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Abstract
During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in 
Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed spe-
cies, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular 
phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated 
sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, 
Ascomycota). The Thai specimen morphologically resembled Neobambusicola strelitziae in having pycnid-
ial conidiomata with phialidic conidiogenous cells that produce both fusoid-ellipsoid macroconidia and 
subcylindrical microconidia. However, the new fungus, for which the name Pseudobambusicola thailandica 
is proposed, differs from N. strelitziae in having conidiomata with well-defined necks, the presence of 
globose to subglobose thick-walled cells adjacent to conidiomata and the production of chlamydospores 
in culture. When cultures of P. thailandica, growing on water agar, were confronted with Caenorhabditis el-
egans nematodes, worms approaching the fungal mycelia were killed. This observation gave rise to a study 
of its secondary metabolites and six novel and two known compounds were isolated from submerged cul-
tures of P. thailandica. The structures of metabolites 1–6, for which the trivial names thailanones A–F are 
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proposed, were elucidated using a combination of spectral methods, including extensive 1 and 2D NMR 
analysis and high resolution mass spectrometry. Compounds 4 and 8 showed strong nematicidal and weak 
antifungal activity, whereas all other tested compounds showed moderate to weak nematicidal activity but 
no significant effects in the serial dilution assay against various fungi and bacteria. Compounds 1 and 8 
also inhibited growth of the pathogenic basidiomycete Phellinus tremulae in a plate diffusion assay.

Keywords
Antifungal agent, deoxyphomalone, monocerin, nematode-antagonism, nematicide, phylogeny

Introduction

Fungi are regarded as prolific sources of secondary metabolites with prominent and 
selective biological activities that can serve as a basis for development of new anti-
microbials, agrochemical pesticides and other useful compounds (Bills and Gloer 
2016, Karwehl and Stadler 2017). In particular, the mycobiota of tropical countries 
are widely unexplored and can still yield a plethora of novel chemical entities. In 
recent years, many novel compounds with, for example, antimicrobial (Helaly et al. 
2016, 2017, Richter et al. 2016, Kuephadungphan et al. 2017), cytotoxic (Surup 
et al. 2017) and antioxidative (Kuhnert et al. 2015) effects were isolated in the 
authors’ laboratory from tropical fungi. Furthermore, fungi represent a rich source 
of nematicidal compounds because they are both prey and natural antagonists of 
nematodes. Thus, understanding the chemical basis for fungi nematode interactions 
offers natural biocontrol strategies (Anke et al. 1995). According to Degenkolb and 
Vilcinskas (2016), approximately 700 species of nematophagous fungi have been 
described so far and four ecophysiological categories have been proposed. However, 
little has been done to screen for metabolites in nematophagous fungi or, for that 
measure, nematicidal metabolites in other fungi since the first studies of this kind 
during the 1990s (Stadler et al. 1993a, b, 1994).

Environmentally compatible and low-cost alternatives to chemical control meas-
ures for phytoparasitic nematodes are urgently needed and these must not affect ver-
tebrates, crops and other non-target organisms. Highly specific, preferably soil-borne 
antagonists are best suited for this purpose (Degenkolb and Vilcinskas 2016).

In this context, fungi isolated from nature were examined for morphological fea-
tures and by ITS sequencing. The strains that turned out to belong to well-studied, 
ubiquitous mycotoxin-producing genera (in particular Trichocomaceae and Hypocre-
aeae) were discarded. Those strains that belong to less studied phylogenetic lineages 
were selected for studies of their antagonistic activities. They were first tested using a 
water agar assay to detect nematicidal effects and, in parallel, extracts were prepared 
and checked in an agar plate diffusion assay for antifungal and nematicidal activities. 
Herein, the authors report the discovery of a new genus and species Pseudobambusicola 
thailandica and its six novel and two known secondary metabolites, including their 
isolation, structure elucidation and biological activity.
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Materials and methods

Fungal isolation 

During a fungal exploration in Thailand in 2015, an unrecognised fungus was found 
growing on a twig of an unidentified plant. The twig was incubated in a damp chamber 
and treated according to Castañeda-Ruiz et al. (2016). Single conidial isolates were 
established from sporulating conidiomata in Petri dishes containing water agar (WA; 
Difco agar 5 g, tap water 1 l). Colonies were sub-cultured on potato carrot agar (PCA; 
potatoes 20 g; carrots 20 g; agar 20 g; distilled water 1 l) and oatmeal agar (OA; oat-
meal 30 g; agar 18 g; distilled water 1 l) as described previously (Hernández-Restre-
po et al. 2017). Herbarium type material and the ex-type strain are maintained at the 
BIOTEC Bangkok herbarium (BBH) and at the BIOTEC culture collection (BCC; 
both Pathum Thani, Thailand), respectively.

Morphology

Morphological features were characterised from colonies growing on OA or on syn-
thetic nutrient-poor agar (SNA; Nirenberg 1976) supplemented by fragments of auto-
claved pine needles and incubated at 25 °C under continuous near-ultraviolet light to 
promote sporulation. Colony colours were assessed according to the charts of Rayner 
(1970). Micromorphological descriptions and measurements for 30 replicates of rele-
vant features were carried out from mature conidiomata and conidia mounted in lactic 
acid 90%. Photomicrographs were made following Hernández-Restrepo et al. (2017).

DNA isolation, amplification and sequences analyses

Genomic DNA was extracted from fungal colonies growing on MEA using the 
Wizard® Genomic DNA purification kit (Promega, Madison, USA) following the 
manufacturer’s protocols. The nuclear rDNA operon spanning the 3’ end of the 18S 
nrRNA gene, the first internal transcribed spacer (ITS1), the 5.8S nrRNA gene, 
the second ITS region (ITS2) and approximately 900 bp of the 5’ end of the large 
subunit of the nrRNA gene (LSU), part of the RNA polymerase II second largest 
subunit gene (rpb2) and part of the translation elongation factor 1-α gene (tef1) were 
amplified following Hernández-Restrepo et al. (2016). The programme SeqMan Pro 
v. 10.0.1 (DNASTAR, Madison, WI, USA) was used to obtain consensus sequences 
for each DNA region. Blast searches using ITS and LSU sequences were performed 
and the closest matches and related taxa were retrieved from GenBank and includ-
ed in the phylogenetic analyses (Table 1, See Suppl. material 1). Alignments were 
produced with MAFFT v. 7 (Katoh and Standley 2013), checked and refined us-
ing MEGA v. 6 (Tamura et al. 2013) and SequenceMatrix (Vaidya et al.  2011). 
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Table 1. Isolates and GenBank accession numbers used in the phylogenetic analyses.

Taxa Strain number1
GenBank accession numbers2

References
ITS LSU rpb2 tef1

Alternaria 
tenuissima CBS 918.96 – KC584311 KC584435 KC584693 Woudenberg et al. 

2013
Bambusicola 
didymospora

MFLUCC  
10-0557 KU940116 KU863105 KU940163 KU940188 Dai et al. 2017

B. loculata MFLU  
15-0056 KP761732 KP761729 KP761715 KP761724 Dai et al. 2015

B. pustulata MFLUCC  
15-0190 KU940118 KU863107 KU940165 KU940190 Dai et al. 2017

B. splendida MFLUCC  
11-0611 KU940121 KU863110 KU940168 – Dai et al. 2017

Coniothyrium 
palmicola CBS 161.37 JX681086 JX681086 – – Verkley et al. 2014

Dendrothyrium 
longisporum CBS 824.84 JX496115 JX496228 – – Verkley et al. 2014

Dydimella exigua CBS 183.55 NR135936 EU754155 GU357800 KR184187

De Gruyter et al. 
2009, Schoch et 
al. 2009, Kim et 

al. 2016
Keissleriella 
culmifida KT 2308 – AB807591 – AB808570 Tanaka et al. 2015

K. quadriseptata KT 2292 NR145135 AB807593 – AB808572 Tanaka et al. 2015
Latorua caligans CBS 576.65 NR132923 KR873266 – – Crous et al. 2015a

Leptosphaeria 
doliolum CBS 505.75 JF740205 GQ387576 KY064035 GU349069

De Gruyter et al. 
2013, Schoch et 

al. 2009
Lophiostoma 
arundinis

AFTOL-ID 
1606 – DQ782384 DQ782386 DQ782387 Schoch et al. 2009

Macrodiplodiopsis 
desmazieri CBS 140062 NR132924 KR873272 – – Crous et al. 2015a

Magnicamarospo-
rium iriomotense KT 2822 AB809640 AB807509 – AB808485 Tanaka et al. 2015

Massarina 
phragmiticola CBS 110446 – DQ813510 – – Kodsueb et al. 

2007
Montagnula 
bellevaliae

MFLUCC  
14-0924 KT443906 KT443902 – – Hongsanan et al. 

2015

M. scabiosae MFLUCC  
14-0954 KT443907 KT443903 – – Hongsanan et al. 

2015
Murilentithecium 
clematidis 

MFLUCC  
14-0562 KM408757 KM408759 KM454447 KM454445 Wanasinghe et al. 

2014
Neobambusicola 
strelitziae CBS 138869 NR 137945 KP004495 – MG976037 Crous et al. 2014, 

this study
Palmiascoma 
gregariascomum

MFLUCC  
11-0175 KP744452 KP744495 KP998466 – Liu et al. 2015

Parabambusicola 
bambusina H 4321 – AB807536 – AB808511 Tanaka et al. 2015

Paraconiothyrium 
brasiliense CBS 122851 JX496036 JX496149 – – Verkley et al. 2014

Phoma herbarum CBS 615.75 NR135967 EU754186 KP330420 KR184186
Aveskamp et al. 

2009, Chen et al. 
2015

Pleurophoma 
ossicola CPC 24985 KR476737 KR476770 – – Crous et al. 2015b
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Taxa Strain number1
GenBank accession numbers2

References
ITS LSU rpb2 tef1

Polyschema 
congolensis CBS 542.73 – EF204502 EF204486 – Shenoy et al. 2010

P. terricola CBS 301.65 – EF204504 EF204487 – Shenoy et al. 2010
Pseudobambusicola 
thailandica sp. nov. BCC 79462 MG926559 MG926560 MG926561 MG926562 This study

Pseudoleptosphaeria 
etheridgei CBS 125980 NR111620 JF740291 – – De Gruyter et al. 

2013
Pseudoxylomyces 
elegans KT 2887 – AB807598 – AB808576 Tanaka et al. 2015

Setoseptoria 
arundinacea KT 552 – AB807574 – AB808550 Tanaka et al. 2015

Stemphylium 
vesicarium CBS 191.86 KC584239 JX681120 KC584471 KC584731 Woudenberg et al. 

2013
Sulcatispora acerina KT 2982 LC014597 LC014610 – LC014615 Tanaka et al. 2015
S. berchemiae KT 1607 AB809635 AB807534 – AB808509 Tanaka et al. 2015
Trematosphaeria 
pertusa CBS 122368 NR132040 FJ201990 FJ795476 KF015701 Zhang et al. 2009

1 BCC: BIOTEC Culture Collection, Thailand; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, 
The Netherlands; CPC: Culture collection of Pedro Crous, housed at CBS; KT and H: Culture collec-
tion of K. Tanaka and K. Hirayama, housed at the National Institute of Agrobiological Science, Japan 
(MAFF); MFLU: Mae Fah Laung University Herbarium, Chiang Rai, Thailand; MFLUCC: Mae Fah 
Luang University Culture Collection, Chiang Rai, Thailand.
2 ITS: internal transcribed spacer regions 1 & 2 including 5.8S nrRNA gene; LSU: large subunit of the 
nrRNA gene, rpb2: partial RNA polymerase II second largest subunit gene; tef1: partial translation elon-
gation factor 1-α gene. Sequences generated in the present study are in bold.

Individual alignments for each locus and the concatenated four-loci dataset were 
analysed by maximum likelihood (ML) with gamma model of rate heterogeneity 
using the RAxML HPC BlackBox v. 8.2.8 (Stamatakis 2014) online server of the 
Cipres Science gateway portal (Miller et al. 2010). The maximum likelihood search 
option was used to search for the best-scoring tree after bootstrapping. By default, 
the RAxML BlackBox calculates statistical support for branches by rapid bootstrap 
analyses of 1000 replicates (Stamatakis 2014). Bootstrap support (bs) values ≥ 
70 % were considered significant. Incongruence amongst datasets was tested by vis-
ual inspection of all groups with ≥ 70 % bs in partial trees of each locus to search for 
potentially conflicting groups. A Markov Chain Monte Carlo (MCMC) algorithm 
was used to generate phylogenetic trees with Bayesian probabilities from the concat-
enated four-loci dataset using MrBayes v. 3.2.6 (Ronquist et al. 2012). Two analyses 
of four MCMC chains were run from random trees, trees were sampled every 100 
generations and 25 % of them were discarded as the burn-in phase. Posterior prob-
abilities  (pp) were determined from the remaining trees. The sequences generated 
during this study and the alignments used in the phylogenetic analyses were depos-
ited in GenBank and TreeBASE, respectively.
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Chromatography and spectral methods

1D and 2D nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 
Avance III 700 spectrometer with a 5 mm TXI cryoprobe (1H 700 MHz, 13C 175 MHz) 
and a Bruker Avance III 500 (1H 500 MHz, 13C 125 MHz) spectrometer, UV spectra 
were recorded with a Shimadzu UV-2450 UV−Vis spectrophotometer and optical rota-
tions were measured on a Perkin-Elmer 241 polarimeter. Analytical HPLC was carried 
out on an Agilent 1200 Series, equipped with degasser, binary pump SL, autosampler 
and connected to a diode array detection/light scattering detector Corona Ultra RS. A 
Waters C18 Acquity UPLC BEH column (2.1 × 50 mm, 1.7 μm) was used as stationary 
phase. The mobile phase consisted of H2O + 0.1% formic acid (solvent A) and acetoni-
trile + 0.1% formic acid (solvent B) with the following gradient: 0–0.5 min 5% B, 0.5–
20 min 100% B, 20–30 min 100% B; injection volume was 2 μl, flow rate 600 μl/min.

HPLC-ESI-MS spectra were recorded on an ion trap mass spectrometer [scan 
range 100–2000 m/z, capillary voltage 4000 V, dry temperature 250 °C] (amaZon 
speed, Bruker) and HR-ESIMS spectra on a time-of-flight (TOF) MS [scan range 
250–25000 m/z, capillary voltage 4500 V, dry temperature 200 °C] (MaXis, Bruker). 
In parallel, UV/Vis spectra in the range of 200–600 nm were recorded.

Chemicals and solvents were obtained from AppliChem GmbH (Darmstadt, Ger-
many), Avantor Performance Materials (Deventer, Netherlands), Carl Roth GmbH & 
Co. KG (Karlsruhe, Germany) and Merck KGaA (Darmstadt, Germany) in analytical 
and HPLC grade.

Fermentation and extraction

A seed culture was prepared as follows: five mycelial plugs (0.5 × 0.5 cm2) were cut 
from actively growing colonies maintained on YM 6.3 agar (malt extract 10 g/l, D-
glucose 4 g/l, yeast extract 4 g/l, agar 20 g/l, pH 6.3 before autoclaving) and placed 
into a 500 mL Erlenmeyer flask containing 200 mL Q6½ medium (D-glucose 2.5 g/l, 
glycerol 10 g/l, cotton seed flour 5 g/l, pH 6.3) and incubated on a rotary shaker for 96 
hours at 24 °C and 140 rpm. 20 mL of the seed culture were added into 10 × 1000 ml 
sterile Erlenmeyer flasks with 500 ml of Q6 ½ medium (5 l total) and incubated on a 
rotary shaker (288 hours, 24 °C, 140 rpm).

Biomass and supernatant were separated by means of centrifugation and filtra-
tion. The mycelia were extracted twice with acetone (2 l), the extract was evaporated 
in vacuo and the remaining aqueous phase extracted with equal amounts of ethyl ac-
etate three times. One percent (1 %) of Amberlite XAD-16N was given to the culture 
broth and stirred for 1 h. After filtration, the XAD resin was extracted as described 
above. 220 mg and 88 mg of mycelial and supernatant crude extracts were obtained, 
respectively.



New nematicidal and antimicrobial secondary metabolites... 7

Isolation of the compounds 1–8

The supernatant crude extract was fractionated on preparative HPLC (Gilson 
GX270 Series HPLC system). The reversed phase C18 column (Nucleodur 150/40, 
10 μm, 110 Å; with a precolumn VP 100/10; Macherey-Nagel) was used as a sta-
tionary phase and the mobile phase was composed of deionised water + TFA 0.05 
% (Milli-Q, Millipore, Schwalbach, Germany; solvent A) and acetonitrile (ACN) 
+ TFA 0.05 % (solvent B). The fractionation was accomplished with the following 
gradient: 15 % of B isocratic for 5 min, followed by a linear increase to 80 % B over 
30 min, afterwards increasing to 100% B in 5 min and thereafter isocratic condi-
tions at 100 % for 5 min. In total, 7 compounds were obtained from the superna-
tant crude extract: Compound 1 (thailanone A; 1 mg) was obtained at the retention 
time tR = 6 min, compound 2 (thailanone B; 1 mg) at tR = 4.3 min, compound 3 
(thailanone C; 1.3 mg) at tR = 6.4 min, compound 4 (thailanone D; 1 mg) at tR = 
8.1 min; compound 5 (thailanone E; 4.2 mg) at tR = 8.2, compound 6 (thailanone 
F; 1.6 mg) at tR = 8.6 min) and compound 7; monocerin (7.8 mg) at tR = 9.1 min. 
The mycelial crude extract was chromatographed in a similar manner as described 
above, yielding 77.8 mg of deoxyphomalone (8, tR = 11.2 min) but none of the 
other compounds.

