungi were isolated from different parts of *Nothapodytes pittosporoides* (Zhou et al. 2017; Qiao et al. 2018) collected from different sites. A high diversity of fungi were found, of which several species of *Colletotrichum* were isolated and identified.

Colletotrichum species are globally distributed and occur in various plants as endophytes (Tibpromma et al. 2018). *Colletotrichum* is the sole genus in the family Glomerellaceae (Glomerellales, Sordariomycetes, Wijayawardene et al. 2018) and was introduced by Corda (1831) with the type species *C. lineola* (Jayawardena et al. 2016, 2017, Wijayawardene et al. 2017). Recently, several studies have analysed this genus and these are summarised in Hyde et al. (2014), who accepted 163 names. Since this review, about 30 more species have been introduced (Baroncelli et al. 2017; Douanlameli et al. 2017; Jayawardena et al. 2017; Silva et al. 2018).

In this study, we introduce two novel species, *C. jishouense* sp. nov. and *C. tongrenense* sp. nov. isolated as endophytes from *N. pittosporoides*. These species are based on both morphological features and molecular sequence data evidence.

Material and methods

Sample collection

Fresh healthy plant samples (leaves, stems and roots) of *Nothapodytes pittosporoides* were collected in Tongren City, Guizhou Province and Jishou City, Hunan Province, China. Materials were kept in zip-lock bags on ice. Fungal isolation was carried out within 24 hours of collection.

Isolation and cultivation of fungal endophytes

Each part of the plant was surface sterilised to eliminate epiphytic microorganisms. The samples were washed thoroughly in running tap water, followed by immersion in 70% (v/v) ethanol for 3 min to sterilise the surfaces, then rinsed with sterilised distilled water for 1 min. Samples were dried on sterilised filter paper and then placed in 3% hydrogen peroxide for 7 min, washed in sterilised distilled water and dried on a sterilised filter paper again. Each plant tissue was then cut into small cubes (0.5 × 0.5 cm) using a sterilised blade. The cubes were placed on potato dextrose agar (PDA) medium in Petri dishes containing with antibiotic (100 mg/l chloramphenicol) and incubated at 25 °C until fungal growth emerged from the plant segments. The endophytic fungi were isolated and sub-cultured on fresh PDA plates at 25 °C in darkness. Fungal isolates were stored on PDA and covered with sterilised water at 4 °C.

The type specimens are deposited in Guizhou Agricultural College (GACP), Guiyang, China. Ex-type living cultures are deposited at Guizhou Medical University Culture Collection (GMBC). Mycobank numbers are provided.
DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from fresh fungal mycelia using the BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416, Biomiga, USA), following the manufacturer's instructions. DNA samples were stored at -20 °C until used for polymerase chain reaction (PCR). Four loci, rDNA regions of internal transcribed spacers (ITS), partial β-tubulin (TUB2), actin (ACT) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified by PCR with primers ITS1 (Gardes and Bruns 1993) + ITS4 (White et al. 1990), Brt-2a + Brt-2b (Glass and Donaldson 1995), ACT-512F + ACT-783R (Carbone and Kohn 1999) and GDF1 + GDR1 (Guerber et al. 2003), respectively. The components of a 50 μl volume PCR mixture were used as follows: 2.0 μl of DNA template, 1 μl of each forward and reverse primer, 25 μl of 2 × Easy Taq PCR Super Mix (mixture of Easy Taq TM DNA Polymerase, dNTPs and optimised buffer, Beijing Trans Gen Biotech Co., Chaoyang District, Beijing, China) and 19 μl sterilised water. PCR thermal cycle programmes for ITS and ACT gene amplification were provided as: initial denaturation at 95 °C for 3 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 52 °C for 30 s, elongation at 72 °C for 45 s and final extension at 72 °C for 10 min. The PCR thermal cycle programme for GAPDH gene amplification was provided as: initial denaturation at 95 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, elongation at 72 °C for 45 s and final extension at 72 °C for 10 min. The PCR thermal cycle programme for TUB2 gene amplification was provided as: initial denaturation 95 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 45 s, elongation at 72 °C for 45 s and final extension at 72 °C for 10 min. The quality of PCR products were checked with 1.5% agarose gel electrophoresis stained with ethidium bromide. PCR products were sent for sequencing to Sangon Co., Shanghai, China.

Sequence alignment and phylogenetic analyses

Sequence data of the four loci were blasted in the GenBank database and all top hits, including the corresponding type sequences, were retrieved (Table 1). Multiple sequence alignments for ITS, TUB2, ACT and GAPDH were constructed and carried out using the MAFFT v.7.110 online programme (http://mafft.cbrc.jp/alignment/server/, Katoh and Standley 2013) with the default settings. Four datasets of ITS, TUB2, ACT and GAPDH of Colletotrichum spp. were combined and manually adjusted using BioEdit v.7.0.5.3 (Hall 1999), then assembled using SequenceMatrix1.7.8 (Vaidya et al. 2011). The final alignments contained 1593 characters with gaps, ITS with 522 sites, TUB2 with 510 sites, ACT with 269 sites and GAPDH with 292 sites. Fifty-four taxa and 1593 sites were used for phylogenetic analyses. Gaps were treated as missing data in maximum likelihood (ML), Bayesian Inference (BI) and parsimony trees. The phylogeny website tools “ALTER” (Glez-Peña et al. 2010) were used to convert the alignment file from Fasta to PhyLip file for RAxML analysis and Nexus for MrBayes. All loci were tested based on single maximum likelihood (ML) trees and Bayesian Inference (BI) methods.
Table 1. Taxa used for phylogenetic analyses in the study.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Isolate No.</th>
<th>GenBank Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITS</td>
</tr>
<tr>
<td>Colletotrichum agaves</td>
<td>AR3920</td>
<td>DQ286221</td>
</tr>
<tr>
<td>C. anethetici</td>
<td>CBS 123334*</td>
<td>GU227845</td>
</tr>
<tr>
<td>C. aracearum</td>
<td>LC1041</td>
<td>KX853167</td>
</tr>
<tr>
<td>C. arani</td>
<td>CBS 132511</td>
<td>KF687716</td>
</tr>
<tr>
<td>C. brevisporum</td>
<td>BCC 38767*</td>
<td>JN050238</td>
</tr>
<tr>
<td>C. chlorophyta</td>
<td>IMI 103806*</td>
<td>GU227894</td>
</tr>
<tr>
<td>C. citrula</td>
<td>SX151*</td>
<td>KF239356</td>
</tr>
<tr>
<td>C. citr-maximae</td>
<td>AGMy06254*</td>
<td>KX943582</td>
</tr>
<tr>
<td>C. clivia</td>
<td>CBS 125375*</td>
<td>JX519223</td>
</tr>
<tr>
<td>C. cocodes</td>
<td>CBS 369.75</td>
<td>HM171679</td>
</tr>
<tr>
<td>C. colibriense</td>
<td>CBS 129818*</td>
<td>JQ005174</td>
</tr>
<tr>
<td>C. conoides</td>
<td>CAUG1*</td>
<td>KP890168</td>
</tr>
<tr>
<td>C. constrictum</td>
<td>CBS 125.25*</td>
<td>GU227819</td>
</tr>
<tr>
<td>C. cordylinicola</td>
<td>ICMP18579*</td>
<td>JX010223</td>
</tr>
<tr>
<td>C. dematium</td>
<td>CBS 125.25*</td>
<td>GU227819</td>
</tr>
<tr>
<td>C. dracaenophiuthum</td>
<td>CBS 118199*</td>
<td>JX519222</td>
</tr>
<tr>
<td>C. echeclus-altitudum</td>
<td>CGMCC 3.15130*</td>
<td>HM751815</td>
</tr>
<tr>
<td>C. fructi</td>
<td>CBS 346.37*</td>
<td>GU227844</td>
</tr>
<tr>
<td>C. fusiforme</td>
<td>CBS 133701*</td>
<td>KM105174</td>
</tr>
<tr>
<td>C. hymenocallidicola</td>
<td>MFLUCC 12–0531*</td>
<td>KT290264</td>
</tr>
<tr>
<td>C. jishouense</td>
<td>GZU_HJ2_G2</td>
<td>MH482931</td>
</tr>
<tr>
<td>C. jishouense</td>
<td>GZU_HJ2_G3</td>
<td>MH482929</td>
</tr>
<tr>
<td>C. jishouense</td>
<td>GZU_HJ2_G4</td>
<td>MH482932</td>
</tr>
<tr>
<td>C. jishouense</td>
<td>GZU_HJ3_J5</td>
<td>MH482930</td>
</tr>
<tr>
<td>C. labavae</td>
<td>C1266.1</td>
<td>JX100231</td>
</tr>
<tr>
<td>C. ledebouriae</td>
<td>CPC 29571*</td>
<td>KX228254</td>
</tr>
<tr>
<td>C. laningense</td>
<td>CAUOS2*</td>
<td>KP890104</td>
</tr>
<tr>
<td>C. lindevianum</td>
<td>CBS 144.31*</td>
<td>JQ005779</td>
</tr>
<tr>
<td>C. magnisporum</td>
<td>CBS 398.84</td>
<td>KF687718</td>
</tr>
<tr>
<td>C. maltarum</td>
<td>CBS 521.97*</td>
<td>KF178480</td>
</tr>
<tr>
<td>C. neosansevieriae</td>
<td>CPC 2512*</td>
<td>KS747674</td>
</tr>
<tr>
<td>C. nymphae</td>
<td>CBS 515.78</td>
<td>JQ481897</td>
</tr>
<tr>
<td>C. ochrophilum</td>
<td>CBS 632.80*</td>
<td>JQ481851</td>
</tr>
<tr>
<td>C. pisicola</td>
<td>CBS 724.97*</td>
<td>KM105172</td>
</tr>
<tr>
<td>C. pseudocutatatum</td>
<td>CBS 436.77*</td>
<td>JQ484800</td>
</tr>
<tr>
<td>C. pseudomajus</td>
<td>CBS 571.88</td>
<td>KF687722</td>
</tr>
<tr>
<td>C. radices</td>
<td>CBS 369.75</td>
<td>KF687719</td>
</tr>
<tr>
<td>C. rhombiforme</td>
<td>CBS 129953*</td>
<td>JQ484577</td>
</tr>
<tr>
<td>C. sansevieriae</td>
<td>MAFF 239721*</td>
<td>NR_152313</td>
</tr>
<tr>
<td>C. spinosum</td>
<td>CBS 515.97*</td>
<td>KF178474</td>
</tr>
<tr>
<td>C. tanaceti</td>
<td>CBS 132693*</td>
<td>JX218228</td>
</tr>
<tr>
<td>C. trichellum</td>
<td>CBS 217.6*</td>
<td>GU227812</td>
</tr>
<tr>
<td>C. tongrense</td>
<td>GZU_TRJ1-37</td>
<td>MH482933</td>
</tr>
<tr>
<td>C. tropicola</td>
<td>L58</td>
<td>JN050240</td>
</tr>
<tr>
<td>C. truncatum</td>
<td>CBS 151.35</td>
<td>GU227862</td>
</tr>
<tr>
<td>C. vietnamense</td>
<td>CBS 12578*</td>
<td>KF687721</td>
</tr>
<tr>
<td>C. yunnanense</td>
<td>CBS 13215*</td>
<td>JX546804</td>
</tr>
<tr>
<td>Monilochaetes infuscans</td>
<td>CBS 869.96</td>
<td>JQ005780</td>
</tr>
</tbody>
</table>

Figure 1. Phylogram generated from Maximum Likelihood (RAxML) analysis based on combined ITS, ACT, TUB2 and GAPDH DNA sequence data of *Colletotrichum*. Bayesian Posterior Probabilities (BSPP) greater than 0.90 and Maximum Likelihood Bootstrap Support values (MLBS) greater than 70% are shown above branches. New isolates are in red. The tree is rooted with *Monilochaetes infuscans* CBS 869.96.

Maximum Likelihood (ML) analysis was performed on the website of CIPRES Science Gateway v.3.3 (http://www.phylo.org/portal2/, Miller et al. 2010) using RAxML-HPC Blackbox version 8.2.10. All free model parameters were estimated by RAxML and ML estimate of 25 per site rate categories. Final ML searches were conducted using the GTRGAMMA model. Bootstrap Support values (BS) equal to or greater than 60% are given above each node (Fig. 1).

For Bayesian Inference (BI), a Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees with Bayesian probabilities using MrBayes 3.2.6 (Ronquist et al. 2012) for the combined sequence datasets. MrModeltest v.2.3 (Nylander 2004) was used to carry out the statistical selection of the best-fit model of nucleotide substitution. GTR+G model was selected for ITS, a GTR+I+G model for TUB2, a HKY+I+G model for ACT and GAPDH were incorporated into the analysis. Models of nucleotide substitution for each gene determined by MrModeltest v. 2.3 were included for each set of gene sequence data. Two runs were executed simultaneously for 1,000,000 generations and sampled every 100 generations. Of the trees, 25% were discarded as burn-in and the remaining trees were used to calculate the posterior probabilities. Convergence was assumed when the standard deviation of split
sequences was less than 0.01. Phylogenetic trees were visualised using FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/, Rambaut 2012). The final alignment was deposited in Treebase (http://www.treebase.org, submission number 23622).

Morphological analysis

Isolates were grown on PDA, water agar (WA) with bamboo and corn malt agar medium (CMA) for examination of morphological characters. Colonies were examined after 7, 14 and 21 d at 25 °C in darkness. The morphological characters of mycelia, conidiophores, conidiogenous cells and conidia were observed and photographed using a Nikon NI-SS microscope and processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, USA).

Results

Sample collection and isolation

Four hundred and forty endophytic fungi were isolated from different parts of *Nothapodytes pittosporoides* in Jishou, Hunan Province and Tongren, Guizhou Province, belonging to twenty-four genera based on ITS sequences analysis. *Colletotrichum* was a common genus amongst the isolates. Herein, five endophytic taxa were isolated and identified as *Colletotrichum* of which GZU_HJ2_G2, GZU_HJ2_G3 and GZU_HJ2_G4 were isolated from roots and GZU_HJ3_J5 from stems of *N. pittosporoides* in Jishou, Hunan Province. GZU_TRJ1-37 was isolated from stems of *N. pittosporoides* in Tongren, Guizhou Province.

Phylogenetic analyses

Phylogenetic analysis of four loci (ITS, GAPDH, ACT and TUB2) sequence datasets included 54 taxa, 1,593 positions including gaps (ITS: 1–522, TUB2: 523–1032, ACT: 1033–1301, GAPDH: 1302–1593) and *Monilochaetes infuscans* (CBS 869.96) was selected as the outgroup taxon. The 50% majority rule consensus Bayesian phylogram presented in Fig. 1 and the topology is recovered with the RAxML tree. Values of the Bayesian PP ≥ 0.70 from MCMC analyses and bootstrap support values of RAxML ≥ 90% are given on the branches.

Representatives of complexes and species in *Colletotrichum* (Noireung et al. 2012; Tao et al. 2013; Liu et al. 2014; Jayawardena et al. 2016; Douanla-meli et al. 2017) are included in the phylogenetic analyses (Fig. 1). Four isolates, GZU_HJ2_G2, GZU_HJ2_G3, GZU_HJ2_G4 and GZU_HJ3_J5, were identified as distinct new species and are described as *Colletotrichum jishouense* sp. nov., and as *C. tongrenense* sp. nov., based on their morphology and molecular phylogeny.
Taxonomy

Colletotrichum jishouense SX. Zhou, JC. Kang & K.D. Hyde, sp. nov.
MycoBank number: MB828723
Fig. 2

Etymology. ‘*jishouense*’ referring to Jishou City, site of collection of type species.

Description. Endophytic fungus in root of *Nothapodytes pittosporoides*. *Sexual morph:* Undetermined. *Asexual morph:* Vegetative hyphae 0.5–1.2 µm diam. (n=10), hyaline, smooth-walled, septate, branched. *Chlamydospores* not observed. *Conidiophores* formed on a basal cushion, hyaline to pale brown, clavate or cylindrical, septate and irregularly branched. *Conidiogenous cells* 4–11 × 2–3 µm (\(\bar{x} = 6.7 \pm 3.0 \times 2.6 \pm 0.4 \mu m\), n=20), L/W ratio= 2.5, hyaline, smooth-walled, clavate to mostly ampulliform or cylindrical. *Conidia* hyaline, smooth-walled, aseptate, straight, cylindrical, some clavate, the apex and base rounded, 5–14 × 3–5 µm (\(\bar{x} = 10.8 \pm 1.8 \times 3.7 \pm 0.5 \mu m\), n = 40), L/W ratio= 2.9. *Appressoria* not observed.

Culture characteristics. Colonies on PDA, reaching 55–60 mm diam. in 14 days at 25 °C in darkness, circular, mycelium superficial and partially immersed, more or less planar, brown in the medium but covered with abundant, pale and lanose to cottony aerial mycelium, reverse greenish pale brown, margin entire and irregular.

Notes. *Colletotrichum jishouense* belongs in the *gigasporum* species complex. *C. jishouense* has shorter and narrower conidiogenous cells and conidia than all the related species in the *C. gigasporum* complex (Liu et al. 2014). Phylogenetically, our four new isolates clustered together with *C. magnisporum* (CBS 398.84). The pairwise dissimilarities of DNA sequences between *C. jishouense* and *C. magnisporum* were 2 bp, 20 bp, 5 bp and 9 bp in ITS, TUB2, ACT and GAPDH, respectively. They are phylogenetically distinct species and, therefore, *C. jishouense* sp. nov. is introduced.

Colletotrichum tongrenense S.X. Zhou, J.C. Kang & K.D. Hyde, sp. nov.
MycoBank number: MB828725
Fig. 3

Etymology. ‘*tongrenense*’ referring Tongren City, site of collection of type species.

Description. Endophytic in leaves and stems of *Nothapodytes pittosporoides*. *Sexual morph:* Undetermined. *Asexual morph:* On WA, vegetative hyphae 1.4–6 µm diam. (n=10), smooth-walled, septate, branched, hyaline. *Chlamydospores* not
observed. *Setae* unbranched, septate, tapering to rounded at apical end, pale brown to dark brown, smooth-walled, 45–90 µm long, 5.9–6.2 µm wide at widest part, 2.6–5.8 µm wide at bottom, 1.5–1.6 µm wide at apex. *Conidiophores* pale brown, septate, branched. *Conidiogenous cells* pale, hyaline, smooth-walled, erect, clavate or cylindrical, 2–11 × 1–2 µm ($\bar{x} = 6.3 \pm 4.4 \times 1.7 \pm 0.4$ µm, n = 20), L/W ratio= 3.7. *Conidia* hyaline, aseptate, smooth-walled, variable in size and shape, thick-walled, ellipsoidal to subglobose, the apex and base rounded, slightly constricted in the middle, 11–14 × 5–7 µm ($\bar{x} = 13.1 \pm 1.0 \times 5.5 \pm 0.6$ µm, n = 40), L/W ratio= 2.4.

Culture characteristics. Cultures on WA at 25 °C in darkness, reaching 15–18 mm diam. in 21 days, white to grey, asymmetrical surface, reverse dark grey to black.

Colonies on PDA at 25 °C reaching 45–55 mm diam. in 12 days in darkness, circular, more or less planar, surface dark brown, covered with abundant, pale grey, lanose to cottony aerial mycelium, margin smooth, entire and pale white. Reverse dark grey, margin pale white.

Cultures on CMA, 10–15 mm diam. in 21 days, covered with dark brown aerial mycelium, sparse, reverse light brown, margin irregular.

Material examined. CHINA, Guizhou province, Tongren (27°35’37”N, 109°10’58”E, elevation 332.8 m), isolated from healthy stems of *Nothapodytes pittosporoides*, 27 May 2016, S.X. Zhou and L.J. Qiao (Holotype GACP GZU-TRJ1-37 dried culture), ex-type living culture, GMBC0209.
Two new endophytic *Colletotrichum* species from...

Figure 3. *Colletotrichum tongrenense* (GACP GZU_TRJ1-37, holotype) **a, b** colonies on WA **c–g** Conidiophores **h–l** Conidia. Scale bars: 40 µm (c), 20 µm (d, g), 10 µm (e, f), 10 µm (h–l).

Notes. *Colletotrichum tongrenense* belongs to the *C. dracaenophilum* species complex (Damm et al. 2019). Morphologically, *C. tongrenense* resembles *C. tropicicola* and *C. excelsum-altitudum* in conidia characters, but it can be distinguished from *C. tropicicola* in having setae and longer conidia (15–19 µm vs 11–14 µm) (Noireung et al. 2012). *C. tongrenense* is distinguished from *C. excelsum-altitudum* (Tao et al. 2013) in having smaller conidiophores (2–11 × 1–2 µm vs 8.5–25 × 4–5 µm). Phylogenetically, the new isolate GZU_TRJ1-37 clusters together with *C. tropicicola* with good bootstrap support (94% MLBS, 1.00 PP) (Fig. 1) and the phylogenetic analysis supports it as a distinct species. There are 6, 4, 2 and 5 base pairs differences in ITS, TUB2, ACT and GAPDH gene regions, respectively, between the new isolate and the type strain of *C. tropicicola*, which confirms that they are separate species. Therefore, it is introduced as a novel species.
Discussion

Colletotrichum appears to have a wide host range and a geographic distribution (Yang et al. 2009, Hyde et al. 2014, Jayawardena et al. 2016). This study reports on five endophytic *Colletotrichum* isolates which were isolated from *Nothapodytes pittosporoides*. Two new species were introduced, named *C. jishouense* and *C. tongrenense*, respectively, based on morphological characters and multilocus (ITS, TUB2, ACT and GAPDH) phylogenetic analyses. The *C. gigasporum* species complex is associated with various host plants as pathogens and endophytes and also isolated from air and stored grain, indicating that the members are not host-specific and apparently have different life styles (Than et al. 2008, Yang et al. 2009, Liu et al. 2014, Jayawardena et al. 2016). The *C. dracaenophilum* species complex contains a few apparently host-specific species and these species seem to be uncommon (Damm et al. 2019). The complex includes *C. coelogynes*, *C. dracaenophilum*, *C. excelsum-altitudinum*, *C. tropicicola* and *C. yunnanense*. A further strain, *C. tongrenense* was identified to the *C. dracaenophilum* species complex in the study, based on the multilocus phylogeny and morphological features. Amongst them, *C. excelsum-altitudinum* was described from healthy leaves of *Bletilla ochracea* (Orchidaceae) in Guizhou, China (Tao et al. 2013.), *C. tropicicola* were described from leaves of *Citrus maxima* and *Paphiopedilum* sp. in Thailand and a further strain from *C. sp.* in Mexico (Noireung et al. 2012, Damm et al. 2019). The *C. coelogynes* strain CBS 132504 is an endophytic *Colletotrichum* isolate from both *Dendrobium* spp. in China (Yuan et al. 2009, Gao and Guo, unpublished data). *C. yunnanense* was described from healthy leaves of *Buxus* sp. in Yunnan, China (Liu et al. 2007).

Morphological features and genes sequence data are recognised as a basis for describing new species, but sometimes morphological features of *Colletotrichum* are not stable and may change under different growth conditions (Liu et al. 2014). DNA sequence comparison and multi-gene phylogenetic analyses can provide sufficient evidence to show distinct taxa (Jeewon and Hyde 2016). However, single gene data, including ITS, are usually insufficient for species identification in most of the *Colletotrichum* species complexes (Hyde et al. 2009). Multi-locus phylogenies are therefore necessary to describe *Colletotrichum* species (Jayawardena et al. 2016).

The composition of endophytic microorganisms may depend on the plant age, tissue, host type and time of isolation (Rosenblueth and Martinez-Romero 2006). The new species, *Colletotrichum tongrenense* lives in stems and *C. jishouense* lives in roots and stems of *Nothapodytes pittosporoides*. Nothing is known about their infection strategies on the host. It is also the first report of *Colletotrichum* species from *N. pittosporoides*. This study enriches the host diversity of *Colletotrichum*.

Acknowledgements

This work was funded by grants of the National Natural Science Foundation of China (NSFC Grants nos. 31670027 &31460011 & 30870009). Sixuan Zhou thanks Dr. Shaun Pennycook, Prof. Jiangming Lv, Yongzhong Lu and Jianfei Gao for their help.
References

Index Fungorum (2017) http://www.indexfungorum.org/names/Names.asp

Six new species of *Arthrinium* from Europe and notes about *A. caricicola* and other species found in *Carex* spp. hosts

Ángel Pintos¹, Pablo Alvarado², Juan Planas³, Rene Jarling¹

¹ Departamento de Investigación Mycologica, Cultivos Pima SL, Son Peretó 50 bajos, 07013 Palma de Mallorca, Spain ² ALVALAB, La Rochela 47, 39012 Santander, Spain ³ Carrer can Socies 12, 07010 Palma de Mallorca, Spain

Corresponding author: Ángel Pintos (info@cultivospima.com)

Abstract

Several new *Arthrinium* specimens were collected from various locations in Mediterranean and temperate Europe. A collection of the type species, *A. caricicola*, was obtained from dead leaves of *Carex ericetorum* in Berlin. Sequences of four genetic markers, ITS, 28S rDNA, tef1 and tub2 were produced from almost all collections and analyzed with those available in public databases. Results are employed to support six new species: *A. balearicum*, *A. descalsii*, *A. esporlense*, *A. ibericum*, *A. italicum* and *A. piptatheri*. The type species, *A. caricicola*, is related to other species occurring on *Carex* sp.; these might represent an independent lineage from *Apiospora* and the remaining species of *Arthrinium*. Finally, the sexual morph of *A. marii* is described and illustrated for the first time.

Keywords

Apiosporaceae, Ascomycota, Sordariomycetes, Xylariales, ITS, 28S rDNA, tef1, tub2

Introduction

The genus *Arthrinium* Kunze (Apiosporaceae, Sordariomycetes) differs from other anamorphic genera because of the presence of basauxic conidiophores, which arise from structures called conidiophore mother cells (Schmidt and Kunze 1817; Hughes 1953;
Minter 1985). This infrequent type of conidiogenesis can be found also in *Cordella* Speg., *Dictyarthrinium* S. Hughes, *Pteroconium* Sacc. ex Grove, and *Spegazzinia* Sacc. (Ellis 1971), but *Pteroconium* and *Cordella* are now considered synonyms of *Arthrinium* (Seifert et al. 2011; Crous and Groenewald 2013). *Apiospora* Sacc., the sexual state of *Arthrinium*, is also considered a synonym based on the one fungus-one name policy (Hawksworth et al. 2011; Crous and Groenewald 2013), and *Nigrospora* Zimm. is thought to be the closest relative (Wang et al. 2017).

There are about 80 valid species names of *Arthrinium*. The most significant contributions to species diversity of *Arthrinium* before the DNA-era were those of Schmidt and Kunze (1817), Kunze and Schmidt (1823), Fuckel (1870, 1874), Ellis (1963, 1965, 1971, 1976), and Larrondo and Calvo (1990, 1992). Genetic evidence allowed to confirm some of these taxa and propose multiple new species, e.g. Crous and Groenewald (2013), Singh et al. (2013), Dai et al. (2016, 2017), Jiang et al. (2018), and Wang et al. (2018). Smith et al. (2003) produced the first genetic data (18S and 28S rDNA) of *A. phaeospermum* (Corda) M.B. Ellis, supporting that this genus, as well as *Apiospora*, represent a separate family within Xylariales. This was later confirmed by Spatafora et al. (2006) and Zhang et al. (2006) who added new information from gene-coding DNA markers (18S and 28S rDNA, tef1, rpb2). Singh et al. (2013) published a ITS rDNA phylogeny including several type sequences obtained by Ogawa et al. (unpublished), such as those of *A. marii* Larrondo & Calvo, *A. hispanicum* Larrondo & Calvo, *A. mediterranei* Larrondo & Calvo, *A. serenense* Larrondo & Calvo, and *A. phaeospermum*, and introduced the new species *A. rasikravindrae* Shiv M. Singh, L.S. Yadav, P.N. Singh, Rah. Sharma & S.K. Singh (as *rasikravindrii*). Soon afterwards, Crous and Groenewald (2013) published a comprehensive re-evaluation of *Arthrinium* based on multigenic data, introducing eight new species and providing genetic data from several type strains of other taxa. They formally proposed the synonymy between *Arthrinium* and *Apiospora*, giving priority to *Arthrinium*, but provided no data of the type species, *A. caricicola* Kunze & J.C. Schmidt. Sharma et al. (2014) published the new species *A. jatrophae* R. Sharma, G. Kulk. & Shouche and built a phylogenetic tree based on rDNA that showed three main clades: one formed by *A. urticae* M.B. Ellis, a second including *A. puccinioides* Kunze & J.C. Schmidt and *A. japonicum* Pollack & C.R. Benj., and a third including the remaining known species of *Arthrinium* and *Apiospora*. Multigenic data of the first two clades was first obtained by Ogawa et al. (unpublished), and also Crous and Groenewald (2013), although they did not include these data in their phylogenetic analyses. Some new species of *Arthrinium* were described in the next years (Crous et al. 2015; Senanayake et al. 2015; Hyde et al. 2016; Dai et al. 2016, 2017; Wang et al. 2018; Jiang et al. 2018), and the multilocus phylogenetic analysis revealed that the sister clade of *Arthrinium* was *Nigrospora* in Apiosporaceae (Wang et al. 2017).

Morphological features traditionally employed to discriminate between species of *Arthrinium* include conidial shape, conidiophores, presence or absence of sterile cells and the presence of setae. Two great groups of species can be discriminated: 1) those with irregularly shaped conidia (including the type species *A. caricicola* and several oth-
Six new species of Arthrinium from Europe

Spatafora et al. (2006) and Zhang et al. (2006) were the first to obtain genetic data from the type species of Apiospora, *Ap. montagnei* Sacc. (CBS 212.30, AFTOL-ID 951) and suggested that it belongs in a distinct family within Xylariales. Sequences of a few other species of *Apiospora* are also available, including *Ap. sinensis* K.D. Hyde, J. Fröhrl. & Joanne E. Taylor (HKUCC 3143 in Smith et al. 2003), *Ap. setosa* Samuels, McKenzie & D.E. Buchanan (ICMP 6888 / ATCC 58184 ex type PDD 41017 in Huhndorf et al. 2004), and *Ap. tintinnabula* Samuels, McKenzie & D.E. Buchanan (ICMP 6889-96 ex type PDD 41022 in Jaklitsch and Voglmayr 2012). Jaklitsch and Voglmayr (2012) produced a 28S rDNA phylogeny where the type species *Ap. montagnei* seemed not significantly different from *Ap. sinensis* but distinct from the other species sequenced. In addition, some *Apiospora* sexual morphs have been biologically linked with putatively priority *Arthrinium* taxa: *A. hysterinum* = *Ap. bambusae* (Turconi) Sivan. (Sivanesan 1983; Kirk 1986; Réblová et al. 2016), *A. arundinis* = *Ap. montagnei* (Hyde et al. 1998), and *A. sinense* = *Ap. sinense* (Réblová et al. 2016). However, none of these putative synonymies has been confirmed with genetic data, as some type collections are missing or too old for standard DNA analysis.

The aim of the present study was to study new *Arthrinium* samples found in temperate and southern Europe, including one specimen of *A. caricicola* and several putatively new species, and compare them morphologically and genetically with existing taxa. In some cases, e.g. *Ap. tintinnabula*, type collections were loaned and additional sequences obtained to delimit the genetic boundaries of some species.

Materials and methods

Pure culture isolation

During the surveys conducted in 2017 and 2018, 34 fresh specimens were collected from various plant hosts in Germany, Italy, Portugal and Spain. To isolate the sexual morph, ascomata were removed from the stromata using a sterile razor blade, transferred to a water droplet mounted on a microscope slide, torn apart with forceps to release the ascospores from asci, and pipetted on a 2% malt extract agar (MEA) plate supplemented with 200 mg/L penicillin G and streptomycin sulphate. Germinated...
ascospores were then transferred to MEA 2% plates, which were sealed with plastic film and incubated at room temperature. To isolate the asexual morph, plate cultures were superficially scrapped with a needle to dislodge conidia that were transferred to a drop of water. The suspension was then picked up with a syringe, and small droplets sown on a MEA 2% plate supplemented with 200 mg/L penicillin G and streptomycin sulphate. The germinated conidia were then transferred to 2% MEA plates, which were sealed with laboratory film and incubated at room temperature. Cultures were deposited at CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands (CBS).

Morphological observations

Hand sections of stromata or conidiomata were made using a razor blade and mounted in water on a microscope slide. Observations were made with a Zeiss Axioscop microscope using differential interference contrast (DIC), images were taken with a FLIR camera with A. Coloma open source software. Measurements were taken with FIJI ImajeJ software, reported with maximum and minimum values in parentheses, and the range representing the mean plus and minus the standard deviation, followed by the number of measurements in parentheses. For certain images of conidiophores, the image stacking software Zerene Stacker v. 1.04 (Zerene Systems LLC, Richland, WA, USA) was used. Morphological descriptions were based on cultures sporulating on 2% MEA medium at room temperature. The original specimens were deposited at the fungarium of the Real Jardin Botanico de Madrid (MA-Fungi).

DNA isolation, amplification and phylogenetic analyses

Total DNA was extracted from dry specimens employing a modified protocol based on Murray and Thompson (1980). PCR amplification was performed with the primers ITS1F and ITS4 (White et al. 1990; Gardes and Bruns 1993) for ITS region, while LR0R and LR5 (Vilgalys and Hester 1990; Cubeta et al. 1991) were used to amplify the 28S rDNA region, T1, Bt2a, and Bt2b (Glass and Donaldson 1995; O’Donnell and Cigelnik 1997) for the β-tubulin gene (tub2), and EF1-728F , EF1-983F and EF1-1567R (Rehner and Buckley 2005) for the translation elongation factor 1a (tef1) gene. PCR reactions were performed under a program consisting of a hot start at 95 °C for 5 min, followed by 35 cycles at 94 °C, 54 °C and 72 °C (45, 30 and 45 s respectively) and a final 72 °C step 10 min. PCR products were checked in 1% agarose gels, and positive reactions were sequenced with one or both PCR primers. Chromatograms were checked searching for putative reading errors, and these were corrected.

BLAST (Altschul et al. 1990) was used to select the most closely related sequences from INSDC public databases. Sequences came mainly from Crous and Groenewald (2013), Singh et al. (2013), Sharma et al. (2014), Crous et al. (2015), Senanayake et al. (2015), Dai et al. (2016, 2017), Hyde et al. (2016), Réblová et al. (2016), Jiang et
al. (2018), and Wang et al. (2018), as well as Ogawa et al. (unpublished). Two distinct alignments were built in MEGA 5.0 (Tamura et al. 2011) and aligned with Clustal W with manual corrections: 1) a multigenic alignment including ITS, 28S rDNA, tub2 and tef1 data (without introns) from all Apiosporaceae and related families, and 2) a second alignment built with the same DNA markers (with introns) including only species related with A. sacchari (/saccharii clade). Introns were removed from tef1 and tub2, and GBlocks (Castresana 2000) was employed to remove 201 ambiguously aligned sites from ITS rDNA in the Apiosporaceae alignment, but not in the alignment of the /sacchari clade, in order to resolve this complex with all the phylogenetic signal available. The final alignment of the Apiosporaceae included five partitions with 217/461 (ITS rDNA), 229/846 (28S rDNA), 78/252 (tub2), 43/147 (tef1 EF1-728F to EF1-983F), and 76/413 (tef1 EF1-983F to EF1-1567R) variable sites, while the final alignment of the /sacchari clade had 35/535 (ITS rDNA), 18/837 (28S rDNA), 99/719 (tub2), 68/429 (tef1 EF1-728F to EF1-983F), and 4/407 (tef1 EF1-983F to EF1-1567R) variable sites. The aligned loci were loaded in PAUP* 4.0b10 (Swofford 2001) and subjected to MrModeltest 2.3 (Nylander 2004). Model GTR+G+I was selected and implemented in all partitions in MrBayes 3.2.6 (Ronquist and Huelsenbeck 2003), where a Bayesian analysis was performed (data partitioned, two simultaneous runs, six chains, temperature set to 0.2, sampling every 100th generation) until convergence parameters were met after about 3.43M generations (Apiosporaceae) or 0.9M (/saccharii clade), standard deviation having fell below 0.01. Finally, a full search for the best-scoring maximum likelihood tree was performed in RAxML (Stamatakis 2006) using the standard search algorithm (data partitioned, GTRMIX model, 2000 bootstrap replications). Significance threshold was set above 0.95 for posterior probability (PP) and 70% bootstrap proportions (BP).

Results

Phylogeny

The analysis of ITS, 28S rDNA, tef1 and tub2 data from the entire family Apiosporaceae (Fig. 1) produced a phylogeny with two main significantly supported clades: 1) composed of A. puccinioides, A. japonicum and newly sequenced specimens matching the species A. cariciola, A. curvatuum var. minus, and A. sporophleum, and 2) a second clade containing all other sequences of Arthrinium and Apiospora. Among the other specimens analyzed, some matched the genetic concept of A. hysterinum, A. phragmitis, A. arundinis, A. rasikravindrae, or A. marii. Five new lineages were also found, which are formally proposed as new taxa below.

The analysis of ITS, 28S rDNA, tef1 and tub2 of the species around A. sacchari (/sacchari clade) (Fig. 2) showed that the clade of A. marii contains the types of A. hispanicum and A. mediterranei, but receives low overall support, maybe because of the incomplete data from these two species. Samples CBS 113535 and CBS 114803 were identified as A. marii too, but seem to represent an independent lineage.
Table 1. Details of strains included in this study. Types are in bold.

<table>
<thead>
<tr>
<th>Species</th>
<th>Isolate</th>
<th>CBS culture</th>
<th>Herbarium code</th>
<th>Host</th>
<th>ITS rDNA</th>
<th>28S rDNA</th>
<th>tef1</th>
<th>tub2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. arundinis</td>
<td>AP11118A</td>
<td>CBS 145128</td>
<td>MA-Fungi 91722</td>
<td>Bambusa sp.</td>
<td>MK014835</td>
<td>MK014868</td>
<td>MK017945</td>
<td>MK017974</td>
</tr>
<tr>
<td>A. balearicum,</td>
<td>AP24118</td>
<td>CBS 145129</td>
<td>MA-Fungi 91723</td>
<td>Undetermined poaceae</td>
<td>MK014836</td>
<td>MK014869</td>
<td>MK017946</td>
<td>MK017975</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. caricicola</td>
<td>AP23518</td>
<td>CBS 145127</td>
<td>MA-Fungi 91725</td>
<td>Carex ericetorum</td>
<td>MK014838</td>
<td>MK014871</td>
<td>MK017948</td>
<td>MK017977</td>
</tr>
<tr>
<td>A. curvatum var. minus</td>
<td>AP25418</td>
<td>CBS 145131</td>
<td>MA-Fungi 91726</td>
<td>hojas de Carex sp.</td>
<td>MK014839</td>
<td>MK014872</td>
<td>MK017949</td>
<td>MK017978</td>
</tr>
<tr>
<td>A. descalsii,</td>
<td>AP31118A</td>
<td>CBS 145130</td>
<td>MA-Fungi 91724</td>
<td>Ampelodesmos mauritanicus</td>
<td>MK014837</td>
<td>MK014870</td>
<td>MK017947</td>
<td>MK017976</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. esporlense,</td>
<td>AP16717</td>
<td>CBS 145136</td>
<td>MA-Fungi 91727</td>
<td>Phyllostachys aurea</td>
<td>MK014845</td>
<td>MK014878</td>
<td>MK017954</td>
<td>MK017983</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. hysterinum</td>
<td>AP15318</td>
<td>CBS 145132</td>
<td>MA-Fungi 91728</td>
<td>Phyllostachys aurea</td>
<td>MK014840</td>
<td>MK014873</td>
<td>MK017950</td>
<td>MK017979</td>
</tr>
<tr>
<td>A. ibericum,</td>
<td>AP10118</td>
<td>CBS 145137</td>
<td>MA-Fungi 91732</td>
<td>Arundo donax</td>
<td>MK014846</td>
<td>MK014879</td>
<td>MK017955</td>
<td>MK017984</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. italicum,</td>
<td>AP221017</td>
<td>CBS 145138</td>
<td>MA-Fungi 91733</td>
<td>Arundo donax</td>
<td>MK014847</td>
<td>MK014880</td>
<td>MK017956</td>
<td>MK017985</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. marii</td>
<td>AP13717</td>
<td>CBS 145140</td>
<td>MA-Fungi 91735</td>
<td>Arundo donax</td>
<td>MK014849</td>
<td>MK014882</td>
<td>MK017958</td>
<td>MK017987</td>
</tr>
<tr>
<td>A. phragmitis</td>
<td>AP1171A</td>
<td>CBS 145141</td>
<td>MA-Fungi 91737</td>
<td>Amelodesmos mauritanicus</td>
<td>MK014851</td>
<td>MK014884</td>
<td>MK017960</td>
<td>MK017989</td>
</tr>
<tr>
<td>A. phragmitis</td>
<td>AP191017</td>
<td>CBS 145142</td>
<td>MA-Fungi 91738</td>
<td>Phragmites australis</td>
<td>MK014852</td>
<td>MK014885</td>
<td>MK017959</td>
<td>MK017990</td>
</tr>
<tr>
<td>A. puccinioides</td>
<td>AP281217A</td>
<td>CBS 145145</td>
<td>MA-Fungi 91741</td>
<td>Phragmites australis</td>
<td>MK014856</td>
<td>MK014889</td>
<td>MK017965</td>
<td>MK017994</td>
</tr>
<tr>
<td>A. puccinioides</td>
<td>AP2410172A</td>
<td>CBS 145146</td>
<td>MA-Fungi 91742</td>
<td>Phragmites australis</td>
<td>MK014857</td>
<td>MK014890</td>
<td>MK017966</td>
<td>MK017995</td>
</tr>
<tr>
<td>A. rasikravindrii</td>
<td>AP3218</td>
<td>CBS 145147</td>
<td>MA-Fungi 91743</td>
<td>Phragmites australis</td>
<td>MK014858</td>
<td>MK014891</td>
<td>MK017967</td>
<td>MK017996</td>
</tr>
<tr>
<td>A. sporophleum</td>
<td>AP4817A</td>
<td>CBS 145149</td>
<td>MA-Fungi 91745</td>
<td>Piptatherum miliaecum</td>
<td>MK014860</td>
<td>MK014893</td>
<td>MK017969</td>
<td>MK017971</td>
</tr>
<tr>
<td>A. piptatheri</td>
<td>AP261017</td>
<td>CBS 145148</td>
<td>MA-Fungi 91744</td>
<td>Arundo donax</td>
<td>MK014859</td>
<td>MK014892</td>
<td>MK017968</td>
<td>MK017977</td>
</tr>
<tr>
<td>holotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. piptatheri</td>
<td>AP2410171</td>
<td>CBS 145155</td>
<td>MA-Fungi 91749</td>
<td>Juncus sp.</td>
<td>MK014865</td>
<td>MK014898</td>
<td>MK017973</td>
<td>MK018001</td>
</tr>
</tbody>
</table>
Table 2. Details of all strains included in the phylogenetic analyses. Sequences generated in this study are shown in bold.

<table>
<thead>
<tr>
<th>Species</th>
<th>voucher/culture</th>
<th>ITS rDNA</th>
<th>28S rDNA</th>
<th>tub2</th>
<th>tef1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiospora setosa</td>
<td>ICMP 4207</td>
<td>DQ368631</td>
<td>DQ368620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apiospora tintinnabula</td>
<td>ICMF6889</td>
<td>MK014841</td>
<td>MK014874</td>
<td>MK017951</td>
<td>MK01980</td>
</tr>
<tr>
<td>Arthrinium 'vietnamense'</td>
<td>IMI 99670</td>
<td>KX986096</td>
<td>KX986111</td>
<td>KY019466</td>
<td></td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 106 12</td>
<td>KF144883</td>
<td>KF144927</td>
<td>KF144973</td>
<td>KF145015</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 145128</td>
<td>MK014835</td>
<td>MK014868</td>
<td>MK017945</td>
<td>MK017974</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 449 92</td>
<td>KF144887</td>
<td>KF144931</td>
<td>KF144977</td>
<td>KF145019</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 450 92</td>
<td>AB220259</td>
<td>KF144932</td>
<td>KF144978</td>
<td>KF145020</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 124788</td>
<td>KF144885</td>
<td>KF144929</td>
<td>KF144975</td>
<td>KF145017</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 13509</td>
<td>KF144886</td>
<td>KF144930</td>
<td>KF144976</td>
<td>KF145018</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 14316</td>
<td>KF144884</td>
<td>KF144928</td>
<td>KF144974</td>
<td>KF145016</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 464 83</td>
<td>KF144888</td>
<td>KF144933</td>
<td>KF144979</td>
<td>KF145021</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 732 71</td>
<td>KF144889</td>
<td>KF144934</td>
<td>KF144980</td>
<td>KF145022</td>
</tr>
<tr>
<td>Arthrinium arundinis</td>
<td>CBS 24483</td>
<td>AB220251</td>
<td>KF144935</td>
<td>KF144981</td>
<td>KF145023</td>
</tr>
<tr>
<td>Arthrinium balearicum</td>
<td>CBS 145129</td>
<td>MK014836</td>
<td>MK014869</td>
<td>MK017946</td>
<td>MK017975</td>
</tr>
<tr>
<td>Arthrinium camelliae-sinensis</td>
<td>LC8181</td>
<td>KY949761</td>
<td>KY949837</td>
<td>KY705229</td>
<td>KY705157</td>
</tr>
<tr>
<td>Arthrinium camelliae-sinensis</td>
<td>LC5007</td>
<td>KY949704</td>
<td>KY949780</td>
<td>KY705173</td>
<td>KY705103</td>
</tr>
<tr>
<td>Arthrinium cariciola</td>
<td>CBS 145127</td>
<td>MK014838</td>
<td>MK014871</td>
<td>MK017948</td>
<td>MK017977</td>
</tr>
<tr>
<td>Arthrinium curvatum var. minus</td>
<td>CBS 145131</td>
<td>MK014839</td>
<td>MK014872</td>
<td>MK017949</td>
<td>MK017978</td>
</tr>
<tr>
<td>Arthrinium descadii</td>
<td>CBS 145130</td>
<td>MK014837</td>
<td>MK014870</td>
<td>MK017947</td>
<td>MK017976</td>
</tr>
<tr>
<td>Arthrinium dichotomanthi</td>
<td>LC8175</td>
<td>KY949755</td>
<td>KY949831</td>
<td>KY705223</td>
<td>KY705151</td>
</tr>
<tr>
<td>Arthrinium dichotomanthi</td>
<td>LC4950</td>
<td>KY949697</td>
<td>KY949773</td>
<td>KY705167</td>
<td>KY705096</td>
</tr>
<tr>
<td>Arthrinium esporlense</td>
<td>CBS 145136</td>
<td>MK014845</td>
<td>MK014878</td>
<td>MK017954</td>
<td>MK017983</td>
</tr>
<tr>
<td>Arthrinium euphorbiae</td>
<td>IMI 285638b</td>
<td>AB220241</td>
<td>AB220335</td>
<td>AB220288</td>
<td></td>
</tr>
<tr>
<td>Arthrinium garethjonesii</td>
<td>JHB004</td>
<td>KY356096</td>
<td>KY356091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium garethjonesii</td>
<td>HKAS 96289</td>
<td>NR_154736</td>
<td>NG_057131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium guizhouense</td>
<td>LC5322</td>
<td>KY949709</td>
<td>KY949785</td>
<td>KY705178</td>
<td>KY705108</td>
</tr>
<tr>
<td>Arthrinium guizhouense</td>
<td>LC5318</td>
<td>KY949708</td>
<td>KY949784</td>
<td>KY705177</td>
<td>KY705107</td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>CBS 114990</td>
<td>KF144890</td>
<td>KF144936</td>
<td>KF144982</td>
<td>KF145024</td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>LC7103</td>
<td>KY949715</td>
<td>KY949791</td>
<td>KY705183</td>
<td>KY705114</td>
</tr>
<tr>
<td>Arthrinium hyphopodii</td>
<td>MFLUCC 15-003</td>
<td>NR_154699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium hyphopodii</td>
<td>JHB003 Art</td>
<td>KY356098</td>
<td>KY356093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>CBS 145133</td>
<td>MK014842</td>
<td>MK014875</td>
<td>MK017952</td>
<td>MK01981</td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>CBS 145135</td>
<td>MK014844</td>
<td>MK014877</td>
<td>MK017953</td>
<td>MK01982</td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>CBS 145132</td>
<td>MK014840</td>
<td>MK014873</td>
<td>MK017950</td>
<td>MK01879</td>
</tr>
<tr>
<td>Arthrinium hysterinum</td>
<td>CBS 145134</td>
<td>MK015843</td>
<td>MK014876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium ibericum</td>
<td>CBS 145137</td>
<td>MK014846</td>
<td>MK014879</td>
<td>MK017955</td>
<td>MK017984</td>
</tr>
<tr>
<td>Arthrinium italicicum</td>
<td>CBS 145138</td>
<td>MK014847</td>
<td>MK014880</td>
<td>MK017956</td>
<td>MK017985</td>
</tr>
<tr>
<td>Arthrinium italicicum</td>
<td>CBS 145139</td>
<td>MK014848</td>
<td>MK014881</td>
<td>MK017957</td>
<td>MK017986</td>
</tr>
<tr>
<td>Arthrinium japonicum</td>
<td>IFO30500</td>
<td>AB220262</td>
<td>AB220309</td>
<td>AB220309</td>
<td></td>
</tr>
<tr>
<td>Arthrinium japonicum</td>
<td>IFO31098</td>
<td>AB220264</td>
<td>AB220311</td>
<td>AB220311</td>
<td></td>
</tr>
<tr>
<td>Arthrinium jatrophae</td>
<td>CBS 134262</td>
<td>NR_154675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium jatrophae</td>
<td>MMIO0051</td>
<td>AB743995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium jiangxianse</td>
<td>LC4577</td>
<td>KY949693</td>
<td>KY949769</td>
<td>KY705163</td>
<td>KY705092</td>
</tr>
<tr>
<td>Arthrinium jiangxianse</td>
<td>LC4949</td>
<td>KY949691</td>
<td>KY949766</td>
<td>KY705160</td>
<td>KY705089</td>
</tr>
<tr>
<td>Arthrinium kogelgerense</td>
<td>CBS 113332</td>
<td>KF144891</td>
<td>KF144937</td>
<td>KF144983</td>
<td>KF145025</td>
</tr>
<tr>
<td>Arthrinium kogelgerense</td>
<td>CBS 113333</td>
<td>KF144892</td>
<td>KF144938</td>
<td>KF144984</td>
<td>KF145026</td>
</tr>
<tr>
<td>Arthrinium kogelgerense</td>
<td>CBS 113335</td>
<td>KF144893</td>
<td>KF144939</td>
<td>KF144985</td>
<td>KF145027</td>
</tr>
<tr>
<td>Arthrinium kogelgerense</td>
<td>CBS 117206</td>
<td>KF144895</td>
<td>KF144941</td>
<td>KF144987</td>
<td>KF145029</td>
</tr>
<tr>
<td>Arthrinium longistromum</td>
<td>MFLU 15-1184</td>
<td>NR_154716</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium longistromum</td>
<td>MFLUCC 11-0481</td>
<td>KU940141</td>
<td>KU863129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium malaysianum</td>
<td>CBS 102053</td>
<td>KF144896</td>
<td>KF144942</td>
<td>KF144988</td>
<td>KF145030</td>
</tr>
<tr>
<td>Arthrinium malaysianum</td>
<td>CBS 251.29</td>
<td>KF144897</td>
<td>KF144943</td>
<td>KF144989</td>
<td>KF145031</td>
</tr>
<tr>
<td>Species</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CPC 18902 KF144901 KF144948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 145140 MK014849 MK014882 MK017958 MK017987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 114803 KF144899 KF144945 KF144991 KF145033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 113535 KF144898 KF144944 KF144990 KF145032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 145141 MK014851 MK014884 MK017960 MK017989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 145142 MK014853 MK014886 MK017962 MK017991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 145143 MK014854 MK014887 MK017963 MK017992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium marii</td>
<td>CBS 145144 MK014855 MK014888 MK017964 MK017993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium mediterranei</td>
<td>IMI 326875 AB220243 AB220337 AB220290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium neosubglobosa</td>
<td>HKAS 96354 NK_154737 NG_057131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium neosubglobosa</td>
<td>LC8177 KY494757 KY494833 KY705225 KY705153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium neosubglobosa</td>
<td>LC4940 KY494696 KY494772 KY705166 KY705095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium obovatum</td>
<td>CBS 115042 KF144903 KF144950 KF144995 KF145037</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phaeospermum</td>
<td>CBS 114317 KF144906 KF144953 KF144998 KF145040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phaeospermum</td>
<td>CBS 114318 KF144907 KF144954 KF144999 KF145041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phaeospermum</td>
<td>CBS 113415 KF144905 KF144952 KF144997 KF145039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phaeospermum</td>
<td>CBS 113414 KF144904 KF144951 KF144996 KF145038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phragmitis</td>
<td>CBS 145145 MK014856 MK014889 MK017965 MK017994</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phragmitis</td>
<td>CBS 145146 MK014857 MK014890 MK017966 MK017995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phragmitis</td>
<td>CBS 135458 KF144909 KF144956 KF145001 KF145043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phragmitis</td>
<td>CBS 145147 MK014858 MK014891 MK017967 MK017996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium phragmitis</td>
<td>CBS 145148 MK014859 MK014892 MK017968 MK017997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium pipattatheri</td>
<td>CBS 145149 MK014860 MK014893 MK017969</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium pseudoinense</td>
<td>CBS 135459 KF144910 KF144957 KF145044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium pseudopegazzinii</td>
<td>CBS 102052 KF144911 KF144958 KF145002 KF145045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium pterospermum</td>
<td>CBS 123185 KF144912 KF144959 KF145003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium pterospermum</td>
<td>CBS 134000 KF144913 KF144960 KF145004 KF145046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium puccinioides</td>
<td>CBS 145150 MK014861 MK014894 MK017970 MK017998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>CBS 33761 KF144914 KF144961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>CBS 145151 MK014862 MK014895</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>CPC 215042 KF144915</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>CBS 145152 MK014863 MK014896 MK017971 MK017999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>LC7115 KY494721 KY494797 KY708159 KY705118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium raskravindae</td>
<td>CBS 145153 MK014864 MK014897 MK017972 MK018000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium sacchari</td>
<td>CBS 30149 KF144917 KF144963 KF145006 KF145048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium sacchari</td>
<td>CBS 21230 KF144916 KF144962 KF145005 KF145047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium sacchari</td>
<td>CBS 66474 KF144919 KF144965 KF145008 KF145050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium sacchari</td>
<td>CBS 37267 KF144918 KF144964 KF145007 KF145049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium saccharicola (1)</td>
<td>CBS 19173 KF144920 KF144966 KF145009 KF145051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium saccharicola (1)</td>
<td>CPC 18977 KF144923</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium saccharicola (2)</td>
<td>CBS 33486 AB220257 KF144967 KF145010 KF145052</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium saccharicola (2)</td>
<td>CBS 83171 KF144922 KF144969 KF145012 KF145054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium saccharicola (2)</td>
<td>CBS 46383 KF144921 KF144968 KF145011 KF145053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium serenese</td>
<td>ATCC 76309 AB220240 AB220334 AB220287</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium serenese</td>
<td>IMI 326869 AB220250 AB220344 AB220297</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium sporophleum</td>
<td>CBS 145154 MK014865 MK014898 MK017973 MK018001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium subglobosa</td>
<td>MFLUCC 11-0397 KR069112 NG_057070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium subglobosa ('lyphopodi')</td>
<td>MFLUCC 15-003 KR069111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium subroseum</td>
<td>LC7292 KY494752 KY494828 KY705220 KY705148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium subroseum</td>
<td>LC7215 KY494740 KY494816 KY705208 KY705236</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium thailandicum</td>
<td>LC5630 KY494714 KY494790 KY806200 KY705113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrinium thailandicum</td>
<td>MFLUCC 15-0202 KU940145 KU863133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Six new species of *Arthrinium* from Europe

![Figure 1](https://example.com/image1.png)

50% majority rule consensus phylogram obtained in MrBayes from 25725 trees after the analysis of ITS rDNA, 28S rDNA, tef1 and tub2 sequences (introns excluded) of the family Apiosporaceae. Nodes were annotated if supported by > 70% ML BP or > 0.95 bayesian PP, but non-significant support values are exceptionally represented inside parentheses. Bold names represent samples sequenced in the present study.
Figure 2. 50% majority rule consensus phylogram obtained in MrBayes from 6750 trees after the analysis of ITS rDNA, 28S rDNA, tef1 and tub2 sequences (introns included) of the /sacchari clade. Nodes were annotated if supported by > 70% ML BP or > 0.95 bayesian PP, but non-significant support values are exceptionally represented inside parentheses. Bold names represent samples sequenced in the present study.

Taxonomy

Arthrinium balearicum Pintos & P. Alvarado, sp. nov.
MycoBank: MB 828866
Fig. 3

Etymology. Refers to the Balearic Islands (Spain), where the holotype was found.