Evaluation of antimicrobial activities

Minimum inhibitory concentrations (MIC) of compounds 1–8 were determined in 
serial dilution assays against Bacillus subtillis DSM10, Mucor plumbeus MUCL 49355 
and Candida tenuis MUCL 29892 as described previously by Chepkirui et al. (2016). 
The assays were carried out in 96-well microtiter plates in YMG (yeast-malt-glucose) 
medium for filamentous fungi and yeasts and MH (Müller-Hinton) medium for the 
bacterium. For all tested compounds, the starting concentration was 100 μg/mL and 
final 0.78 μg/mL. 

Water agar plate assay

The fungal cultures were tested in the water agar plate assay against Caenorhabditis 
elegans nematodes (wild type strain, see Ashrafi et al. 2017), in a similar manner as pre-
viously described by Stadler et al. (1994). After 3–7 days, nematicidal effects became 
visible by many dead and immotile nematodes in the vicinity of the mycelia. Fungal 
colonies exhibiting toxic effects were selected for submerged cultivation and produc-
tion/isolation of nematicidal compounds.
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Microtiter plate assay for nematicidal activities

The nematicidal activity against C. elegans of all isolated compounds was determined 
by a slightly modified method (Stadler et al. 1994, Kuephadungphan et al. 2017 and 
Ashrafi et al. 2017). C. elegans was inoculated monoxenically on nematode agar (soy 
peptone 2 g/l, NaCl 1 g/l, agar-agar 20 g/l) and, after autoclaving, the following in-
gredients were added as sterile filtered solutions: cholesterol (1 mg/mL dissolved in 
EtOH) 0.5 ml, 1M CaCl2 1 mll, 1M MgSO4 1 ml, 40 mM potassium phosphate buffer 
12.5 ml; pH 6.8) with living Escherichia coli DSM498 (1 ml of a suspension contain-
ing approximately 10 cells/ml, pre-inoculated for 12 h at 37 °C) and the plates were 
incubated at 21 °C for 4–5 days. Thereafter, nematodes were washed down from the 
plates with M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl and, after autoclaving, 
the addition of 1 ml 1 M MgSO4). Finally, a nematode suspension of approximately 
500 nematodes/ml in M9 buffer was prepared and used in the microtiter plate assay. 

The assay was performed in 24-well microtiter plates at four concentrations (100, 
50, 25 and 12.5 μg/ml) for each compound. Ivermectin was used as a positive control, 
while methanol was used as a negative control. The plates were incubated at 20 °C in 
the dark and nematicidal activity was recorded after 18 h of incubation and expressed 
as LD90 (i.e. concentration causing over 90 % immobility of the nematodes).

Antifungal activity assay against Phellinus tremulae

Growth inhibition of Phellinus tremulae CBS 123.40 for compounds 1–8 was tested 
according to the modified protocol published by Ayer and Jimenez (1994). The as-
say was performed in 24-well microtiter plates where 1 mL of YM agar was added in 
each well and thereafter the compounds were dissolved in methanol (100, 50, 25 and 
12.5 μg/ml) and added to the wells. Shortly after the media solidified, 0.5 × 0.5 mm2 
agar plugs of actively growing colonies of Ph. tremulae CBS 123.40, grown on a YM 
6.3 agar plate, were placed in each well of the microtiter plate. Nystatin and methanol 
were used as positive and negative controls, respectively, together with control wells 
without additives. Inhibition of the radial growth of the colonies of Ph. tremulae CBS 
123.40 relative to the control was recorded as a positive result. The radial growth was 
measured after 3, 5, 7 and 9 d.

Phytotoxic activity assay 

Phytotoxic activities were carried out by germination and seedling growth bioassay 
against Setaria italica and Lepidum sativum according to the protocol from Anke et al. 
(1989). The amount of 100 μg/paper disc of compound was tested; as a positive con-
trol herbicide methyl vilogen dichloride hydrate was used. The negative controls were 
the seeds only and the solvent alone (the one used for dissolving the compounds).
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Results and discussion

Molecular phylogenetic analysis

The combined dataset consisted of 35 taxa with 3126 characters of which 396 bp cor-
responded to ITS, 853 bp to LSU, 904 bp to rpb2 and 973 bp to tef1. The alignment 
had 100% representation for LSU, 74% for ITS, 46% for rpb2 and 57% for tef1. The 
phylogenetic tree (Fig. 1) shows two fully supported main clades, corresponding to the 
sub-orders Massarineae and Pleosporineae (Pleosporales, Dothideomycetes). In the Mas-
sarineae, eleven clades representing families are shown, i.e., Bambusicolaceae (96%, 1 
pp), Coniothyriaceae (100%, 1 pp), Didymosphaeriaceae, Latoruaceae (100%, 1 pp), 
Lentitheciaceae (97%, 1 pp), Macrodiplodiopsidaceae, Massarinaceae (100%,  1  pp), 
Montagnulaceae (100%, 1 pp), Parabambusicolaceae, Sulcatisporaceae (100%, 1 pp) and 
Trematosphaeriaceae and an additional subclade comprising Pseudoxylomyces elegans. In 
the phylogenetic tree (Fig. 1), the sequence data of the new species indicate a systematic 
position in an independent branch in the Sulcatisporaceae close to Magnicamarosporium 
eriomotense without any support.

Taxonomy

Pseudobambusicola Hern.-Restr. & Crous, gen. nov. 
MycoBank: MB824299

Etymology. The name reflects its morphological similarity of the type species to the 
asexual morphs of Bambusicola and Neobambusicola.

Type species. Pseudobambusicola thailandica Hern.-Restr. & Crous.
Diagnosis. Differs from Neobambusicola in having conidiomata with a neck, the 

presence of globose to subglobose thick-walled cells adjacent to the conidiomata and 
the production of chlamydospores in culture.

Mycelium composed of hyaline to pale brown, septate, smooth to slightly verruculose, 
hyphae. Conidiomata pycnidial, semi- or entirely immersed in the agar, solitary or aggre-
gated, erumpent, globose with a neck, opening via central ostiole, dark brown, surrounded 
by dark brown, smooth to slightly verruculose hyphae, at the base globose to subglobose, 
thick-walled cells often present. Conidiophores reduced to conidiogenous cells. Conidiog-
enous cells phialidic with periclinal thickening at the conidiogenous locus, subcylindrical 
to ampulliform, hyaline, smooth. Conidia exposed in white, mucous drops at the ostioles 
of the pycnidia, composed by macro- and microconidia. Macroconidia produced in white, 
mucous heads, solitary, fusoid-ellipsoid, apex bluntly to subobtusely rounded, tapering to 
a distinctly truncate base, prominently guttulate, hyaline, smooth, 0–3-septate. Microco-
nidia produced in the same pycnidia as macroconidia, solitary, oblong to cuneiform, non-
guttulate to slightly guttulate, hyaline, smooth, aseptate. Chlamydospores brown, terminal 
at the tips of vegetative hyphae, in chains. Sexual morph not observed.
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Figure 1. Phylogenetic tree (RAxML) inferred from the DNA sequence data of four loci (ITS, LSU, tef1 
and rpb2) of Pseudobambusicola thailandica and related species in Pleosporales (Dothideomycetes). The new 
taxon is indicated in bold. Taxa reported to produce deoxyphomalone are indicated by an underlined. Maxi-
mum likelihood bootstrap values ≥ 70 % and Bayesian posterior probabilities ≥ 0.95 are shown at the nodes 
and the scale bar indicates the number of expected mutations per site. Clades with 100 BML and 1 PP are 
indicated by thickened lines . The tree was rooted to Lophiostoma arundinis (AFTOL-ID 1606). T = ex-type 
strain; ET = epitype strain.
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Pseudobambusicola thailandica Hern.-Restr. & Crous, sp. nov. 
MycoBank MB824300

Etymology. The epithet refers to Thailand, where this species was collected.
Type. THAILAND. Lop Buri Province: Chai Badan, Wang Kan Lueang Arbore-

tum, Wang Kan Lueang Waterfall, on twig (unidentified), 14 Jul 2015, M. Hernán-
dez-Restrepo, MHR 1534 (holotype: BBH 42022!, culture ex-type BCC 79462!).

Description of fungal structures on SNA. Mycelium composed by hyaline to pale 
brown, septate, smooth to slightly verruculose, hyphae, 1–2.5 μm wide. Conidiomata 
pycnidial, semi- or entirely immersed in the agar, solitary or aggregated, erumpent, 
globose, sometimes with a neck, opening via central ostiole, dark brown, 63–360 μm 
diam., sometimes with a cylindrical neck 50–125 × 40–50 μm, opening via central 
ostiole; at the base of the conidiomata are often present globose to subglobose cells, 
thick-walled, 5–9 μm wide; conidiomata surrounded by dark brown, smooth to slight-
ly verruculose hyphae, 2–2.5 μm wide. Conidiophores reduced to conidiogenous cells. 
Conidiogenous cells phialidic with periclinal thickening, subcylindrical to ampulliform, 
hyaline, smooth, 6.5–7 × 2.5–4 μm. Conidia exposed in white, mucous drops at the 
ostiole of pycnidia, composed by macro- and microconidia. Macroconidia produced in 
white, mucous heads, solitary, fusoid-ellipsoid, apex bluntly to subobtusely rounded, 
tapering to a distinctly truncate base, mostly straight, but sometimes slightly curved, 
prominently guttulate, hyaline, smooth, 0–3-septate, 10–20 × 2–4(–6) μm. Microco-
nidia produced in the same pycnidia with macroconidia, solitary, oblong to cuneiform, 
non-guttulate to slightly guttulate, hyaline, smooth, aseptate, 2–4(–5.5) × 1–2 μm, apex 
rounded, base truncate. Chlamydospores brown, terminal, in chains, 16–38 × 5–6 μm. 
Sexual morph not observed.

Culture characteristics. Colonies on OA at 25 °C reaching 24 mm diam. in 2 
weeks, elevated, with dense cottony mycelium at the centre, mouse grey, margin whit-
ish, effuse to fimbriate; reverse dark mouse grey.

Notes. Pseudobambusicola is introduced here for a pycnidial coelomycete produc-
ing two kinds of conidia. Morphologically, it is similar to the species of Bambusicola 
and Neobambusicola. However, asexual morphs in Bambusicola are characterised by 
brown or pale brown conidia and annellidic rather than phialidic conidiogenous cells 
and hyaline conidia as in Pseudobambusicola (Dai et al. 2012, 2017). Neobambusicola is 
a monotypic genus erected for N. strelitziae, first described from South Africa growing 
on necrotic leaf tissue associated with Phyllachora strelitziae (Phyllachoraceae, Phyl-
lachorales, Sordariomycetes) (Crous et al. 2014). Both genera are similar in having 
pycnidial conidiomata and phialidic conidiogenous cells that produce fusoid-ellipsoid 
macro- and subcylindrical microconidia. However, in the new genus, the conidiomata 
are surrounded by dark brown, smooth to slightly verruculose hyphae and, in mature 
conidiomata, a cylindrical neck is often present; furthermore, chlamydospores can be 
present in culture. Although both genera belong to the Sulcatisporaceae (Pleosporales, 
Dothideomycetes), they are placed in different clades, Neobambusicola is more closely 
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Figure 2. Pseudobambusicola thailandica (BCC 79462) on SNA. A Colony overview B–C Pycnidia 
D–G Conidiogenous cells H globose to subglobose cells, thick-walled, at the base of the conidiomata 
I Microconidia J Macroconidia K Chlamydospores. Scale bars: 200 μm (B), 100 μm (C), 10 μm (D, H, 
I–K), 5 μm (E–G).

related to Sulcatispora (100 %, 1 pp), while Pseudobambusicola was placed in a distinct 
branch with Magnicamarisporium (Fig. 1). Additionally, based on LSU, ITS and tef1 
sequences, P. thailandica is 97 % (KP004495) and 83 % (KP004467) and 93 % simi-
lar to N. strelitziae, respectively. 

Water agar plate assay

Out of 66 fungal strains investigated, 18 exhibited antagonistic activity towards nema-
todes in the water agar assay. Of those, 3 strains produced compounds with nematicid-
al activity in submerged culture, while in 5 strains, antimicrobial activity was observed. 
Extracts from P. thailandica (BCC 79462) submerged fermentation displayed strong 
activity towards nematodes and were subjected to extensive chromatographic studies 
as described in the Experimental part.

Structure elucidation of compounds 1–8

Fractionation of the crude extracts obtained from submerged cultures of P. thailandica 
(BCC 79462) resulted in the identification of six previously undescribed polyketides 
for which the authors propose the trivial names thailanones A–F (1–6) and two known 
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compounds, monocerin and deoxyphomalone, 7 and 8 (see chemical structures in 
Fig. 3). The NMR spectroscopic data are compiled in Tables 2 and 3 and the spectra 
and chromatograms are compiled in the Suppl. material 1. 

Compound 1 (thailanone A) was isolated as a white solid from the supernatant 
with the molecular formula C12H18O4 and four degrees of unsaturation established 
from the HRMS data. 13C and DEPT NMR data revealed the presence of 12 carbons 
in the molecule: three methyl groups, four methylene groups and five quaternary car-
bons (Table 2). 1H NMR spectra on the other hand revealed the presence of two me-
thyl triplets at δ 0.88 (H-11) and δ 0.93 (H-7) together with a methoxy group singlet 
resonating at δ 4.05 (H-12).

HMBC correlations of H-4 to C-1/C-2/C-3-C-5/C-6, H-6 to C-1/C-2/C-2/C-7 
and H-9 to C-5/C-8/C-10/C-11 indicated the presence of an isohumulone moiety 
differing in the ring substitution (Fig. 4). Furthermore, HMBC correlations between 
H-11 to C-10/C-9 and H-7 to C-2/C-6 were observed. These correlations were further 
supported by the COSY correlations observed between H-10 and H-9/H-11 and H-6 
and H-7. The methoxy proton H-12 showed a HMBC correlation to C-3. There-
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Figure 3. Chemical structures of thailanones A–F (1–6), monocerin (7) and deoxyphomalone (8).
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fore, the structure of compound 1 was established as 5-butanoyl-2-ethyl-5-hydroxy-
3-methoxycyclopent-2-en-1-one.

Compound 2 (thailanone B) was obtained from the supernatant as a white solid. 
From the HR mass spectrum, its molecular formula was deduced as C11H16O4 with 
four degrees of unsaturation. Analysis of the 1H NMR and 13C NMR spectra of 2 
suggested a closely related structure to that of 1 with the difference being the absence 
of the methoxy group at C-3. Further, the HMBC and COSY correlations observed 
were similar to those observed for 1. Hence, the structure was elucidated as (5S)-
5-butanoyl-2-ethyl-3,5-dihidroxycyclopent-2-en-1-one.

The white solid compound 3 (thailanone C) with the molecular formula C8H10O4 
and 4 degrees of unsaturation deduced from HR mass spectrum was isolated from 
the supernatant. The 1D and 2D NMR data of 3 suggested that the molecule has a 
closely related structure to 1 with one of the side chains missing. Analysis of the 1H 
NMR spectrum indicated the presence of a triplet at δ 0.78 (H-7) and a singlet at δ 
3.84 (H-8) for methyl and methoxy groups, respectively. A COSY correlation was 
observed between H-6/H-7. Further, H-7 exhibited HMBC correlations to C-3/C-6, 
while H-6 was correlating to C-2/C3/C-4/C-7 in the HMBC spectra. H-5 on the 
other hand showed HMBC correlations to C-1/C-2/C-3/C-4. The epoxide ring was 
assigned based on the chemical shifts of C-1 (δ 86.3) and C-5 (δ 58.3) and also the 
established molecular formula. The methoxy group showed HMBC a correlation to 
C-4 (δ 170.1). The structure of 3 was established as 3-ethyl-1-hydroxy-4-methoxy-
6-oxabicyclo[3.1.0]hex-3-en-2-one.

Compound 4 (thailanone D) was isolated as white solid. The molecular formula 
C13H18O5 was deduced from the HRMS data. 13C and DEPT NMR data indicated 

Table 2. NMR spectroscopic data for compounds 1–3 in D6-acetone (1H NMR at 700 MHz; 13C at 
500 MHz).

1 2 3
No. 13C DEPT 1H/HSQC 13C 1H/HSQC DEPT
1 202.6 C 202.6 83.9 C
2 120.2 C 119.0 194.1 C
3 187.9 C 191.2 120.3 C

4 38.9 CH2
2.61 (s),
3.29 (s) 43.8 2.41 (s)

2.88 (s) 170.1 C

5 86.3 C 84.4 58.3 CH 3.46 (s)
6 15.5 CH2 2.11 (q), J= 7.53 Hz 15.2 2.11 (q), J= 7.53 Hz 16.7 CH2 2.16 (q), J=7.53 Hz
7 12.7 CH3 0.93 (t), 7.53 Hz 12.8 0.93 (t), 7.53 Hz 13.2 CH3 0.78 (t), J=7.53 Hz
8 210.7 C 210.1 57.4 CH3 3.84 (s)

9 40.1 CH2 2.61 (m), 2.74(m) 38.9

2.53 (dt), J=7.10, 
17.96 Hz

2.68 (m), J=7.10, 
17.96 Hz

10 17.8 CH2 1.55 (m) 17.6 1.55 (m)
11 14.0 CH3 0.88 (t), 7.42 Hz 13.9 0.86 (t), 7.31 Hz
12 58.3 CH3 4.05 (s)
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the presence of two methyl groups, a methoxy group, three methylene groups and five 
quaternary carbons in the molecule (Table 3). The 1H NMR spectra revealed 2 methyl 
triplets at δ 0.79 (C-12) and δ 0.96 (C-10). In addition, a methoxy singlet was ob-
served at δ 3.94 (C-13). Networks of COSY correlations were observed between H-9 
and H-8/H-10 and H-11 to H-12. In the HMBC spectra, H-4 showed correlations to 
C-2/C-3/C-5/C-6. Proton H-8 was correlating to C-2/C-7/C-9 /C-10, while the me-
thyl protons H-10 were correlating to C-8/C-9 in the HMBC spectra. Further, H-11 
showed HMBC correlations to C-1/C-5/C-6/C-12. The hydroxy group singlet at δ 
4.44 showed HMBC correlations to C-1/C-5/C-6/C-11. Cross peaks in the ROESY 
spectra between the methoxy proton H-13 (δ 3.94) and the aromatic proton H-4 
(δ 5.56) were observed. No ROESY correlations were observed between the hydroxy 
group proton (δ 4.44) and H-11/H-12/H-13. Hence the relative stereochemistry at 
C-6 can be assigned as S. The structure of compound 4 was elucidated as (6S)-2-bu-
tanoyl-6-ethyl-3,6-dihidroxy-5-methoxycyclohexa-2,4-dien-1-one.

The white solid compound 5 (thailanone E) showed the molecular formula 
C12H16O4 as deduced from HRMS data. The 1D and 2D NMR data of 5 suggested 
a closely related structure to 4 with the difference being in the ring substitution: The 
C-7 to C-10 chain and the carbon resonating δ 79.1 in 4 were missing. Analysis of the 
COSY spectra revealed correlations of H-8 to H-9 and H-11 to H-10/H-12. HMBC 
correlations of H-5 to C-1/C-3/C-4/C-10, H-8 to C-2/C-3/C-4/C-9, H-10 to C-1/C-
5/C-6/C-11/C-12 and H-12 to C-10/C-11 were observed. Hence, the structure of the 
compound 5 was elucidated as 3-ethyl-2,4-dihydroxy-6-propylbenzoic acid.

Compound 6 (thailanone F) was obtained from the supernatant as a white solid 
with the molecular formula C11H18O4 established from HRMS data. Analysis of the 
1H NMR data revealed a methyl group triplet at δ 0.91 (H-8), a methyl group singlet 
at δ 2.19 (H-10) and a methoxy singlet at 3.87 (H-11). HMBC correlations of H-2 

Figure 4. COSY, HMBC and ROESY correlations of 1.
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Table 3. NMR spectroscopic data for compounds 4–6 in D6-acetone (1H NMR at 700 MHz; 13C at 500 MHz).

4 5 6
No. 13C DEPT 1H/HSQC 13C DEPT 1H/HSQC 13C DEPT 1H/HSQC
1 196.36 C – 104.2 C 164.3 C
2 106.4 C – 164.7 C 88.7 CH 5.42(s)
3 190.6 C – 116.1 C 171.9 C
4 96.0 CH 5.56 (s) 160.7 C 112.3 C
5 177.9 C – 111.1 CH 6.36(s) 25.0 CH2 2.35 (t), J=7.74 Hz
6 79.1 C – 146.2 C 32.8 CH2 1.40 (p), J=7.31Hz
7 203.2 C – 174.7 C 23.6 CH2 1.34 (m), 
8 41.5 CH2 2.92 (m) 16.8 CH2 2.64 (q), J=7.53 Hz 14.7 CH3 0.91 (t), J=7.31 Hz
9 19.34 CH2 1.65 (m) 13.7 CH3 1.08 (t), J=7.53 Hz 159.3 C

10 14.25 CH3
0.96 (t), 

J=7.31Hz 39.3 CH2 2.86 (t), 7.31Hz 17.7 CH3 2.19 (s)

11 36.12 CH2

1.79 (dq), 
J=7.53, 13.34 

1.92 (dq), 
J=7.53, 13.34

26.0 CH2
1.59 (sext), J=7.31 

Hz

12 8.2 CH3 0.79 (t), J=7.53 14.6 CH3 0.93 (t), J=7.31
13 57.7 CH3 3.94 (s)

OH 4.44 (s)

to C-1/C-3/C-4 and H-10 to C-4/C-9 were recorded. Furthermore, HMBC correla-
tions between H-5 and C-3/C-4/C-6/C-7/C-9, H-6 and C-4/C-5/C-7/C-8, H-7 and 
C-5/C-6/C-8 and H-8 and C-6/C-7 were observed. These correlations were further 
supported by the COSY correlations of H-6 to H-5/H-7 and H-7 to H-6/H-8. Cross 
peaks between H-2 (5.42) and methoxy protons H-11 (δ 3.87) were not observed 
in the ROESY spectra, indicating that the olefinic bond at position two had E con-
figuration. The olefinic bond between C-4 (δ 112.3) and C-9 (δ 159.3) was assigned 
E configuration, since H-5 (δ 2.35) and H-10 (δ 2.19) also did not correlate in the 
ROESY spectra. The structure of the compound 6 was established as (2Z, 4E)-4-(1-
hydroxyethylidene)-3-methoxyoct-2-enoic acid.

Monocerin (7) and deoxyphomalone (8) were identified by comparing their NMR 
and HRMS data with those reported in literature (Aldridge et al. 1970, Ayer and 
Jimenez 1994, respectively). Monocerin was reported before as a potent herbicide and 
insecticide against Johnson grass and woolly aphids, respectively (Grove et al. 1979, 
Robeson et al. 1982), while deoxyphomalone has been reported from other pleospo-
ralean fungi like Alternaria. To the best of the authors’ knowledge, it has not been 
reported previously from a species of the Sulcatisporaceae.

Biological activity

The results of the biological assays that were performed to detect antibacterial, an-
tifungal and nematicidal activities are summarised in Table 4. Compound 6 was 
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Table 4. Biological activities of compounds 1–8.

Compounds

Antimicrobial activity  
MIC (µg/mL)

Nematicidal activity 
LD90 (µg/mL)

Antifungal activity (% 
growth inhibition at 

≤ 12.5 µg/mL) 
Bacillus subtillis 

DSM10
Mucor plumbeus 

MUCL 49355
Caenorhabditis 

elegans
Phellinus tremulae 

CBS 123.40
Thailanone A (1) ≤ 50 – ≤ 50 50
Thailanone B (2) – – ≤ 25 28.6
Thailanone C (3) – – ≤ 25 31.4
Thailanone D (4) – ≤ 25 ≤ 12.5 28.6
Thailanone E (5) – – ≤ 50 25.
Thailanone F (6) – – ≤ 25 41.4
Monocerin (7) – – – 28.6
Deoxyphomalone (8) ≤ 12.5 ≤ 25 ≤ 12.5 50
Standards
Nystatin # – ≤ 0.782 – 100
Ciprofloxacin †† ≤ 0.78 – – –
Ivermectin ‡‡ – – ≤ 12.5 –
Methanol – – – –

No activity against Candida tenuis, Setaria italica and Lepidum sativum was observed for any of tested compounds 
up to concentrations of 100 μg/mL. # Nystatin-antifungal reference; †† Ciprofloxacin-antibacterial reference; 
‡‡ Ivermectin-nematicidal reference

moderately active against M. plumbeus with MIC of 25 μg/ml, while deoxypho-
malone (8) exhibited moderate activities against B. subtilis and M. plumbeus with 
MIC values of 12.5 and 25 μg/ml, respectively. Compounds 1–6 and 8 were also 
the only compounds with significant activities against M. plumbeus. The results 
by Ayer and Jimenez (1994), regarding the antifungal activity of phomalone and 
its deoxy derivative, were also repeated in the serial dilution assay. Compounds 
2–7 failed to significantly inhibit growth of Ph. tremulae, whereas the new phom-
alone derivative 1 showed moderate inhibition and was more weakly active than 
the known compound 8. No phytotoxic effects in plant germination and seedling 
growth bioassay with S. italica and L. sativum at 100 μg/paper disk were observed 
for any of tested compounds.

Compound 7 was reported as a potent herbicide and insecticide against John-
son grass and woolly aphids, respectively (Grove et al. 1979, Robeson et al. 1982). 
It was first isolated from a fungus described as Phoma etheridgei (Hutchison et al. 
1994) and recently, 7 was also isolated from Alternaria tenuissima (Pleosporaceae) 
and the bioactivity was tested against E. coli (Anyanwu and Sorensen 2015). It 
has previously been reported to be active against the pathogenic basidiomycete 
Phellinus tremulae, which infects different species of poplar (Ayer and Jimenez 
1994). This fungus causes extensive damage to hardwoods in North America and, 
in Canada, Ph. tremulae seriously reduces the economic value of Populus tremuloides 
(Trifonov et al. 1992). This prompted the authors to re-evaluate the compound 
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in an antifungal assay against Ph. tremulae, in which all purified metabolites from 
P. thailandica were tested.

Moreover, the phytotoxic activity of terrein and congeners on plant growth 
and induction of lesions on fruit surfaces were previously investigated by Zaehle et 
al. (2014). Terrein, a major metabolite of Aspergillus terreus, resembles 1 and 7 in 
its chemical structure. The authors therefore performed a phytotoxicity assay, but 
they did not find significant effects of these compounds on germination and shoot/
root elongation.

Conclusion

In the course of this investigation of the fungal specimens collected in the rain-
forest of Thailand, several nematode-antagonistic strains were detected. The use of 
nematodes as test organisms can detect bioactivity from the compounds that are 
not detected by whole-cell-based screening for antimicrobial activities. As an out-
come of the antihelmintic screening, six new compounds (thailanones 1–6) and 
two known compounds, deoxyphomalone (7) and monocerin (8) were isolated and 
further evaluated regarding their antifungal activity. Even though these results are 
just preliminary and the biological activities of the new compounds are rather mod-
erate, they are very likely to play an important chemo-ecological role in the natural 
habitat of the fungal producer organisms, e.g. to protect against nematode preda-
tion. The authors have not yet tried to detect the metabolites on water agar in the 
presence of nematodes because of the experimental limitations that would first need 
to be overcome. The moderate activity of the new compounds (as compared to, for 
example, the standard ivermectin, which is at least ten times more active) probably 
precludes their adoption as a nematicidal agent that could serve as a candidate for an 
antihelmintic drug or an agrochemical nematicide. On the other hand, the fungus 
might turn out to be a candidate for a biocontrol agent to act as an antagonist of 
pathogenic nematodes and fungi.
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Abstract
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae 
collected from southern Thailand. Morphotypes were initially identified based on their characteristics in 
culture and species level identification was done based on both morphological characteristics and phyloge-
netic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight 
morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic 
analyses were performed to identify these endophytes and established relationships with extant fungi. The 
authors identified both ascomycete and basidiomycete species, including one new genus, seven new species 
and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
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Introduction

Endophytic fungi are beneficial to their host plants and have the ability to produce bioac-
tive compounds that have applied uses (Fisher et al. 1994; Strobel et al. 2004; Gunatilaka 
2006; Arnold et al. 2007; Saikkonen et al. 2010; Aly et al. 2010; Lin et al. 2010; Rajulu 
et al. 2011; Chowdhary et al. 2015). Research on endophytic fungi began approximately 
30 years ago and has intensified over the past 20 years (Thomson et al. 1997; Arnold et 
al. 2000; Stone et al. 2000; Hyde and Soytong 2008; Lumyong et al. 2009). This rising 
interest in endophytic fungi dates back to Bills’ 1996 novel concept that mycelia sterilia 
isolates could be assigned to groups based on their degree of similarity in colony surface 
texture (Rodrigues 1994; Fisher et al. 1995; Lodge et al. 1996; Brown et al. 1998; Taylor 
et al. 1999; Umali et al. 1999; Fróhlich et al. 2000). Lacap et al. (2003) used molecular 
data to demonstrate the reliability of Bill’s 1996 concept based on the cultural approach. 
Guo et al. (2000, 2003) found that morphological characteristics were insufficient to 
identify most endophyte isolates, especially when they do not sporulate and so DNA se-
quence data were used for identification of these taxa. Although this has been followed by 
numerous authors using ITS sequence data analysis, the use of ITS alone is not accurate 
(Promputtha et al. 2005). Subsequent studies have shown that multi-gene analyses are 
needed to identify endophytes (Ko et al. 2011).

Endophytic fungal strains have been isolated from many different plants includ-
ing trees, vegetables, fruits, cereal grains and other crops (Rosenblueth and Martinez-
Romero 2006). Dickinson (1976) published the first study of endophyte - leaf associa-
tions. However, there has been less research on the endophytic fungi associated with 
the leaves of tropical plants (Promputtha et al. 2007). The high species diversity of en-
dophytic fungi makes their study a pressing research area. Globally, endophytic fungi 
were estimated to comprise 7 % of the 1.5 million species of fungi (Hawksworth 2001; 
Chowdhary et al. 2015). The actual numbers may be far higher. Recently, Hawksworth 
and Lucking (2017) estimated that there are 2.2 to 3.8 million fungal taxa. Endophytes 
are expected to be numerous because their host-specificity will drive diversification and 
they can occupy several niches, including that of pathogens and saprobes (Zhou and 
Hyde 2001). Several studies have investigated the relationships between endophytes 
and saprotrophs and also between endophytes and pathogens (Petrini 1991; Yanna and 
Hyde 2002; Ghimire and Hyde 2004; Photita et al. 2004; Hyde et al. 2006).

The authors have been investigating saprobic and endophytic fungi associated 
with Pandanaceae (Tibpromma et al. 2016a, b, c, 2017a, b) and, in this study, taxo-
nomic details are presented regarding the endophytic fungi that were isolated. Pan-
danaceae are monocotyledonous plants. Their associated endophytic fungi were first 
studied by McKenzie et al. (2002), with further research conducted by Thongkantha 
et al. (2008), Bungihan et al. (2011), Ariffin (2013), Bungihan et al. (2013) and Es-
kandarighadikolaii et al. (2015).
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The objectives of the present study were to establish the endophytic fungal com-
munity on selected Pandanaceae collected in southern Thailand. The authors isolated 
22 endophytic isolates and sorted them in morphotypes and identified the taxa based 
on DNA sequence analyses. Both ascomycete and basidiomycete genera were identi-
fied, including one new genus, seven new species and nine known species. The recom-
mendations of Jeewon and Hyde (2016) were followed when introducing the new 
species based on molecular data.

Materials and methods

Sample collection and fungal isolation

Healthy mature leaves of Pandanus and Freycinetia species (Pandanaceae, Figure 1) were 
collected from Chumphon (10°57'38.2"N 99°29'21.8"E) and Ranong (9°55'15.9"N, 
98°38'30.7"E) provinces of southern Thailand during the rainy season (December) 
of 2016. Leaves with physical damage or showing signs of pathogenic infection were 
excluded from the study. In total, more than 100 healthy leaves were placed in Ziploc 
plastic bags, preserved with ice and transported to the laboratory. Leaves were ran-
domly cut into 0.5 cm size pieces (10 pieces/leaf ) using a hole puncher under aseptic 
conditions. These sections were soaked in 95 % ethanol for 1 minute, then in 3 % so-
dium hypochlorite solution for 3 minutes and finally in 95 % ethanol for 30 seconds. 
All samples were rinsed with sterile distilled water and dried on sterile tissue paper. 
Leaf sections were placed in Malt Extract Agar (MEA), Potato Dextrose Agar (PDA) 
and Water Agar (WA). They were incubated at room temperature (25-30 °C) for 1-3 
days. If hyphal tips of any fungal colony appeared during incubation, the colony was 
transferred to new PDA plates and incubated to obtain pure cultures.

Cultures and identification

The above methods resulted in 22 isolates which were separated into morphotypes 
based on visual assessment of the similarity of the cultures (Bills 1996; Umali et al. 
1999; Fróhlich et al. 2000; Lacap et al. 2003). All of these cultures were grown on Po-
tato Dextrose Agar (PDA). Growth rate measurements are shown in Table 1 with col-
ony colour defined with the Methuen Handbook of Colour (Kornerup and Wanscher 
1967). New taxa were examined in pure culture, allowing photographs, records of 
morphological characteristics and descriptions to be recorded. Herbarium specimens 
were prepared from cultures that were dried in silica gel. The holotypes were deposited 
in the Mae Fah Luang University Herbarium (Herb. MFLU), Chiang Rai, Thailand 
and in the Kunming Institute of Botany Academia Sinica (HKAS), Kunming, China. 
The ex-types cultures were deposited in the Mae Fah Luang University Culture Col-
lection (MFLUCC) with duplicates deposited in the BIOTEC Culture Collection 
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Figure 1. Habitats of the host plants: a, b Pandanus spp. c, d Freycinetia spp.