Diagnosis. Sexual morph: Stromata forming black, linear, confluent raised areas on host surface, with the longer axis broken at the apex, (500–)600–1500(–2000) μm × (200–)320–450(–500) μm (n = 20). Ascomata globose to subglobose, with flattened base, blackish brown, (120–) 140–180 (–200) μm in diameter (n = 30). Peridium 8–15 μm thick, consisting of 4–5 layers of cells arranged in textura angularis, externally dark brown, hyaline in the inner part. Ostiole single, central, 30–60 μm in diameter, with a periphysate channel 20–30 μm long. Peryphises broad, colourless. Hamathecium composed of dense hypha-like, broad septate paraphyses, deliquescing early, 4–6 μm thick. Asci 8-spored, unitunicate, clavate, broadly cylindrical, with an inconspicuous pedicel, rounded apex,
Six new species of *Arthrinium* from Europe

thin-walled, without an apical apparatus, measuring (77–)80–98(–105) × (14–)15–19(–21) µm (n = 22). *Ascospores* 1–3-seriate, hyaline, apiospore smooth-walled, fusiform, elliptical, reniform, straight or curved, bicellular, wider at the center of the longest cell, measuring (23–)26–30(–32) × (7–)9–10(–12) µm (n = 35), basal cell 3–6 µm long, sometimes containing a droplet. Asexual morph: not observed. Culture characteristics: colonies flat spreading on MEA 2%, with moderate aerial mycelium, reverse withish.

Notes. *Arthrinium balearicum* is related with *A. descalsii*, but has some genetic differences with this species having only 93% (482/518 bp) of its ITS rDNA, 99% (821/823 bp) of 28S rDNA, 97% (688/707 bp) of tef1, and 98% (406/413 bp) of tub2 similar. It is also phylogenetically close to *A. phragmitis*, a species with a similar ascospore size, (23–)26–30(–32) × (7–)9–10(–12) µm in *A. balearicum* and (22–)23–28(–30) µm × (6–)7–9(–10) µm in *A. phragmitis*. Unfortunately, the asexual morph of *A. balearicum* could not be studied to compare it with that of *A. phragmitis*.

Figure 3. *A. balearicum* **A** stromata on host; **B** asci **C–F** ascospores **G** colony on MEA. Scale bars: 200 µm (**A**); 20 µm (**B**); 5 µm (**C–F**).
Arthrinium caricicola Kunze & J.C. Schmidt, Mykologische Hefte (Leipzig) 1: 9 (1817)

Fig. 4

Description. Asexual morph: colonies on the host punctiform, pulvinate, 140–400 µm in diameter, blackish brown. Mycelium formed by hyaline smooth, branched hyphae, 2–5 µm in diameter. Conidiophore mother cells arising from a superficial or erumpent mycelial mat, subspherical to lageniform in shape, hyaline with brown pigments at the base, measuring (4–)5–7(–8) × (8–)9–11(–12) µm (n = 45). Conidiophores erect or ascending, simple, straight or flexuous, cylindrical, smooth-walled, colourless excepting for the thick, brown to dark brown, transversal septa, 15–100 × 3–5 µm (n = 50). Conidia fusiform or broadly spindle-shaped, smooth-walled, broader at the mid-

Figure 4. A. caricicola A colony on host B colony on MEA C conidiophore mother cell D, E conidiophore mother cell, conidiophore bearing conidia, conidia F–H conidia I conidia with scar J lobate sterile cells. Scale bars: 200 µm (A); 5 µm (C–I); 10 µm (J). K A. caricicola syntype, colonies on host; L, M conidia.
Six new species of *Arthrinium* from Europe

dle, tapering towards the narrowly rounded ends, dark brown with a hyaline rim, (37–)44–51(–55) µm in frontal view, (8–)9–11(–12) µm in side view (*n* = 50). Sterile cells smaller, 15–19 × 10–13 µm, and paler than conidia, bicuspidate or irregularly lobed. *Culture characteristics*: flat colonies spreading on MEA 2%, with moderately abundant, white cottony aerial mycelium, reverse whitish too, circular in shape with irregular edge.

Notes. The conidia of *A. caricicola* and *A. japonicum* have a similar fusiform shape and length, but differ in width ((8–)9–11(–12) µm vs 12–16(–20) µm). Conidia of *A. mytilimorphum* have also a similar shape, but turns out shorter and thinner (20–30 × 6–8.5 µm). The morphological characters of the syntype of *A. caricicola* deposited by Fries in the Herbarium of Uppsala University as Fung. Scleromyct. Suecici, fully match the specimen collected in this study. The closely related species *A. sporophleum* has very different lemon-shaped conidia, while those of *A. curvaturn var. minus* are curved, and those of *A. puccinioides* are polygonal.

Specimens examined. Germany: Brandenburg; south of Liberose, on dead leaves of *Carex ericetorum*, 14 May 2018, R. Jarling (MA-Fungi 91725).

Fig. 5

Description. Asexual morph: Colonies are compact, round, dark to black, 80–320 in diameter. Mycelium is composed of hyaline to pale brown smooth hyphae 2–7 µm in diameter. Conidiophore mother cells spherical to lageniform, hyaline with brown pigments at the base, measuring (4–)5–7(–8) × (4–)5–6(–7) µm (*n* = 30). Conidiophores cylindrical unbranched, straight or flexuous, hyaline and smooth walled, with a single brown transversal septa, measuring 30–100 × 2–4 µm. (*n* = 30). Conidiogenous cells cylindrical 1–1.5 × 1–1.5 µm (*n* = 20). Conidia borne along the sides of conidiophores, curved, rounded at the ends, brown, with a hyaline germ slit and a clearly visible scar, (8–)9–10(–11) µm long in frontal view, (5–)6–7(–8) µm in side view (*n* = 30). Sterile cells rounded, paler than conidia. *Culture characteristics* flat colonies spreading on MEA 2% with moderate aerial mycelium, reverse whitish.

Notes. *Arthrinium curvatum* var. *minus* can be confused with *A. curvaturn* var. *curvaturn*, but conidia of var. *minus* measure (8–)9–10(–11) × (5–)6–7(–8) µm, while those of *A. curvatum* var. *curvaturn* measure 11–15 × 6–8 µm. Gutner (1927) described *Pseudoguignardia scirpi*, a sexual morph of *A. curvaturn*, later combined as *Physalospora scirpi* (Arx 1970). *Arthrinium curvatum* var. *minus* is closely related with *A. sporophleum* (with lemon-shaped conidia) and *A. japonicum* (with larger fusiform conidia) and to a lesser extent also with *A. caricicola* (with larger fusiform conidia) and *A. puccinioides* (with polygonal conidia). Ellis et al. (1951) described *A. curvatum* var. *minus*, a taxon
with similarly shaped but smaller conidia than *A. curvatum*. The specimen studied in the present work matches the shape and size of conidia reported by Ellis et al. (1951) for *A. curvatum* var. *minus*, rather than those of *A. curvatum* var. *curvatum*.

Arthrinium descalsii Pintos & P. Alvarado, sp. nov.
MycoBank: MB 828867
Fig. 6

Etymology. Named to honor the eminent mycologist Enric Descals Callisen.

Diagnosis. Sexual morph: *Stromata* forming black fusiform spots that merge with each other with age, forming an erumpent black mass visible at the naked eye, 2–10 × 0.2–0.5 mm in size, with the long axis broken at the top revealing the ostioles of pseudothecia. *Ascomata* pseudothecia, subglobose with a flattened base, arranged in rows, brown to dark brown, 150–220 µm high × 150–250 µm wide (*n* = 20). *Peridium* with
Six new species of *Arthrinium* from Europe

Figure 6. *A. descalsii* **A** stromata on host **B–D** asci with ascospores **E** paraphyses **F, G** ascospores **I, J** ascospores with sheath **K** colony on MEA 2%; coniogenous cell giving rise to conidia; conidiogenous cells giving rise to conidia and conidia cluster **G** conidia. Scale bars: 200 µm (**A**); 10 µm (**B–E**); 5 µm (**F–J**); 5 µm (**L–N**).
several layers of cells arranged in textura angularis, with a conspicuous ostiole 50–80 µm in diameter, periphysate. Hamathecium paraphyses hyphae-like, septate, hyaline. Asci cylindrical, clavate, with a short or indistinct pedicel, with rounded apices, measuring (73–82–95(–111)) × (16–17–20(–23)) µm (n = 30). Ascospores uniseriate to biseriate, hyaline, smooth-walled, apiosporic, composed of a large curved upper cell and smaller lower cell, fusiform to slightly curved in shape with narrowly rounded ends, guttulated, sometimes with a thick gelatinous sheath, (17–)18–22(–24) × (6–)7–9(–10) µm, and a basal cell 3–5 µm (n = 45). Asexual morph: Mycelium hyaline, septate, branched, hyphae 1.5–4.5 µm in diameter Conidiophores reduced to the conidiogenous cells. Conidiogenous cells solitary on hyphae, ampuliform, hyaline to brown, 5 × 4 µm. Conidia brown, smooth, guttulate, globose to ellipsoid (5–)7(–8) µm long (n = 20) in face view, lenticular with a paler equatorial slit and 6–7 µm long in side view (n = 10). Sterile cells elongated, sometimes mixed among conidia. Culture characteristics: ascospores germinating on MEA 2% within 24–48 h. Colonies flat, spreading, with sparse aerial mycelium, pale siena.

Notes. Arthrinium descalsii is closely related with A. phragmitis and A. balearicum. It was found in the Mediterranean grass Ampelodesmos mauritanicus, although additional samples are needed before concluding if it could be exclusively associated with this endemic host. Ascospore size is often smaller than that of A. balearicum, (23–)26–30(–32) × (7–)9–10(–12) µm, but it matches that reported in the protologue of A. phragmitis, (20–)22–24(–25) × (7–)8–9(–10) µm. However, the conidiophores of A. descalsii are reduced to conidiogenous cells, while those of A. phragmitis measure about 10–45 × 1.5–2 µm, and conidia are slightly smaller in face view, measuring (5–)7(–8) µm long in A. descalsii and up to 8–10(–11) µm in A. phragmitis.

Arthrinium esporlense Pintos & P. Alvarado, sp. nov.
Mycobank MB 828868
Fig. 7

Etymology. In reference to Esporles, the village of Mallorca (Spain) where it was found.

Diagnosis. Asexual morph: Mycelium consisting of smooth, hyaline, branched septate hyphae about 1.5–4 µm in diameter. Conidiophores reduced to conidiogenous cells. Conidiogenous cells polyblastic, aggregated in clusters on hyphae, smooth, hyaline to pale brown, ampuliform, cylindrical or lageniform, measuring 4–22 × 4–8 µm. Conidia brown, smooth, globose with a pale equatorial slit and (8–)9–12(–13) µm long in frontal view, lenticular and 6–8 µm long in side view (n = 30). Sterile cells elongated, sometimes mixed among conidia, paler than them. Culture characteristics: colonies flat, spreading, with moderate aerial mycelium, on MEA 2% surface white with yellowish patches, reverse concolour with age.
Six new species of *Arthrinium* from Europe

Six new species of *Arthrinium* **from Europe**

Type. Spain: Balearic Islands: Mallorca, Esporles, on dead culms of *Phyllostachys aurea*, 16 July 2017, A. Pintos (MA-Fungi 91727 holotype, AP16717 isotype, CBS 145136 ex-type culture).

Notes. *Arthrinium esporlense* is closely related with *A. xenocordella* and *A. kogelbergense*. However, *A. esporlense* does not produce brown setae as *A. xenocordella*, a species until now known only from soil samples (Crous and Groenewald 2013). *Arthrinium esporlense* morphologically differs from *A. kogelbergense* by producing slightly bigger conidiogenous cells (4–22 × 4–8 µm vs 5–12 × 4–5 µm). These three species are genetically related (1.00 PP, 96 BP) to the group formed by *A. arundinis*, *A. thailandicum* D.Q. Dai & K.D. Hyde, *A. malaysianum* and the new species *A. italicum* proposed below.

Fig. 8

Melanconium hysterinum Sacc., *Bolm Soc. broteriana*, Coimbra, sér. 1 11: 21 (1893)
[Basionym].

Figure 7. *A. esporlense* **A** colony on MEA **B–F** conidiogenous cell giving rise to conidia **G** conidia. Scale bars: 5 µm (**B–G**).
Scirrhia bambusae Turconi, Atti Ist. bot. R. Univ. Pavia, sér. 2 16: 531 (1916).
Placostroma bambusae (Turconi) R. Sprague, Diseases Cereals Grasses N. Amer.: 121 (1950).

Description. Sexual morph: Stromata black, fusiform, forming rows of densely arranged perithecial ascomata parallel to the main axis of the host, measuring (400–) 600–2500 (–3000) × (250–)320–450 (–550) µm (n = 30). Ascomata globose to subglobose, with a flattened base, blackish brown, (130–)250–290 (–320) µm in diameter (n = 30). Peridium consisting of 3 or 4 layers of cells arranged in textura angularis, dark brown in the external side, hyaline in the inside, ostiole single, central, 10–30 µm in diameter, with a periphysate channel 20–35 µm long. Peryphises broad, colourless. Hamathecium composed of dense hypha-like, broad septate paraphyses, early deliquescing. Asci 8-spored, unitunicate, clavate, broadly cylindrical, pedicel indistinct, apical rounded, thin-walled, without an apical apparatus, measuring (76–) 85–98 (–115) × (20–)22–26 (–28) µm (n = 22). Ascospores uni- to tri-seriate, hyaline, apioporic, smooth-walled, fusiform, elliptical, reniform, straight or curved, smooth-walled, sometimes with an internal droplet, bicellular, the widest part located in the central part of the longest cell, some ascospores have a mucose sheath covering them, (28–)32–34 (–38) × (8–)9–11 (–13) (n = 35) µm, basal cell 5–7 µm. Asexual morph: Mycelium branched, septate. Conidiomata on host surrounding the stromata of the sexual phase, parallel to the longitudinal axis of the stem, subepidermal, opening by longitudinal splitting of the epidermis and revealing a black conidial mass, (450–) 630–950 (–1000) × (275–)345–550 (–600) µm (n = 35). Conidiophore mother cell arising from the stroma, ampuliform, lageniform, cupulate or cylindrical, sometimes with granular pigments at the apex, (5)6–10 (–16) × (3–)5–7 (–8) µm (n = 24). Conidiophores basauxic, polyblastic, cylindrical, hyaline to light brown, smooth or with granular pigments in all their length, straight or flexuous, septate or not, sometimes exceeding 90 µm in length × 2–4 µm wide (n = 43). Conidia globose to obvoid, dark brown, with a central scar at the base, (15–)16–20 (–21) in frontal view, (14–)15–18 (–19) in side view (n = 40). Sterile cells gray, irregularly angled and lobed, (15–)17–41 (–42) × (10–)14–23 (–25) µm (n = 30). Culture characteristics: colonies in MEA 2% flat, spreading, first white and cottony, later became dark pink, mycelium branched, septate, hyaline, reverse dark.

Six new species of *Arthrinium* from Europe

Arthrinium hysterinum lenticular-shaped colonies on host A stromata and conidiomata B, C asci D–G ascospores H colony on MEA I black masses of conidia in culture K, L conidiophore mother cell M rugose conidiogenous cell N–P conidia with lobate sterile cells O conidia. Scale bars: 200 µm (A); 10 µm (B, C); 5 µm (D–G); 200 µm (I); 5 µm (K, M, O); 10 µm (P).

Arthrinium hysterinum is phyllogenetically close to *A. yunnanum* D.Q. Dai & K.D. Hyde, but morphologically differs from the latter because of its thinner asci (76–115 × 20–28 vs 85–100 × 30–35 µm). In addition, *A. hysterinum* has longer conidiophores up to 90 µm long, and lobed sterile cells while in *A. yunnanum* conidiophores do not exceed 50 µm, and sterile cells are lacking.

Arthrinium hysterinum, are all considered synonyms of *A. hysterinum*. *Arthrinium* hysterinum is phylogenetically close to *A. yunnanum* D.Q. Dai & K.D. Hyde, but morphologically differs from the latter because of its thinner asci (76–115 × 20–28 vs 85–100 × 30–35 µm). In addition, *A. hysterinum* has longer conidiophores up to 90 µm long, and lobed sterile cells while in *A. yunnanum* conidiophores do not exceed 50 µm, and sterile cells are lacking.

Arthrinium ibericum Pintos & P. Alvarado, sp. nov.
MycoBank MB 828869
Fig. 9

Etymology. In reference to the Iberian Peninsula, where the holotype was collected.

Diagnosis. Sexual morph: Stromata solitary to gregarious, immersed or semi-immersed, fusiform to ellipsoid in shape, black, with the long axis broken at the top, 2–5 × 0.5–1 mm. Ascomata perithecial, subglobose with a flattened base, arranged in rows, brown to dark brown, exuding a white cirrhus of ascospores, 170–300 µm in diameter and 200–300 µm high. Peridium consisting in 3 or 4 layers of cells arranged in textura angularis. Ostiole single, central, 12–30 µm in diameter, with a periphysate channel. Hamathecium composed of dense, septate, branched paraphyses. Asci 8-spored, clavate or cylindrical, lacking an apical apparatus, shortly pedicellate, measuring (82–)90–125(–128) × (14–)15–19(–21) µm (n = 30). Ascospores uniseriate to biseriate, hyaline, smooth-walled, apiosporic, composed of a large curved upper cell and small lower cell, fusiform or slightly curved in shape with narrowly rounded ends, uniguttulated, lacking a gelatinose sheath, measuring (28–)29–34(–37) × (5–)6–8(–9) µm, and a basal cell 5–7 µm (n = 45). Asexual morph: Mycelium hyaline, septate, branched, hyphae 2–4 µm in diameter. Conidiophores reduced to the conidiogenous cells. Conidiogenous cells aggregated in clusters on hypha or solitary, ampulliform or cylindrical, 6–12 × 3 µm. Conidia brown, smooth, globose to ellipsoid (9–)10(–12) µm long (n = 30) in face view, lenticular, with a paler equatorial slit, and (6–)7(–8) µm long (n = 40) in side view. Sterile cells elongated, rolled up, sometimes mixed among conidia. Culture characteristics: ascospores germinating on MEA 2% within 24–48 h. Colonies flat, spreading, with sparse aerial mycelium, pale siena with white patches.

Notes. Arthrinium ibericum belongs to the large clade around A. sacchari, where it shows a relation with the subclade of A. phaeospermum, A. saccharicola, and the modern species A. serenense, A. camelliae-sinensis, A. jiangxiense, A. dichotomanthii, A. obovatum and A. pseudosinense. The size of conidia is more or less similar to that of A. camelliae-sinensis, where these measure about 9.0–13.5 µm in frontal view, but con-
Figure 9. *A. ibericum* A ascomata with oozing ascospores B–D asci E–H ascospores I colony on MEA J–M conidiogenous cells giving rise to conidia N sterile cell with conidia O conidia. Scale bars: 200 µm (A); 10 µm (B–D); 20 µm (C); 5 µm (E–H); 5 µm (J–O).
idiogenous cells are a bit smaller in this species, measuring about 4.0–9.5 × 3.0–6.0 µm. *Arthrinium pseudosinense* has slightly smaller asci measuring 85–100 × 15–20 µm, and ellipsoid conidia covered with a mucilaginous sheath. *Arthrinium saccharicola* has hyphae slightly wider, about 3–5 µm. The genetic identity of *A. phaeospermum* is still dubious because of the lack of a proper type, but the lineages of this species in the work of Crous and Groenewald (2013) have slightly smaller conidiogenous cells measuring 5–10 × 3–5 µm, and a different iron-grey colour of colonies in MEA.

Arthrinium italicum Pintos & P. Alvarado, *sp. nov.*
MycoBank MB 828870
Fig. 10

Etymology. In reference to Italy, the country where the holotype was found.

Diagnosis. Sexual morph: *Stromata* solitary to gregarious, immersed to erumpent, fusiform, with long axis broken at the top by one or two cracks, 0.5–4 × 0.2–0.5 mm (*n* = 20). *Ascomata* uniseriate or irregularly arranged beneath stromata, pseudothecial, black, globose to subglobose with a flattened base, 150–200 µm high × 230–300 µm wide. *Peridium* composed of 5 or 6 layers of brown cells arranged in textura angulatis, with a conspicuous periphysate ostiole. *Hamathecium* paraphyses hyphae-like. *Asci* broadly cylindrical, clavate or subglobose, pedicel indistinct, apically rounded (70–)72–93(–96) × (14–)15–18(–20) µm (*n* = 30). *Ascospores* apiosporic, clavate to fusiform with narrowly rounded ends, composed of a large upper cell and small lower cell, hyaline, smooth-walled, surrounded by a gelatinous sheath, measuring (20–)21–25(–26) × (5–)6–9(–10) µm, basal cell 3–5 µm (*n* = 45). Asexual morph: *Mycelium* consisting of smooth, hyaline, branched, septate hyphae 1.5–4 µm in diameter. *Conidiophores* straight or flexuous, cylindrical, colourless except for the thick brown transversal septa, smooth-walled, 10–50 × 1–3 µm. *Conidiogenous cells* ampulliform, cylindrical or doliiform, hyaline to brown, (3–)4–7(–9) × (1.5–)2–3(–5) µm (*n* = 30). *Conidia* brown, smooth, globose in face view, lenticular in side view, 4–6 × 3–4 µm (*n* = 65), with a pale equatorial slit. **Culture characteristics:** on MEA 2%, sparse aerial mycelia, surface dirty white, reverse pale yellowish.

Notes. *Arthrinium italicum* is phylogenetically close to *A. thailandicum*, and to a lesser extent to *A. malaysianum*. Stromata of *A. thailandicum* are smaller than those of *A. italicum*, measuring 0.45–0.99 × 0.3–0.55 mm, ascomata are perithecial, its conidiogenous cells are longer (11.5–39 × 2–3.5 µm) and branched, and conidia measure 5–9 × 5–8 µm. The conidia of *A. malaysianum* are similar in size, but this species does not produce conidiophores.

Six new species of *Arthrinium* from Europe

Figure 10.* A. italicum* A, B stromata on host C asci D, E, G ascospores F ascospores with sheath H colony on MEA I–M conidiogenous cell giving rise to conidia N, O conidia. Scale bars: 200 µm (A, B); 5 µm (D–G); 5 µm (H–L, N, O); 10 µm (M).
Arthrinium marii Larrondo & Calvo, Mycologia 82: 397 (1990)

Fig. 11

Description. Sexual morph: **Stromata** forming black fusiform spots, visible at the naked eye, with a long axis broken at the top revealing the ostioles of pseudothecia, 2–6 × 0.2–0.5 mm in size. **Ascomata** subglobose, sometimes with a flattened base, brownish to reddish brown, 150–190 μm high × 160–250 μm wide (*n* = 20). **Peridium** with several layers of cells arranged in textura angularis, with a conspicuous ostiole 50–780 μm diameter, periphysate. **Hamathecium** paraphyses not prominent, hyphae-like, septate, hyaline. **Asci** 8-spored, unitunicate, broadly cylindrical to clavate, with rounded apex and a short pedicel, (60–)70–100(–115) × (16–)18–20(–22) μm (*n* = 30). **Ascospores** fusiform to elliptical, with narrowly rounded ends, hyaline, with multiple guttules, surrounded by a mucilaginous sheath, (16)19–23(–24) × (6)–7–8(–10) μm, basal cell 2–5 (*n* = 30). Asexual morph: **Mycelium** consisting of smooth, hyaline, branched, septate hyphae measuring 1.5–5 μm in diameter. **Conidiophores** straight or flexuous, colourless except for the thick brown transverse septa, measuring 10–40 × 2–3 μm. **Conidiogenous cells** ampuliform to cylindrical, hyaline to brown, (3–)4–7(–11) × (1.4–)2–4(–5) μm (*n* = 30). **Conidia**, brown, smooth, granular, globose in face view, lenticular in side view, measuring (6–)7–8(–9) × 4–5(–6) μm, with a pale equatorial slit. **Sterile cells** elongated, brown. **Culture characteristics:** ascospores germinating on MEA 2% within 24–48 h. **Colonies** flat, spreading, with sparse aerial mycelium, reverse concolour with agA.

Notes. *Arthrinium marii* was proposed by Larrondo and Calvo (1990) who described its asexual morph. This apparently frequent species has been isolated from the atmosphere, pharmaceutical excipients, home dust, and beach sand, as well as from various plant hosts (Crous 2013). In the present work the sexual morph is described for the first time. Genetically, samples identified as *A. marii* seem to represent two distinct clades (Fig. 2), with differences in tub2 and tef1 genes, but it should be further investigated with additional data before concluding if these clades should be interpreted as intraspecific variability, partially isolated lineages, or fully isolated species. Similarly, the incomplete data from the type specimens of *A. hispanicum* and *A. mediterranei* do not allow one to conclude if these apparently related species represent a single taxon or even belong to *A. marii*.

Six new species of *Arthrinium* from Europe

Figure 11. *A. marii* A stromata on host B asci C–F ascospores G colony on MEA H–I, K conidiogenous cells giving rise to conidia J conidiophore bearing conidia L conidia and sterile cells. Scale bars: 200 µm (A); 10 µm (B); 5 µm (C–F); 5 µm (H–L).
Arthrinium piptatheri Pintos & P. Alvarado. sp. nov.
MycoBank MB 828871

Fig. 12

Etymology. Named after *Piptatherum*, the host plant from which it was first isolated.

Diagnosis. Asexual morph: Mycelium consisting of smooth, hyaline, branched, septate hyphae measuring 1–4 µm in diameter. Conidiophore mother cells hyaline to brown, aggregated in clusters or solitary on hyphae, ampuliform, cylindrical or doliiform, 4–11 × 2–5 µm, growing above one or several hyaline cylindrical cells. Conidiophore reduced to a conidiogenous cell. Conidiogenous cells basauxic, polyblastic, sympodial, cylindrical, discrete, sometimes branched, smooth-walled, measuring 6–27 × 2–5 µm (n = 25). Conidia globose to ellipsoidal, pale brown to brown, with a thin hyaline germ-slit, 6–8 × 3–5 µm (n = 30). Sterile cells elongated, brown, sometimes mixed among conidia, 13–16 × 4–5 µm (n = 30). **Culture characteristics:** on MEA 2%, colonies flat, spreading, with sparse aerial mycelium, reverse concolour with agar.

Figure 12. A. piptatheri A colony on MEA B–K conidiogenous cells giving rise to conidia. Scale bars: 5 µm (B–K).
Notes. *Arthrinium piptatheri* is genetically close, but genetically distinct from *A. marii*, *A. sacchari*, *A. guizhouense*, *A. hispanicum*, *A. mediterranei*, *A. longistromum* D.Q. Dai & K.D. Hyde, and to a lesser extent *A. pseudospegazzinii* (Fig. 2) and the clade around *A. phaeospermum* (Fig. 1). The incomplete genetic data available is probably the cause behind the lack of significant support for some of these taxa. Morphologically, *A. piptatheri* differs from *A. marii* because of its sympodial, branched conidiogenous cells. *Arthrinium guizhouense* has shorter conidiogenous cells (3.5–8.0 µm). Finally, some sequences of *Ap. montagnei* are related also with this group (Fig. 2), but this species is considered the sexual morph of *A. arundinis*, with a very different genetic profile in Crous and Groenewald (2013), so its actual identity should be further investigated.

Arthrinium puccinioides Kunze & J.C. Schmidt, Mykologische (Leizpig) 2: 103 (1823)

Fig. 13

Conoplea puccinioides DE Candolle, 1905, Flore Francaise, Ed. 3, Tome 2, p.73, ex Mérat, Novuvelle Flore des environs de Paris, 1821, p. 16.

Description. Asexual morph: *Mycelium* consisting on smooth hyaline, branched, septate hyphae measuring 1.5–5 µm in diameter. *Colonies* are small, rounded or ovoid, dark brown, 50–400 µm in diameter. *Conidiophore mother cells* subspherical, lageniform or barrel-shaped, 4–5 × 3–5 µm (*n* = 30). *Conidiophores* cylindrical, straight or flexuous, septate, hyaline excepting for the thick brown or dark brown transversal septa, 20–140 × 3–4 µm (*n* = 30). *Conidiogenous cells* cylindrical, occurring between the conidiophore septa, 0.9–1.8 µm. *Conidia* dark brown, smooth, polygonal with rounded angles to hemispherical, measuring (8–)9–11(–12) × 8–9 µm, with one or two concentric pale rings. *Sterile cells* spherical, triangular or polygonal, with refractive bodies inside, paler than conidia, 6–9 µm in diameter. *Culture characteristics* colonies flat spreading on MEA 2%, with moderate aerial mycelium, reverse whitish, no esporulate on culture.

Notes. *Arthrinium puccinioides* is the only species of *Arthrinium* with polygonal conida. It shows a genetic relationship with other species found in *Carex* sp. hosts, such as *A. caricicola*, *A. curvatum* var. *minus*, *A. japonicum* or *A. sporophleum*. The present sample fits the original description of *A. puccinioides* by Kunze and Schmidt (1823) as well as those by Ellis et al. (1951), Ellis (1965), and Scheuer (1996).

Specimens examined. Germany: Berlin: Köpenick, Stellingdamm, on dead leaves of *Carex arenaria*, 26 April 2017, R. Jarling (MA-Fungi 91746, AP26418).
Figure 13. A. puccinioides A colony on host B colony on MEA C conidiophore mother cell D–F conidiophore bearing conidia G–H conidia in side view. Scale bars: 100 µm (A); 5 µm (C–H).