Laboratory (BCC) and the Kunming Institute of Botany Culture (KMUCC). New 
taxa were registered in Facesoffungi (FoF) (Jayasiri et al. 2015) and MycoBank (Crous 
et al. 2004).

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from pure fungal cultures using Biospin Fungal Genom-
ic DNA extraction Kit–BSC14S1 (BioFlux, P.R. China). Polymerase chain reaction 
(PCR) was used to amplify partial gene regions of Internal Transcribed Spacers (ITS), 
28S ribosomal RNA (LSU), 18S ribosomal RNA (SSU), RNA polymerase II second 
largest subunit (RPB2), β-tubulin (Tub2), Actin (ACT), Glyceraldehyde-3- Phosphate 
Dehydrogenase (GADPH), Chitin synthase 1 (CHS-1) and Translation Elongation 
Factor 1-alpha (TEF1) using primers as shown in Table 1. The total volume of PCR 
mixtures for amplifications were 25 μl containing 8.5 μl ddH2O, 12.5 μl 2× Easy Taq 
PCR Super Mix (mixture of Easy Taq TM DNA Polymerase, dNTPs and optimised 
buffer (Beijing Trans Gen Biotech Co., Chaoyang District, Beijing, PR China), 2 μl of 
DNA template, 1 μl of each forward and reverse primers (10 pM). The quality of PCR 
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Table 1. Details of genes/loci with PCR primers and protocols.

Gene/Loci PCR primers (Forward/Reverse) References
LSU LROR/LR5 Vilgalys and Hester 1990
ITS ITS5/ITS4 White et al. 1990
SSU NS1/NS4 White et al. 1990

TEF1
983F/2218 Rehner 2001
728F/986R Carbone and Kohn 1999

RPB2 fRPB2-5f/fRPB2–7cR Liu et al. 1999

β-tubulin
BT2a/BT2b Glass and Donaldson 1995
T1/T2 O’Donnell and Cigelnik 1997

Actin 512F/783R Carbone and Kohn 1999
CHS-1 79F/354R Carbone and Kohn 1999

GADPH
Gpd1/Gpd2 Myllys et al. 2002
GDF/GDR Templeton et al. 1992

products was checked on 1 % agarose gel electrophoresis stained with 4S green nucleic 
acid (Life Science Products & Services, Cat. No: A616694). Purification and sequenc-
ing of PCR products were carried out by Sangon Biotech Co., Shanghai, China.

Phylogenetic analysis

The sequence data generated during this study were the subject of BLAST searches in 
the nucleotide database of GenBank (www http://blast.ncbi.nlm.nih.gov/) to deter-
mine their most probable closely related taxa. Sequence data were retrieved from Gen-
Bank based on recent publications. Raw forward and reverse sequences were assem-
bled using Geneious Pro.v4.8.5. Sequence alignments were carried out with MAFFT 
v.6.864b (Katoh and Standley 2016) and alignments were manually improved where 
necessary. The sequence datasets were combined using BioEdit v.7.2.5 (Hall 2004). 
Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were performed 
for the sequence dataset. The phylogenetic trees were configured in FigureTree v. 1.4 
(Rambaut and Drummond 2008) and edited using Microsoft Office PowerPoint 2007 
and Adobe Illustrator CS3 (Adobe Systems Inc., USA).

Results and discussion

Identification of morphotypes

Twenty-two fungal isolates from Pandanus and Freycinetia species were recovered and 
these mycelia sterilia were separated into eight morphotypes based on the similarity of 
their culture characteristics, as summarised in Table 2 (Bills 1996; Umali et al. 1999; 
Fróhlich et al. 2000; Lacap et al. 2003).
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Table 2. Culture characteristics of the 22 strains (8 morphotypes) of mycelia sterilia on PDA.

Morpho-
types

Isolate 
code Host

Size (cm) of 
colony Shape

Colour
Mycelium Edge

3 days 7 days Above Reverse

1
PE05 Pandanus sp. 4.6 >A Circular 4A1 4A2 Aerial Undulate
PE09 Pandanus sp. 4.6 >A Circular 6D3 6B3 Aerial Entire
PE15 Pandanus sp. >A >A Circular 5B2 5B3 Flat Entire

2

PE10 Pandanus sp. 1.1 3.2 Irregular 4C1 4A3 Aerial Undulate
PE60 Pandanus sp. 1.6 3.8 Irregular 4B1 4A3 Aerial Undulate
FE46 Freycinetia sp. 2.1 5.6 Irregular 5B2 5A2 Aerial Undulate
FE42 Freycinetia sp. 1.5 5 Irregular 4A1 4A3 Aerial Undulate
FE43 Freycinetia sp. 1.4 4.2 Irregular 5D4 5C4 Flat Undulate
PE75 Pandanus sp. 1.6 5 Circular 6A1/6D3 6A1/6F5 Aerial Undulate
PE84 Pandanus sp. 1.5 3.8 Circular 5F4 5F7 Aerial Curled
FE98 Freycinetia sp. 1.3 3.1 Irregular 5B2 5D5 Flat Filamentous

3 PE25 Pandanus sp. >A >A Circular 5E1 5F2 Aerial Entire

4
PE26 Pandanus sp. 3.1 7.2 Irregular 5B3 5B5 Aerial Undulate
PE52 Pandanus sp. 1.2 2.9 Circular 5A2 5A3 Aerial Undulate

5 PE35 Pandanus sp. 1.1 2.7 Filamentous 8E2 8F2 Aerial Filamentous

6

PE92 Pandanus sp. 5.1 >A Irregular 4B1 4A6 Aerial Curled
PE37 Pandanus sp. 2.3 7.9 Circular 4A1 4B3 Aerial Curled
FE88 Freycinetia sp. 2.9 6.2 Circular 5D3 5B2 Flat Undulate
PE77 Pandanus sp. 4.2 7.1 Irregular 6B1/6E1 6B2 Aerial Undulate
FE41 Freycinetia sp. >A >A Irregular 4D2 4F6 Flat Filamentous

7 PE58 Pandanus sp. <B 1.7 Circular 4F2 4F8 Aerial Entire
8 FE101 Freycinetia sp. <B 2 Circular 4B2 4A3 Aerial Entire

Notes: >A Completely covering plate, <B Less than 1 cm

Phylogenetic analysis

Based on phylogenetic analysis, 22 fungal isolates were identified for 16 species. These 
include one new genus, seven new species and nine known species. All sequences ob-
tained from this study are summarised in Table 3.

Basidiomycota R.T. Moore
Agaricomycetes Doweld
Polyporales Gäum., 1926

Polyporaceae Fr. ex Corda

Remarks. The family Polyporaceae was introduced by Fr. ex Corda (1839) and includes 
92 genera and 636 species (Kirk et al. 2008). According to Cannon and Kirk (2007), 
the species in this family are characterised by poroid, irregular or lamellate hymeno-
phores and are saprobes. Recent phylogenetic analyses of Polyporaceae are by Binder 



Identification of endophytic fungi from leaves of Pandanaceae... 31

Table 3. Species of endophytes obtained in this study.

No. Original code Species name Culture collection no. 
1 PE26 Alternaria burnsii MFLUCC 17-0582
2 PE58 Cladosporium endophyticum MFLUCC 17-0599 
3 PE09 Colletotrichum pandanicola MFLUCC 17-0571

4
FE88

Colletotrichum fructicola
MFLUCC 17-0555

PE84 MFLUCC 17-0613
5 PE77 Diaporthe pandanicola MFLUCC 17-0607
6 PE37 Diaporthe siamensis MFLUCC 17-0591
7 FE41 Endomelanconiopsis freycinetiae MFLUCC 17-0547

8

FE42

Endopandanicola thailandica 

MFLUCC 17-0548
FE43 MFLUCC 17-0549
FE46 MFLUCC 17-0551
PE10 MFLUCC 17-0572
PE60 MFLUCC 17-0600

9 PE25 Lasiodiplodia theobromae MFLUCC 17-0581 
10 PE52 Massarina pandanicola MFLUCC 17-0596

11
FE98

Meyerozyma caribbica 
MFLUCC 17-0556

PE75 MFLUCC 17-0606
12 FE101 Mycoleptodiscus endophytica MFLUCC 17-0545
13 PE05 Pestalotiopsis jiangxiensis MFLUCC 17-0567
14 PE92 Pestalotiopsis microspora MFLUCC 17-0619
15 PE15 Phanerochaete chrysosporium MFLUCC 17-0575
16 PE35 Phyllosticta capitalensis MFLUCC 17-0589

et al. (2013) and Hyde et al. (2017). In this study, a new endophytic genus, Endopan-
danicola with En. thailandica as the type species was discovered. In addition to the new 
genus, Phanerochaete chrysosporium was also identified.

Endopandanicola Tibpromma & K.D. Hyde, gen. nov.
MycoBank number: MB823835
Facesoffungi number: FoF03900

Etymology. Named after its habitat as an endophyte of Pandanus.
Type species. Endopandanicola thailandica Tibpromma & K.D. Hyde
Culture characteristics. Colonies on PDA (PE60), superficial, initially white, later 

becoming yellow-white, smooth at the surface, irregular, with undulate margin, flossy 
to velvety; reverse white to yellow-white. Generative hyphae simple-septate, branched, 
sub-hyaline, thin-walled.

Notes. Endopandanicola formed a single, well-supported clade (100 % in ML, 
100 % in MP), which is distinct as compared to other genera in Polyporaceae (Figure 3). 
This genus comprises resupinate or crust polypores that live inside leaves or wood as endo-
phytes and do not form fruiting bodies (sexual morph), but form flat mycelia. More collec-
tions of Pandanus are needed in the future to locate the sexual morph of Endopandanicola.
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Figure 2. All cultures from this study are grown on PDA at room temperature after 7 days (original codes 
are written at the bottom of each picture).

Endopandanicola thailandica Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823836
Facesoffungi number: FoF03901
Figure 4

Etymology. named after Thailand, the country where the fungus was first discovered.
Holotype. MFLU 18-0021
Culture characteristics. Colonies on PDA (Figure 2 PE10, FE42, FE43, FE46 

and PE60), superficial, initially white, later becoming yellow-white, irregular, with un-
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Figure 3. Phylogram generated from maximum likelihood analysis based on ITS sequence data. Maxi-
mum parsimony (left) and maximum likelihood (right) bootstrap support values are given above/below 
the nodes. The newly generated sequences are in red text. The tree is rooted with Pirex concentricus.

dulate margin, smooth with flossy to velvety; reverse white to yellow-white. Generative 
hyphae simple-septate, branched, with clamp connections, sub-hyaline, thin-walled, 
1.5–3.5 μm wide.

Material examined. THAILAND, Chumphon, Pathio District, on healthy leaves 
of Pandanus sp. (Pandanaceae), 1 December 2016, S. Tibpromma PE60 (MFLU 18-
0021, holotype); HKAS100856, paratype, ex-type living cultures, MFLUCC 17-0600 
= KUMCC 17-0295; Chumphon, Pathio District, 1 December 2016, S. Tibpromma 
PE10, living culture, MFLUCC 17-0572; Ranong, Muang, Muang District, 3 De-
cember 2016, S. Tibpromma FE42, living culture, MFLUCC 17-0548; FE43, living 
culture, MFLUCC 17-0549 = KUMCC 17-0264; FE46, living culture, MFLUCC 
17-0551 = KUMCC 17-0265.

GenBank numbers. ITS; MFLUCC 17-0545=MG646961, MFLUCC 17-
0548=MG646964, MFLUCC 17-0549=MG646963, MFLUCC 17-0551=MG646962, 
MFLUCC 17-0572=MG646959, MFLUCC 17-0600=MG646960.
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Figure 4. Endopandanicola thailandica (MFLU 18-0021, holotype). a Mycelia masses b, c Clamp con-
nections. Scale bars: 10 μm (a), 5 μm (b, c).

Notes. Endopandanicola is introduced and typified by En. thailandica which is rep-
resented by six isolates and is described as a novel species based on its asexual morph. 
The phylogenetic analysis of ITS sequence data showed that this species clustered to-
gether with Panus, but there is a high level of statistical support for its separation 
(100% in ML, 100% in MP) (Figure 3).

Phanerochaete chrysosporium Burds., in Burdsall & Eslyn, Mycotaxon 1(2): 124 (1974)

Culture characteristics. Colonies on PDA (Figure 2, PE15), superficial, white, surface 
smooth with flat media surface, circular, with entire edge; reverse white to yellow-white.

GenBank numbers. ITS=MG646957.
Notes. Burdsall and Eslyn (1974) introduced Phanerochaete chrysosporium which 

was collected on dead wood of Platanus wrightii in the USA. Phylogenetic analysis 
of ITS sequence data shows this taxon groups with Phanerochaete chrysosporium (se-
quences obtained from GenBank) that had been collected from different hosts. The 
phylogenetic placement of this species is shown in Figure 3.

Ascomycota Whittaker
Dothideomycetes O.E. Erikss. & Winka

Botryosphaeriales C.L. Schoch, Crous & Shoemaker

Remarks. The order Botryosphaeriales was introduced by Schoch et al. (2006) with Bot-
ryosphaeriaceae as the type family. Botryosphaeriales is a diverse order with a worldwide 
distribution, comprising species that vary from endophytes to pathogens (Slippers and 
Wingfield 2007; Phillips et al. 2013; Chethana et al. 2016; Daranagama et al. 2016; 
Dissanayake et al. 2016; Konta et al. 2016a, b; Linaldeddu et al. 2016a, b, c; Manawas-
inghe et al. 2016; Zhang et al. 2017). Currently, nine families are recognised, namely, 
Aplosporellaceae, Botryosphaeriaceae, Endomelanconiopsisaceae, Melanopsaceae, Phyllos-
tictaceae, Planistromellaceae, Pseudofusicoccumaceae, Saccharataceae and Septorioideaceae 
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Figure 5. Phylogram generated from maximum likelihood analysis based on ITS, LSU and TEF1 se-
quenced data. Maximum likelihood bootstrap values are given above/below the nodes. The newly gener-
ated sequences are in red bold. The tree is rooted with Tiarosporella paludosa.
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(Schoch et al. 2006; Minnis et al. 2012; Wikee et al. 2013; Slippers et al. 2013; Wyka 
and Broders 2016; Dissanayake et al. 2016; Yang et al. 2017). In this study, Endomelan-
coniopsis freycinetiae is introduced as a new species and reports are provided on Phyllos-
ticta capitalensis and Lasiodiplodia theobromae.

Endomelanconiopsis freycinetiae Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823837
Facesoffungi number: FoF03902
Figure 6

Etymology. name referring to the host genus on which the fungus was found (Freycinetia).
Holotype. MFLU 18-0002
Culture characteristics. Colonies on PDA (Figure 2, FE41), superficial, initially 

white-grey with flat mycelium on media with dark centre, later becoming dark oliva-
ceous with circular rings and flossy at the margin; reverse dark olivaceous. Generative 
hyphae simple-septate, branched, sub-hyaline to brown, cylindrical, guttulate, thick-
walled. Not sporulating in culture (Figure 6).

Material examined. THAILAND, Ranong, Muang, on healthy leaves of Freyci-
netia sp. (Pandanaceae), 3 December 2016, S. Tibpromma FE41 (MFLU 18-0002, 
holotype); HKAS100853, paratype, ex-type living cultures, MFLUCC 17-0547 = 
KUMCC 17-0292.

GenBank numbers. ITS=MG646955, LSU=MG646948, TEF1=MG646983, 
β-tubulin=MG646924.

Notes. Endomelanconiopsis freycinetiae is closely related to the endophytic fungus 
En. endophytica. Therefore, the culture characteristics of these two taxa were compared 
and it was found that, in En. endophytica, at first the hyphae are colourless, immersed, 
later becoming olivaceous in the centre with irregular concentric rings; aerial mycelia 
are dark olivaceous or grey when dense; shiny black when the aerial mycelia are loose 
(Rojas et al. 2008) whereas aerial mycelia of En. freycinetiae has dark olivaceous, circu-
lar rings and flossy surface (Figure 2, FE41). Nucleotide base pairs of ITS and TEF1 
were also compared and it was found that there are differences (ITS 3 bp, TEF1 8 bp).

Phyllosticta capitalensis Henn., Hedwigia 48: 13 (1908)

Culture characteristics. Colonies on PDA (Figure 2, PE35), superficial, dark oliva-
ceous with filamentous hyphae and raised edge; reverse dark olivaceous. Sporulating in 
culture after 2 months.

GenBank numbers. ITS=MG646954, LSU=MG646953, TEF1=MG646982.
Notes. Phyllosticta capitalensis (Hennings 1908) is known as an endophytic taxon 

and a minor plant pathogen. It has a worldwide distribution and has been recorded 
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Figure 6. Endomelanconiopsis freycinetiae (MFLU 18-0002, holotype). a–d Mycelia masses. Scale bars: 
20 μm (a–c), 10 μm (d).

on 70 plant families (Baayen et al. 2002; Okane et al. 2003; Motohashi et al. 2009; 
Wikee et al. 2013). The isolate recovered herein clusters with reasonable ML bootstrap 
support with other P. capitalensis isolates (Figure 5). Morphological examination also 
depicts similar morphs and hence it is identified as P. capitalensis.

Lasiodiplodia theobromae (Pat.) Griffon & Maubl., Bull. Soc. Mycol. Fr. 25: 57 (1909)

Culture characteristics. Colonies on PDA (Figure 2, PE25), superficial, initially white 
with flat mycelium on media, later becoming dark, circular, flossy and velvety; reverse 
dark. Not sporulating in culture.

GenBank numbers. ITS=MG646970, LSU=MG646945, SSU=MG646976, 
TEF1=MG646984.

Notes. Morphological and phylogenetic data supported placement of this isolate 
as Lasiodiplodia theobromae. The phylogenetic analysis showed the isolate groups with 
Lasiodiplodia theobromae. Nucleotide base pairs of published sequences of Lasiodiplo-
dia theobromae (strain EucN188, CBS 111530, PHLO9, CDFA145) were also com-
pared with the sequence and found that the nucleotide base pairs of the ITS gene are 
100% similar.
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Capnodiales Woron., 1925
Cladosporiaceae Castell. & R.G. Archibald

Cladosporium Link, 1816

Remarks. The genus Cladosporium (Cladosporiaceae, Capnodiales) is a large genus of 
the Ascomycota (Wijayawardene et al. 2017). The genus comprises species that are 
saprobes, endophytes and pathogens. A few species have been documented as being 
etiologic agents in vertebrate hosts (David 1997; Bensch et al. 2012, 2015; Crous et al. 
2014). In this study, a new species of Cladosporium is described, with high bootstrap 
support in the phylogenetic analysis (Figure 7).

Cladosporium endophyticum Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823838
Facesoffungi number: FoF03903
Figure 8

Etymology. named after its status as an endophytic fungus.
Holotype. MFLU 18-0005
Description. Colonies on PDA attaining 9 cm diam. in six weeks at room tem-

perature, slow growing, dark olivaceous. Mycelium superficial and immersed composed 
of septate, branched, 2.3–4.5 μm wide, sub-hyaline, with smooth and thick-walled 
hyphae. Sexual morph Undetermined. Asexual morph Conidiophores 6–10 μm high, 
3–4 μm diam. (x̄ = 8.24 × 3.52 μm, n = 10), terminal and intercalary, cylindrical or 
sub-cylindrical, darkened conidiogenous loci. Conidia 3–6 × 2–4 μm (x̄ = 3.64 × 2.75 
μm, n = 30), forming long branched chains, hyaline to pale-olivaceous, smooth and 
thin-walled, aseptate, globose to ovoid with rounded ends.

Culture characteristics. Colonies on PDA (Figure 2, PE58), superficial, dark oli-
vaceous with dark-grey centre, irregular, undulate with wrinkled and raised on surface 
media; reverse dark olivaceous. Generative hyphae simple-septate, branched, sub-hya-
line, guttules, thick-walled (Figure 8).

Material examined. THAILAND, Chumphon, Pathio District, on healthy leaves 
of Pandanus sp. (Pandanaceae), 1 December 2016, S. Tibpromma PE58 (MFLU 18-
0005, holotype); HKAS100855, paratype, ex-type living cultures, MFLUCC 17-
0599 = KUMCC 17-0294.

GenBank numbers. ITS=MG646956, LSU=MG646949, SSU=MG646981, 
TEF1=MG646988.

Notes. Cladosporium endophyticum was isolated as an endophyte from Pandanus sp. in 
Thailand. In the phylogenetic analysis of combined gene sequence data of ITS, LSU, SSU 
and TEF1, the new taxon Cladosporium endophyticum is sister to C. halotolerans (Figure 7), 
but well-separated with high bootstrap support (90% in ML). Moreover, the morphology 
of this new taxon was compared with Cladosporium halotolerans which has brown to dark 



Identification of endophytic fungi from leaves of Pandanaceae... 39

Figure 7. Phylogram generated from maximum likelihood analysis based on ITS, TEF1 and Actin se-
quenced data. Maximum likelihood bootstrap is given above/below the nodes. The newly generated se-
quences in red bold. The tree is rooted with Cercospora beticola.
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Figure 8. Cladosporium endophyticum (MFLU 18-0005, holotype). a Colony on MEA media b Myce-
lium masses c–e Conidia and conidiogenous cells f, g Conidia h Conidia and conidiogenous cells. Scale 
bars: 5 μm (b–h), 10 μm (h).

brown, subglobose to globose with verrucose, less often short-ovoid conidia, narrower 
at both ends (Zalar et al. 2007), while C. endophyticum has globose to ovoid, hyaline to 
pale-olivaceous conidia with rounded ends. Here, the authors introduce the new species 
C. endophyticum and provide an updated phylogenetic tree for the genus Cladosporium.

Pleosporales Luttr. ex M.E. Barr, 1987

Massarinaceae Munk.

Remarks. The family Massarinaceae was introduced by Munk (1956) under Pleospo-
rales together with Cucurbitariaceae and Didymosphaeriaceae. Later, Barr (1987) seg-
regated Massarinaceae under Lophiostomataceae based on morphology, while based on 
multigene phylogenetic analysis Schoch et al. (2009) also showed Massarinaceae is a 
distinct family in order Pleosporales. Recently, Zhang et al. (2009, 2012) recognised 
Massarinaceae as a distinct lineage based on both morphology and molecular phylog-
eny. In this study, a new species of endophytic Massarina, based on morphological and 
phylogenetic support, is introduced from Pandanus sp. in Thailand.

Massarina pandanicola Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823839
Facesoffungi number: FoF03904
Figure 10

Etymology. name referring to the host genus of the plant on which the fungus was first 
discovered (Pandanus).
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Figure 9. Phylogram generated from maximum likelihood analysis based on ITS, TEF1, SSU, LSU and 
RPB2 sequenced data. Maximum likelihood bootstrap values are given above/below the nodes. The newly 
generated sequences in red bold. The tree is rooted with Alternaria alternata and Pleospora herbarum.

Holotype. MFLU 18-0004
Description. Colonies on PDA attaining 9 cm diam. in 4 weeks at room temperature, 

slow growing, white to yellow-white. Mycelium superficial and immersed composed of 
septate, branched, 2.5–7 μm wide, sub-hyaline, with smooth and thick-walled hyphae. 
Sexual morph Undetermined. Asexual morph Conidiophores 12–25 μm high, 8–14 μm 
diam. (x̄ = 15.12 × 10.45 μm, n = 10), enteroblastic, phialidic, cylindrical or sub-cylindri-
cal, sub-hyaline. Conidia 3–5 × 1–3 μm (x̄ = 4.34 × 1.75 μm, n = 30), cylindrical, hyaline, 
smooth and thin-walled, aseptate, rounded ends, guttulate, without sheet or appendages.
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Figure 10. Massarina pandanicola (MFLU 18-0004, holotype). a Colony on MEA media b Mycelium 
masses c–g Conidia and conidiogenous cells h Conidia. Scale bars: 20 μm (b), 2 μm (c–g), 5 μm (h).

Culture characteristics. Colonies on PDA (Figure 2, PE52), superficial, white 
to yellow-white, irregular, undulate with smooth and raised on surface media; reverse 
yellow-white. Generative hyphae simple-septate, branched, sub-hyaline, with guttulate 
cells, thin-walled. Sporulating in culture within 3 months (Figure 10).

Material examined. THAILAND, Chumphon, Pathio District, on healthy leaves 
of Pandanus sp. (Pandanaceae), 1 December 2016, S. Tibpromma PE52 (MFLU 18-
0004, holotype); HKAS100854, paratype, ex-type living cultures, MFLUCC 17-
0596 = KUMCC 17-0293.

Genbank numbers. ITS=MG646958, LSU=MG646947, SSU=MG646979, 
TEF1=MG646986.

Notes. The genus Massarina has been known as a phylogenetically diverse group in 
the order Pleosporales based on molecular data (Liew et al. 2002) and most members in 
Massarina except for the type species (M. eburnea) are morphologically variable. The taxon, 
Massarina pandanicola collected from Pandanus sp. in Thailand is introduced here as a 
new species with both morphology and phylogeny support. The morphology of the taxon 
showed similar conidia with Massarina eburnean (Tanaka et al. 2015), but based on phy-
logenetic analysis of combined ITS, LSU, SSU and TEF1 gene sequence data, the new 
taxon M. pandanicola is well-separated from other species in Massarina (Figure 9) with high 
bootstrap support (79 % in ML). This is the first record of Massarina from Pandanus sp.

Pleosporaceae Nitschke

Remarks. The family Pleosporaceae was introduced by Nitschke (1869) and is the larg-
est family of the order Pleosporales (Hyde et al. 2013; Ariyawansa et al. 2015b; Liu et al. 
2017). Members of this family can be endophytes, aquatic or terrestrial saprobes, plant 
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pathogens or opportunistic animal pathogens (Sivanesan 1984; Carter and Boudreaux 
2004). A backbone tree for Pleosporaceae was provided by Ariyawansa et al. (2015a). In 
this study, Alternaria burnsii is reported from a Pandanus sp. host in Thailand.

Alternaria burnsii Uppal, Patel & Kamat, Indian J. Agric. Sci. 8: 49 (1938)

Culture characteristics. Colonies on PDA (Figure 2, PE26), superficial, white-orange to 
cream, circular, entire edge, smooth, flossy, velvety and raised on surface media; reverse 
yellow-white at the margin and yellow-brown in centre. Not sporulating in culture.

GenBank numbers. ITS=MG646973, LSU=MG646952, TEF1=MG646987.
Notes. Alternaria burnsii was introduced by Uppal et al. (1938) from India on Cum-

nium cyminum. This species has a close phylogenetic relationship with Alternaria tomato 
and A. jacinthicola (Woudenberg et al. 2015). Results from phylogenetic analysis show 
that the authors’ collection belongs to Alternaria burnsii with a relatively high bootstrap 
support (89% in ML) (Figure 11). Nucleotides across the ITS regions of Alternaria burnsii 
CBS 108.27 and the isolates were compared and the authors noted that they are identical.

Figure 11. Phylogram generated from maximum likelihood analysis based on ITS, TEF1, LSU and 
RPB2 sequence data. Maximum likelihood bootstrap values are given above/below the nodes. The newly 
generated sequences are in red bold. The tree is rooted with Pleospora herbarum.
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Sordariomycetes O.E. Erikss. & Winka
Diaporthales Nannf.

Diaporthaceae Höhn. ex Wehm.

Remarks. The family Diaporthaceae was introduced by von Höhnel (1917) and 
was placed in the order Diaporthales. This family comprised two Diaporthe genera 
(Phomopsis and Mazzantia) (Wehmeyer 1975; Castlebury et al. 2002). Later, Dia-
porthaceae was given the synonym Valsaceae (Barr 1978). Based on DNA sequence 
data, some other genera have been placed in Diaporthaceae (Dai et al. 2014; Voglmayr 
and Jaklitsch 2014). Recently, Maharachchikumbura et al. (2015) and Senanayake et 
al. (2017) listed further genera that belong to Diaporthaceae. In this study, a new and 
a known species of Diaporthe from Pandanaceae hosts in Thailand is reported.

Diaporthe pandanicola Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823840
Facesoffungi number: FoF03905
Figure 13

Etymology. Name referring to the host genus on which the fungus was first discovered 
(Pandanus).

Holotype. MFLU 18-0006
Culture characteristics. Colonies on PDA (Figure 2, PE77), superficial, white, circu-

lar with entire edge, smooth and raised on surface media, flossy and velvety; reverse yellow-
white, 9 cm diam. in 10 days. Generative hyphae simple-septate, branched, sub-hyaline, 
cells with guttules, thin-walled, 1.5–7 μm wide. Not sporulating in culture (Figure 13).

Material examined. THAILAND, Chumphon, Pathio District, on healthy leaves 
of Pandanus sp. (Pandanaceae), 1 December 2016, S. Tibpromma PE77 (MFLU 18-
0006, holotype); HKAS100858, paratype, ex-type living cultures, MFLUCC 17-
0607 = KUMCC 17-0297.

GenBank numbers. ITS=MG646974, β-tubulin=MG646930, ACT=MG646930.
Notes. Diaporthe species are plant pathogens, endophytes or saprobes (Carroll 

1986; Garcia-Reyne et al. 2011; Udayanga et al. 2011, 2012, 2014, Hyde et al. 2014). 
Here, a new species Diaporthe pandanicola is introduced based on phylogeny support. 
Based on phylogenetic analysis, the new species was well-separated from closely related 
species of Diaporthe (61% in ML, 0.97 in PP). However, this isolate is an endophytic 
fungus and did not sporulate in culture during 5 months (Figure 13).

Diaporthe siamensis Udayanga, X.Z. Liu & K.D. Hyde, 2012

Culture characteristics. Colonies on PDA (Figure 2, PE37), superficial, white to yellow-
white, irregular, curled and raised on media surface, flossy; under surfaceyellow-white.
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GenBank numbers. ITS=MG646975, TEF1=MG646989, β-tubulin=MG646925, 
ACT=MG646940.

Notes. In the phylogenetic analysis, the authors’ collection grouped with Dia-
porthe siamensis MFLUCC 10-0573 with high statistical values of 100% in ML and 
1.00 in PP. Diaporthe siamensis is an endophytic fungus collected from a Pandanaceae 
host in Thailand.

Figure 12. Phylogram generated from maximum likelihood analysis based on ITS, TEF1 and β-tubulin 
sequenced data. Maximum likelihood (left) and Bayesian inference (right) bootstrap values are given above/
below the nodes. The newly generated sequences are in red bold. The tree is rooted with Diaporthe ambigua.

Figure 13. Diaporthe pandanicola (MFLU 18-0006, holotype). a–c Mycelia masses. Scale bars: 5 μm 
(a–c).
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Figure 14. Phylogram generated from maximum likelihood analysis based on combined ITS, Actin, 
β-tubulin, GADPH and CHS-1 sequenced data. Maximum likelihood (left) and Bayesian inference 
(right) bootstrap values are given above/below the nodes. The newly generated sequences are in red text. 
The tree is rooted with Colletotrichum truncatum.

Glomerellales Chadef. ex Réblová et al.

Glomerellaceae Locq. ex Seifert & W. Gams, in Zhang et al. (2007)

Remarks. The family Glomerellaceae was introduced by Locquin (1984), but was in-
validly published. To date, most Glomerellaceae have been recorded to be pathogens 
(Maharachchikumbura et al. 2016b). Earlier studies reported that the position of the 
family Glomerellaceae was not stable (Zhang et al. 2006; Kirk et al. 2001; Kirk et al. 
2008). Réblová et al. (2011) resolved the placement of Glomerellaceae by using phy-
logenetic analysis of combined ITS, LSU, SSU and RPB2 sequence data. Recently, 
the family Glomerellaceae was established based on the genus Glomerella (Zhang et al. 
2006), which had been given a synonym under its asexual morph Colletotrichum (Ma-
harachchikumbura et al. 2015). Recently, Jayawardena et al. (2016) provided notes 
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on currently accepted species of Colletotrichum. In this study, the authors introduce 
a new endophytic Colletotrichum species and report a known species of endophytic 
Colletotrichum from gloeosporioides species complex based on morphology and phy-
logenetic analysis.

Colletotrichum fructicola Prihast., L. Cai & K.D. Hyde, 2009

Culture characteristics. Colonies on PDA (Figure 2, PE84, 88), superficial, white 
to olivaceous in the beginning and later become olivaceous to dark-olivaceous, circu-
lar, entire edge, smooth, dense and raised on surface media; reverse dark-olivaceous. 
Sporulating in culture after 1 month.

GenBank numbers. MFLUCC 17-0613 ITS=MG646968, β-tubulin=MG646927, 
GAPDH=MG646932, CHS-1=MG646937, ACT=MG646939. MFLUCC 17-
0555 ITS=MG646969, β-tubulin=MG646928, GADPH=MG646933, CHS-
1=MG646936, ACT=MG646944.

Notes. The gloeosporioides species complex is mainly plant pathogens (Weir et al. 
2012) and some species are endophytes (Liu et al. 2015). Colletotrichum fructicola has 
a wide host range (Weir et al. 2012) and was originally reported from coffee berries in 
Thailand (Prihastuti et al. 2009). In this study, the authors followed Jayawardena et al. 
(2016) and identify the collection as Colletotrichum fructicola which was isolated from 
a Pandanaceae host. Based on phylogenetic analysis, this taxon grouped with Colletotri-
chum fructicola with 90 % in ML and 1.00 in PP. The ITS, β-tubulin, GAPDH, CHS-
1 and ACT DNA nucleotide comparison showed that the taxon and other strains of 
Colletotrichum fructicola Prihast., L. Cai & K.D. Hyde have 100% similarity.