Arthrinium sporophleum Kunze, 1823, in Kunze & Schmidt’s Mykologische Hefte, 2, p. 104; Fries, 1832, Systema Mycol., 3, p. 377

Fig. 14

Sporophleum gramineum Nees, 1824, apud Link in Linne, Species Plantarum, ed. 4 (Willdenow’s), 6, 1, p. 45.

Arthrinium sporophleoides Fuckel, Jb. nassau. Ver. Naturk. 27-28: 78 (1874) [1873-74]

Description. Asexual morph: Mycelium consisting on smooth hyaline branched hyphae, 2–5 µm in diameter. Colonies oval to irregular, dark blackish brown, 300–1200 × 150–650 µm. Conidiophore mother cells sub-cylindrical, hyaline to pale brown, measuring 5–7 × 5–7 µm (n = 20). Conidiophores straight to flexuous, cylindrical, hyaline except for the thick brown to dark brown transversal septa, 30–130 × 2–4 µm (n = 20). Conidia brown, smooth, lemon-shaped in face view, measuring (10–)11–14(–15) × (5–)6–8(–9) µm (n = 45), triangular with the outer edge curved and rounded angles in side view, measuring 5–8 µm thick. Sterile cells paler than conidia, subspherical or triangular, 5–8 µm wide. Culture characteristics: on MEA 2% colonies cottony, white with grey patches, reverse pale grey.
Six new species of *Arthrinium* from Europe

Notes. *Arthrinium sporophleum* is the only species of *Arthrinium* with lemon-shaped conidia. Kunze (1823) considered that *Sporophleum gramineum* represents a synonym of this species, and Cooke (1954) considered *A. sporophleoides* Fuckel a synonym of this species too. The only sample analyzed in the present work fits the descriptions of this species by Kunze (1823), Ellis et al. (1951), Ellis (1965) and Scheuer (1996). This sample was found in *Juncus* sp., but this remarkable species has been often reported from *Carex* sp. hosts (Ellis 1965). Interestingly, other species occurring in *Carex* sp. present also conidia with unusual shapes, e.g. *A. puccinioides* (polygonal), *A. curvatum* var. *minus* (curved), and *A. caricicola* or *A. japonicum* (fusiform).

Discussion

Arthrinium is thought to represent the asexual morph of *Apiospora* because genetic data of *Ap. montagnei* (type species of *Apiospora*, Müller and Arx 1962) grouped together with other species of *Arthrinium* (Crous and Groenewald 2013; Senanayake et al. 2015; Réblová et al. 2016). Unfortunately, no data from the type species of *Arthrinium*, *A. caricicola*, was available to confirm this synonymy. In the present work, a phylogenetic relationship was found between a specimen identified as *A. caricicola* and other species of *Arthrinium* mainly occurring in *Carex* sp., such as *A. curvatum* var. minus, *A. japonicum*, *A. puccinioides* and *A. sporohleum*. Moreover, this clade was not significantly related with all other species of *Arthrinium* and *Apiospora* found in other hosts or substrates, suggesting that both clades could be interpreted as independent genera sister to *Nigrospora*. In this case, the synonymy between *Arthrinium* and *Apiospora* could be rejected, requiring new combinations. However, this hypothesis should be further confirmed after the analysis of the remaining known species occurring in Cyperaceae hosts, such as *A. austriacum*, *A. fuckelii*, *A. globosum*, *A. kamtschaticum*, *A. mortieri*, *A. muelleri*, or *A. naviculare*.

Arthrinium species have been found in several different plant hosts (Ramos et al. 2010; Sharma 2014), where they sometimes cause plant diseases (Martínez-Cano et al. 1992; Mavragani et al. 2007; Chen et al. 2014; Li et al. 2016). They are also isolated from lichens (He and Zhang 2012), marine algae (Suryanarayanan 2012), soil (Singh et al. 2013) and can even cause infections in humans (Rai 1989; Zhao et al. 1990; Hoog et al. 2000). In the present study six new species of *Arthrinium* are proposed: *A. balearicum*, *A. descalsii*, *A. esporlense*, *A. ibericum*, *A. italicum*, and *A. piptatheri*, all of them found in the Mediterranean biogeographical region, excepting for *A. ibericum*, which was found in the Atlantic areas of Spain. All these new taxa were found growing on plant hosts of the Poaceae family, such as *Arundo donax* or *Piptatherum miliacuem*. However, *A. marii* was the species most frequently found in the surveys, occurring on the Poaceae grasses *Ampelodesmos mauritanicus* and *Phragmites australis*, in agreement with the data reported by Crous and Groenewald (2013). *Arthrinium phragmitis* was found also on *Phragmites australis* and less commonly in *Arundo donax*, while *A. hysterinum* and *A. rasikravindrae* were associated with the Poaceae bamboos *Phyllostachys aurea* and *Bambusa* sp. Several colonies of *A. rasikravindrae* were found growing on *Phyllostachys aurea* as well, where they developed acervular conidiomata, a feature not observed in the protologue of this species, and therefore not considered diagnostic, in the same way as conidial shape, presence of setae, or lobate sterile cells.
Six new species of Arthrinium from Europe

Apiospora tintinnabula (Samuels et al. 1981) is considered a synonym of *A. hysterinum* (Sivanesan 1983; Kirk 1986). Multigenic data from the ex-type culture ICMP 6889 of *Ap. tintinnabula* was obtained so as to compare it with the newly found specimens of *A. hysterinum* and no significant difference could be found. Interestingly, the collections of *A. hysterinum* studied in the present work presented sterile lobed cells, a feature not mentioned in the protologue of *Ap. tintinnabula*. The genetic data available from *Ap. setosa* and *Ap. bambusae* (28S and tub2) are not significantly different from those of *A. hysterinum* and *Ap. tintinnabula*, although additional markers would be needed to confirm a putative synonymy.

Acknowledgements

We thank Dr Hermann Voglmayr for his valuable advice, Chris Yeates and Martin Bemann for providing literature, and Äsa Kruys for providing details about type collection of *Arthrinium caricicola*.

References

Six new species of *Arthrinium* from Europe

Epitypification of the Central African *Cantharellus densifolius* and *C. luteopunctatus* allows for the recognition of two additional species

Bart Buyck¹, Terry W. Henkel², Valérie Hofstetter³

¹ Institut de Systematique, Evolution, Biodiversité (ISYEB – UMR 7205), Museum national d’Histoire naturelle, Sorbonne Université, CNRS, CP 39, 12 Rue Buffon, F-75005 Paris, France ² Department of Biological Sciences, Humboldt State University, Arcata, California, 95521, USA ³ Department of Plant Protection, Agroscope Changins-Wädenswil Research Station ACW, Rte De Duiller, CH-1260 Nyon 1, Switzerland

Corresponding author: Terry Henkel (twh5@humboldt.edu)

Abstract

Cantharellus densifolius and *C. luteopunctatus* are epitypified on the basis of recently collected specimens from the Central African rain forest that correspond in every way to their respective original descriptions. Sequences obtained from these new collections demonstrate that both epitypes represent distinct species that belong in different subclades of *Cantharellus* subg. *Rubrinus*. Previously, the name *C. densifolius* has been consistently misapplied to more or less similar species from the African woodland area, including *C. densilamellatus* sp. nov., which is described here, In addition, *C. tomentosoides* sp. nov., a rain forest species that is easily confused with *C. densifolius*, is described.

Keywords

Cantharellales, ectomycorrhizal, *tEF*-1, phylogeny, rain forest, taxonomy

Introduction

Tropical African *Cantharellus* species (“chanterelles”) have been well-documented compared to other tropical regions. Nonetheless, there is a great need for sequence data to provide the foundation for unambiguous species concepts. This is due to the highly
variable and potentially deceptive macromorphologies, compounded by the limited interspecific micromorphological variation among *Cantharellus* species (Buyck et al. 2014, 2016e, Olariaga et al. 2015).

Despite this need for sequence data, *Cantharellus* has been difficult to work with from a molecular standpoint. *Cantharellus* ribosomal genes have high rates of molecular evolution (Moncalvo et al. 2006) and *Cantharellus* species often have an unusually long ITS sequence, ranging from around 900 to 2200 base pairs. The ITS barcode locus is consequently difficult to obtain for chanterelles (Schoch et al. 2012). This is especially true for old type specimens, due to their degraded DNA and resulting difficulties in extraction, and the frequent failures in the annealing of fungal primers designed to amplify the ITS locus or part of it.

While phylogenetic understanding of *Cantharellus* in Europe and North America has recently improved (Buyck et al. 2016c,d,e,f; Olariaga et al. 2015, 2016), the continuing lack of sequence data for Old World *Cantharellus* has helped to perpetuate taxonomic confusion regarding species delimitation and infrageneric relationships (Buyck et al. 2013, 2014). For Africa, some *Cantharellus* species from Madagascar and the African mainland have been circumscribed by single or multilocus molecular phylogenies (Ariyawansa et al. 2015, Buyck et al. 2014, 2015, 2016a, 2017, Liu et al. 2015, De Kesel et al. 2016). However, species recognition for the majority of chanterelles from the Guineo-Congolian rain forest is still based on morphological descriptions published over half a century ago (Heinemann 1958, 1959, 1966).

Many of the older species names for African chanterelles have been misapplied to morphologically similar specimens gathered in dense, closed-canopy rain forest versus the surrounding seasonal woodlands, or in open woodlands of neighboring Madagascar (Buyck et al. 2016g). As type specimen DNA of these earliest described rain forest chanterelles appears completely degraded (fide De Kesel et al. 2016), epitypification with sequencing of newly collected specimens is the most efficient way for unambiguous species delimitation. Until recently, new, well-documented specimens of rain forest chanterelles have not been available for sequencing. Thanks to renewed collecting efforts for *Cantharellus* in the African rain forest, the limits of species bearing these older names can be assessed, and the epitypification process has begun (Buyck et al. 2016a,b,g, De Kesel et al. 2016, Buyck and Hofstetter 2018).

Here we epitypify *Cantharellus densifolius* Heinem. based on recent collections made ~400 km from the type locality but in the same forest habitat. The chosen epi-type, which is in perfect agreement with the original description, clearly demonstrates that the name has been misapplied to different species for decades. The new collections constitute the first records for *C. densifolius* since this species was collected by Mme. Goossens-Fontana in 1929 and later described by Heinemann (1958). In this paper we also epitypify *Cantharellus luteopunctatus* Heinem, previously considered a yellowish color-variant of *C. densifolius* (Eyssartier 2001), but shown here to be a morphologically well-defined, independent species. Additionally, two new species previously confused with *C. densifolius* are described.
Material and methods

Collecting and macromorphology

Basidiomata were collected in the Central African Republic (RCA) during dry conditions in early May 2016 in pure *Gilbertiodendron dewevrei* stands of the Dzanga-Sangha Forest Reserve. In Cameroon, basidiomata were collected during the Aug.-Nov. rainy seasons of 2014, 2016, and 2017 from the Dja Biosphere Reserve, Northwest Sector near the village of Somalomo, Upper Dja River Basin, within a two km radius of a base camp located at 3°21'29.8"N, 12°43'46.9"E, 650 m a.s.l., in forests dominated by *G. dewevrei*. Photographs and descriptions of macromorphological features were made from fresh material in the field. Colors were compared with color plates from Kornerup and Wanscher (1978) and are cited in parentheses. Collections were dried with a self-made drier (RCA) or silica gel (Cameroon). Epitype material and additional specimens are deposited in PC, Museum national d'histoire naturelle, Paris, and for the Cameroon collections also in the following herbaria: YA, Cameroon National Herbarium; HSC, Humboldt State University.

Micromorphology

Microscopic observations and measurements were made from ammoniacal Congo red mounts after a short pretreatment in a 10% aqueous KOH solution to improve tissue dissociation and matrix dissolution. Original drawings for all elements of the hymenium and pileipellis were made at a magnification of 2400× with the aid of a camera lucida. Measurements of basidiospores cite length, width and length/width ratio (Q) in this format: (minimum–) mean minus standard deviation – mean value – mean plus standard deviation (– maximum measured); basidiospore size statistics are based on 20 basidiospores measured per specimen.

Taxon sampling and phylogenetic analyses

Genomic DNA isolation, amplification and sequencing for the transcription elongation factor 1-alpha (*tef*-1) of the new *Cantharellus* collections were obtained as described in Buyck et al. (2014). The *tef*-1 sequence data from other taxa were obtained from our previous publications (Buyck et al. 2014, 2016a, b, 2018; Das et al. 2018). Sequences were assembled and corrected with the software package Sequencher 3.0 (Gene Codes Corp., USA). Alignment of *tef*-1 was performed manually in MacClade 4.05 (Maddison and Maddison 2002). Searches for the optimal tree and branch robustness were conducted with the program PhyML (Guindon and Gascuel 2003), under a GTR nucleotide substitution model, with the search starting from a distance-based
Results

Seven new sequences were produced for this study (five collections of *C. densifolius*, one of *C. tomentosoides*, and one of *C. luteopunctatus*). The alignment used for phylogenetic analyses included sequences of 90 *Cantharellus* specimens and one of *Craterellus tubaeformis* used for outgroup. The full alignment length was 864 base pairs. After exclusion of three spliceosomal introns, the remaining 629 characters were used for the analyses.

The most likely tree (Fig. 1; \(-\ln = 14270.90232\)) placed *C. densifolius* (ML-bs = 100 %) as sister without support to a highly supported monophyletic group (ML-bs = 100 %) containing *C. tomentosoides* sp. nov. and the typical woodland species *C. tomentosus* (ML-bs = 100 %) (Buyck et al. 2000). *Cantharellus densilamellatus* sp. nov. was not conspecific with *C. densifolius*, instead forming a highly supported terminal clade (ML-bs = 98 %) with the designated epitype of *C. luteopunctatus*, and this clade was supported (ML-bs = 80 %) as sister to a clade containing *C. tanzanicus* and the Malagasy, eucalypt-associated *C. eucalyptorum* Buyck & V. Hofst. (Ariyawansa et al. 2015). These species formed a larger, strongly supported clade (ML-bs = 97 %) within subg. *Rubrinus* with two additional Malagasy species, the woodland endemic *C. albidoabulutescens* Buyck & V. Hofst. (Buyck et al. 2015), and the eucalypt-associated *C. tricolor* Buyck & V. Hofst. (Ariyawansa et al. 2015).

Taxonomy

Figs 2, 3

Holotype. DEMOCRATIC REPUBLIC OF THE CONGO. Binga, dispersed on the soil of the dry forest, Aug. 1929, Mme. Goossens-Fontana 879 (BR).

Iconography. Heinemann (1958, fig. 45; 1959, pl. XXVI, fig. 11).

Original description. (freely translated from French) “Pileus ca. 8 cm diam., thin, deeply concave to infundibuliform, with the margin convex to stretched, irregular and wavy; surface ochraceous orange, very finely punctuated with tiny squamules that are easily detached. Stipe ca. 30 × 7 mm, cylindrical, massive, concolorous with the cap.
Epitypification of the Central African Cantharellus densifolius and...

Figure 1. Most likely tree obtained by analysis of the 91 tef-1 sequence dataset. Species names are preceded by their extraction number (see Buyck et al. 2014 for corresponding vouchers) and followed by the corresponding GenBank deposit number. Branches that received significant ML bootstrap support are in bold with ML-bs associated values indicated above the branches. Newly produced sequences are in blue and discussed species are in bold.
Hymenophore composed of crowded gill-folds, less than 1 mm high, 1–4 times forking, deeply decurrent, with blunt gill edge, not interveined. Context fibrous, bright ochraceous. Taste bitter. Smell of *C. cibarius*. Spore print white. Exsiccatum with reddish ochre brown color.

Spores hyaline, 5.6–7 × 3.7–4.5 µm, shortly ellipsoid, thin-walled, not amyloid; apiculus small. Basidia slender, 37–48 × 6–8 µm, probably 6-spored. Hymenophoral trama pseudoparenchymatic, slightly bilateral. Pseudoparenchyma very compact. Pileipellis squamulae composed of easily detaching cells that are irregularly cylindrical, often undulating, thick-walled with a very thick yellow wall in ammonium solution; the terminal cells obtusely rounded. Clamp connections rare.”

Description of the epitype. *Basidiomata* solitary or in small groups. *Pileus* medium-sized to rather large and up to 100 mm diam., 1–2 mm thick at mid-radius, yet firm and leathery; margin undulating, irregularly waving to strongly lobed, smooth; surface layer remaining more or less continuous in the center, then disrupting toward the margin with expansion of the pileus and forming dark, more or less concentrically arranged squamules or fibres; observed under a hand lens these can be appressed and flat, or forming a woolly-cottony mass of suberect fibers, pale brown (5AB3) to warm chocolate brown or dark brown (5EF7–8, 5F4–8, 5D5–8, 5C5–6) when young, but rapidly tinged with ochraceous orange as a consequence of the exposure of the underlying pileus tissue and the yellowing tendency of the context. Hymenophore composed of very crowded (>30/mm) gill folds, which are very low (<1 mm) and thick, not interveined, often transversely fissuring over their entire height, repeatedly forking, strongly decurrent, off-white when young, then darkening to the color of coffee with copious milk, moderately to strongly yellowing upon handling. *Stipe* 40–60 × 4–5 mm, widening toward the hymenophore and there up to 8(–17) mm wide; surface smooth, whitish, pale brown just beneath the hymenophore. *Context* whitish, thin and leathery, fibrous in the stipe, faintly to strongly yellowing upon injury or handling, occasionally turning rusty brown. *Odor* faint. *Taste* mild. *Spore print* off-white.

Basidiospores ellipsoid, (5.8–)6.0–6.46–6.9(–7.1) × (3.5–)3.8–4.19–4.6(–5.0) µm, Q = (1.3–)1.4–1.55–1.7(–1.8), smooth, hyaline. *Basidia* mostly 35–50 × 7–8 µm, (5–)6(–7)-spored; sterigmata stout but rather short. *Subhymenium* forming a very dense layer, not pseudoparenchymatous, but composed of mostly short cells that are not wider than the basidium base. *Cystidia* none. *Pileipellis* of loosely interwoven and much septate hyphal extremities composed of ramifying chains of distinctly thick-walled cells; terminal (but also sometimes subapical) cells subcylindrical, but often more irregularly inflated or sinuous-tortuous in outline, 5–8(–10) µm wide, mostly 25–45 µm long, often narrowing or abruptly constricted near the apex. *Clamp connections* absent.

Additional specimens examined. CENTRAL AFRICAN REPUBLIC. Dzanga-Sangha Forest Reserve, near Bayanga, in and around Bai-Hakou base camp,
Figure 2. *Cantharellus densifolius*. a Field habit of the epitype (BB 16.021), showing the areolate-squamose ochraceous orange pileus surface resulting from the concentrical disruption of a dark tomentum that covered initially the young pileus b Detail of the epitype hymenophore showing the remarkably low and thick, crowded, repeatedly forking gill folds without interstitial veination c Original watercolor of the holotype by Mme. Goossens-Fontana from Heinemann (1959), reproduced with the permission of Botanic Garden Meise, Belgium d Field habit of specimen BB 16.081 showing the variability of the pileus color within a single collection. Photos: B. Buyck.
02.859934N, 16.467492E, in monospecific *Gilbertiodendron dewevrei* forest, on bare sandy soil, 19 May 2016, Buyck 16.081/1656 (PC0142487), Buyck 16.065/1649 (PC0142488); ibid., 24 May 2016, Buyck 16.113/1672 (PC0142490); ibid., 26 May 2016, Buyck 16.137/1681 (PC0142489).

Discussion. *Cantharellus densifolius* was originally described by Heinemann (1958) and was one of three rain forest *Cantharellus* species characterized by crowded gill folds. The other two chanterelles with equally crowded gill folds were the fragile, smaller (pileus < 30 mm diam.), bright orange *C. pseudofriesii* Heinem. and the medium-sized, bright yellow *C. luteopunctatus* Heinem. Eyssartier (2001) re-examined the holotype of each of these three species, and concluded that *C. pseudofriesii* was distinctive due to its possession of clamp connections (contrary to the original description, see also Buyck et al. 2016a), and suggested that *C. luteopunctatus* may be a color variant of *C. densifolius* because of its similar micromorphological features.

The epitype specimen selected here perfectly agrees with the original description of *C. densifolius*. Indeed, Heinemann (l.c.) described it as a medium-sized species with an infundibuliform, ochre-orange and finely squamulose pileus measuring ca. 80 mm diam. and ending in an irregular but stretched margin, with strongly decurrent, crowded, frequently forking and very low gill folds (< 1 mm high) with blunt edges, lacking any intervenation. Heinemann cited shortly ellipsoid basidiospores of near identical size, more precisely given by Eyssartier (2001), as important microscopic features, along with the pileipellis composed of easily disintegrating, very thick-walled hyphal extremities that are sinuous-undulating in outline (compare Heinemann 1958 fig. 45B with our Fig. 3c).

The typical features appear to be quite constant across all specimens of *C. densifolius* examined here, including both the size and shape of basidiospores (Table 1), as well as the undulate, thick-walled, often apically tapered or constricted hyphal extremities (although less so in Buyck 16.137). The ochre-orange color of the pileus described for the holotype was also present in the epitype (Fig. 2a, c) but across collections examined here pileus color ranged from ochraceous yellow over orange to pale brown and even dark chocolate brown, but never to bright lemon yellow as described for *C. luteopunctatus*. This is consistent with the highly variable color within many other *Cantharellus* species (Olariaga et al. 2015, Buyck et al. 2016e). For *C. densifolius*, the general color of the pileus also depends on the degree of yellowing of the context underneath the disrupted surface tomentum, which can vary between or within individual basidiomata.

The form of the hyphal extremities composing the pileal tomentum is very similar to that of various other squamulose species in subg. *Rubrinus* sect. *Isabellinus* Eyssart. & Buyck, in particular those of the African *C. tanzanicus* Buyck & V. Hofst. (Buyck et al. 2013) and the Malagasy *C. eucalyptorum* Buyck & V. Hofst. and *C. tricolor* Buyck & V. Hofst., the latter two species being associates of introduced eucalypts (Liu et al. 2015). The differences in habitat and basidiospore size allow differentiation of *C. densifolius* from these species.

Cantharellus densifolius has repeatedly been reported from the surrounding woodland area in Africa (e.g. Heinemann 1966, Buyck 1994, Buyck et al. 2000, Härkönen
Figure 3. *Cantharellus densifolius* (epitype, BB 16.021). Microscopic features: a basidiospores b basidia and basidiola c distinctly thick-walled and typically sinuous-undulate hyphal extremities of the pileipellis d detail of an encrusted hypha from the pileus context. Scale bar: 10 µm but only 5 µm for basidiospores. Drawings B. Buyck.

Table 1. Comparison of basidiospore measurements for the discussed species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Basidiospore Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. densifolius</td>
<td></td>
</tr>
<tr>
<td>Holotype (Heinemann 1958):</td>
<td>5.6–7</td>
</tr>
<tr>
<td>Holotype (Eyssartier 2001):</td>
<td>5.5–6.37–7</td>
</tr>
<tr>
<td>Epitype:</td>
<td>(5.8–)6.0–6.46–6.9(–7.1)</td>
</tr>
<tr>
<td>Buyck 16.137</td>
<td>(5.4–)5.5–5.78–6.1(–6.5)</td>
</tr>
<tr>
<td>Buyck 16.081</td>
<td>(4.8–)5.4–5.78–6.1(–6.2)</td>
</tr>
<tr>
<td>C. tomentosoides</td>
<td></td>
</tr>
<tr>
<td>Holotype</td>
<td>(5.8–)6.36–6.7(–7.1)</td>
</tr>
<tr>
<td>C. densilamellatus</td>
<td></td>
</tr>
<tr>
<td>Holotype:</td>
<td>6.7–7.05–7.4(7.9)</td>
</tr>
<tr>
<td>C. luteopunctatus</td>
<td></td>
</tr>
<tr>
<td>Holotype (Heinemann 1958):</td>
<td>4.9–6.0 (7.5)</td>
</tr>
<tr>
<td>Holotype (Eyssartier 2001):</td>
<td>5–5.97–7</td>
</tr>
<tr>
<td>Epitype / Henkel 10285</td>
<td>(5.4–)5.7–6.04–6.4(–7.1)</td>
</tr>
<tr>
<td>Henkel 10442:</td>
<td>(5.4–)5.4–5.94–6.5(–7.3)</td>
</tr>
</tbody>
</table>

et al. 2015). Our sequence data have now indicated that such woodland specimens merit recognition as independent species. For example, the morphologically similar *C. densilamellatus* sp. nov. described below is unrelated to *C. densifolius* but resolved as sister to *C. luteopunctatus* (Fig. 1).
Figs 4–6

Original diagnosis. “Pileo carnoso-coriaceo, centro depresso, margine incurvato, lu-
teo; furfuraceo brunneo, 3,5–4 cm. lato; stipite cylindrico-solido, glabo, concolori, 3 ×
0,5–0,7 cm, lamellis deccurentibus, luteis; sporis ovoideis 5–6 × 3,5–4 μm, carne lutea.”

Holotype. DEMOCRATIC REPUBLIC OF CONGO. Central forest district, near Djongo-Akula, dispersed on the soil of the dry *Gilbertiodendron dewevrei* forest, Dec. 1925, Mme. Goossens-Fontana 502 (BR).

Iconography. HEINEMANN (1958, fig. 47; 1959, pl. XXVI, fig. 6).

Original description. (freely translated from French) “Pileus rather thick, 49 mm
diam., soon depressed, concave with rounded, then straight margin, bright lemon yel-
low, punctuated – particularly in the center – with minute brownish squamules. Stipe
30 × 6 mm, [30–50 × 5–11 mm], cylindrical, solid inside, yellow, finally rusty, faint-
ly covered from brownish scales. Gills very crowded, deeply decurrent, very narrow,
0.5–11 mm wide (sic!), yellow, irregularly forked, interconnected by rather abundant
transversal anastomoses. Context firm, bright yellow, more orangish near the stipe

Spores hyaline, shortly ellipsoid, 4.9–6.0 (7.5) × 3.8–4.6 (5) μm, granular inside,
thin-walled, not amyloid, with a small apiculus. Basidia narrowly clavate, 30–40 ×
6.7–9.5 μm, 4-spored, perhaps sometimes 6-spored. Hymenium not or only slightly
accrescent. Subhymenium narrow. Pseudoparenchyma composed of very long and
slender elements, mixed with some oleiferous hyphae that do not color in Congo Red.
Pileipellis undifferentiated; squamules formed of hyphae united in bundles made up of
yellowish to pinkish cells; terminal cells lanceolate or clavate, 6–13 μm diam. Hyphae
not amyloid.”

Description of the epitype. Basidiomata scattered to occasionally caespitose. Pile-
us up to 65(–75) mm diam., initially broadly convex with shallow depression, extend-
ing outward and upward with age, becoming increasingly infundibuliform with down-
turned margin, deep golden yellow (2–3A4), beset with minute, conical erect tufts,
these flesh-brown, more concentrated over the disc but extending and gradually more
widely dispersed toward margin; intervening surface shiny-glabrous; margin irregularly
crenulate, slightly wavy. Hymenophore composed of very thin, crowded, ridge-like gill
folds, creamish to nearly concolorous with the pileus surface (2–3A3), occasionally
developing tannish overtones with age (3–4A3), decurrent and fairly abruptly demar-
cated from the sterile stipe surface, discoloring slowly darker yellow to orangish where
injured, repeatedly forking, also abundantly cross-connected between stipe and pileus
margin at almost right angles, becoming increasingly tortuous and anastomosed with
advanced age; edges even and concolorous. Stipe subequal or slightly tapering toward
the base, (17–)24–43 × 4–8(–10) mm, concolorous with pileus, beset apically with
conical, flesh-brown, erect tufts, longitudinally striate below; extreme base often devel-
Figure 4. *Cantharellus luteopunctatus*.

a Field habit of the epitype (TH 10285)
b details of younger basidiomata from specimen TH 9921, showing the gradual color change of the pileus going from pinkish brown in youngest stages to pale yellow in older stages because of the less dense squamulae; similar squamulae are present on the stipe surface. Composition based on photos by Terry Henkel and Todd Elliott
c original watercolor of the holotype by Mme. Goossens-Fontana from Heinemann (1959), reproduced with the permission of Botanic Garden Meise, Belgium.

Basidiospores short-ellipsoid to ellipsoid, (5.4–)5.7–6.04–6.4(–7.1) × (3.9–)4.0–4.29–4.6(–5.0) µm, Q = (1.24)1.29–1.41–1.53(–1.79), smooth. *Basidia* quite short, mostly 30–40(–50) × 6–7 µm, (5–)6-spored. *Cystidia* none. *Subhymenium* cells mostly hardly wider than the basidium base, but locally more inflated parts make it somewhat intermediate between distinctly pseudoparenchymatous and filamentous. *Pileipellis* composed periclinally thin-walled hyphae of variable diameter, but most ca. 10 µm wide, that locally emit anticlinal tufts of short-septate chains of more or less inflated cells, with the largest cells in these chains distinctly zebroid incrusted and the more terminal cells distinctly thick-walled (up to 1 µm thick); terminal cells 30–60 µm long, mostly (6–)10–15 µm wide, subcylindric or clavulate to lageniform, with obtusely rounded to attenuated tips, never remarkably undulate or irregular in outline. *Clamp connections* absent.