Colletotrichum pandanicola Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823841
Facesoffungi number: FoF03906
Figure 15

Etymology. name referring to the host genus (Freycinetia).
Holotype. MFLU 18-0003
Description. Colonies on PDA attaining 9 cm diam. in 7 days at room tempera-

ture, dark-grey. Sexual morph Undetermined. Asexual morph Conidiophores hyaline, 
smooth-walled, cylindrical to slightly inflated. Conidia 9–18 μm high, 4–8 μm diam. (
x  = 13.39 × 5.35 μm, n = 20), hyaline, cylindrical with rounded ends tapering slightly 
towards the base, smooth, septate, guttulate.

Culture characteristics. Colonies on PDA (Figure 2, PE09), superficial, white 
in the beginning and later becoming dark-grey, circular, entire edge, smooth, flossy, 
velvety and raised on surface media; reverse dark. Sporulating in culture after 1 month.
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Figure 15. Colletotrichum pandanicola (MFLU 18-0003, holotype). a Colony on PDA media b Conidia 
and conidiogenous cells c–g Conidia on PDA culture. Scale bars: 5 μm (b), 2 μm (c–g).

Material examined. THAILAND, Chumphon, Pathio District, on healthy leaves of 
Pandanus sp. (Pandanaceae), 1 December 2016, S. Tibpromma PE09 (MFLU 18-0003, 
holotype); GZAAS 16-0145, paratype, ex-type living cultures, MFLUCC 17-0571.

GenBank numbers. ITS=MG646967, β-tubulin=MG646926, GAPDH= 
MG646931, CHS-1=MG646935, ACT=MG646938.

Notes. Colletotrichum pandanicola is introduced here as a new species in the gloe-
osporioides species complex based on morphological and phylogenetic data. The phy-
logenetic analysis shows that this new taxon is well-separated from other known Colle-
totrichum species (Figure 14). The authors also compared nucleotides of β-tubulin, 
GAPDH, CHS-1 and ACT and found that there are differences between Colletotri-
chum tropicale and this new species (β-tubulin 7 bp, GAPDH 11 bp, CHS-1 7 bp and 
ACT 3 bp).

Magnaporthaceae P.F. Cannon

Remarks. The family Magnaporthaceae was introduced by Cannon (1994) and was 
placed as a family within the class Sordariomycetes (Kirk et al. 2001; Lumbsch and 
Huhndorf 2007). According to Thongkantha et al. (2009), the placement of the taxa 
Magnaporthaceae has long been problematic due to a lack of convincing morphological 
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characteristics and inconclusive molecular data. Thongkantha et al. (2009) established 
a new order, Magnaporthales, to accommodate Magnaporthaceae, based on a combi-
nation of morphological characteristics and the phylogenetic analysis of combined 
sequence data. Maharachchikumbura et al. (2015) provided an updated outline of 
the family Magnaporthaceae with 20 genera, which included both sexual and asexual 
morphs. In this study, Mycoleptodiscus endophyticus is introduced as a new species.

Mycoleptodiscus endophyticus Tibpromma & K.D. Hyde, sp. nov.
MycoBank number: MB823842
Facesoffungi number: FoF03907
Figure 17

Etymology. Named after its original habitat as an endophytic fungus.
Holotype. MFLU 18-0001
Culture characteristics. Colonies on PDA (Figure 2, FE101), superficial, dark oli-

vaceous with circular rings with filiform edge and rough and raised on media surface; 
reverse dark olivaceous. Mycelium composed of branched, pale-brown to dark-brown, 
thick-walled, guttulate, hyphae, with cells sub-globose to ovoid in shape. Not sporulat-
ing in culture.

Material examined. THAILAND, Ranong, Muang, on healthy leaves of Freyci-
netia sp. (Pandanaceae), 3 December 2016, S. Tibpromma FE101 (MFLU 18-0001, 
holotype); HKAS100847, paratype, ex-type living cultures, MFLUCC 17-0545 = 
KUMCC 17-0263.

GenBank numbers. LSU=MG646946, SSU=MG646978, TEF1=MG646985.
Notes. Mycoleptodiscus Ostaz. (1968) belongs to Magnaporthaceae, Magna-

porthales. Since 1968, there have been 17 records of Mycoleptodiscus in Index Fun-

Figure 16. Phylogram generated from maximum likelihood analysis based on combined ITS, LSU, SSU 
and TEF1 sequenced data. Maximum parsimony bootstrap values are given above/below the nodes. The 
newly generated sequences are in red bold. The tree is rooted with Thyridium vestitum.
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Figure 17. Mycoleptodiscus endophyticus (MFLU 18-0001, holotype). a Colony on MEA media b, c Mycelia 
masses d–f Vegetative hyphae in culture. Scale bars: 10 μm (b–d), 5 μm (e, f).

gorum. Most of these species were described without molecular data. In this study, 
a new species Mycoleptodiscus endophyticus is introduced, based on culture charac-
teristics and phylogenetic analysis (100 % in ML). Mycoleptodiscus endophyticus was 
found as an endophytic fungus on leaves of Freycinetia sp; Mycoleptodiscus freycinetiae 
Whitton, K.D. Hyde & McKenzie was found as a saprobic fungus on the same host 
but there was no molecular data available to confirm this identification. The authors 
were unable to compare the morphological differences between the new taxon and 
Mycoleptodiscus freycinetiae, because only culture characteristics are presented here for 
this new taxon (Fig. 17).

Sporocadaceae Corda, 1842

Remarks. Sporocadaceae was introduced by Corda (1842) with Pestalotiopsis-like asex-
ual morphs and confirmed by Senanayake et al. (2015). Members of Sporocadaceae are 
saprobes, endophytes or foliar pathogens in tropical and temperate regions (Jeewon 
et al. 2004; Tanaka et al. 2011). Pestalotiopsis can be found as saprobes or pathogens 
worldwide (Jeewon et al. 2002, 2003; Maharachchikumbura et al. 2011, 2012, 2013, 
2014a, b, 2016a, c). Recently, Chen et al. (2017) provided updates for this genus based 
on morphology and phylogeny. In this study, two known species of Pestalotiopsis from 
Pandanaceae hosts were isolated.
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Figure 18. Phylogram generated from maximum likelihood analysis based on the combination of ITS, 
β-tubulin and TEF1 sequenced data. Maximum parsimony bootstrap is given above/below the nodes. The 
newly generated sequences are in red bold. The tree is rooted with Seiridium camelliae.

Pestalotiopsis jiangxiensis F. Liu & L. Cai, 2017

Culture characteristics. Colonies on PDA (Figure 2, PE05), superficial, white at the 
margin with yellow-white in the centre, with circular to undulate at the edge and raised 
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and dense aerial mycelia on surface; reverse yellow-white. Sporulating in culture after 
2 months.

GenBank numbers. ITS=MG646966, ACT=MG646942, GAPDH=MG646934, 
β-tubulin=MG646929.

Notes. The authors’ collection from Pandanaceae host in Thailand was identified 
as Pestalotiopsis jiangxiensis. This taxon grouped with Pestalotiopsis jiangxiensis LC4399 
which is collected from Eurya sp., with high bootstrap support of 100% in ML.

Pestalotiopsis microspora (Speg.) G.C. Zhao & N. Li, 1995

Culture characteristics. Colonies on PDA (Figure 2, PE92), superficial, white to 
yellow-white, edge irregular, flossy and velvety; under surface yellow-white to yellow. 
Sporulating in culture after 2 months.

GenBank numbers. ITS=MG646965, ACT=MG646943.
Notes. Pestalotiopsis microspora was isolated from a Pandanaceae host in Thailand. 

This strain clusters with Pestalotiopsis microspora DPX3-1 with a strong bootstrap support.

Saccharomycetes

Debaryomycetaceae Kurtzman & M. Suzuki

Remarks. Debaryomycetaceae was introduced by Kurtzman and Suzuki in 2010 and 
was typified by Debaryomyces Klöcker. Meyerozyma belongs to family Debaryomyceta-
ceae and was detailed in Kurtzman and Suzuki (2010). In this study, Meyerozyma carib-
bica was found on a Pandanaceae host as an endophytic fungus. Species identification 
was confirmed by DNA sequence data.

Meyerozyma caribbica (Vaughan-Mart., Kurtzman, S.A. Mey. & E.B. O’Neill) 
Kurtzman & M. Suzuki, Mycoscience 51(1): 8 (2010)

Culture characteristics. Colonies on PDA (Figure 2, PE75, 98), superficial, white 
to yellow-white, rings with irregular, undulate edge and curled, raised on the surface 
media; reverse yellow-white to yellow at the margin and dark-brown at the centre. 
Sporulating in culture after 2 months.

GenBank numbers. MFLUCC 17-0556 ITS=MG646971, LSU=MG646950, 
SSU=MG646977. MFLUCC 17-0606 ITS=MG646972, LSU=MG646951, 
SSU=MG646980.

Notes. Meyerozyma caribbica collected in this study is represented by two endo-
phytic isolates from Pandanaceae. Phylogenetic analysis also supported the identifica-
tion of this sample as Meyerozyma caribbica.
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Figure 19. Phylogram generated from maximum likelihood analysis based on combined LSU and SSU 
sequence data. Maximum parsimony bootstrap is given above/below the nodes. The newly generated 
sequences are in red text. The tree is rooted with Schizosaccharomyces pombe.

Conclusion

In this study on fungal endophytes found on leaves of Pandanaceae, it was found that 
the taxa belonged to both Ascomycota and Basidiomycota. The majority of the taxa 
were Ascomycota, as found in most previous endophytic studies (Crozier et al. 2006; 
Selim et al. 2017). In classical mycology, most endophytic fungi were described based 
on their morphological features (Barseghyan and Wasser 2010). However, there are 
difficulties in identifying ascomycetes to the species level based only on morphological 
features (Lu et al. 2012), because they have only a small set of morphological charac-
teristics and exhibit homoplasy (Barseghyan and Wasser 2010).

The 22 endophytic fungal strains found in this study were chiefly identified using 
their microscopic characteristics and DNA sequence data and holotype materials in the 
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form of dried cultures. Future studies are however needed to recollect the taxa which 
are sporulating to describe sexual and asexual characteristics (sensu Lacap et al. 2003). 
In this study, 22 endophytes were isolated and sorted into eight morphotype based 
on colony characteristics. The authors, however, subjected all isolates to phylogenetic 
analysis and found they belong to 16 different taxa. The taxa were sorted roughly into 
morphotypes, but they did not reflect the actual species. Several isolates of this study 
did not sporulate, but are introduced as new species because DNA sequence com-
parison and multi-gene phylogenetic analyses provided sufficient evidence to show 
that they are distinct taxa (Jeewon and Hyde 2016). The new taxa are, however, code 
compliant, as they are provided with MycoBank numbers, full descriptions, colour 
photographss and illustrations.

The species composition of endophytic microorganisms is likely to depend on 
the plant age, genotype, sampled tissue, host type and season of isolation (Rosen-
blueth and Martinez-Romero 2006). Promputtha et al. (2007) showed that endo-
phytic species can change their ecological strategies and adopt a saprotrophic life-
style. However, it was found that for the cultures of some endophytic fungal species, 
mycelia are the only visible morphological structures. According to these conclu-
sions, the authors agree with Petrini (1991), Yanna and Hyde (2002), Ghimire and 
Hyde (2004) and Hyde et al. (2006) regarding the relationships between fungal 
endophytes and saprobic fungi. However, the use of next-generation sequencing 
(NGS) (Shendure and Ji 2008) is another option for identification of fungal species 
that cannot be cultured in vitro and has now become popular. These methods have 
also been applied to large-scale culture-independent molecular biological methods 
(Zoll et al. 2016). Future developments in technology are likely to produce further 
novel methods that mycologists could apply to the field of taxonomy (e.g. Hawks-
worth and Lucking 2017).
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Abstract
In the course of a multi-taxon biodiversity inventory for the island of St. Eustatius, lichens were col-
lected from 11 plots representing different vegetation types. From these collections, 126 lichen species are 
reported, 54 of which are new reports for St. Eustatius. Most species could be identified to species level 
based on morphological and chemical characters. In a few cases, mtSSU DNA sequences were generated 
for a preliminary molecular identification and future phylogenetic studies. In total, 263 identified lichen 
species are currently known from St. Eustatius, as well as some additional genera with yet unidentified 
species and lichenicolous fungi.

Keywords
Biodiversity inventory, lichens, mtSSU, St. Eustatius

Introduction

Sint Eustatius is a small island (21 km2) in the northern Leeward Islands part of the 
West Indies. It is one of the six islands of the Netherlands Antilles and, since 2010, a spe-
cial municipality of the Netherlands. Sint Eustatius is roughly divided into three parts, 
the Northern Hills, the urbanised central area (‘Cultuurvlakte’) and the southern part 
dominated by the steep dormant volcano The Quill (600 m elev.). Although the whole 
island of St. Eustatius has been heavily impacted by human activities, the northern and 
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southern parts are nowadays designated as National Parks with varied vegetation types 
especially on the slopes of The Quill. The latter comprise, for example, thorny wood-
lands, deciduous to evergreen seasonal forests, dry evergreen forest, montane thickets 
and elfin woodland (Stoffers 1956). A re-classification of the vegetation of St. Eustatius, 
based on cluster analysis of sample plots, resulted in 13 vegetation types characterised by 
different combinations of individual vascular plant species (Freitas et al. 2014). 

Just as in almost all other groups of organisms, lichens are most diverse in the tropics 
(Sipman and Aptroot 2001). On St. Eustatius, they are commonly present on various 
substrates, including tree bark and twigs, siliceous rock, limestone, dead wood and liv-
ing leaves. Despite their abundance, the lichen flora of St. Eustatius is still incompletely 
known. The authors are aware of only nine publications citing in total 14 lichen spe-
cies from St. Eustatius, viz. Phyllopsora corallina (Eschw.) Müll. Arg. and P. parvifoliella 
(Nyl.) Müll. Arg. (Brako 1991), Anisomeridium excellens (Müll. Arg.) R.C. Harris (Har-
ris 1995), Syncesia glyphysoides (Fée) Tehler (Tehler 1997), Pseudopyrenula subnudata 
Müll. Arg. (Harris 1998, as P. diluta var. degenerans Vain.), Stirtonia neotropica Aptroot, 
described based on material from St. Eustatius and Costa Rica (Aptroot 2009), Syncesia 
subintegra Sipman, described based on material from St. Eustatius, as well as S. farinacea 
(Fée) Tehler, S. glyphysoides and S. graphica (Fr.) Tehler (Sipman 2009), Roccella gracilis 
Bory (Aptroot and Schumm 2011),  Dirina paradoxa (Fée) Tehler (Tehler et al. 2013), 
as well as Astrothelium bicolor (Taylor) Aptroot & Lücking, A. phlyctaena (Fée) Aptroot 
& Lücking and Pseudopyrenula subnudata Müll. Arg. (Aptroot and Lücking 2016). 

The main source of information about the lichen flora of St. Eustatius is the on-
line portal ‘Plants and Lichens of St. Eustatius’ (Boom et al. 2009). It contains a list 
with 209 lichen species, based on specimens collected by H. Sipman and W.R. Buck 
in 2008, identified by H. Sipman and mostly hosted in B (some in NY). In addition, 
some identified specimens are present in various other herbaria, some of which can be 
searched online. For instance, the database of BR cites the following identified speci-
mens from St. Eustatius, collected by R. Hensen in 1991 and identified by the first 
author: Megalaria bengalensis Jagadeesh Ram & Aptroot, Porina mastoidea (Ach.) Müll. 
Arg. and Sticta xanthotropa (Kremp.) D.J. Galloway.

In 2015, a plot-based, multi-taxon biodiversity inventory of St. Eustatius was car-
ried out by Naturalis Biodiversity Center, the European Invertebrate Survey (EIS) and 
different Dutch non-governmental organisations, together with St. Eustatius National 
Parks Foundation (STENAPA) and students from different Dutch universities. Here, 
the lichen records of that inventory are reported and an updated checklist of the li-
chens known from St. Eustatius is presented.

Materials and methods

As part of a multi-taxon inventory, lichens were collected on St. Eustatius from 11 
plots (25 m × 25 m) in different main vegetation types according to Freitas et al. 
(2014). Two plots (H1, H2) were situated in the Northern Hills area, eight (M1−M5, 
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M7−M9) on and around The Quill in the southern part of the island and one (U1) in 
the central urban area. Details concerning the location and vegetation characteristics of 
the plot locations and the multi-taxon sampling approach are described in van Andel et 
al. (2016). Lichens were collected using a knife or hammer and chisel and subsequently 
air-dried and stored in paper bags. 

Specimens were observed and identified by the first author using an Olympus SZX7 
stereomicroscope and an Olympus BX50 compound mic roscope with interference con-
trast, connected to a Nikon Coolpix digital ca mera. Sections were mounted in tap 
water, in which all measurements were also taken. The chemistry of selected specimens 
was investigated by thin-layer chromatography (Orange et al. 2001), using solvent A. 