CAMEROON. East Region: Dja Biosphere Reserve, Northwest Sector near the village of Somalomo, Upper Dja River Basin, within 2 km radius of Dja base camp located at 3°21’29.8”N, 12°43’46.9”W, 650 m a.s.l., 2 km SW of Dja base camp, under *Gilbertiodendron dewevrei*, coll. T. Henkel, 22 Nov 2016, TH 10285 (YA, *epitypus hic designatus*, duplicates at HSC G1264 and PC). MycoBank MBT 384670.

Additional specimens examined. CAMEROON. East Region: Dja Biosphere Reserve, Northwest Sector near the village of Somalomo, Upper Dja River Basin, 1.4 km SW of Dja base camp, under *G. dewevrei*, coll. T. Henkel, 2 Sep 2014, TH 9921 (YA, HSC G1265, PC); 2 km SW of Dja base camp, under *G. dewevrei*, coll. T. Henkel, 29 Aug 2017, TH 10442 (YA, HSC G1266, PC).

Discussion. *Cantharellus luteopunctatus* has long been considered as “uncomfortably close” to *C. densifolius*. Eyssartier (2001) found no significant microscopic differences between their holotypes, and suggested that *C. luteopunctatus* was likely a more yellowish color form of the latter species. For several decades following its original description *C. luteopunctatus* was not discussed in the literature, until recently by Eyi N’dong et al. (2011) who accepted it as an independent species. Both *C. luteopunctatus* and *C. densifolius* were also maintained as independent entities in a recent identification key to all African chanterelles (De Kesel et al. 2016). Our choice of epitype has been based on the specimen with the highest degree of similarity with the original macro- and microscopic description of *C. luteopunctatus*, and the original watercolor showing a species with a similar stature, color, and laterally compressed stipe (Fig. 4c).

Close reading reveals some differences between the original descriptions for *C. luteopunctatus* and *C. densifolius*. Apart from the difference in pileus color, the second most important difference, also noted by Eyi N’dong et al. (2011), concerns the configuration of the hymenophore. Gill folds were originally described for *C. luteopunctatus* as “irregularly forking and with many interstitial anastomosing veins”, versus those of *C. densifolius* which were “1–4 times forking, not interveined” (Heinemann 1958). Although the presence and frequency of anastomoses between gill folds can be highly
Figure 5. Cantharellus luteopunctatus (TH 10442). a Field habit of a collection that is more intensely yellow with distinctly yellowing context b detail of the hymenophore showing the crowded, thin and strongly anastomosing gill folds. Based on photos by Noah Siegel.
variable among and within *Cantharellus* species, it remains nevertheless a very informative feature to characterize those species that appear always to be on one side of the continuum (De Kesel et al. 2016). In this particular case, the macromorphologies of recent collections suggest that this feature is consistent across, and different between, specimens of *C. luteopunctatus* and *C. densifolius*.

Our collections also demonstrate a difference in hymenophore color between the species, something that is not evident from Heinemann’s descriptions. Heinemann described *C. luteopunctatus* as having a yellow hymenophore, but does not indicate the color for the hymenophore of *C. densifolius*, although the original watercolor clearly shows it to be more or less ochraceous (see Fig. 2c here, and Heinemann 1959, Plate XXVI, fig. 6). Our collections confirm this ochraceous to dirty isabelline color of the hymenophore of *C. densifolius*, even when still relatively young, whereas the hymenophore color is more variable in *C. luteopunctatus* due to the translucent context above. The hymenophore of *C. luteopunctatus* is pure white when young, but it may also have pinkish tinges when the pileus surface is still densely covered by pinkish brown squamae, and then becomes more yellowish (which is the color mentioned in the original description) with maturation due to the yellowing context and absence of squamae over the expanded pileus margin. As in *C. densifolius*, the yellowing can be of variable intensity; for instance, the exposed context of TH 10442 is more strongly chrome yellow than that of the epitype (Fig. 5a).

Other considerable differences between *C. luteopunctatus* and *C. densifolius* include the surface structures of the pileus and stipe. In *C. luteopunctatus*, distinct central pileal squamae are erect, flesh brown to pinkish brown, and strongly separated and paler toward the margin. The pinkish color of the squamae was also mentioned in the original description of Heinemann (1958). In contrast, the pileus surface of *C. densifolius* is a continuous tomentum that lacks a pinkish flesh color and is woolly-fibrous, before breaking up concentrically in appressed fragments. Furthermore, in *C. luteopunctatus* the upper stipe surface has the same squamae as the pileus center, whereas in *C. densifolius* the stipe surface is smooth (compare Figs 2, 4, 5).

Micromorphologically, the basidiospores are nearly identical in both species (Table 1), but the pileipellis differs dramatically. In *C. luteopunctatus* the pileipellis is composed of fascicles of thin- to slightly thick-walled hyphae (corresponding to the erect squamae) that are recognizable on the background of more or less parallel, thin-walled hyphae of the interstitial surface, whereas in *C. densifolius*, the thicker-walled hyphae are not organized in fascicles. Moreover, in the latter species the distal cells of these thick-walled hyphae are much more undulate-sinuous in outline and narrower than those of *C. luteopunctatus*.

A final remark concerns the edibility of these Central African chanterelles: In Cameroon *C. luteopunctatus* basidiomata are mild-flavored and consumed by the indigenous Baka, while *C. densifolius* slowly develops a very strong bitterness and is not consumed by the Baka (T. Henkel, pers. obs.). While the bitter taste was also noted in the original description (Heinemann 1958), the first author did not detect bitterness for *C. densifolius* specimens from the Central African Republic.
Figure 6. Cantharellus luteopunctatus. Microscopic features: a basidiospores b basidia and basidiola c detail of part of a squamula showing the terminal, thin- to slightly thick-walled hyphal extremities overlying the pileipellis. Scale bar: 10 µm but only 5 µm for basidiospores. Drawings: B. Buyck.

Cantharellus tomentosoides Buyck & V. Hofst., sp. nov.
MycoBank MB 828890
Figs 7, 8

Diagnosis. Cantharellus tomentosoides is similar to C. densifolius in its low, blunt and crowded gill folds, overall yellowish brown color, identical basidiospores, and same habitat, but differs in its mostly smaller basidioma size, pileus surface texture, slightly more yellowish olive hymenophore color, and less thick-walled, less sinuous pileipellis extremities.

Gene sequences ex-holotype. MG450685 (tef-1).

Etymology. In reference to the species’ resemblance to its woodland sister-species, C. tomentosus.

Holotype. CENTRAL AFRICAN REPUBLIC. Dzanga-Sangha Forest Reserve, near Bayanga, close to Bai-Hakou base camp, 02.859934N, 16.467492E, in monospecific Gilbertiodendron dewevrei forest, on bare sandy soil along trail at the entrance of the camp, 14 May 2016, Buyck 16.007 (PC0142485). MycoBank MBT 828890.
Figure 7. *Cantharellus tomentosoides* (holotypus, Buyck 16.007). **a** Field habit **b** detail of the pileus surface **c** Longitudinal section showing the fistulose stipe. Photos: B. Buyck.
Description. **Basidiomata** in small clusters, up to 40 mm high. **Pileus** 20–30 mm diam., thin and leathery, wavy with inrolled margin, young entirely hirsute-rugose, remaining lacerate-fibrillose to cottyony in the center, elsewhere slightly rugose but lacking well-defined appressed scales, overall pale grayish brown with dark brown center, very early on becoming narrowly but strongly depressed centrally. **Stipe** slender, 6 mm diam., 20–30 mm high, rapidly elongating while pileus is still small, paler to concolorous with pileus margin, occasionally white at base; interior distinctly fistulose. **Hymenophore** composed of very crowded (up to 40/cm), low but comparatively thick and blunt gill folds, these 1 mm high, repeatedly forking, frequently fissuring over their full height, yellow with brownish tint, transitioning to warm egg-yolk yellow near extreme margin. **Context** leathery, whitish in the pileus, almost concolorous with the stipe surface, yellowing slowly. **Odor** agreeable, typical. **Taste** mild. Spore print not obtained.

Basidiospores short-ellipsoid to ellipsoid, (5.8–)6.0–6.36–6.7(–7.1) × (3.9–)4.0–4.27–4.5(–5.0) µm, Q = (1.3–)1.4–1.49–1.6(–1.7), smooth, hyaline. **Basidia** short and narrow, 30–38 × 6–8 µm, mostly five-spored. **Subhymenium** pseudoparenchymatous, composed of short, barely inflated cells that are slightly wider than the basidium base. **Cystidia** none. **Pileipellis** composed of almost thin-walled to slightly refringent hyphal extremities, mostly 4–8 µm wide; terminal cells rather short, mostly 20–40(–
50) µm long, subcylindrical, regular in outline, broadly rounded at the apex; walls refringent, not thickened. **Clamp connections** absent.

Discussion. *Cantharellus tomentosoides* is a rain forest species that is phylogenetically sister to *C. tomentosus* Eyssart. & Buyck (Fig. 1), for which it was initially mistaken in the field. The latter species was described from miombo woodland in Tanzania and was documented from Burundi by Buyck (1994) under the local name ‘nyarum-pu’. Apart from its different habitat, *C. tomentosus* differs from *C. tomentosoides* in its slightly narrower basidiospores (6–6.98–8 × 3.5–3.92–4.5 µm, Q = 1.5–1.79–2.1), narrower hyphal extremities of the pileipellis, more brownish gill folds, and its nearly smooth to faintly squamose pileus surface (Buyck et al. 2000).

C. tomentosoides resembles *C. densifolius* in its similarly crowded gill folds, overall yellowish brown coloration and identical basidiospores, but differs in its mostly smaller size, different texture of pileus surface, slightly different color of hymenophore, and thinner-walled hyphal extremities at the pileus surface. Additionally, these two species are phylogenetically distinct (Fig. 1).

Cantharellus densilamellatus Buyck & V. Hofst., sp. nov.

MycoBank MB 828893
Figs 9, 10

Diagnosis. *Cantharellus densilamellatus* resembles *C. densifolius* in its overall yellowish to orange-brown color, but differs in its thinner and comparatively well-developed gill folds with less blunt edges, smaller size, nearly thin-walled, less undulate hyphal extremities at the pileus surface, more elongate basidiospores, and its seasonal woodland habitat.

Gene sequences ex-holotype. JX193014 (published in Buyck et al. 2014).

Etymology. “densilamellatus”; referring to the relatively close spacing of the gill folds.

Description. *Basidiomata* small to medium-sized. *Pileus* up to 60 mm diam., first centrally depressed and with a downturned margin, then becoming more depressed as the margin spreads out, fleshy in the center, but increasingly thin fleshed toward the margin and there often striate or radially splitting; margin regular to slightly wavy-lobed; surface dry, with a pale to dark brown to reddish brown tomentum (5DEF6–8) contiguous over disc, toward margin tomentum separating concentrically into a pale yellowish cream (3A2–3) areolate pattern. *Hymenophore* composed of thin, well-developed gill folds, 2–3 mm high, densely spaced (> 10/cm) but not crowded, forking, not anastomosing, often splitting transversely through their entire height, uniformly pale yellow (3A4), brighter than the pileus margin and stipe. *Stipe* central, up to 40 mm long, 6–11 mm wide, subcylindrical to slightly wider near the base, rapidly elongating before the pileus margin starts to spread, concolorous with the pileus margin, distinctly finely squamulose over apical portion, compact in section. *Context* off-white to pale cream, weakly yellowing. *Odor* fruity. *Taste* mild. *Spore print* off-white to very pale yellowish.
Epitypification of the Central African Cantharellus densifolius and...

Figure 9. Cantharellus densilamellatus (holotypus, Buyck 98.013). Aspect of fresh specimens. Photo: B. Buyck.

Basidiospores narrowly ellipsoid to almost elongate, often reniform or peanut shaped, 6.7–7.05–7.4(–7.9) × (3.3–)3.4–3.65–3.9(–4.0) µm, Q = (1.7–)1.8–1.94–2.1(–2.3), smooth. Basidia rather short, 35–50(–58) × 6–7 µm, (4–)5–6-spored; basidioles mostly clavate. Cystidia none. Subhymenium pseudoparenchymatous, composed of irregular, slightly inflated cells. Pileipellis a cutis of interwoven hyphal extremities forming slender chains of subcylindrical cells, these quite regular in outline, with thin to very slightly thickened and refringent walls; terminal cells (25–)30–45(–65) × (3–)4–7 µm, subcylindrical or sometimes very slightly inflated in the lower or middle portion, obtusely rounded at the tip or slightly constricted subapically. Clamp connections absent.

Discussion. Cantharellus densifolius has long been the only available name for yellowish brown, clampless chanterelles in Africa with a squamulose pileus and crowded gill folds. Indeed, the holotype collection of C. densilamellatus described here was initially identified as C. densifolius in Buyck et al. (2000) and, in the absence of any reliable concept for Heinemann’s species, was even maintained as C. densifolius in the multigene Cantharellus phylogeny of Buyck et al. (2014). Although more than one woodland species might have been referred to as ‘C. densifolius’, C. densilamellatus as described here is undoubtedly one of the more common and widespread inhabitants of the Zambezian miombo woodlands. It differs from the true C. densifolius not only in its habitat preference, but also in its more elongated basidiospores, which are very similar to those of C. tomentosus Eyssart. & Buyck (another, but much less common,
Figure 10. *Cantharellus densilamellatus* (holotypus, Buyck 98.013). Microscopic features: a basidiospores b basidia and basidiola c thin-walled to slightly refringent hyphal extremities of the pileipellis. Scale bar: 10 µm but only 5 µm for basidiospores. Drawings: B. Buyck.

woodland species with crowded gills and much darker pileus surface and hymenophore – see Buyck 1994 [as ‘nyarympu’, its Kirundi vernacular name] and Buyck et al. 2000). *Cantharellus densilamellatus* further differs micromorphologically from *C. densifolius* in its more regular, less undulate and thinner-walled hyphal extremities of the pileus surface (Fig. 10). While the phylogenetic analysis presented here (Fig. 1) shows a close relationship of *C. densilamellatus* with *C. luteopunctatus*, the latter species differs in its pinkish, erect squamae, bright yellow pileus color, and initially white and strongly anastomosing gill folds.

Conclusion

Phylogenetic analysis including the newly obtained sequence data demonstrated that *C. densifolius* and *C. luteopunctatus*, here epityped, belong in the same subgenus but in different subclades. Additionally, the name *C. densifolius* has been consistently misapplied to at least one, and possibly several, similar taxa from the African woodland area (De Kesel pers. comm., Buyck 1994, Buyck et al. 2000, Härkönen et al. 2015). One of
these woodland species described here, *C. densilamellatus*, is very different morphologically from, but phylogenetically sister to, *C. luteopunctatus*. *Cantharellus tomentosoides* is a new species that is morphologically similar to, but phylogenetically distinct from, *C. densifolius* and is from the same local habitat in the *G. dewevrei* rain forest. These results, along with the continuing discovery of new, morphologically unique African chanterelles, emphasize the importance of Africa as a global diversity hotspot for *Cantharellus* (Buyck 2016, De Kesel et al. 2016, Buyck et al. 2017).

Acknowledgements

B. Buyck thanks the ATM of the Paris’ Museum and “l’Institut Ecologie et Environnement” (CNRS-INEE) for funding the field trip with Shelly Masi to Africa; Shelly is thanked for all the practical help and sharing her experience. Terence Fuh and the staff of the Primate Habituation Programme of the Dzanga-Ndoki National Park, Réserve Spéciale de Forêt Dense de Dzanga-Sangha at Bayanga, as well as all staff, Aka guides and visitors of the Bai Hokou field station for their logistical support, field assistance and their very enjoyable company during our stay. This research was made possible through research permit 034/MENESR/DIRCAB/DGESRSTI/DRSTSPI/SSSTI/16 from the “Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche scientifique” of the Central African Republic. Funding was provided to T.W. Henkel by National Geographic Society’s Committee for Research and Exploration grant 9235-13 and National Science Foundation grant DEB-1556338. In Cameroon the Ministry of Research and Scientific Innovation issued research permits. The Conservator of the Dja Biosphere Reserve, Mr. Ndinga Hilaire, and his staff greatly assisted the fieldwork in the Dja. Congo Basin Institute staff provided much logistical support. Field assistance in Cameroon was provided by Mei Lin Chin, Todd Elliott, Camille Truong, Bryn Dentinger, Cathie Aime, Rachel Koch, Blaise Jumbam, Olivier Séné, Carolyn Delevich, Kennan Mighell, Jessie Uehling, Noah Siegel, Alamane Gabriel (a.k.a. Sikiro), and Essambe Jean-Pierre (a.k.a. Papa Chef). The first author thanks the Curator of the Herbarium (BR) of the Botanic Garden Meise, Belgium, for permission to reproduce the original watercolors by Mme. Goossens-Fontana.

References

Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana, KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lösing R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui...

Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus

Matteo Gelardi¹, Claudio Angelini²³, Federica Costanzo¹, Francesco Dovana⁴, Beatriz Ortiz-Santana⁵, Alfredo Vizzini⁴

¹ Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy ² Via Cappuccini 78/8, I-33170 Pordenone, Italy ³ National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic ⁴ Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy ⁵ US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA

Corresponding author: Alfredo Vizzini (alfredo.vizzini@unito.it)

Academic editor: M.P. Martín | Received 18 January 2019 | Accepted 12 March 2019 | Published 29 March 2019

Abstract

Neoboletus antillanus sp. nov. appears to be the only red-pored bolete known from the Dominican Republic to date. It is reported as a novel species to science based on collections gathered in a neotropical lowland mixed broadleaved woodland. A detailed morphological description, color images of fresh basidiomes in habitat and line drawings of the main anatomical features are provided and relationships with phylogenetically and phenotypically similar taxa are discussed. Three genomic regions (nrITS, nrLSU/28S and rpb2) have been sequenced in order to reinforce the recognition of the new species and to elucidate its taxonomic affiliation within Neoboletus.

Keywords

Boletales, molecular phylogeny, Greater Antilles, neotropical boletes, Sutorius, taxonomy

Copyright Matteo Gelardi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

In recent times the intensive use of molecular tools applied to the investigation of the systematics of boletoid mushrooms and related groups (order Boletales) has dramatically revolutionized traditional classifications based on morphological traits, facilitating the research process and leading to the establishment of a novel scientific approach with unexpected taxonomic implications (Bruns and Palmer 1989, Binder 1999, Binder and Bresinsky 2002, Binder et al. 2005, Binder and Hibbett 2006, Nuhn et al. 2013, Wu et al. 2014).

In particular, members of the Boletaceae have undergone an extensive reassessment and several new genera have arisen from large, unwieldy and definitely polyphyletic assemblages such as *Boletus* Fr., *Xerocomus* Quél. and *Tylopilus* P. Karst, just to name a few (Wu et al. 2016b). Among these genera, *Neoboletus* Gelardi, Simonini & Vizzini has recently been segregated from *Boletus* s.l. (Vizzini 2014), to include taxa orbiting around the generic type *Boletus luridiformis* Rostk. that were traditionally assigned to either the polyphyletic *Boletus* sect. *Luridi* Fr. emend. Lannoy & Estadès (Lannoy and Estadès 2001), *Boletus* sect. *Erythropodes* Galli pro parte (Galli 2007) or *Boletus* subg. *Luridellus* sect. *Immutabiles* and sect. *Luridiformes* pro parte (nom. inval., art. 39.1) (Watling and Hills 2005). Species included in *Neoboletus* are characterized by boletoid to rarely secolioid habit, tomentose to velvety pileus, yellow-olive tubes, brownish, red to orange or more rarely yellow pores, stipe surface usually finely dotted-punctate, yellowish context, tissues quickly and intensely bluing on handling or exposure, mild taste, olive-brown spore print, ellipsoid-fusiform, smooth basidiospores, trichodermal pileipellis consisting of filamentous hyphae, hymenophoral trama of the “*Boletus*-type”, fertile caulohymenium, inamylloid hyphae in the stipe trama, gymnocarpic ontogenetic development and ectomycorrhizal (ECM) association with members of the Pinaceae and Fagaceae (Vizzini 2014, Simonini and Vizzini 2015, Bessette et al. 2016, Wu et al. 2016a). The separation of *Neoboletus* from *Boletus* s. str. and its establishment at the generic rank is phylogenetically strongly supported (Binder and Hibbett 2006, Mello et al. 2006, Halling et al. 2007, 2015; Desjardin et al. 2009, Li et al. 2011, Zeng et al. 2012, Gelardi et al. 2013, 2015; Nuhn et al. 2013, Trappe et al. 2013, Arora and Frank 2014, Vizzini et al. 2014, Wu et al. 2014, Zhao et al. 2014, 2015; Zhu et al. 2014, Chakraborty et al. 2015, Simonini and Vizzini 2015, Smith et al. 2015, Urban and Klofac 2015, Henkel et al. 2016, Liang et al. 2016, Orihara and Smith 2017), the genus being tentatively placed in the “Pulveroboletus group” (Wu et al. 2014), although its taxonomic placement within the Boletaceae still remains uncertain (Nuhn et al. 2013, Wu et al. 2014).

Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Particularly the Caribbean appear to be little explored from the mycological perspective; information is generally widely dispersed and members of the Boletales (including also lamellate and sequestrate representatives) have only sporadically been reported over the past two centuries (Berkeley and Curtis 1869, Hitchcock 1898, Patouillard 1900 1902; Murrill 1910, 1918, 1921; Baker and Dale 1951, Dennis 1970, Kreisel 1971, Singer and Fiard 1976, Reid 1977, Hosford and Trappe 1980, Alphonse 1981, Pegler 1983, 1987; Miller et al. 2000, Guzmán et al. 2004, Camino Vilaró et al. 2006, Ortiz-Santana 2006, Courtecuisse and Welti 2013, Lécuru and Courtecuisse 2013, Moreau et al. 2013). In the Dominican Republic (Hispaniola), as far as the boletoid fungi are concerned and aside from the recent settlement of the genus Phylloporopsis Angelini et al. based on Phylloporus boletinoides A.H. Smith & Thiers (Farid et al. 2018) and a few other reports of boletes annotated in general publications (Minter et al. 2001, Lodge et al. 2001), the monographic treatment of Ortiz-Santana et al. (2007) currently remains the sole and as yet most comprehensive taxonomic account dealing with the Boletaceae and Suillellaceae for this country.

Neoboletus antillanus is described herein as a new species to science using morphological and three-loci (nrITS, nrLSU/28S and rpb2) molecular data, based on multiple collections from a lowland mixed woodland consisting of a number of different neotropical broadleaved trees, in purported ECM association with the widespread, natively sand-growing littoral seagrape, Coccoloba uvifera (L.) L. (Polygonaceae), a small woody plant naturally distributed throughout the Caribbean basin (Séné et al. 2015, 2018). This notable species appears to be the first and sole red-pored bolete recorded in the Dominican Republic so far and one of the very few ECM members of the Boletaceae to be found in local lowland deciduous forested ecosystem.

The present paper is one in a series of intended contributions devoted to the study of neotropical Boletales, aiming to provide new insights into the taxonomy, phylogenetic relationships, plant and substrate associations, ecological importance, conservation and biogeographic patterns of the bolete communities occurring in the Dominican Republic, with continued biodiversity investigations of underexplored areas.

Materials and methods

Collection site and sampling

Specimens examined were collected in a hilly forest near the cemetery of Sousa, in Puerto Plata Province, Dominican Republic, and are deposited in the Herbarium of Jardín Botánico Nacional of Santo Domingo, Dr. Rafael Ma. Moscoso (JBSD) (acronym from Thiers 2019), while “ANGE” and “MG” refer to the personal herbarium of Claudio Angelini and Matteo Gelardi, respectively. Herbarium numbers are cited for all collections from which morphological features were examined. Author citations follow the Index Fungorum, Authors of Fungal Names (www.indexfungorum.org/authorsoffungalnames.htm).
Morphological studies

Macroscopic descriptions and ecological information, such as habitat notations, time of fruiting and associated plant communities accompanied the detailed field notes of the fresh basidiomata. Color terms in capital letters (e.g. Myrtle Green, pl. VIII) are from Ridgway (1912). Photographs of collections were taken in the natural habitat using a Nikon Coolpix 8400 digital camera. Microscopic anatomical features were observed and recorded from revived dried material; sections were rehydrated either in water, 5% potassium hydroxide (KOH) or in anionic solution saturated with Congo red. All anatomical structures were observed and measured from preparations in anionic Congo red. Colors and pigments were described after examination in water and 5% KOH. Measurements were made at 1000x using a calibrated ocular micrometer (Nikon Eclipse E200 optical light microscope). Basidiospores were measured directly from the hymenophore of mature basidiomes, dimensions are given as (minimum) average ± standard deviation (maximum), Q = length/width ratio with the extreme values in parentheses, Qm = average quotient (length/width ratio) ± standard deviation and average spore volume was approximated as a rotation ellipsoid \[V = (\pi \cdot L \cdot W^2)/6 \pm \text{standard deviation} \]. The notation \([n/m/p]\) indicates that measurements were made on “n” randomly selected basidiospores from “m” basidiomes of “p” collections. The width of each basidium was measured at the widest part, and the length was measured from the apex (sterigmata excluded) to the basal septum. Metachromatic, cyanophilic and iodine reactions were tested by staining the basidiospores in Brilliant Cresyl blue, Cotton blue and Melzer’s reagent, respectively. Line drawings of microstructures were traced in free-hand based on digital photomicrographs of rehydrated material.

DNA extraction, PCR amplification and DNA sequencing

Genomic DNA was isolated from 10 mg of four dried herbarium specimen (Table 1), by using the DNeasy PlantMini Kit (Qiagen, Milan Italy) according to the manufacturer’s instructions. PCR amplifications were performed with the primers ITS1F/ITS4 for the nrITS region (White et al. 1990, Gardes and Bruns 1993), LR0R and LR5 for the nrLSU region (Vilgalys and Hester 1990) and the reverse complement of bRPB2-6R2 (Matheny et al. 2007) and bRPB2-7.1R2 (5’– CC-CATNGCYTGYTTVCCCATDGC –3’) or RPB2-B-F1 and RPB2-B-R (Wu et al. 2014) for partial \[rpb2 \]. Amplification reactions were performed in a PE9700 thermal cycler (Perkin-Elmer, Applied Biosystems) following Vizzini et al. (2015). The PCR products were purified with the AMPure XP kit (Beckman Coulter) and sequenced by MACROGEN Inc. (Seoul, Republic of Korea). The sequences were submitted to GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and their accession numbers are reported in Table 1.
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Sequence alignment, data set assembly and phylogenetic analyses

The sequences obtained in this study were checked and assembled using Geneious v. R 11.1.4 (Kearse et al. 2012) and compared to those available in GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) by using the BLASTN algorithm (Altschul et al. 1990). A general combined Maximum likelihood tree including all the Boletaceae sequences present in GenBank and UNITE (http://unite.ut.ee/) databases was generated to detect the phylogenetic position of our collections in the major clades of Boletaceae as circumscribed by Wu et al. (2014) (tree not shown). Consequently, phylogenetic analyses were restricted to the major clade including Neoboletus sequences (Pulveroboletus group, Fig. 1).

Our datasets consist of sequences of Neoboletus and other sequences with greatest similarity available in GenBank selected based on BLASTN search and previous molecular studies including Neoboletus collections (Wu et al. 2014, 2016a, b; Smith et al. 2015; Urban and Klofac 2015).

Sequences were aligned with MAFFT v. 7.017 (Katoh et al. 2002) and then manually adjusted using Geneious v. R 11.1.4 (Kearse et al. 2012). Two phylogenetic analyses were performed: the first phylogenetic analysis, based on a combined nrLSU/rpb1/rpb2 dataset, was focused on the intergeneric position of the new species in the Pulveroboletus group of the Boletaceae, as delimited by Wu et al. (2014). According to the results by Wu et al. (2014), Zangia erythrocephala was chosen as outgroup taxon for the three-loci combined dataset. The second phylogenetic analysis based only on a nrITS sequence dataset was restricted to the taxa closely related to the new species (genus Neoboletus). Costatisporus cyanescens was used as outgroup taxon for this dataset following Smith et al. (2015).