DNA analysis based on mitochondrial ribosomal small subunit (mtSSU) sequenc-
es was carried out for ten unidentifiable or provisionally identified specimens of good 
quality (indicated in Table 1). Although the nuclear ribosomal ITS region is the gener-
ally accepted fungal DNA barcode locus (Schoch et al. 2012), mtSSU was chosen since 
more mtSSU than ITS sequences have yet been published for several of the genera or 
families to which the respective specimens putatively belong.

Genomic DNA was extracted using the NucleoMag 96 Plant kit (Macherey-Nagel) 
on the KingFisher Flex Purification System (ThermoFisher Scientific). The mtSSU re-
gion was PCR-amplified following Zoller et al. (1999) in terms of primers (mrSSU1/
mrSSU3R) and the PCR protocol. PCR products were purified and sequenced at Base-
Clear B.V. (www.baseclear.com) using the amplification primers. Sequences were as-
sembled and edited using Geneious v8.1.8 (Biomatters Ltd.) and subjected to a BLAST 
search (Altschul et al. 1990) against the GenBank database (megablast; considering, 
where possible, BLAST results with E value of 0.0 and query cover >90 %). Sequences 
are available in GenBank under accession numbers MH028639−MH028646.

To compile an updated list of the lichens of St. Eustatius, literature and internet 
sources were exhaustively consulted for previous reports and previous collectors were 
contacted for additional information.

Results and discussion

In total, 126 lichen species (and one identifiable lichenicolous fungus) were found in 
243 collections (Table 1). The vast majority (113 species) could be identified to species 
level based on morphological and chemical characters, even though no identification 
book exists for any region nearby. However, many species have been described from 
other islands in the Caribbean, which can be expected to have many species in com-
mon. These were often already described in the 19th century and partly never studied 
again, but illustrations of their types are increasingly available. The authors also had 
access to various unpublished sources, such as the unpublished keys, descriptions and 
specimen citation (by H. Sipman) that was the basis of the internet checklist of St. 
Eustatius lichens and keys to the lichens from Puerto Rico (Harris 1989) and Guade-
loupe (Øvstedal 2010), the latter with many illustrations of type and other specimens. 
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Table 1. Lichenised and lichenicolous fungi recorded in 11 plots on St. Eustatius. Species names in earlier 
publications are indicated in brackets. Author names are given in Table 2. Plots H1 and H2 are situated 
in the Northern Hills, M2−M9 on and around the volcano The Quill in the southern part of the island 
and U1 in the central urban area. Substrates occupied by each taxon are indicated per plot; b: bark, k: 
limestone, l: leaves, r: siliceous rock, s: soil, w: wood. Asterisks indicate first records for St. Eustatius (aster-
isks in brackets indicate additional taxa that are not yet identified to species level). Black dots (•) indicate 
specimens from which DNA was extracted.

Taxon H1 H2 M1 M2 M3 M4 M5 M7 M8 M9 U1
(*)Acanthothecis sp. • b
Alyxoria culmigena (Opegrapha 
herbarum) r w b

*Alyxoria varia b b b b
*Amandinea multispora b
*Anisomeridium subprostans b
Anisomeridium tamarindi b
(*)Anisomeridium sp. corticate c. 
pycnidia • b

*Anisomeridium terminatum b
Arthonia antillarum b b
Arthonia caribaea b
Arthonia conferta b b b b b b b
Arthonia cyrtodes b
Arthonia minuta b b
*Arthonia parantillarum b b
Arthothelium macrothecum b b
*Bacidia medialis b, r r
(*)Bacidia sp. apotheciate • b, w
(*)Bacidia sp. sorediate • b
Bactrospora denticulata b b b b b
*Bactrospora jenikii b
*Bogoriella annonacea b b
*Brigantiaea leucoxantha b
Buellia dejungens r r r r r
*Buellia griseovirens w w
Buellia mamillana (Buellia 
glaziouana) r

Caloplaca leptozona r r
*Caloplaca obscurella w
Coenogonium linkii b b
*Coenogonium saepincola w
Coenogonium strigosum b
Coniocarpon cinnabarinum 
(Arthonia cinnabarina) b

*Crespoa carneopruinata b, r
*Cresponea flava r
*Cryptothecia punctosorediata b
Cryptothecia striata b b, r
(*)Cryptothecia sp. isidiate • b
(*)Cryptothecia sp. sterile • b
*Dactylospora saxatilis 
(lichenicolous on Pertusaria 
praetervisa)

r

Dichosporidium nigrocinctum b, r b, r
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Taxon H1 H2 M1 M2 M3 M4 M5 M7 M8 M9 U1
*Dictyomeridium amylosporum b b
Diorygma hieroglyphicum b
Diorygma poitaei b
*Diorygma pruinosum b
*Endocarpon pallidulum r r r, k r, s r
Enterographa pallidella b b
Enterographa subserialis b
Flakea papillata b b, r, w b, r r
Glyphis scyphulifera b
Graphis caesiella b
*Graphis cincta b
Graphis dendrogramma b b
*Graphis librata b
Gyalolechia bassiae (Caloplaca 
bassiae) b b, r

*Hafellia curatellae b
Hyperphyscia adglutinata b b, r b
Lathagrium neglectum (Collema 
neglectum) b

Lecanora legalloana r r r r r
*Lecanora leproplaca b b b
Lecanora leprosa r
Lecanora prosecha r r r r r r
Lecanora sulfurescens r
*Lepraria finkii b
*Leprocollema nova-caledonianum w
Letrouitia domingensis b
Malmidea piperis (Malcolmiella 
piperis) b

*Malmidea psychotrioides b
Malmidea vinosa (Malcolmiella 
vinosa) b

Mazosia carnea (Mazosia ocellata) b b
(*)Melaspilea sp. (lichenicolous on 
Pyrenula dissimulans) b

*Microtheliopsis uleana l
*Mycoporum eschweileri b b b b b
Nyungwea anguinella (Enterographa 
anguinella) b

*Opegrapha astraea b b
*Opegrapha lithyrgiza r
*Opegrapha quintana b
(*)Opegrapha sp. k
Peltula bolanderi r
Peltula obscurans r r r
Pertusaria coccopoda r r
Pertusaria praetervisa r r
*Pertusaria texana b
Pertusaria xanthodes b
*Phaeographis crispata b
Phaeographis dendritica b
*Phyllopeltula corticola b
Phyllopsora corallina b b, r r
Physcia atrostriata b
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Taxon H1 H2 M1 M2 M3 M4 M5 M7 M8 M9 U1
*Physcia erumpens b
*Physcia integrata b b
Physcia sorediosa b
*Porina conspersa b, r r
Porina epiphylla l
Porina internigrans b b
*Porina leptalea r
Porina nucula b, r
*Porina rubentior l
Porina tetracerae b b r
*Porina thaxteri l
(*)Psorotichia cf. americana r
*Pyrenopsis antillarum r
*Pyrenula adacta b b b b
Pyrenula breutelii (Pyrenula 
macularis) b b

Pyrenula cocoes b b b b b
*Pyrenula cruenta b
*Pyrenula dissimulans b b b b b
Pyrenula nitidula b
Pyxine cocoes b, r r r r b
*Ramalina stoffersii r
*Rinodina antillarum r
*Rinodina colobinoides b b
Rinodina pyxinoides r r r r r r
Sarcographa cf. tricosa • b
Squamulea subsoluta (Caloplaca 
subsoluta) r r r r

*Staurolemma dussii b
*Sticta xanthotropa r r
*Stigmatochroma gerontoides w
(*)Stigmidium cf. schaereri k
*Strigula decipiens r
*Strigula phaea b, r
Strigula smaragdula l
*Syncesia decussans b
*Thelenella luridella r r r
(*)Thelidium cf. decipiens • k
(*)Verrucaria cf. dolosa • r
*Verrucaria nigrescens r
(*)Wetmoreana cf. appressa • r r

Somewhat to the authors’ surprise, as many as 54 (almost 50 %) of the identified 
species are new records for St. Eustatius. This includes mostly relatively common and 
widespread tropical or Neotropical species, but also some rare species, notably Stauro-
lemma dussii (Vain.) P.M. Jørg. & Henssen, which was so far only known from its type 
from Guadeloupe. Furthermore, it is remarkable that Cresponea flava (Vain.) Egea & 
Torrente was found on siliceous rock. The presence of so many additional species with-
in the limited surface area of the plots, totalling 6875 m2 (0.03% of the total island sur-
face), suggests that the exploration of the lichen flora of St. Eustatius has not yet been 
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exhaustive. However, no clearly undescribed species were found in the material and the 
number of species described based on material from St. Eustatius remains low with two, 
viz. Stirtonia neotropica (Aptroot 2009) and Syncesia subintegra (Sipman 2009). 

Several specimens could not be identified with certainty in the present material 
but represent additional species (and in several cases additional genera). These are, for 
instance, Lichinaceae and Verrucariaceae, of which the taxonomy of the tropical taxa 
is incompletely known. Rather than describing them as new, they were listed with the 
name of the species that is morphologically most similar, preceded by “cf”. The BLAST 
results from the mtSSU sequences obtained from eight of these specimens in most 
cases allowed preliminary insights into their phylogenetic position.

The sequence of the Anisomeridium specimen with only conidia from St. Eustatius 
receives the highest BLAST hits with other representatives of the Monoblastiaceae in 
Nelsen et al. (2009, 2011), viz. Anisomeridium ubianum (Vain.) R.C. Harris, A. cf. wil-
leyanum (R.C. Harris) R.C. Harris, Megalotremis verrucosa (Makhija & Patw.) Aptroot 
and Trypetheliopsis kalbii (Lücking & Sérus.) Aptroot. The low sequence identities of 
86−93% clearly indicate that the St. Eustatius specimen belongs to another species in 
that family, but too few mtSSU sequences are yet available for a more precise molecular 
identification. 

In the Graphidaceae, the top five BLAST hits for the specimen of Acanthothecis 
sp. were all with Acanthothecis peplophora (M. Wirth & Hale) E. Tripp & Lendemer 
specimens (97% identity), whereas the identity with the sequence of the type species 
of Acanthothecis, A. hololeucoides (Nyl.) Staiger & Kalb, was only 89%. The speci-
men from St. Eustatius thus most probably does not belong to Acanthothecis s.str., but 
may represent a species of ‘Acanthothecis 2’ in the Carbacanthographis clade (cf. Rivas 
Plata et al. 2013, Medeiros et al. 2017). The Sarcographa cf. tricosa specimen received 
BLAST hits of 97% identity with Sarcographina glyphiza (Nyl.) Kr.P. Singh & D.D. 
Awasthi and Pallidogramme chlorocarpoides (Nyl.) Staiger, Kalb & Lücking, both situ-
ated in the Graphioideae tribe Graphidae p.p. clade of Rivas Plata et al. (2013). How-
ever, another GenBank sequence of P. chlorocarpoides, as well as several species of other 
genera of same clade, were 96 % identical, including the single other specimen of S. 
tricosa in GenBank (but not the species of the Sarcographa s.str. clade sensu Rivas Plata 
et al. 2013). The identity of the St. Eustatius specimen thus remains ambiguous based 
on the presently available mtSSU sequence data.

Both the apotheciate and sorediate Bacidia specimens are closest to sequences of 
species of the Toninia-Bacidia p.p. clade in Miadlikowska et al. (2014), the former to 
Toninia sedifolia (Scop.) Timdal (94 % identity) and the latter to Bacidia californica S. 
Ekman and B. phacodes Körb.  (88−89 % identity), respectively. Consequently, they do 
not belong to Bacidia s.str., which forms a separate clade (including the type species, 
B. rosella (Pers.) De Not.) in Miadlikowska et al. (2014).

In the Verrucariaceae, Verrucaria was resolved as polyphyletic and Thelidium mixed 
with Polyblastia, Staurothele p.p. and Verrucaria p.p. (Polyblastia clade) in molecular 
phylogenetic reconstructions (Gueidan et al. 2007, Muggia et al. 2010, Thüs et al. 
2011). The sequence of the Thelidium cf. decipiens specimen from St. Eustatius, how-
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Table 2. Updated checklist of the lichens of St. Eustatius.

Species References
Lichens
Acarospora chrysops (Tuck.) H.Magn. Boom et al. (2009) as Acarospora dissipata H.Magn.
Alyxoria culmigena (Lib.) Ertz Boom et al. (2009) as Opegrapha herbarum Mont., present 

study
Alyxoria ochrocheila (Nyl.) Ertz & Tehler Boom et al. (2009) as Opegrapha ochrocheila Nyl.
Alyxoria varia (Pers.) Ertz & Tehler present study
Amandinea efflorescens (Müll. Arg.) Marbach Boom et al. (2009)
Amandinea multispora (Kalb & Vězda) Marbach present study
Amandinea prospersa (Nyl.) Elix & H. Mayhofer Boom et al. (2009) as Buellia prospersa (Nyl.) Riddle
Anisomeridium americanum (A.Massal.) R.C. Harris Boom et al. (2009)
Anisomeridium excellens (Müll. Arg.) R.C. Harris Boom et al. (2009), Harris (1995)
Anisomeridium subprostans (Nyl.) R.C. Harris present study
Anisomeridium tamarindi (Fée) R.C. Harris Boom et al. (2009), present study
Anisomeridium terminatum (Nyl.) R.C. Harris present study
Anisomeridium tuckerae (R.C. Harris) R.C. Harris Boom et al. (2009)
Arthonia antillarum (Fée) Nyl. Boom et al. (2009), present study
Arthonia caribaea (Ach.) A. Massal. Boom et al. (2009), present study
Arthonia conferta (Fée) Nyl. Boom et al. (2009), present study
Arthonia cyanea Müll. Arg. Boom et al. (2009)
Arthonia cyrtodes Nyl. Boom et al. (2009), present study
Arthonia minuta Vain. Boom et al. (2009), present study
Arthonia parantillarum Aptroot present study
Arthothelium macrothecum (Fée) A. Massal. Boom et al. (2009), present study
Astrothelium bicolor (Taylor) Aptroot & Lücking Boom et al. (2009) as Trypethelium nitidiusculum (Nyl.) 

R.C. Harris, Aptroot and Lücking (2016)
Astrothelium phlyctaena (Fée) Aptroot & Lücking Boom et al. (2009) as Trypethelium ochroleucum (Eschw.) 

Nyl., Aptroot and Lücking (2016)
Bacidia medialis (Tuck.) Zahlbr. present study
Bactrospora denticulata (Vain.) Egea & Torrente Boom et al. (2009), present study
Bactrospora jenikii (Vězda) Egea & Torrente present study
Bactrospora myriadea (Fée) Egea & Torrente Boom et al. (2009)
Baculifera intermedioides Marbach Boom et al. (2009)
Blastenia brittonii Zahlbr. Boom et al. (2009) as Caloplaca brittonii (Zahlbr.) ined.
Bogoriella annonacea (Müll. Arg.) Aptroot & Lücking present study
Brigantiaea leucoxantha (Spreng.) R. Sant. & Hafellner present study
Brownliella cinnabarina (Ach.) S.Y. Kondr., Kärnefelt, A. 
Thell, Elix, J.Kim, A.S.Kondr. & J.-S.Hur

Boom et al. (2009) as Caloplaca cinnabarina (Ach.) Zahlbr.

Buellia boergesenii Imshaug Boom et al. (2009)
Buellia dejungens (Nyl.) Vain. Boom et al. (2009), present study
Buellia griseovirens (Turner & Borrer ex Sm.) Almb. present study
Buellia mamillana (Tuck.) W.A. Weber Boom et al. (2009) as Buellia glaziouana (Kremp.) Müll. 