The GTRGAMMA model of sequence evolution was selected for both analyses. The two phylogenetic analyses were inferred with three partitions: nrLSU(28S)/rpb1/rpb2 and ITS1/5.8S/ITS2, respectively. The datasets were analyzed using Bayesian inference (BI) and Maximum likelihood (ML) criteria. The BI was performed with MrBayes v.3.2 (Ronquist et al. 2012) with four incrementally heated simultaneous Monte Carlo Markov Chains (MCMC) run for 10 million generations, under the selected evolutionary model. Trees were sampled every 1000 generations, resulting in overall

<table>
<thead>
<tr>
<th>Species</th>
<th>GenBank acc. number</th>
<th>Source, date and country</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nrITS</td>
<td>nrLSU (28S)</td>
</tr>
<tr>
<td>Neoboletus antillanus</td>
<td>MK388290 MK388302 MK488082</td>
<td>JBSD127417 (holotype), 14/12/2014, Dominican Republic</td>
</tr>
<tr>
<td>Neoboletus antillanus</td>
<td>MK388291 MK388302 –</td>
<td>JBSD127416, 03/12/2013, Dominican Republic</td>
</tr>
<tr>
<td>Neoboletus antillanus</td>
<td>MK388292 – –</td>
<td>JBSD127418, 01/12/2017, Dominican Republic</td>
</tr>
<tr>
<td>Boletus brunneopanoides</td>
<td>MK388293 MK512677 –</td>
<td>BOS 389 (CFMR, holotype), 21/10/2002, Belize</td>
</tr>
</tbody>
</table>
Figure 1. Phylogeny of the Pulveroboletus group based on a Bayesian and Maximum-likelihood inference analysis of a matrix of concatenated sequences from three nuclear gene regions (nrLSU, rpb1 and rpb2). Zangia erythrocephala was used as outgroup taxon. Values for clades that are supported in either the Bayesian (posterior probabilities, BPP) and Maximum likelihood (ML bootstrap percentage, MLB) analyses are indicated. BPP ≥ 0.95 and MLB ≥ 70% are given above clade branches. Newly sequenced collections are boldfaced in black. For each collection, the specific epithet (as present in GenBank), the herbarium code and GenBank accession numbers of the nrLSU/rpb1/rpb2 sequences are reported.
branches. Only BPP values ≥ 0.95 and MLB (Maximum likelihood bootstrap) values ≥ 70% have been reported in the phylogenetic trees (Figs 1, 2). Pairwise % identity values of the sequences were calculated using Geneious v. R 8.1.2 (Kearse et al. 2012). Alignments and phylogenetic trees are available at Tree-BASE (www.treebase.org, submission number S24011).

Results

Molecular analysis

The combined nrLSU/rpb1/rpb2 data matrix (focused on the Pulveroboletus group) comprised 47 sequences and is 2381 bp long. The nrITS data matrix (focused on Neoboletus) comprised 41 sequences and is 830 bp long. As the topology and branches support values of all the analyses are consistent, only the Bayesian trees with both BPP and MLB values are shown (Figs 1, 2). In the combined analysis (Fig. 1) a major clade is recognizable (BPP = 1, MLB = 82%), here named as the Sutorius clade, where the two sister (BPP = 1, MLB = 89%) genera Sutorius and Costatisporus are sister (BPP = 1, MLB = 82%) to the genus Neoboletus. The two collections of the new species clustered together within the genus Neoboletus forming a strongly supported clade (BPP = 1, MLB = 100%) which is sister (with no support) to N. magnificus. In the nrITS analysis (Fig. 2) the three collections of the new species (N. antillanus) clustered together in a strongly supported clade (BPP = 1, MLB = 100%) which shows no clear phylogenetic affinities with other species. The three nrITS sequences (677 to 683 bp) and the two nrLSU sequences (840 to 857 bp) of N. antillanus show a pairwise % identity value of 99.7 and 100, respectively. The type specimen of Boletus brunneopanoides from Belize forms: i) a strongly supported clade (BPP = 1, MLB = 89%) with also two collections of B. vermiculosoides, one collection of Boletus cf. vermiculosoides and one of B. vermiculosus, in the combined analysis; ii) a strongly supported clade (BPP = 1, MLB = 100%) with also two collections of B. vermiculosoides, one collection of Boletus cf. vermiculosoides and one of Boletales sp. (KY826093), in the nrITS analysis.

Taxonomy

Neoboletus antillanus Angelini, Gelardi, Costanzo & Vizzini, sp. nov.
Figs 3, 4
Mycobank MB829549

Etymology. the specific epithet antillanus (Latin) refers to the occurrence of the species in the Antilles islands of the Caribbean.

Original diagnosis. Basidiomes stipitate-pileate with tubular hymenophore characterized by medium-small size, pinkish red to reddish pileus surface, orange-red pores,
Figure 2. Bayesian phylogram obtained from the nrITS sequence alignment of Neoboletus species. Costatissporus cyanescens was used as outgroup taxon. Values for clades that are supported in either the Bayesian (posterior probabilities, BPP) and Maximum likelihood (ML bootstrap percentage, MLB) analyses are indicated. BPP ≥ 0.95 and MLB ≥ 70% are given above clade branches. Newly sequenced collections are boldfaced in blue. For each collection, the specific epithet (as present in GenBank), the herbarium code, GenBank accession number of the nrITS sequence and geographical origin (country) are reported.

reddish orange to purple-red punctuations on a yellow stipe surface, golden yellow strigosity at the stipe base, yellow context, tissues bruising dark blue when injured or exposed, ellipsoid-fusiform, smooth basidiospores, ixocutis pileipellis consisting of gelatinized, repent filamentous hyphae and occurrence in neotropical lowland mixed
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete... broadleaved forests in putative ECM association with host species (*Coccoloba uvifera*) other than Fagaceae and Pinaceae.

Holotypus. DOMINICAN REPUBLIC, Municipality of Sousa, Puerto Plata Province, Loc. Cemetery, 19°44’40”N, 70°32’21”W, 100 m a.s.l., 14 Dec 2014, C. Angelini (JBSD127417; isotypus ANGE434 and MG719).

Basidiomes medium-small (Fig. 3). **Ontogenetic development** gymnocarpic. **Pileus** (3.0) 3.5–7.5 (8.0) cm broad, at first hemispherical then persistently convex and finally broadly pulvinate-flattened, sometimes slightly depressed at centre, regularly to hardly unevenly shaped, moderately fleshy, firm at the beginning but progressively softer with age, flabby in old basidiomes; margin steady to faintly wavy-lobed, initially involute then curved downwards, extending beyond the tubes up to 1 mm; surface matt, dry but slightly greasy with moist weather, very finely tomentose, not cracked; cuticle somewhat variable in color, ranging from wine red, dark red or reddish pink to pastel pink (Pomegranate Purple, pl. XII; Spinel Red, pl. XXVI; Pinkish Vinaceous, pl. XXVII; Carmine, Eosine Pink, Geranium Pink, Rose Doree, pl. I; Alizarine Pink, Jasper Pink, Old Rose, pl. XIII), gradually fading with age and becoming pinkish cream to pale ochraceous pink (Flesh Pink, pl. XIII; Pale Ochraceous-Salmon, Pale Ochraceous-Buff, Light Buff, Light Ochraceous-Buff, Warm Buff, pl. XV) with olive-brown to brownish shades (Dresden Brown, pl. XV; Olive Lake, pl. XVI; Light Yellowish Olive, Buffy Olive, pl. XXX) tending to progressively spread from the center towards the peripheral zone; slowly bluing (Methy Green, Sea Green, Prussian Green, pl. XIX; Motmot Blue, Capri Blue, pl. XX) on handling or when injured; subcuticular layer cream-yellowish (Citrine Yellow, pl. XVI). **Tubes** at first thin then increasingly broader and as long as or slightly longer than the thickness of the pileus context at maturity (up to 1.0 cm long), adnate but soon deeply depressed around the stipe apex, occasionally subdecurrent, bright yellow (Lemon Chrome, pl. IV) to olive-yellow (Yellowish Citrine, pl. XVI), turning blue (Prussian Green, Duck Green, Invisible Green, pl. XIX) when cut and eventually fading to drab yellowish (Aniline Yellow, Pyrite Yellow, pl. IV). **Pores** initially forming a concave then flat surface, at first small then gradually wider (up to 1 mm in diam.), simple, roundish to barely angular at maturity, at first bright orange-red to orange (Scarlet Red, Scarlet, pl. I) although concolorous with the tubes (Lemon Chrome, pl. IV) towards the margin, soon becoming yellowish orange (Flame Scarlet, Orange Chrome, pl. II) and finally yellowish olive (Yellowish Citrine, pl. XVI) with very pale orange hues (Orange, pl. III), quickly and intensely turning blue (Prussian Green, Duck Green, Invisible Green, pl. XIX) on bruising or when injured. **Stipe** (3.5) 4.0–9.0 (9.5) × (1.0) 1.5–2.0 (2.5) cm, longer than or as long as the pileus diameter at maturity, central to slightly off-center, solid, firm, dry, straight or curved, at first ventricose-fusiform, later cylindrical but either slightly swollen towards the base to decidedly clavate or tapering downwards, not to barely rooting, evelate; surface at the apex or in the upper third usually smooth to occasionally very faintly reticulate due to the sub-decurrence of the hymenophore in some specimens and bright yellow (Lemon Chrome, pl. IV) to lemon yellow (Strontian Yellow, pl. XVI), elsewhere showing a fine, purple-red, dark red to orange-red (Indian Lake, pl. XXVI; Amaranth Purple, pl.
XII; Carmine, Scarlet Red, pl. I) punctuation (Fig. 2d) partly hiding the bright yellow (Lemon Chrome, pl. IV) ground color; the base is typically wrapped by a conspicuous golden yellow to brownish yellow strigosity (Fig. 2d) (Raw Sienna, pl. III; Yellow Ocher, pl. XV); bruising greenish blue (Light Blue Green, Blue Green, Forest Green, pl. XVII) throughout when pressed; basal mycelium golden yellow (Raw Sienna, pl. III; Yellow Ocher, pl. XV). Context firm when young, later soft textured and eventually flabby in the pileus (up to 1.0 cm thick in the central zone), a little more fibrous in the stipe, lemon yellow (Strontian Yellow, pl. XVI) throughout, usually with purple-brown (Indian Lake, pl. XXVI; Amaranth Purple, pl. XII) spots in the stipe, especially at the extreme base; turning blue (Methy Green, Sea Green, Prussian Green, pl. XIX; Motmot Blue, Capri Blue, pl. XX) more or less evenly when exposed to air and finally fading to drab yellowish (Aniline Yellow, Pyrite Yellow, pl. IV); subhymenophoral layer lemon yellow (Strontian Yellow, pl. XVI). Odour and taste not distinctive. Spore-print not obtained but likely olive-brown.

Basidiospores [102/5/3] (8.8) 11.1 ± 0.78 (12.7) × (4.1) 4.9 ± 0.26 (6) μm, Q= (1.85) 1.96–2.54 (2.57), Qm= 2.24 ± 0.12, V= 143 ± 23 μm³, inequilateral, ellipsoid-fusiform to ellipsoid in side view, ellipsoid in face view, smooth, apex rounded, with a short apiculus and with a shallow suprahilar depression, moderately thick-walled (0.5–0.9 μm), honey yellow colored in water and 5% KOH, having one or two large
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Basidia 24–48 × 10–13 µm (n= 26), cylindrical-clavate to clavate, moderately thick-walled (0.5–0.8 µm), predominantly 4-spored but also 1- or 2-spored, usually bearing relatively short sterigmata (2–6 µm), hyaline to pale yellowish and containing straw-yellow oil guttules in water and 5% KOH, bright yellow (inamyloid) in Melzer’s, without basal clamps (Fig. 4b); basidioles subcylindrical to faintly clavate, similar in size to basidia. Cheilocystidia (19) 21–56 × 4–9 (11) µm (n= 23), very common, moderately slender, projecting straight to sometimes flexuous, irregularly cylindrical or cylindrical-fusiform, fusiform to narrowly lageniform, showing a narrow and long neck, with rounded to subacute tip, smooth, moderately thin- to slightly thick-walled (0.3–0.9 µm), hyaline to pale yellowish in water and 5% KOH, bright yellow (inamyloid) in Melzer’s, without epiparietal encrustations (Fig. 4d). Pleurocystidia (41) 44–55 × 5–11 µm (n= 14), uncommon, shape, color and chemical reactions similar to but

Figure 4. Neoboletus antillanus. Micromorphological features (JBSD127417) a Basidiospores b Basidia c Caulocystidia d Cheilo- and pleurocystidia e Elements of the pileipellis. Scale bars: 10 µm (a–d); 20 µm (e). Drawings by F. Costanzo.
usually longer than cheilocystidia (Fig. 4d). *Pseudocystidia* not recorded. *Pileipellis* (Fig. 4e) an ixocutis consisting of strongly interwoven, elongated, filamentous and sinuous, frequently branched, repent to occasionally interwoven and embedded in gelatinous matter; terminal elements 20–72 × 3–9 μm, long and slender, cylindrical, apex pointed, moderately thick-walled (up to 1 μm), pale yellow to golden yellow in water and 5% KOH, inamyloid in Melzer’s, smooth to sometimes ornamented by a subtle zebra-like epiparietal encrustation; subterminal elements similar in shape, size and color to terminal elements. *Stipitipellis* a texture of slender, parallel to subparallel and longitudinally running, smooth-walled, adpressed hyphae, 3–11 μm wide, hyaline to yellowish in water and 5% KOH; the stipe apex covered by a well-developed caulohymenial layer consisting of sterile clavate caulobasidioles, abundant, predominantly 4- or 2-spored, fertile caulobasidia and projecting, irregularly cylindrical or cylindrical-fusiform, ventricose-fusiform to fusiform, sublageniform to rarely short mucronate *caulocystidia* (Fig. 4c) similar in shape and color to but slightly broader than hymenial cystidia, (23) 25–45 (54) × 5–13 (15) μm (n= 16), having a wall up to 0.8 μm thick. *Lateral stipe stratum* under the caulohymenium present and well differentiated from the stipe trama, of the “boletoid type”, at the stipe apex a (20) 30–40 (50) μm thick layer consisting of divergent, inclined and running towards the external surface, loosely intermingled and branched hyphae remaining separate and embedded in a gelatinous substance. *Stipe-trama* composed of densely arranged, subparallel to moderately interwoven, frequently septate, cylindrical to filamentous, smooth, inamyloid hyphae, 4–13 μm broad. *Basal tomentum hairs* 40–150 μm thick, consisting of tightly adpressed, parallel to subparallel, septate, filamentous, occasionally branched, relatively thick-walled (up to 0.8 μm) hyphae, 2–5.5 μm wide, terminal elements with blunt apex, pale yellow to honey yellow in water and 5 % KOH. *Hymenophoral trama* bilateral divergent of the “*Boletus*-type”, with slightly to strongly divergent, recurved-arculate and loosely arranged, often branched, restricted at septa, gelatinous hyphae (lateral strata hyphae in transversal section not touching each other, (2) 4–8 (10) μm apart, 3–13 μm broad), hyaline to very pale yellowish in water and 5% KOH, inamyloid in Melzer’s; lateral strata (20) 30–50 (60) μm thick, mediostratum (20) 30–60 (70) μm thick, axially arranged, consisting of a tightly adpressed, non-gelatinous bundle of hyphae, 3–10 μm broad; in Congo Red the mediostratum is darker than the lateral strata. *Thromboplerous hyphae* (= oleiferous hyphae sensu Clémençon 2004) very common and particularly frequent in the hymenophore, golden yellow in 5% KOH. *Clamp-connections* absent everywhere. *Hyphal system* monomitic.

Ecology. solitary to gregarious, growing on limestone among litter in a seasonally dry and moist anthropised lowland mixed stand under a large array of neotropical broadleaved trees, including *Coccoloba uvifera*, which represents its probable ECM host tree. See Parra et al. (2018) for further details on vegetation.

Edibility. Unknown.

Examined material. DOMINICAN REPUBLIC, Municipality of Sousa, in Puerto Plata Province, Loc. Cemetery, 19°44’40”N, 70°32’21”W, 100 m a.s.l., a single middle-aged specimen, 03 Dec 2014, C. Angelini (JBSD127416, ANGE425
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

and MG718); same loc., two young to mature specimens, 14 Dec 2014, C. Angelini (JBSD127417, Holotype, ANGE434 and MG719, Duplo); same loc., several dozens of specimens, most of which heavily parasitized by Hypomyces sp., 01 Dec 2017, C. Angelini (JBSD127418, ANGE958 and MG720).

Known distribution. Presently only known from the type locality in the Dominican Republic (Greater Antilles, Caribbean).

Discussion

Neoboletus antillanus phylogeny and interspecific relationships

Phylogenetic analyses corroborate the proposal of the new species *N. antillanus* (Figs 1, 2). It forms an independent evolutive line within *Neoboletus* with no evident phylogenetic relationships (it is sister to the Chinese *N. magnificus* in the combined analysis, but without statistical support) to allied congeneric taxa. According to the same analyses, *B. brunneopanoides*, a Belizean red-pored bolete species phylogenetically nested in *Neoboletus*, clustered in the same clade with collections named *B. vermiculosus/B. vermiculosoides* from North America. Should future molecular work prove conspecificity among these three species, *B. vermiculosus* Peck would have priority.

Taxonomic circumscription of *N. antillanus*

The genus *Neoboletus* currently encompasses fewer than ten species geographically restricted to the northern hemisphere and essentially distributed in temperate and tropical regions. However, judging from morphological traits, there might be an additional number of species, up to three times as many in fact, belonging to the same genus, most of which have not yet been molecularly investigated. It is worth noting that a group of Chinese researchers after having firstly accepted *Neoboletus* as an independent genus (Wu et al. 2016a), have subsequently reduced it in synonymy with *Sutorius* Halling, Nuhn & Fechner based on a wider interpretation of the generic boundaries within the Boletaceae (Wu et al. 2016b). As previously pointed out by Gelardi (2018), we presently disagree with this broad circumscription of *Sutorius* since it is, judging from the original description, easily separated from *Neoboletus* based on the overall dark colors, different stipe ornamentation pattern, different spore print color, pores stuffed in early developmental stages like those of *Boletus s. str.* and *Butyriboletus* Arora & J.L. Frank and non-bluing tissues (Halling et al. 2012b). Enough, in our opinion, to state they are not the same thing especially because they cluster in two different (although with a low statistical support) sister clades. Moreover, molecular studies carried out by Smith et al. (2015) on false-truffle fungi from north-eastern South America (Guyana) and our nrLSU/rpb1/rpb2 analy-
sis (Fig. 1) indicate the sequestrate genus *Costatisporus* T.W. Henkel & M.E. Smith as the sister taxon to *Sutorius*. *Costatisporus, Neoboletus* and *Sutorius* form the *Sutorius* clade (Fig. 1).

Neoboletus antillanus is easily identifiable among other species of the same genus based on the following set of unique morphologically informative features: 1) medium-small size, 2) reddish to pinkish red then pinkish cream pileus surface, 3) pores orange red to yellowish orange, 4) stipe ornamented over the lower three fourth by purple-red to reddish orange punctuations on a yellow background, 5) lowermost part of the stipe prominently strigose with golden yellow to brownish yellow hairs, 6) yellow context, 7) tissues bruising dark blue when injured, 8) ellipsoid-fusiform, smooth basidiospores, 9) ixocutis pileipellis consisting of gelatinized, repent filamentous hyphae and 10) occurrence in neotropical lowland mixed broadleaved forests. To date, *N. antillanus* has never been found with host species other than local autoctonous broadleaved trees and does not appear to be associated with either Pinaceae or Fagaceae (the latter plant family is not present in Dominican Republic). Moreover, such a purported ECM association of *N. antillanus* with the endemic *C. uvifera* might implicate a neotropical origin. Further suggestion supporting a symbiotic relationship between *N. antillanus* and *C. uvifera* is the co-occurrence at the same locality with *Cantharellus coccolobae* Buyck, P.-A. Moreau and Courtec., which is strictly associated with seagrape in tropical America (Buyck et al. 2016).

Among the other endemic red-pored boletes reported from Central America, *Boletus pyrrhosceles* Halling, *B. guatemalensis* R. Flores & Simonini, *B. dupainii* Boudier and *B. paulae* J. García, Singer & F. Garza-Ocañas superficially resembles *N. antillanus*. However, *B. pyrrhosceles* is easily separated by the reddish brown to brownish orange pileus surface, adnate to subdecurrent hymenophore, shallow tubes (up to 5 mm deep), brownish red pores, tomentose and reticulate stipe that is entirely brownish red to deep red, slightly smaller basidiospores (9.1–11.2 × 4.2–4.9 µm, Qm= 2.3), trichodermal pileipellis and association with *Quercus humboldtii* Bompl. in Colombia (Halling 1992). *Boletus guatemalensis* has a whitish to pale yellow context with yellowish green spots towards the stipe base, radially elongated angular pores, stipe surface with brownish green fibrils in the lower half and a smooth, whitish base, white basal mycelium, unchanging tissues, mostly 2- or 3-spored basidia, a cutis pileipellis consisting of non-gelatinized hyphae, hymenophoral trama intermediate between the “*Boletus*-type” and the “*Phylloporus*-type” and is associated with *Pinus caribaea* Morelet in Guatemala, Belize and Mexico (Flores Arzù and Simonini 2000, Ortiz-Santana et al. 2007, García-Jiménez et al. 2013). *Boletus dupainii* s. Ortiz-Santana et al. differs in the larger size (pileus up to 13 cm broad), polish and shiny, carmine red to crimson red pileus surface, deep red pores, stipe base devoid of strigosity, longer spores (12.8–14.4 × 4–5.6 µm, Qm= 2.9), smaller basidia (24–29.6 × 9.6–10.4 µm), shorter pleuro-, cheilo- and caulocystidia (26.4–47.2 × 7.2–8.8 µm, 16–30.4 × 4.8–8 µm and 16–36.8 × 5.6–11.2 µm, respectively), thinner pileipellis hyphae (up to 6.5 µm diam.) and growth in symbiosis with *Quercus* spp. in Belize.
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete... 87

This species has recently been assigned to Rubroboletus Kuan Zhao & Zhu L. Yang on account of morphological and molecular evidence (Zhao et al. 2014). It was originally described from Europe (Boudier 1902) where it appears to be widespread although uncommon, but in recent times it has also been reported from the New World (McConnell and Both 2002, Ortiz-Santana et al. 2007, Both et al. 2009, García-Jiménez 2013, Bessette et al. 2016). However, the conspecificity of the European material with that from the western hemisphere is yet to be confirmed and a comparative analysis is currently under examination. Finally, B. paulae exhibits a deep red, vinaceous red to strawberry red pileus surface, smooth stipe base, whitish gray basal mycelium, pale whitish yellow and erratically bluing context on exposure, hymeniform pileipellis consisting of chains of inflated to subglobose elements up to 34 µm broad and ECM association with oaks in Mexico (García-Jiménez et al. 2013).

Although N. antillanus exhibits some superficial morphological affinities with Boletus vermiculosus Peck, B. vermiculosoides A.H. Smith & Thiers and B. brunneopanoides B. Ortiz, these three species have larger basidiome size (pileus 7–18 cm broad and stipe 9–14 cm long in B. vermiculosus, pileus up to 12 cm and 16 cm broad in B. vermiculosoides and B. brunneopanoides, respectively), submentose to velvety, yellowish brown or grayish brown to dark brown pileus surface, brownish orange to amber brown or dark brown pore surface fading brownish yellow with age, extremely fine brownish punctuations on stipe surface and stipe base without hairs. B. vermiculosus also differs from N. antillanus in the trichodermal pileipellis devoid of gelatinous matter, longer basidiospores [(11) 12.6–14 (15) × (4) 4.9–5.6 (6) µm, Qm= 2.6] and the occurrence under Fagaceae. B. vermiculosoides is further distinguished by the paler, whitish-yellow stipe surface, narrower basidiospores [9–12 × 3–3.5 (4) µm], smaller basidia (20–26 × 7–9 µm) and association with Fagaceae, whereas B. brunneopanoides is also separated by the whitish stipe surface, narrower basidiospores (8.8–12.8 × 4 µm), smaller basidia (20.4–32× 8–8.8 µm) and the occurrence with Pinaceae (P. caribaea) (Coker and Beers 1943, Smith and Thiers 1971, Both 1993, Bessette et al. 2000, 2016; Halling and Mueller 2005, Ortiz-Santana et al. 2007). Boletus vermiculosus and B. vermiculosoides were originally described from eastern North America but the former is also encountered in Central America south to Belize and Costa Rica (Bessette et al. 2000, 2016; Halling and Mueller 2005), while B. brunneopanoides was only found in Belize (Ortiz-Santana et al. 2007). Up to now, neither of these species has been reported from the Dominican Republic.

At least two additional North American boletes might be confused with N. antillanus, namely Boletus subluridus (Murrill) Murrill and B. fairchildianus (Singer) Singer. The combination of yellowish orange, orange-pink to purplish red pileus surface, dark red pores, non-strigose stipe base, slightly longer basidiospores [(8.5) 9–14(14.5) × (3.5) 4–6(7) µm], smaller basidia (20–25.5 × 7.5–10 µm and occurrence with oaks and pines in south-eastern USA differentiate B. subluridus from N. antillanus (Murrill 1938, Singer 1945, 1947, both as B. miniato-olivaceus var. subluridus Singer; Both
1993, Bessette et al. 2000; 2016), whereas *B. fairchildianus* is distinguished by the larger size (pileus up to 15 cm broad), stipe base without strigosity, larger basidiospores [(12.5) 13–18.8 (19.7) × (4.5) 5–8 µm] and the association with *Quercus* spp. in south-eastern USA and Mexico (Singer 1945, 1947, both as *B. rubricitrinus* var. *fairchildianus* Singer; Both 1993, Bessette et al. 2000, 2016; García-Jiménez 2013).

The eastern Asian species *N. brunneissimus* (W.F. Chiu) Gelardi, Simonini & Vizzini and *N. antillanus* share some common features such as basidiome size, presence of golden yellow to brownish yellow strigosity at the stipe base, yellowish context and dark blue staining of tissues by auto-oxidation but the former is readily separated by the velvety and rusty brown to umber-brown pileus cuticle, rusty brown to reddish-brown pores, denser and rusty-brown punctuation on stipe surface, trichoderm pileipellis consisting of non-gelatinized erect hyphae with slightly shorter and narrower terminal elements [23–45 (58) × 3.5–5 (7) µm] and the occurrence in East Asia in association with Fagaceae and Pinaceae (Chiu 1948, 1957; Bi et al. 1997, Mao 2000, 2009; Wang and Liu 2002, Wang 2004, Wang et al. 2004; Zang 2006, Wu et al. 2016a, Gelardi 2018).

The Chinese *N. magnificus* (W.F. Chiu) Gelardi, Simonini & Vizzini, *Sutorius sanguineoides* G. Wu & Zhu L. Yang and *S. sanguineus* G. Wu & Zhu L. Yang are three additional eastern Asian species that may be confused with *N. antillanus*. Aside from the different geographical distribution and the ECM deciduous and coniferous host associates (Fagaceae and Pinaceae), the former species is also delimited by the dark red to reddish brown pores in the early developmental stages, a decidedly clavate to bulbous stipe base (up to 6 cm broad) that is devoid of or sometimes with inconspicuous strigosity and non-gelatinized trichodermal pileipellis with broader end elements (up to 16 µm wide) (Chiu 1948, 1957; Bi et al. 1997, Mao 2000, 2009; Wang 2004, Wang et al. 2004, Zang 2006, Wu et al. 2016a), whereas *S. sanguineoides* and *S. sanguineus* are both separated from *N. antillanus* on account of the deep red, blood red to brownish red pileus surface, dark red to brownish red pores, non-strigose stipe base, non-gelatinized trichodermal pileipellis and the occurrence in subalpine forests at very high elevations (over 3000 m alt.) (Wu et al. 2016b). Furthermore, *S. sanguineoides* differs in its decidedly larger basidiospores [13.5–17 (21) × 5–7 µm, Qm= 2.56] while *S. sanguineus* also exhibits an evenly red stipe surface, slightly longer basidiospores [10–14 (15) × 5–6 (7) µm, Qm= 2.14] and broader cystidioid pileipellis terminal cells (9–15 µm wide) (Wu et al. 2016b).
Acknowledgments

CA wishes to thank Ricardo G. García, Francisco Jiménez, Brígido Peguero, Yuley E. Piñeyro and Alberto Veloz (Jardín Botánico Nacional Dr. Rafael M. Moscoso, Santo Domingo, Dominican Republic) for their interest and encouragement in studying fungi of the Dominican Republic and for their active cooperation in providing herbarium material preserved in their institution. Roy E. Halling (New York Botanical Garden, New York, USA) is acknowledged for providing valuable bibliography concerning Central American boletes.

References

Baker RED, Dale WT (1951) Fungi of Trinidad and Tobago. Mycological Papers 33: 1–123
Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete...

Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and Striatiguttula gen. nov. from palms

Sheng-Nan Zhang1,2,3,4, Kevin D. Hyde4, E.B. Gareth Jones5, Rajesh Jeewon6, Ratchadawan Cheewangkoon3, Jian-Kui Liu1,2

1 Center for Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Science, Guiyang 550006, P.R. China 3 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Nantgaredig 33B St. Edwards Road, Southsea, Hants, UK 6 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius, 80837, Mauritius

Corresponding author: Jian-Kui Liu (ljiankui@gmail.com)

Abstract

Palms represent the most morphologically diverse monocotyledonous plants and support a vast array of fungi. Recent examinations of palmicolous fungi in Thailand led to the discovery of a group of morphologically similar and interesting taxa. A polyphasic approach based on morphology, multi-gene phylogenetic analyses and divergence time estimates supports the establishment of a novel pleosporalean family Striatiguttulaceae, which diversified approximately 39 (20–63) MYA (crown age) and 60 (35–91) MYA (stem age). Striatiguttulaceae is characterized by stromata or ascomata with a short to long neck, trabeculate pseudoparaphyses and fusiform to ellipsoidal, 1–3-septate ascospores, with longitudinal striations and paler end cells, surrounded by a mucilaginous sheath. Multi-gene phylogenetic analysis showed that taxa of Striatiguttulaceae form a well-supported and distinct monophyletic clade in Pleosporales, and related to Ligninsphaeriaceae and Pseudoastrosphaeriellaceae. However, these families can be morphologically demarcated by the slit-like ascomata and extremely large ascospores in Ligninsphaeriaceae and the rather narrow fusiform ascospores in Pseudoastrosphaeriellaceae. Eight strains of Striatiguttulaceae formed two monophyletic sub-clades, which can be recognized as Longicorpus gen. nov. and Striatiguttula gen. nov. Morphologically, the genus Longicorpus can be differentiated from Striatiguttula by its elongated immersed ascospores.

Copyright Sheng-Nan Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ascomata and fusiform ascospores with relatively larger middle cells and paler end cells. Two new species *Striatiguttula nypae* and *S. phoenicis*, and one new combination, *Longicorpus striataspora* are introduced with morphological details, and phylogenetic relationships are discussed based on DNA sequence data.

Keywords
6 new taxa, divergence times, Dothideomycetes, epitype, sexual morphs

Introduction

Fungi associated with palms have been intensively investigated by Hyde and his co-workers (Goh and Hyde 1996, Fröhlich and Hyde 2000, Hyde and Alias 2000, Hyde et al. 2000, Yanna et al. 2001a,b,c, Taylor and Hyde 2003, Hyde et al. 2007), and provided a significant contribution to their diversity and taxonomy. There have been a number of interesting studies on palm fungi. For example, Fröhlich and Hyde (1999) reviewed the biodiversity of palm fungi in the tropics, and proposed the ratio of host specific fungi to palm species as 33 to 1 rather than the general ratio of 6 to 1 for all plants proposed by Hawksworth (1991). Taylor et al. (2000) investigated biogeographical distribution of microfungi from temperate and tropical palms, and found different fungal assemblages from these two regions, and also revealed that the difference was more related to climatic influences than hosts sampled. Subsequently, Yanna et al. (2001b, 2002) studied fungal communities and succession of palms, and pointed out that fungal species compositions were distinct on different hosts and at different sites, and even differed from different palm tissues. In addition, some studies were dedicated to endophytic palmicolous fungi (Rodrigues and Samuels 1990, Taylor et al. 1999, Fröhlich et al. 2000, Hyde and Soytong 2008, Pinruan et al. 2010a, Mahmoud et al. 2017) and pathogens (Fröhlich et al. 1997, Hyde and Cannon 1999, Elliott et al. 2010, Mohammadi 2014). Other studies have focused on fungi on peat swamp palms (Pinruan et al. 2002, 2007, 2008, 2010b, 2014, Pinnoi et al. 2003) and from mangrove palms (Suetrong et al. 2009, Loilong et al. 2012, Zhang et al. 2018). All these examples indicate that species are diverse and palms harbour numerous undescribed microfungi.

Ascomycetes from palms are a very diverse assemblage and the best represented family is Xylariaceae (Xylariales, Sordariomycetes), with three commonly recorded genera *Anthostomella* (Xylariaceae), *Linocarpon* (Linocarpaceae) and *Oxydothis* (Oxydothidaceae) (Taylor and Hyde 2003, Hidayat et al. 2006, Konta et al. 2016b, 2017). In recent years, a series of Dothideomycetes from palms were described as new on the basis of morphology and phylogenetic analyses, such as astrophaeriella-like species (recognized as three groups: *Astrosphaeriellopsis*, Astrophaeriellaceae and Pseudoastrophaeriellaceae) and species of *Botryosphaeria* (Botryosphaeriaceae), *Fissuroma* (Aigialaceae), *Neodeightonia* (Botryosphaeriaceae) and *Roussoella* (Roussoellaceae) (Liu et al. 2010, 2011a,b, 2012, 2014, Phookamsak et al. 2015, Konta et al. 2016a,c, Wanasinghe et al. 2018). The diversity of palmicolous ascomycetes recovered can in part be due to the wide range of hosts and habitats sampled, the latter including terrestrial, freshwater, and marine or mangrove ecosystems. There are four palm species encoun-
Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

tered as mangrove associates in Asia (Tomlinson 1986): Calamus erinaceus (Becc.) J.Dransf., Nypa fruticans Wurmb., Oncosperma tigillarium (Jack) Ridl. and Phoenix paludosa Roxb. Loilong et al. (2012) documented the greatest biodiversity of fungi on N. fruticans listing 135 taxa (90 Ascomycota, three Basidiomycota and 42 asexual taxa), of which 97 taxa were described (Hyde 1992a,b, Hyde et al. 1999, Hyde and Alias 2000, Pilantananpak et al. 2005, Hyde and Sarma 2006) with support from DNA sequence data (Suetrong et al. 2015). Nevertheless, few studies have focused on fungi growing on Phoenix paludosa, where Lignincola conchicola, Kirschsteinothelia phoenicis and Acuminatispora palmarum were recently reported (Liu et al. 2011a, Hyde et al. 2018, Zhang et al. 2018).

Nypa fruticans is an ancient palm that grows in brackish water, while Phoenix paludosa is found in the upper parts of mangroves and tolerates salt water, with both occurring in Thailand mangrove sites. In an ongoing study on the taxonomy of fungi occurring on palms, we collected fungi colonizing these two palm hosts from different mangrove sites in Thailand. Interestingly, a group of ascomycetes recovered appears to be new to science based on morphology and multi-gene phylogenetic evidence. The aim of this study was to characterize the novel taxa and investigate their phylogenetic relationships in the order Pleosporales, as well as apply the divergence times as additional evidence, especially in higher taxa ranking, for the establishment of new family Striatiguttulaceae.

Materials and methods
Specimen collection, examination and single spore isolation

Decayed rachides or petioles of Nypa fruticans and Phoenix paludosa were collected from Chanthaburi, Krabi and Ranong provinces in Thailand. The collected specimens were washed under running water and examined via laboratory procedures as outlined by Jones and Hyde (1988). Morphological characters were observed using a Carl Zeiss stereo microscope fitted with an AxioCam ERC 5S camera and photographed by a Nikon ECLIPSE 80i compound microscope fitted with a Canon EOS 600D digital camera. Free hand sections of fruiting bodies were made into slides within water mounts and observed under Motic SMZ 168 stereo microscope. Measurements were taken by Tarosoft Image Frame Work program v. 0.9.7 and images used for figures processed with Adobe Photoshop CS6 Extended v. 13.0 software. Isolations were obtained from single spores as described in Choi et al. (1999). New taxa were established based on recommendations outlined by Jeewon and Hyde (2016). The strains isolated in this study were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and Guizhou Culture Collection (GZCC). Herbarium specimens were deposited at the herbaria of Mae Fah Luang University (MFLU), Chiang Rai, Thailand and Kunming Institute of Botany Academia Sinica (HKAS), Kunming, China. MycoBank numbers (Crous et al. 2004) and Facesoffungi numbers (Jayasiri et al. 2015) are provided.
DNA extraction, PCR amplification and sequencing

Fungal genomic DNA was extracted from fresh mycelia scraped from the margin of a colony on PDA that was incubated at 25 °C–28 °C for 30 days, followed by the Ezup Column Fungi Genomic DNA Purification Kit (Sangon Biotech (Shanghai) Co., Ltd, China) following the manufacturer’s instructions. Two partial rDNA genes and two protein coding genes were used in this study: the large subunit of the nuclear ribosomal RNA genes (LSU), the small subunit of the nuclear ribosomal RNA (SSU), the translation elongation factor 1-alpha (TEF1α) and the second largest subunit of RNA polymerase II (RPB2). The primers used were LR0R and LR5 for LSU (Vilgalys and Hester 1990), NS1/NS4 for SSU (White et al. 1990), EF1-983F/EF1-2218R for TEF1α (Rehner and Buckley 2005) and fRPB2-5F/fRPB2-7cR for RPB2 (Liu et al. 1999). The amplification reactions were performed in 25µL of PCR mixtures containing 9.5µL ddH2O, 12.5µL 2× PCR MasterMix (TIANGEN Co., China), 1µL DNA template and 1µL of each primer. The PCR thermal cycle program for LSU, SSU and TEF1α amplification were as follows: initial denaturing step of 94 °C for 3 min, followed by 40 cycles of denaturation at 94 °C for 45 seconds, annealing at 56 °C for 50 seconds, elongation at 72 °C for 1 min, and final extension at 72 °C for 10 min. The PCR thermal cycle program for the partial RNA polymerase second largest subunit (RPB2) was followed as initially 95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 1 min, annealing at 52 °C for 2 min, elongation at 72 °C for 90 seconds, and final extension at 72 °C for 10 min. Purification and sequencing of PCR products were carried out with primers mentioned above at Sangon Biotech (Shanghai) Co., Ltd, China.

Sequence alignment and phylogeny analyses

A concatenated data set of LSU, SSU, TEF1α and RPB2 sequences was used for phylogenetic analyses with the inclusion of reference taxa from GenBank (Table 1). Sequences were aligned using MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/) (Katoh and Standley 2013) and then checked visually and manually optimized using BioEdit v.7.0.9 (Hall 1999). Representative families in Pleosporales and several major groups in Dothideomycetes were included in our analyses, and taxa in Arthoniomycetes were selected as outgroup. A maximum likelihood (ML) analysis was performed at the CIPRES web portal (Miller et al. 2010) using RAxML v.7.2.8 as part of the “RAxML-HPC Blackbox (8.2.10)” tool (Stamatakis 2006, Stamatakis et al. 2008). A general time-reversible model (GTR) was applied with a discrete GAMMA distribution and four rate classes. Fifty thorough ML tree searches were carried out in RAxML v.7.2.7 under the same model. One thousand non-parametric bootstrap iterations were run with the GTR model and a discrete gamma distribution. The resulting replicates were plotted on to the best scoring tree obtained previously.
Table 1. Taxa used in this study and their GenBank accession numbers. The type species of each genus are marked with superscript T and ex-type strains are in bold.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Strain / Culture</th>
<th>GenBank Accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSU</td>
</tr>
<tr>
<td>Acrocordiopsis patilii</td>
<td>BCC28167</td>
<td>GU479773</td>
</tr>
<tr>
<td>Acrocordiopsis patilii†</td>
<td>BCC28166</td>
<td>GU479772</td>
</tr>
<tr>
<td>Acuminatispora palmarum</td>
<td>MFLUCC 18-0460</td>
<td>MH390438</td>
</tr>
<tr>
<td>Acuminatispora palmarum†</td>
<td>MFLUCC 18-0264</td>
<td>MH390437</td>
</tr>
<tr>
<td>Aigialus grandis†</td>
<td>BCC18419</td>
<td>GU479774</td>
</tr>
<tr>
<td>Aigialus mangrovei</td>
<td>BCC33563</td>
<td>GU479776</td>
</tr>
<tr>
<td>Aigialus parvus</td>
<td>BCC 18403</td>
<td>GU479778</td>
</tr>
<tr>
<td>Aigialus rhizophorae</td>
<td>BCC 33572</td>
<td>GU479780</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>CBS 916.96</td>
<td>DQ678082</td>
</tr>
<tr>
<td>Amniculicola lignicola†</td>
<td>Ying01</td>
<td>EF493861</td>
</tr>
<tr>
<td>Anteaglonium abbreviatum†</td>
<td>ANM 925a</td>
<td>GQ221877</td>
</tr>
<tr>
<td>Anteaglonium globosum</td>
<td>ANM 925.2</td>
<td>GQ221879</td>
</tr>
<tr>
<td>Antealophiotrema brunneosporum†</td>
<td>CBS 123095</td>
<td>LC194340</td>
</tr>
<tr>
<td>Aquasubmersa japonica</td>
<td>KT 2862</td>
<td>LC061587</td>
</tr>
<tr>
<td>Aquasubmersa miricensis</td>
<td>MFLUCC 11-0401</td>
<td>JX276955</td>
</tr>
<tr>
<td>Arthonia dispersa</td>
<td>UPSC2583</td>
<td>AY571381</td>
</tr>
<tr>
<td>Asovcratera manglicola†</td>
<td>BCC 09270</td>
<td>GU479782</td>
</tr>
<tr>
<td>Astrophaeriella fusisspora†</td>
<td>MFLUCC 10-0555</td>
<td>KT955462</td>
</tr>
<tr>
<td>Astrophaeriella neofusisspora</td>
<td>MFLUCC 11-0161</td>
<td>KT955463</td>
</tr>
<tr>
<td>Astrophaeriella stellata</td>
<td>KT998</td>
<td>AB524592</td>
</tr>
<tr>
<td>Astrophaeriellopsis bakeriana</td>
<td>MFLUCC 11-0027</td>
<td>JN846730</td>
</tr>
<tr>
<td>Astrophaeriellopsis bakeriana†</td>
<td>CBS 115556</td>
<td>GU301801</td>
</tr>
<tr>
<td>Binuria novae-zelandiae†</td>
<td>CBS 107.79</td>
<td>AY016356</td>
</tr>
<tr>
<td>Botryosphaeria dothidea</td>
<td>CMW 8000</td>
<td>KF766319</td>
</tr>
<tr>
<td>Byssothecium circinans</td>
<td>T CBS 675.92</td>
<td>LC061587</td>
</tr>
<tr>
<td>Capnodium coffeae</td>
<td>CBS 147.52</td>
<td>DQ247800</td>
</tr>
<tr>
<td>Caryospora minima</td>
<td>–</td>
<td>EU196550</td>
</tr>
<tr>
<td>Caryospora aquatica</td>
<td>MFLUCC 11-0008</td>
<td>MH057847</td>
</tr>
<tr>
<td>Cladosporium herbarum</td>
<td>CBS 399.80</td>
<td>DQ678074</td>
</tr>
<tr>
<td>Cryptocoryneum condensatum</td>
<td>CBS 122629</td>
<td>LC194351</td>
</tr>
<tr>
<td>Cryptocoryneum pseudolistonei</td>
<td>CBS 113641</td>
<td>LC194364</td>
</tr>
<tr>
<td>Delitschia chaeomoides</td>
<td>SMH 3253.2</td>
<td>GU390656</td>
</tr>
<tr>
<td>Delitschia didyma</td>
<td>UME 31411</td>
<td>DQ384090</td>
</tr>
<tr>
<td>Delitschia winteri</td>
<td>CBS 225.62</td>
<td>DQ678077</td>
</tr>
<tr>
<td>Dendrographa decolorans</td>
<td>Ertz 5003 (BR)</td>
<td>NG_027622</td>
</tr>
<tr>
<td>Didymella exigua</td>
<td>CBS 183.55</td>
<td>EU754155</td>
</tr>
<tr>
<td>Didymosphaeria rubi-ulmifolii</td>
<td>MFLUCC 14-0023</td>
<td>KJ436586</td>
</tr>
<tr>
<td>Disoconium acculare</td>
<td>CBS 204.89</td>
<td>GU214419</td>
</tr>
<tr>
<td>Dohiodothia aspera</td>
<td>CPC 12933</td>
<td>EU673276</td>
</tr>
<tr>
<td>Dohiodothia symphoricarpae†</td>
<td>CPC 12929</td>
<td>EU673273</td>
</tr>
<tr>
<td>Extremusantarcticus</td>
<td>CCFEE 5312</td>
<td>KF310020</td>
</tr>
<tr>
<td>Fissuroma hambucae</td>
<td>MFLUCC 11-0160</td>
<td>KT955468</td>
</tr>
<tr>
<td>Halothia posidonia†</td>
<td>BBH 22481</td>
<td>GU479786</td>
</tr>
<tr>
<td>Hermatomyces iriomotensis</td>
<td>MAFF 245730</td>
<td>LC194367</td>
</tr>
<tr>
<td>Hypostruma cattimbilenense</td>
<td>GKM 1165</td>
<td>GU385180</td>
</tr>
<tr>
<td>Hypostruma saxicola†</td>
<td>SMH 5005</td>
<td>GU385181</td>
</tr>
<tr>
<td>Hysterium angustatum</td>
<td>CBS 236.34</td>
<td>FJ161180</td>
</tr>
<tr>
<td>Hysterobrevium smitilis</td>
<td>CBS 114601</td>
<td>FJ161174</td>
</tr>
<tr>
<td>Latorua caligans†</td>
<td>CBS 576.65</td>
<td>KR873266</td>
</tr>
<tr>
<td>Taxa</td>
<td>Strain / Culture</td>
<td>GenBank Accession numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LSU</td>
</tr>
<tr>
<td>Latorua grootfonteinensis</td>
<td>CBS 369.72</td>
<td>KR873267</td>
</tr>
<tr>
<td>Lecanactis abietina</td>
<td>Erz 5068 (BR)</td>
<td>AY548812</td>
</tr>
<tr>
<td>Longicorpus striataspora</td>
<td>MFLUCC 18-0267</td>
<td>MK035988</td>
</tr>
<tr>
<td></td>
<td>MFLUCC 18-0268</td>
<td>MK035989</td>
</tr>
<tr>
<td></td>
<td>MFLUCC 17-2515</td>
<td>MK035990</td>
</tr>
<tr>
<td></td>
<td>MFLUCC 17-2516</td>
<td>MK035991</td>
</tr>
<tr>
<td>Lepidophaeria nicottiae</td>
<td>CBS 101341</td>
<td>DQ678067</td>
</tr>
<tr>
<td>Leptoxyphium fumago</td>
<td>CBS 505.75</td>
<td>GU301827</td>
</tr>
<tr>
<td>Lepidosphaeria jonesii</td>
<td>T CBS 15-0080</td>
<td>GU214535</td>
</tr>
<tr>
<td>Longicorpus striataspora</td>
<td>MFLUCC 15-0641</td>
<td>MK035973</td>
</tr>
<tr>
<td>Lindgomycetes cinctospora</td>
<td>R56-1</td>
<td>AB522431</td>
</tr>
<tr>
<td>Lindgomycetes ingoldianus</td>
<td>ATCC 200398</td>
<td>AB521736</td>
</tr>
<tr>
<td>Lindgomycetes rotundatus</td>
<td>KT1096</td>
<td>AB521740</td>
</tr>
<tr>
<td>Lophiotrema boreale</td>
<td>CBS 114422</td>
<td>LC194375</td>
</tr>
<tr>
<td>Lophiotrema lignicola</td>
<td>CBS 122364</td>
<td>GU301836</td>
</tr>
<tr>
<td>Lophiotrema nucula</td>
<td>CBS 627.86</td>
<td>GU301837</td>
</tr>
<tr>
<td>Macrodiplodiopsis desmazieri</td>
<td>CPC 24971</td>
<td>KR873272</td>
</tr>
<tr>
<td>Lottaria grootfonteinensis</td>
<td>CBS 591.78</td>
<td>GU301839</td>
</tr>
<tr>
<td>Massaria gigantispore</td>
<td>M26</td>
<td>HQ599397</td>
</tr>
<tr>
<td>Massaria inquinans</td>
<td>M19</td>
<td>HQ599402</td>
</tr>
<tr>
<td>Massaria eburnea</td>
<td>CBS 473.64</td>
<td>GU301840</td>
</tr>
<tr>
<td>Mauritiania rhizophorae</td>
<td>BCC 28866</td>
<td>GU371824</td>
</tr>
<tr>
<td>Melanommia pulvis-pyrius</td>
<td>CBS 124080</td>
<td>GU456323</td>
</tr>
<tr>
<td>Meriophyllum rubicundum</td>
<td>IFRD 2017</td>
<td>FJ795507</td>
</tr>
<tr>
<td>Mycosphaerella graminicola</td>
<td>CBS 292.38</td>
<td>DQ678084</td>
</tr>
<tr>
<td>Nigrograna mackinnonii</td>
<td>MFLUCC 11-0025</td>
<td>JN846729</td>
</tr>
<tr>
<td>Neodeglithonia palmicolica</td>
<td>MFLUCC10-0822</td>
<td>H919222</td>
</tr>
<tr>
<td>Neostigmatina rosati</td>
<td>CBS 690.82</td>
<td>DQ384107</td>
</tr>
<tr>
<td>Nigrograna marina</td>
<td>CBS 674.75</td>
<td>GQ387613</td>
</tr>
<tr>
<td>Nigrograna maculans</td>
<td>CY 1228</td>
<td>GQ925848</td>
</tr>
<tr>
<td>Phaeosphaeria oryzae</td>
<td>CBS 110110</td>
<td>GQ387591</td>
</tr>
<tr>
<td>Phoma herbarum</td>
<td>CBS 276.37</td>
<td>DQ678066</td>
</tr>
<tr>
<td>Pleurotus eucaroides</td>
<td>CBS 287.74</td>
<td>DQ678078</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>CBS 191.86</td>
<td>DQ247804</td>
</tr>
<tr>
<td>Polysphaeria fusca</td>
<td>KT 1616</td>
<td>AB524604</td>
</tr>
<tr>
<td>Preussia fucicola</td>
<td>CBS 659.74</td>
<td>GU301864</td>
</tr>
<tr>
<td>Prosthemium orientale</td>
<td>KT1609</td>
<td>AB553748</td>
</tr>
<tr>
<td>Pseudostropharia africana</td>
<td>MFLUCC 11-0176</td>
<td>KT955474</td>
</tr>
<tr>
<td>Pseudostropharia bambusae</td>
<td>MFLUCC 11-0205</td>
<td>KT955474</td>
</tr>
<tr>
<td>Pseudostropharia longicola</td>
<td>MFLUCC 11-0171</td>
<td>KT955474</td>
</tr>
<tr>
<td>Pseudostropharia thailandi</td>
<td>MFLUCC 11-0144</td>
<td>KT955478</td>
</tr>
<tr>
<td>Pseudotetratauroa curvappendiculata</td>
<td>HC 4930</td>
<td>AB524608</td>
</tr>
<tr>
<td>Pseudotetratauroa septentrionalis</td>
<td>HC 4984</td>
<td>AB524616</td>
</tr>
<tr>
<td>Racodium rupestris</td>
<td>L346</td>
<td>EU048583</td>
</tr>
<tr>
<td>Roccella fuciformis</td>
<td>Tehler 8171</td>
<td>FJ638979</td>
</tr>
<tr>
<td>Rousselloa nitidula</td>
<td>MFLUCC 11-0182</td>
<td>KJ474843</td>
</tr>
<tr>
<td>Roussellopsis macrospora</td>
<td>MFLUCC 12-0005</td>
<td>KJ474847</td>
</tr>
</tbody>
</table>
Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Strain / Culture</th>
<th>GenBank Accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSU</td>
</tr>
<tr>
<td>Salsuginea ramicola</td>
<td>KT2597.2</td>
<td>GU479801 GU479768 GU479862 GU479834</td>
</tr>
<tr>
<td>Salsuginea ramicola</td>
<td>KT 2597.1</td>
<td>GU479800 GU479767 GU479861 GU479833</td>
</tr>
<tr>
<td>Striatiguttula nypae</td>
<td>MFLUCC 18-0265</td>
<td>MK035992 MK035977 MK034432 MK034440</td>
</tr>
<tr>
<td>Striatiguttula nypae</td>
<td>MFLUCC 17-2517</td>
<td>MK035993 MK035978 MK034433 MK034441</td>
</tr>
<tr>
<td>Striatiguttula nypae</td>
<td>MFLUCC 17-2518</td>
<td>MK035994 MK035979 MK034434 –</td>
</tr>
<tr>
<td>Striatiguttula phoenicis</td>
<td>MFLUCC 18-0266</td>
<td>MK035995 MK035980 MK034435 MK034442</td>
</tr>
<tr>
<td>Tetraplosphaeria sasicalia</td>
<td>TK563</td>
<td>AB524631 AB524490 –</td>
</tr>
<tr>
<td>Trematosphaeria pertusa</td>
<td>CBS 122371</td>
<td>FJ201992 – – GU371801</td>
</tr>
<tr>
<td>Triplosphaeria maxima</td>
<td>KT 870</td>
<td>AB524637 AB524496 – –</td>
</tr>
<tr>
<td>Ulospora bilgramii</td>
<td>CBS 101364</td>
<td>DQ678076 DQ678025 DQ677921 DQ677974</td>
</tr>
<tr>
<td>Verruculina enalia</td>
<td>BCC 18401</td>
<td>GU479802 – GU479863 GU479835</td>
</tr>
<tr>
<td>Wicklowia aquatica</td>
<td>AF289-1</td>
<td>GU045446 – – –</td>
</tr>
<tr>
<td>Wicklowia aquatica</td>
<td>F76-2</td>
<td>GU045445 GU266232 – – –</td>
</tr>
<tr>
<td>Zopfia rhizophila</td>
<td>CBS 207.26</td>
<td>DQ384104 – – –</td>
</tr>
</tbody>
</table>

Maximum parsimony (MP) analyses were performed using the heuristic search option with 1000 random taxa additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm. All characters were unordered and of equally weight; gaps were treated as missing data. Maxtrees setting was 1000, and zero-length branches were collapsed, and all parsimonious trees were saved. Clade stability was assessed using a bootstrap (BT) analysis with 1000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis and Bull 1993). Tree length [TL], Consistency index [CI], Retention index [RI], Rescaled consistency index [RC], Homoplasy index [HI] were calculated.

The Bayesian analysis was performed using PAUP v.4.0b10 (Swofford 2002) and MrBayes v.3.1.2 (Ronquist and Huelsenbeck 2003). The best model for different genes partition in the concatenated data set was determined by MrModeltest 2.3 (Nylander 2004). Posterior probabilities (Rannala and Yang 1996) were determined by Markov Chain Monte Carlo sampling (MCMC) (Larget and Simon 1999) in MrBayes v.3.1.2. Four simultaneous Markov chains were run for 10 million generations and trees were sampled every 1000th generation, thus 10,000 trees were obtained. The suitable burn-in phases were determined by inspecting likelihoods and parameters in Tracer version 1.6 (Rambaut et al. 2013). Based on the tracer analysis, the first 1,000 trees representing 10% were discarded as the burn-in phase in the analysis. The remaining trees were used to calculate posterior probabilities in the majority rule consensus tree (critical value for the topological convergence diagnostic set to 0.01). Phylogenetic tree was visualized by FigTree v.1.4.2 (Rambaut 2014), and the alignment is deposited in TreeBASE under the accession number TB2: S23392 (http://purl.org/phylo/treebase/phylows/study/TB2:S23392).
Divergence times estimates

One secondary data and two fungal fossil calibrations were used in this study. The split between Arthoniomycetes and Dothideomycetes was selected as a secondary calibration point referring to previous evolutionary molecular studies (Gueidan et al. 2011, Prieto and Wedin 2013, Beimforde et al. 2014, Pérez-Ortega et al. 2016, Phukhamsakda et al. 2016), with a mean of 300 MYA and standard deviation (SD) of 50 MYA in a normal posterior distribution. Simultaneously, one ascomycete fossil Metacapnodiales (Schmidt et al. 2014), was used as the common ancestor of Capnodiales, with constraint of mean 100 MYA and SD 150 MYA in a normal posterior distribution (Pérez-Ortega et al. 2016, Hongsanan et al. 2016, Phukhamsakda et al. 2016, Liu et al. 2017). Whereas the fossil Margaretbarromyces dictyosporus (Mindell et al. 2007, Berbee and Taylor 2010, Taylor et al. 2015) was used to calibrate the Aigialus (Aigialaceae) crown, with an offset of 35 MYA in a gamma distribution (Phukhamsakda et al. 2016). Divergence time estimates were carried out by BEAST v 1.8.0 (Drummond et al. 2012). Aligned sequence data were partitioned separately for LSU, SSU, TEF1α and RPB2 data set, and loaded to prepare an XML file constructed with BEAUti v1.8.0. The substitution models, clock models and the tree prior parameters were set to be linked. The nucleotide substitution model was set to GTR (Generalized Time Reversible) + Gamma + Invariant sites, with estimated base frequencies, four gamma categories and without partitions. An uncorrelated relaxed clock model (Drummond et al. 2007) with a lognormal distribution of rates for each gene estimate was used for the analyses. We used a Yule tree prior, which assumes a constant speciation rate per lineage, and a randomly generated starting tree. The analysis was run for 100 million generations and parameters were sampled every 10,000 generations. Tracer v.1.6 (Rambaut et al. 2013) was used to analyze the trace files, and the acceptable effective sample sizes (ESS) values were greater than 200. Maximum clade creditability (MCC) trees were annotated using TreeAnnotator v1.8.0 and then visualized in FigTree v.1.4.2 (Rambaut 2014).

Results

Phylogenetic results

The multi-gene dataset comprised 113 taxa and 4113 characters after alignment (LSU: 919 bp; SSU: 1245 bp; TEF1α: 929 bp; RPB2: 1020 bp) including gaps. RAxML, MP and Bayesian analyses were conducted and resulted in generally congruent topologies, and the familial assignments are similar to previous work (Hashimoto et al. 2017, Liu et al. 2017). Maximum parsimony analyses indicated that 2,302 characters were constant, 355 variable characters parsimony uninformative and 1,456 characters are parsimony-informative. A heuristic search yield four equally most parsimonious trees (TL = 10905, CI = 0.278, RI = 0.561, RC = 0.156, HI = 0.722). The combined dataset provided higher confidence values for the familial level than those of the individual gene trees.
Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

Figure 1. RAxML tree of Pleosporales based on analysis of combined LSU, SSU, \textit{TEF1\textalpha} and \textit{RPB2} sequence data. Bootstrap values for ML and MP equal to or greater than 75% are placed above and below the branches respectively. Branches with Bayesian posterior probabilities (PP) from MCMC analysis equal or greater than 0.95 are in bold. Newly generated sequences are indicated in red.

The eight newly generated strains clustered together and positioned outside the two suborders (Massarineae and Pleosporineae) of Pleosporales, and formed a well-supported

(data not shown), and RAxML analysis based on LSU, SSU, \textit{TEF1\textalpha} and \textit{RPB2} yielded a best sorting tree (Figure 1) with a final optimization likelihood value of -52455.532059.

The eight newly generated strains clustered together and positioned outside the two suborders (Massarineae and Pleosporineae) of Pleosporales, and formed a well-supported
monophyletic clade and represented as a new lineage of Pleosporales. The phylogeny also revealed that this clade is close to Ligninsphaeriaceae, Pseudoastrosphaeriellaceae, Testudinaceae and Tetraplosphaeriaceae, and can be recognized as a novel family (Striatiguttulaceae). Furthermore, the eight strains formed two well-supported monophyletic sub-clades, which can be identified as two new genera (Longicorpus and Striatiguttula) with three species (Longicorpus striataspora, Striatiguttula nypae and S. phoenicis).
Figure 2. Maximum clade credibility (MCC) tree with divergence times estimates for Pleosporales and selected groups in Dothideomycetes, obtained from a Bayesian approach (BEAST) using one secondary and two fossil calibrations. Numbers at nodes indicate posterior probabilities (pp) for node support; bars correspond to the 95% highest posterior density (HPD) intervals. Numbers inside green circles indicate nodes used for calibrations: 1) the split of Arthoniomycetes and Dothideomycetes; 2) Metacapnodiaceae; 3) Margaretbarromyces dictyosporus.
Table 2. Divergence time estimates of Pleosporales and selected lineages of Dothideomycetes obtained from a Bayesian approach (BEAST) on basis of three calibrations. For each divergence, the median and the 95% highest posterior density (HPD) are provided. Divergence times are provided in millions of years (MYA).

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Crown group</th>
<th>Divergence times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crown age</td>
</tr>
<tr>
<td>1</td>
<td>Arthoniomycetes-Dothideomycetes</td>
<td>312 (220–413)</td>
</tr>
<tr>
<td>2</td>
<td>Capnodiales</td>
<td>195 (131–266)</td>
</tr>
<tr>
<td>3</td>
<td>Aigialus</td>
<td>41 (35–56)</td>
</tr>
<tr>
<td>4</td>
<td>Dothideomycetes</td>
<td>286 (210–369)</td>
</tr>
<tr>
<td>6</td>
<td>Striatiguttulaceae</td>
<td>39 20–63)</td>
</tr>
</tbody>
</table>

Divergence time estimates

The maximum clade credibility (MCC) tree with divergence estimates (Figure 2) obtained through BEAST was topologically identical to those recovered by Bayesian and ML procedures with regards to the placement Pleosporales and several major lineages within Dothideomycetes. The mean dates of Pleosporales crown corroborate reported estimates (Phukhamsakda et al. 2016, Liu et al. 2017, 2018) are provided in Table 2. The results showed that the new family Striatiguttulaceae diverged approximately 60 (35–91) MYA, which is line with recommendations for ranking families proposed in related studies (Hyde et al. 2017, Liu et al. 2017).

Taxonomy

Striatiguttulaceae S.N.Zhang, K.D.Hyde & J.K.Liu, fam. nov.
MycoBank: MB828272
Facesoffungi: FoF 05032

Etymology. Name refers to the name of the type genus.

Description. Saprobic on palms distributed in mangrove habitats. Sexual morph: Stromata black, scattered to gregarious, immersed beneath host epidermis, and erumpent to superficial, with a papilla or a short to long neck, ampulliform, subglobose or conical, uni-loculate or bi-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate, clypeate or not clear, glabrous or somewhat interwoven pale brown hyphae or setae. Peridium composed of several brown to hyaline cell layers. Hamathecium of trabeculate pseudoparaphyses. Asci 8-spored, bitunicate, cylindric-clavate, pedicellate. Ascospores hyaline to brown, uniseriate or biseriate, fusiform or ellipsoidal, 1–3-septate, striate, guttulate, with paler end cells and surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Notes. The family *Striatiguttulaceae* is introduced to accommodate two new genera *Longicorpus* and *Striatiguttula*, characterized by the immersed, and erumpent to superficial stromata, with a papilla or a short to long neck, trabeculate pseudoparaphyses, bitunicate asci, and hyaline to brown, fusiform to ellipsoidal, striate, guttulate, 1–3-septate ascospores, with paler end cells and surrounded by a mucilaginous sheath. Members of *Striatiguttulaceae* are morphologically similar to the genera *Leptosphaeria* and *Trematosphaeria*, but they are phylogenetically distinct and also differ in ascospores characteristics and the latter two have coriaceous, heavily pigmented thick-walled peridium. Multi-gene phylogenetic analyses revealed a close relationship of *Striatiguttulaceae* to *Ligninsphaeriaceae* and *Pseudoastrosphaeriellaceae*. However, *Striatiguttulaceae* differs from *Pseudoastrosphaeriellaceae* as the latter has 1–3-septate or 2–5-septate ascospores, which are narrowly fusiform with acute ends and all cells are concolorous. The slit-like ascomata and broad fusiform, 1-septate, rather large ascospores (79–121 \(\times \) 14–23 µm) in *Ligninsphaeriaceae* (Zhang et al. 2016) are distinct from those found in *Striatiguttulaceae*. Additionally, a divergence time estimate analysis indicated that the crown age 39 (20–63) MYA and stem age 60 (35–91) MYA of *Striatiguttulaceae*, match with the recommendations of using divergence times to recognize families in Liu et al. (2017). Attempts were made to culture the asexual morph in order to build comprehensive familial concept for *Striatiguttulaceae*, but it was not successful. Further morphological investigations together with more molecular data are needed.

Striatiguttula S.N. Zhang, K.D. Hyde & J.K. Liu, gen. nov.
MycoBank: MB828273
Facesoffungi: FoF 05033

Etymology. Name refers to the striate and guttulate ascospores.

Description. Saprobic on palms which are distributed in mangrove habitats.

Sexual morph: Stromata black, scattered to gregarious, immersed beneath host epidermis, and erumpent to superficial, with a papilla or a short to long neck, ampulliform, subglobose or conical, uni-loculate or bi-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate, clypeate or not, glabrous or somewhat interwoven pale brown hyphae or setae, lying at apex of the neck. Peridium thin, composed of several pale brown to hyaline angular cells. Wall of the neck having elongated angular cells. Hamathecium filament thin, trabeculate pseudoparaphyses, septate, branched, anastomosing, embedded in a gelatinous matrix. Asci 8-spored, bitunicate, cylindric-clavate, pedicellate, apically rounded, with an ocular chamber. Ascospores hyaline to brown, uniseriate to biserate or triseriate, fusiform to ellipsoidal, 1–3-septate, constrict, the middle cells slightly swollen towards the central septa, striate, guttulate, end cells slightly paler or not, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Striatiguttula nypae S.N.Zhang, K.D.Hyde & J.K.Liu, sp. nov.

MycoBank number: MB828274

Facesoffungi number: FoF 05034

Figure 3

Etymology. The epithet reflects the genus name of the host plant *Nypa fruticans*, from which the specimens were collected.

Type. THAILAND. Ranong: Ranong, on decayed rachis of *Nypa fruticans* Wurmb (Arecaceae), 3 December 2016, S.N.Zhang, SNT44 (holotype: MFLU 18–1576; isotype: HKAS 97480; ex-type living culture MFLUCC 18–0265 = GZCC 18–0005).

Description. Saprobic on mangrove palm *Nypa fruticans*. Sexual morph: Stromata in vertical section 240–380 µm high, 195–385 µm diameter, ($\bar{x} = 318.2 \times 289.0$ µm, n = 15), black, scattered, gregarious, immersed beneath host epidermis, and erumpent to superficial, with a papilla or short to long neck up to 550 µm, subglobose or conical, uni-loculate or bi-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate and clypeate, glabrous or somewhat interwoven pale brown hyphae or with setae, lying at apex of the neck. Peridium 9–16 µm thin, composed of several pale brown to hyaline angular cells, compressed and pallid inwardly. Wall of the clypeus composed of brown cells of textura epidermoidea and dark brown host tissue. Wall of the neck with thicker and elongated angular cells. Hamathecium 1–2 µm wide, trabeculate pseudo-paraphyses, septate, branched, filamentous, anastomosing, embedded in a gelatinous matrix. Asci 64–145 × 8–17 µm, ($\bar{x} = 106.3 \times 13.8$ µm, n = 30), 8-spored, bitunicate, fissitunicate, cylindric-clavate, pedicellate, apically rounded, with an ocular chamber. Ascospores 18–26 × 4–6 µm, ($\bar{x} = 22.2 \times 5.3$ µm, n = 50), hyaline to brown, uniseriate to triseriate, fusiform, 1–3-septate, constricted at the central septum, the upper middle cell slightly swollen towards the central septum, straight or slightly curved, striate, guttulate, end cells slightly paler, surrounded by a mucilaginous sheath.

Asexual morph: Undetermined.

Culture characteristics. Colonies on PDA attaining 15 mm diam. within 21 days at 25 °C under natural light, velvety, centrally raised, greenish grey or greyish olivaceous, reverse dull green or grey olivaceous, with a margin of translucent, milky white to hyaline mycelia.

Habitat and distribution. Inhabiting Thai mangrove forests, Andaman sea (west) coastline, Thailand.

Notes. *Striatiguttula nypae* varies in ascomatal appearance, mostly immersed beneath the plant surface, sometimes visible as a papilla or dome-shaped area on the
Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

Figure 3. Striatigutta nypae (holotype MFLU 18–1576, paratype MFLU 18–1578). a–c Appearance of stromata on host surface, d–f vertical section through a stroma, g structure of peridium, h structure of clypeus near the ostiole, composed of epidermoidea cells and host tissue, i ostiole with periphyses, j pseudoparaphyses, k apex of the neck, with somewhat interwoven pale brown hyphae or setae, l–o ascus, p–s ascospores, t ascospore in India ink and presenting a clear mucilaginous sheath, u germinating ascospore, v colony on PDA. Scale bars: 500 µm (a), 200 µm (b, c), 100 µm (d–f), 10 µm (g, p–s, u), 20 µm (h, i, l–o, t), 50 µm (k).

plant surface, and becomes erumpent to superficial, with a papilla or a short to long neck. The typical morphological characters of S. nypae are the appearance of stromata, with interwoven pale brown hyphae or setae at the apex of the neck, and the hyaline
Table 3. Morphological comparison of three new species to *Trematosphaeria lineolatispora*, *T. mangrovis* and *T. striataspora*.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Ascomata morphology</th>
<th>Peridium (µm)</th>
<th>Pseudoparaphyses (µm)</th>
<th>Asci (µm)</th>
<th>Ascospores (µm)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striatiguttula nypae</td>
<td>Immersed and erumpent to superficial, subglobose or conical, uni-loculate or bi-loculate, CA</td>
<td>240–380 × 195–385</td>
<td>9–16</td>
<td>1–2</td>
<td>64–145 × 8–17</td>
<td>Fusiform, 1–3-septate, CC</td>
</tr>
<tr>
<td>Trematosphaeria lineolatispora K.D. Hyde</td>
<td>Immersed with a flattened base, conical to subglobose, clypeate, ostiolate, papillate</td>
<td>90–180 × 216–360</td>
<td>up to 25</td>
<td>2–4</td>
<td>120–204 × 14–18</td>
<td>Fusiform, mostly 5-septate; CC</td>
</tr>
<tr>
<td>Trematosphaeria mangrovis Kohlm.</td>
<td>Semi-immersed, conical or subglobose, papillate</td>
<td>380–750 × 450–800</td>
<td>64–88</td>
<td>1.6–2.2</td>
<td>190–220 × 20–22</td>
<td>Broad fusiform or ellipsoidal, 3-septate, CC but no striations</td>
</tr>
<tr>
<td>Trematosphaeria striataspora K.D. Hyde</td>
<td>Developing amongst the host cortical cells beneath the host epidermis, ampulliform, subglobose or conical, CA</td>
<td>176–355 × 352–528</td>
<td>42–57 (clypeus), thin-walled</td>
<td>0.8–2.1</td>
<td>99–173 × 11–23</td>
<td>Fusiform, 3(–6)-septate, CC</td>
</tr>
</tbody>
</table>

CA: (Characteristics A) clypeate, ostiolate, periphysate, papillate;
CB: (Characteristics B) ostiolate, periphysate, papillate;
CC: (Characteristics C) central cells larger, brown, end cells smaller and paler, ascospore wall covered in distinct longitudinal striations, and surrounded by a sheath.
Striatiguttulaceae, a new pleosporalean family to accommodate *Longicorpus* and...

Striatiguttulaceae, a new pleosporalean family to accommodate *Longicorpus* and... to brown, 1–3-septate, fusiform ascospores, striate, guttulate, with slightly paler end cells and a mucilaginous sheath. We have compared *Striatiguttula nypae* to previously encountered species on *Nypa fruticans*, and several morphologically similar mangrove fungal species. However, the striation of ascospores can be a reliable morphological character to distinguish *Striatiguttula nypae* from *Astrosphaeriella nipicola* (Hyde and Fröhlich 1998), *A. nypae* (Hyde 1992a) and *Leptosphaeria* spp. (Spezazzuini 1881, Cribb and Cribb 1955, Hyde et al. 1999, Pang et al. 2011), which are characterized by one or three septa and hyaline or brown ascospores. The presence of erumpent to superficial stromata, the number of septa and size of ascospores in *S. nypae* are also different from *Trematosphaeria* spp. (Table 3), despite being quite similar in ascospore morphology. In addition, the phylogenetic analysis showed that the three isolates of *Striatiguttula nypae* clustered together and were distinct from *S. phoenicis*.

Striatiguttula phoenicis S.N.Zhang, K.D.Hyde & J.K.Liu, sp. nov.

Mycobank: MB828275
Facesoffungi: FoF 05035
Figure 4

Etymology. The epithet referring to the host on which the fungus was collected.

Type. THAILAND. Ranong: Amphoe Mueang Ranong, Tambon Ngao, on decayed rachis of *Phoenix paludosa* Roxb. (Arecaceae), 6 December 2016, S.N.Zhang, SNT51 (holotype: MFLU 18–1579; isotype: HKAS 97481; ex-type culture MFLUCC 18–0266 = GZCC 18–0008).

Description. Saprobic on mangrove date palm *Phoenix paludosa*. Sexual morph: Ascomata in vertical section 195–580 µm high, 135–390 µm diameter, (\(\bar{x} = 396.0 \times 230.3 \, \mu m, \, n = 15\)), black, scattered, rarely gregarious, immersed, and erumpent through host epidermis by a papilla or a short neck, ampulliform, subglobose, uni-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate, glabrous or somewhat interwoven pale brown hyphae or setae, lying around apex of the neck. Peridium 10–24 µm thin, composed of several pale brown to hyaline cells of *textura angularis*, compressed and pallid inwardly. Wall of the neck composed thick and elongated angular pale brown to brown cells with hyaline inner layers. Hamathecium of 1–2 µm wide, septate, branched, filamentous, anastomosing, trabeculate pseudoparaphyses, embedded in a gelatinous matrix. Asci 89–141 × 12–18 µm, (\(\bar{x} = 120.5 \times 15.4 \, \mu m, \, n = 20\)), 8-spored, bitunicate, fissitunicate, cylindric-clavate, pedicellate, apically rounded, with an ocular chamber. Ascospores 20–29 × 6–10 µm, (\(\bar{x} = 24.5 \times 7.8 \, \mu m, \, n = 40\)), hyaline to brown (all cells nearly concolorous), uniseriate to biseriate, fusiform to ellipsoidal, 1–3-septate, constricted at the central septum, the upper middle cell slightly swollen and larger, straight or slightly curved, striate, guttulate, surrounded by an irregular mucilaginous sheath. Asexual morph: Undetermined.
Figure 4. *Striatiguttula phoenicis* (holotype MFLU 18–1579).
a–c Appearance of ascoma on host surface **d, e** vertical section through an ascoma **f** ostiole **g** apex of the neck, with somewhat interwoven pale brown hyphae or setae **h** structure of peridium **i, j** pseudoparaphyses **k–n** ascis **o–t** ascospores **u** ascospore in India ink and presenting a clear mucilaginous sheath **v** germinating ascospore **w** colony on PDA. Scale bars: 500 µm (**a**), 100 µm (**b, c**), 200 µm (**d, e**), 50 µm (**f, g**), 20 µm (**h, k–n**), 10 µm (**i, j, o–v**).

Culture characteristics. Colonies on PDA attaining 14 mm diam within 21 days at 25 °C under natural light, velvety, centrally raised, greenish grey or greyish olivaceous, reverse dull olivaceous or grey, with a margin of translucent, milky white to hyaline mycelium.
Habitat and distribution. Inhabiting Thai mangrove forests, Andaman sea (west) coastline, Thailand.

Notes. The fusiform to ellipsoidal, 1–3-septate ascospores of *Striatiguttula phoenicis* is similar to those of *Trematosphaeria mangrovis*, associated with submerged roots of mangrove trees. However, *Striatiguttula phoenicis* differs from *T. mangrovis* (Kohlmeyer 1968) as the latter has larger ascospores and lacks striations (Table 3). *Striatiguttula phoenicis* is morphologically different from *S. nypae* as it has ellipsoidal ascospores which are broader in width. Currently, the erumpent to superficial stromata have not been found in *S. phoenicis*. The phylogenetic analysis also confirms that they are distinct species. There are 26 noticeable nucleotide differences across the 474 nucleotides (Suppl. material 1) of ribosomal ITS sequence data (strains: MFLUCC 18–0266 vs. MFLUCC 18–0265, MFLUCC 17–2517 and MFLUCC 17–2518).

Longicorpus S.N.Zhang, K.D.Hyde & J.K.Liu, gen. nov.

Mycobank: MB828276
Facesoffungi: FoF 05036

Etymology. Name refers to the elongated ascomata and ascospores.

Description. Saprobic on mangrove palms. **Sexual morph:** Ascomata black, scattered to gregarious, immersed, and erumpent through host epidermis by a papilla or a short to long neck, sometimes visible as a slightly raised, dome-shaped area, with a clypeus comprises host tissue and fungal hyphae, ampulliform, subglobose or conical, uni-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate, glabrous or somewhat interwoven pale brown hyphae or setae. **Peridium** consisting of pale brown or brown angular cells. **Hamathecium** of septate, branched, thin, anastomosing trabeculate pseudoparaphyses, embedded in a gelatinous matrix. **Asci** 8-spored, bitunicate, cylindric-clavate, pedicellate, apically rounded, with an ocular chamber. **Ascospores** uniseriate to biseriate, hyaline to brown, fusiform, 1–3-septate, the upper middle cell slightly swollen towards the central septum, and the end cells paler and smaller, striate, guttulate, surrounded by a mucilaginous sheath. **Asexual morph:** Undetermined.

Notes. *Longicorpus* differs from *Striatiguttula* in having elongate, fusiform ascospores with relatively larger middle cells and paler end cells (Figures 3–5). Multi-gene phylogeny also strongly supports the establishment of two genera. *Longicorpus* is sister to *Striatiguttula* but forms a distinct phylogenetic sub-clade (Figure 1). There are noticeable differences (nucleotide substitutions) at specific positions in the large subunit nuclear ribosomal DNA: 51, 428, 436, 465 (T substituted by C); 53, 55, 102, 153, 163, 166, 251, 367, 369, 427, 435, 440, 446, 448, 466, 504, 550, 654 (C substituted by T); 130 (G substituted by A); 362, 406 (G substituted by T); 370 (C substituted by A); 547 (A substituted by C).
MycoBank: MB828277
Facesoffungi: FoF 05037
Figure 5

Epitype. THAILAND. Ranong: Ranong, on decayed rachis of Nypa fruticans Wurmb (Arecaceae), 6 December 2016, S.N. Zhang, SNT93 (epitype designated here: MFLU 18–1580; epi-isotype designated here: HKAS 97479; ex-epitype living culture MFLUCC 18–0267 = GZCC 18–0009).

Description. Saprobic on mangrove palms. Sexual morph: Ascomata in vertical section (including short papilla) 300–500 µm high, 230–560 µm diameter, (\(\overline{x} = 405.3 \times 376.6 \mu m\), n = 15), long neck up to 1285 µm, black, scattered to gregarious, immersed, and erumpent through host epidermis by a papilla or a short to long neck, sometimes visible as a slightly raised, dome-shaped area, with a clypeus comprises host tissue and fungal hyphae, ampulliform, subglobose or conical, uni-loculate, coriaceous to carbonaceous, ostiolate, periphysate, papillate, glabrous or somewhat interwoven pale brown hyphae or setae, lying at apex of the neck. Peridium 11–15 µm wide, composing of brown to pale brown angular cells, thicker at the rim towards the apex. Hamathecium comprising up to 1.5 µm wide, septate, branched, filamentous, trabeculate, anastomosing pseudoparaphyses, embedded in a gelatinous matrix. Asci 85–160 × 10–17 µm (\(\overline{x} = 122.7 \times 13.7 \mu m\), n = 22), 8-spored, bitunicate, cylindric-clavate, pedicellate, apically rounded, with an ocular chamber. Ascospores 24–45 × 7–8.8 µm, (\(\overline{x} = 34.2 \times 7 \mu m\), n = 40), uniseriate to biseriate, hyaline to brown, fusiform, 1–3-septate, the upper middle cell slightly swollen towards the central septate, middle cells larger and longer, end cells paler and smaller, straight or slightly curved, striate, guttulate, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics. Colonies on PDA attaining 12 mm diameter within 21 days at 25 °C under natural light, velvety, centrally raised, irregular to circular in shape, greenish grey and mixed with milky white mycelium at the edge of a colony, the reverse dull green or grey olivaceous.

Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

Figure 5. *Longicorpus striataspora* (epitype MFLU 18–1580, epi-paratype MFLU 18–1582). **a, b** Appearance of ascoma on host surface **c–e** vertical section through an ascoma, with a clypeus near the ostiole **f** ostiole with periphyses **g** apex of the neck, with somewhat interwoven pale brown hyphae or setae **h–k** ascus **l** peridium in vertical section **m** vertical section of the neck, with thicker angular cells **n** pseudoparaphyses **o–r** ascospores **s** ascospore in India ink and presenting a clear mucilaginous sheath **t** germinating ascospore **u, v** Colony on PDA. Scale bars: 500 µm (**a**), 200 µm (**b**), 100 µm (**c–e**), 10 µm (**f, l, n–t**), 50 µm (**g**), 20 µm (**h–k, m**).
Habitat and distribution. Inhabiting in Thai mangrove forests, the Andaman sea (west) coastline and the Gulf of Thailand (east).

Notes. *Longicorpus striataspora* was found on two mangrove palm species, *Nypa fruticans* and *Phoenix paludosa*. The typical characteristics of *L. striataspora* are the deeply immersed, carbonaceous ascomata with a long neck, and the striate, guttulate, fusiform, 1–3-septate ascospores, with larger middle cells and relatively smaller and paler end cells, surrounded by a mucilaginous sheath. However, such characteristics are similar to *Trematosphaeria* spp. (Table 3), and match with *Trematosphaeria striataspora* (Hyde 1988), the holotype collected from intertidal wood of *Nypa fruticans* in North Sumatra. *Trematosphaeria striataspora* was later accommodated in *Astrosphaeriella* Syd. & P. Syd. (Hyde 1992a) with proposals for recollection and further phylogenetic studies (Liu et al. 2011b, Phookamsak et al. 2015). We have compared the fresh collections of *Longicorpus striataspora* with the type material of *Trematosphaeria striataspora*, and concluded that the two are identical in morphology. On the other hand, the genus *Trematosphaeria* Fuckel has been assigned to the family *Trematosphaeriaceae* K.D. Hyde, Y. Zhang ter, Suetrong & E.B.G. Jones, based on molecular data of its type species *T. pertusa* Fuckel. Therefore, we follow Ariyawansa et al. (2014) and designate an epitype for *Longicorpus striataspora* in this study.

Discussion

A novel pleosporalean family, Striatiguttulaceae is introduced herein, which has been compared to several morphologically similar genera and species recovered from mangroves. This study introduces three novel species including an epitypification. The use of divergence times as an additional evidence for ranking taxa (especially in higher taxa ranking) has become possible and several studies have been carried out across different fungal groups (Phukhamsakda et al. 2016, Samarakoon et al. 2016, Divakar et al. 2017, Hongsanan et al. 2017, Hyde et al. 2017, Liu et al. 2017, Zhao et al. 2017). To better understand the placement of Striatiguttulaceae, divergence time was also estimated and this study supports taxonomic schemes proposed earlier. The recent study of ranking a family with divergence time estimates is Liu et al. (2018), who introduced Lentimurisporaceae, a new pleosporalean family. We have recovered essentially similar phylogenetic topology, and in an extensive dataset that included berkleasmium-like taxa (referred to Liu et al. 2018), phylogenies generated were also topologically identical to those recovered herein (Figure 1). The monotypic family Ligninsphaeriaceae is sister to Striatiguttulaceae, and berkleasmium-like taxa are close to Aquasubmersaceae, Hermatomycetaceae and Salsuginaceae respectively. In this study, the ages of most families in Pleosporales, especially those positioned outside the two suborders were estimated in our divergence time analysis, and the results are comparable to other studies. However, Ligninsphaeriaceae, Pseudoastrosphaeriellaceae and Testudinaceae have relatively younger stem ages than that in Liu et al. (2017), presumably due to different taxa sampling in our phylogeny.
The nature of the pseudoparaphyses (*sensu* Liew et al. 2000) is worth considering here and may provide evidence for separate lineages. The family Striatiguttulaceae, currently with three species, have trabeculate pseudoparaphyses, but also appearing septate. Phylogenetically closely related families of Ligninsphaeriaceae and Pseudoastrosphaeriellaceae are characterized by cellular pseudoparaphyses and trabeculate pseudoparaphyses respectively.

Considering the ecology of these Striatiguttulaceae species in relation to the mangrove ecosystem, salinity may be an important contributor to their presence. Loilong et al. (2012) have compared fungal community from *Nypa fruticans* at different salinities, and found freshwater species in lower salinity and marine species at higher salinity. Although no salinity was measured during our collections, *Longicorpus striataspora*, *Striaguttula nypae* and *S. phoenicis* can be considered as manglicolous, because they are found from decayed rachides/petioles of palms, which are perennials submerged in soft mangrove mud and salty water, and well adapted to the varying salinity in mangroves by tidal water. On the other hand, their ascospores have mucilaginous sheaths and lack elaborate appendages, which are also typical characteristics of most mangrove fungi (Jones 2000).

Acknowledgements

We are grateful to the grant the Thailand Research Fund for supporting collection and research facilities (Grant No. RSA5980068). Jian-Kui Liu thanks the National Natural Science Foundation of China (NSFC 31600032) and Science and Technology Foundation of Guizhou Province (LH [2015]7061). Kevin D. Hyde would like to thank the Thailand Research Grants (No. RDG6130001 and No. 60201000201). The authors would like to thank the staff of Ngao Mangrove Forest Research Center for their assistance in the sample’s collection. We are also grateful to Dr. Shaun Pennycook (Manaaki Whenua Landcare Research, New Zealand) for advising on fungal nomenclature. Ning-Guo Liu is acknowledged for assisting in molecular experiments. We also thank the University of Mauritius for its support.

References

Striatiguttulaceae, a new pleosporalean family to accommodate *Longicorpus* and...

Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of Taiwan. National Taiwan Ocean University

Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and...

Rambaut A (2014) FigTree 1.4.2. http://tree.bio.ed.ac.uk/software/figtree

Yanna, Ho WH, Hyde KD (2001b) Fungal communities on decaying palm fronds in Australia, Brunei, and Hong Kong. Mycological Research 105(12): 1458–1471. https://doi.org/10.1017/S0953756201005214

Supplementary material 1

Phylogenetic analysis
Authors: Sheng-Nan Zhang, Kevin D. Hyde, E.B. Gareth Jones, Rajesh Jeewon, Ratchadawan Cheewangkoon, Jian-Kui Liu
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.49.30886.suppl1