Arg., present study
Buellia posthabita (Nyl.) Zahlbr. Boom et al. (2009)
Bulbothrix scortella (Nyl.) Hale Boom et al. (2009)
Bulbothrix suffixa (Stirt.) Hale Boom et al. (2009)
Byssoloma leucoblepharum (Nyl.) Vain. Boom et al. (2009)
Caloplaca diplacia (Ach.) Riddle Boom et al. (2009)
Caloplaca leptozona (Nyl.) Zahlbr. Boom et al. (2009), present study
Caloplaca obscurella (J. Lahm) Th. Fr. present study
Canoparmelia martinicana (Nyl.) Elix & Hale Boom et al. (2009)
Carbacanthographis triphoroides (M. Wirth & Hale) 
Lücking

Boom et al. (2009)
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Species References
Chapsa cinchonarum (Fée) Frisch Boom et al. (2009)
Chrysothrix xanthina (Vain.) Kalb Boom et al. (2009)
Cladonia corymbites Nyl. Boom et al. (2009)
Cladonia didyma (Fée) Vain. Boom et al. (2009)
Cladonia subradiata (Vain.) Sandst. Boom et al. (2009)
Coccocarpia palmicola (Spreng.) Arv. & D.J. Galloway Boom et al. (2009)
Coccocarpia pellita (Ach.) Müll. Arg. Boom et al. (2009)
Coenogonium interpositum Nyl. Boom et al. (2009)
Coenogonium leprieurii (Mont.) Nyl. Boom et al. (2009)
Coenogonium linkii Ehrenb. Boom et al. (2009), present study
Coenogonium saepincola Aptroot, Sipman & Lücking present study
Coenogonium strigosum Rivas Plata, Lücking & Chaves Boom et al. (2009), present study
Coenogonium subdilutum (Malme) Lücking, Aptroot & 
Sipman

Boom et al. (2009)

Coniocarpon cinnabarinum DC. Boom et al. (2009) as Arthonia cinnabarina (DC.) Wallr., 
present study

Cratiria lauricassiae (Fée) Marbach Boom et al. (2009)
Crespoa carneopruinata (Zahlbr.) Lendemer & B.P. Hodk. present study
Cresponea flava (Vain.) Egea & Torrente present study
Cresponea leprieurii (Mont.) Egea & Torrente Boom et al. (2009)
Cresponea proximata (Nyl.) Egea & Torrente Boom et al. (2009)
Cryptolechia carneolutea (Tuck.) A. Massal. Boom et al. (2009)
Cryptothecia megalocarpa (Müll. Arg.) R. Sant. Boom et al. (2009)
Cryptothecia punctosorediata Sparrius present study
Cryptothecia striata G. Thor Boom et al. (2009), present study
Dichosporidium nigrocinctum (Ehrenb.) G. Thor Boom et al. (2009), present study
Dictyomeridium amylosporum (Vain.) Aptroot, M.P. Nelsen 
& Lücking

present study

Diorygma hieroglyphicum (Pers.) Staiger & Kalb Boom et al. (2009), present study
Diorygma poitiaei (Fée) Kalb, Staiger & Elix Boom et al. (2009), present study
Diorygma pruinosum (Eschw.) Kalb, Staiger & Elix present study
Diploschistes actinostomus (Ach.) Zahlbr. Boom et al. (2009)
Diploschistes aeneus (Müll. Arg.) Lumbsch Boom et al. (2009)
Diploschistes prominens (Vain.) Lumbsch Boom et al. (2009)
Dirina paradoxa (Fée) Tehler Boom et al. (2009) as Dirina approximata subsp. hioramii 

(B. de Lesd.) Tehler, Tehler et al. (2013)
Dirinaria aegialita (Ach.) B.J. Moore Boom et al. (2009)
Endocarpon pallidulum (Nyl.) Nyl. present study
Enterographa compunctula (Nyl.) Redinger Boom et al. (2009)
Enterographa multilocularis (Müll. Arg.) Sparrius Boom et al. (2009)
Enterographa pallidella (Nyl.) Redinger Boom et al. (2009), present study
Enterographa perez-higaredae Herrera-Camp. & Lücking Boom et al. (2009)
Enterographa sipmanii Sparrius Boom et al. (2009)
Enterographa subserialis (Nyl.) Redinger Boom et al. (2009), present study
Eremothecella microcephalica Sipman Boom et al. (2009)
Fellhanera santessonii Barillas & Lücking Boom et al. (2009)
Fissurina dumastii Fée Boom et al. (2009)
Flakea papillata O.E. Erikss. Boom et al. (2009), present study
Glyphis cicatricosa Ach. Boom et al. (2009)
Glyphis scyphulifera (Ach.) Staiger Boom et al. (2009), present study
Graphis caesiella Vain. Boom et al. (2009), present study
Graphis chondroplaca (Redinger) Lücking Boom et al. (2009)
Graphis cincta (Pers.) Aptroot present study
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Species References
Graphis dendrogramma Nyl. Boom et al. (2009), present study
Graphis furcata Fée Boom et al. (2009)
Graphis glaucescens Fée Boom et al. (2009)
Graphis librata C. Knight present study
Graphis lineola Ach. Boom et al. (2009)
Graphis tenella Ach. Boom et al. (2009)
Graphis tenellula Vain. Boom et al. (2009)
Gyalectidium filicinum Müll. Arg. Boom et al. (2009)
Gyalolechia bassiae (Ach.) Søchting, Frödén & Arup ex Ahti Boom et al. (2009) as Caloplaca bassiae (Ach.) Zahlbr., 

present study
Hafellia bahiana (Malme) Sheard Boom et al. (2009)
Hafellia curatellae (Malme) Marbach present study
Herpothallon aurantiacoflavum (B. de Lesd.) Aptroot, 
Lücking & G.Thor

Boom et al. (2009)

Heterodermia albicans (Pers.) Swinscow & Krog Boom et al. (2009)
Heterodermia galactophylla (Tuck.) W.L. Culb. Boom et al. (2009)
Heterodermia lutescens (Kurok.) Follmann Boom et al. (2009)
Heterodermia obscurata (Nyl.) Trevis. Boom et al. (2009)
Heterodermia squamulosa (Degel.) W.L. Culb. Boom et al. (2009)
Heterodermia verrucifera (Kurok.) W.A. Weber Boom et al. (2009)
Hyperphyscia adglutinata (Flörke) H. Mayrhofer & Poelt Boom et al. (2009), present study
Hyperphyscia minor (Fée) D.D. Awasthi Boom et al. (2009)
Lathagrium neglectum (Degel.) Otálora, P.M. Jørg. & 
Wedin

Boom et al. (2009) as Collema neglectum Degel., present 
study

Lecanactis epileuca (Nyl.) Tehler Boom et al. (2009)
Lecanora galactiniza Nyl. Boom et al. (2009)
Lecanora legalloana Elix & Øvstedal Boom et al. (2009), present study
Lecanora leproplaca Zahlbr. present study
Lecanora leprosa Fée Boom et al. (2009), present study
Lecanora prosecha Ach. Boom et al. (2009), present study
Lecanora sulfurescens Fée Boom et al. (2009), present study
Leiorreuma exaltatum (Mont. & Bosch) Staiger Boom et al. (2009)
Lepraria finkii (B. de Lesd.) R.C. Harris present study
Leprocollema novacaledonianum A.L. Sm. present study
Leptogium austroamericanum (Malme) C.W. Dodge Boom et al. (2009)
Leptogium azureum (Sw.) Mont. Boom et al. (2009)
Leptogium cyanescens (Rabenh.) Körb. Boom et al. (2009)
Leptogium marginellum (Sw.) Gray Boom et al. (2009)
Letrouitia domingensis (Pers.) Hafellner & Bellem. Boom et al. (2009), present study
Leucodecton bisporum (Nyl.) Sipman & Lücking Boom et al. (2009)
Leucodecton compunctum (Ach.) A. Massal. Boom et al. (2009)
Loflammia gabrielis (Müll. Arg.) Vezda Boom et al. (2009)
Malmidea piperis (Spreng.) Kalb, Rivas Plata & Lumbsch Boom et al. (2009) as Malcolmiella piperis (Spreng.) Kalb 

& Lücking, present study
Malmidea psychotrioides (Kalb & Lücking) Kalb, Rivas 
Plata & Lumbsch

present study

Malmidea vinosa (Eschw.) Kalb, Rivas Plata & Lumbsch Boom et al. (2009) as Malcolmiella vinosa (Eschw.) Kalb & 
Lücking, present study

Mazosia carnea (Eckfelt) Aptroot & M. Cáceres Boom et al. (2009) as Mazosia ocellata (Nyl.) R.C. Harris, 
present study

Mazosia phyllosema (Nyl.) Zahlbr. Boom et al. (2009)
Megalaria bengalensis Jagadeesh Ram & Aptroot Hensen (BR)
Melanotrema meiospermum (Nyl.) Frisch Boom et al. (2009)
Microtheliopsis uleana Müll. Arg. present study
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Species References
Mycoporum eschweileri (Müll. Arg.) R.C. Harris present study
Myriostigma candidum Kremp. Boom et al. (2009) as Cryptothecia candida (Kremp.) R. 

Sant.: incorrect report
Myriotrema myriotremoides (Nyl.) Hale Boom et al. (2009)
Myriotrema olivaceum Fée Boom et al. (2009)
Nyungwea anguinella (Nyl.) Aptroot Boom et al. (2009) as Enterographa anguinella (Nyl.) 

Redinger, present study
Ocellularia depressa (Mont.) Hale Boom et al. (2009)
Ocellularia interposita (Nyl.) Hale Boom et al. (2009)
Ocellularia terebrata (Ach.) Müll. Arg. Boom et al. (2009)
Opegrapha astraea Tuck. present study
Opegrapha lithyrgiza Vain. present study
Opegrapha quintana Redinger present study
Pannaria prolificans Vain. Boom et al. (2009)
Parmotrema crinitum (Ach.) M. Choisy Boom et al. (2009)
Parmotrema endosulphureum (Hillmann) Hale Boom et al. (2009)
Parmotrema praesorediosum (Nyl.) Hale Boom et al. (2009)
Parmotrema tinctorum (Nyl.) Hale Boom et al. (2009)
Parmotrema ultralucens (Krog) Hale Boom et al. (2009)
Peltula bolanderi (Tuck.) Wetmore Boom et al. (2009), present study
Peltula obscurans (Nyl.) Gyeln. Boom et al. (2009), present study
Pertusaria coccopoda Vain. Boom et al. (2009), present study
Pertusaria leioplacella Nyl. Boom et al. (2009)
Pertusaria praetervisa Vain. Boom et al. (2009), present study
Pertusaria texana Müll. Arg. present study
Pertusaria xanthodes Müll. Arg. Boom et al. (2009), present study
Phaeographis crispata Kalb & Matthes-Leicht present study
Phaeographis dendritica (Ach.) Müll. Arg. Boom et al. (2009), present study
Phaeographis intricans (Nyl.) Staiger Boom et al. (2009)
Phaeographis scalpturata (Ach.) Staiger Boom et al. (2009)
Phyllopeltula corticola (Büdel & R. Sant.) Kalb present study
Phyllopsora chlorophaea (Müll. Arg.) Zahlbr. Boom et al. (2009)
Phyllopsora corallina (Eschw.) Müll. Arg. Brako (1991), Boom et al. (2009), present study
Phyllopsora glaucescens Timdal Boom et al. (2009)
Phyllopsora parvifoliella (Nyl.) Müll. Arg. Brako (1991), Boom et al. (2009)
Physcia atrostriata Moberg Boom et al. (2009), present study
Physcia crispa Nyl. Boom et al. (2009)
Physcia erumpens Moberg present study
Physcia integrata Moberg present study
Physcia sinuosa Moberg Boom et al. (2009)
Physcia sorediosa (Vain.) Lynge Boom et al. (2009), present study
Physcia tenuis Moberg Boom et al. (2009)
Platythecium colliculosum (Mont.) Staiger Boom et al. (2009)
Platythecium leiogramma (Nyl.) Staiger Boom et al. (2009)
Polymeridium quinqueseptatum (Nyl.) R.C. Harris Boom et al. (2009)
Porina conspersa Malme present study
Porina epiphylla (Fée) Fée Boom et al. (2009), present study
Porina internigrans (Nyl.) Müll. Arg. Boom et al. (2009), present study
Porina leptalea (Durieu & Mont.) A.L. Sm. present study
Porina mastoidea (Ach.) Müll. Arg. Hensen (BR), Boom et al. (2009)
Porina nitidula Müll. Arg. Boom et al. (2009)
Porina nucula Ach. Boom et al. (2009), present study
Porina octomera (Müll. Arg.) F.Schill. Boom et al. (2009)
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Species References
Porina rubentior (Stirt.) Müll. Arg. present study
Porina tetracerae (Ach.) Müll. Arg. Boom et al. (2009), present study
Porina thaxteri R. Sant. present study
Pseudochapsa dilatata (Müll. Arg.) Parnmen, Lücking & 
Lumbsch

Boom et al. (2009) as Chapsa dilatata (Müll. Arg.) Kalb

Pseudopyrenula subgregaria Müll. Arg. Boom et al. (2009)
Pseudopyrenula subnudata Müll. Arg. Harris (1998) as Pseudopyrenula diluta (Fée) Müll. Arg. 

var. degenerans Vain, Boom et al. (2009) as Pseudopyrenula 
diluta, Aptroot and Lücking (2016)

Pyrenopsis antillarum Vain. present study
Pyrenula adacta Fée present study
Pyrenula astroidea (Fée) R.C. Harris Boom et al. (2009)
Pyrenula bahiana Malme Boom et al. (2009) as Pyrenula concatervans (Nyl.) R.C. 

Harris
Pyrenula breutelii (Müll. Arg.) Aptroot Boom et al. (2009) as Pyrenula macularis (Zahlbr.) R.C. 

Harris, present study
Pyrenula cinerea Zahlbr. Boom et al. (2009)
Pyrenula cocoes Müll. Arg. Boom et al. (2009), present study
Pyrenula confinis (Nyl.) R.C. Harris Boom et al. (2009)
Pyrenula cruenta (Mont.) Vain. present study
Pyrenula dissimulans (Müll. Arg.) R.C. Harris present study
Pyrenula duplicans (Nyl.) Aptroot Boom et al. (2009)
Pyrenula leucostoma Ach. Boom et al. (2009)
Pyrenula mamillana (Ach.) Trevis. Boom et al. (2009) as Pyrenula xyloides (Eschw.) Müll. Arg.
Pyrenula massariospora (Starbäck) R.C. Harris Boom et al. (2009)
Pyrenula microtheca R.C. Harris Boom et al. (2009)
Pyrenula nitidula (Bres.) R.C. Harris Boom et al. (2009), present study
Pyrenula septicollaris (Eschw.) R.C. Harris Boom et al. (2009)
Pyxine cocoes (Sw.) Nyl. Boom et al. (2009), present study
Ramalina anceps Nyl. Boom et al. (2009)
Ramalina complanata (Sw.) Ach. Boom et al. (2009)
Ramalina dendroides (Nyl.) Nyl. Boom et al. (2009)
Ramalina furcellata (Ach.) Zahlbr. Boom et al. (2009)
Ramalina stoffersii Sipman present study
Rinodina antillarum Vain. present study
Rinodina colobinoides (Nyl.) Müll. Arg. present study
Rinodina pyxinoides Vain. Boom et al. (2009), present study
Roccella gracilis Bory Boom et al. (2009), Aptroot and Schumm (2011)
Roccellographa circumscripta (Leight.) Ertz & Tehler Boom et al. (2009) as Peterjamesia circumscripta (Taylor) 

D. Hawksw.
Sarcographa heteroclita (Mont.) Zahlbr. Boom et al. (2009)
Sarcographa labyrinthica (Ach.) Müll. Arg. Boom et al. (2009)
Sarcographa ramificans (Kremp.) Staiger Boom et al. (2009)
Sarcographa tricosa (Ach.) Müll. Arg. Boom et al. (2009), present study
Sclerophyton elegans Eschw. Boom et al. (2009)
Sclerophyton trinidadense Sparrius Boom et al. (2009)
Sporopodium phyllocharis (Mont.) A. Massal. Boom et al. (2009)
Squamulea subsoluta (Nyl.) Arup, Søchting & Frödén Boom et al. (2009) as Caloplaca subsoluta (Nyl.) Zahlbr., 

present study
Staurolemma dussii (Vain.) P.M. Jørg. & Henssen present study
Stegobolus auberianus (Mont.) Frisch & Kalb Boom et al. (2009)
Stegobolus granulosus (Tuck.) Frisch Boom et al. (2009)
Stegobolus subcavatus (Nyl.) Frisch Boom et al. (2009)
Sticta xanthotropa (Kremp.) D.J. Galloway Hensen (BR), present study
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Species References
Stigmatochroma gerontoides (Stirt.) Marbach present study
Stirtonia neotropica Aptroot Aptroot (2009)
Strigula decipiens (Malme) P.M. McCarthy present study
Strigula macrospora Vain. Boom et al. (2009)
Strigula nemathora Mont. Boom et al. (2009)
Strigula obducta (Müll. Arg.) R.C. Harris Boom et al. (2009)
Strigula phaea (Ach.) R.C. Harris present study
Strigula smaragdula Fr. Boom et al. (2009), present study
Synalissa lichinella Vain. Boom et al. (2009)
Syncesia decussans (Nyl.) Tehler present study
Syncesia farinacea (Fée) Tehler Boom et al. (2009), Sipman (2009) 
Syncesia glyphysoides (Fée) Tehler Tehler (1997), Boom et al. (2009), Sipman (2009)
Syncesia graphica (Fr.) Tehler Boom et al. (2009), Sipman (2009)
Syncesia subintegra Sipman Boom et al. (2009), Sipman (2009)
Teloschistes flavicans (Sw.) Norman Boom et al. (2009) as Teloschistes flavicans var. crocea (Ach.) 

Müll. Arg.
Thalloloma hypoleptum (Nyl.) Staiger Boom et al. (2009)
Thelenella luridella (Nyl.) H. Mayrhofer present study
Thelotrema porinoides Mont. & Bosch Boom et al. (2009)
Toninia submexicana B. de Lesd. Boom et al. (2009)
Trapelia coarctata (Sm.) M. Choisy Boom et al. (2009)
Usnea baileyi (Stirt.) Zahlbr. Boom et al. (2009)
Varicellaria velata (Turner) I. Schmitt & Lumbsch Boom et al. (2009)
Verrucaria nigrescens Pers. present study
Xanthoparmelia succedans Elix & J. Johnst. Boom et al. (2009)
Lichenicolous fungus
Dactylospora saxatilis (Schaer.) Hafellner (lichenicolous on 
Pertusaria praetervisa)

present study

Additional genera (species uncertain)
Acanthothecis sp. present study
Bacidina sp. present study
Melaspilea sp. (lichenicolous fungus) present study
Psorotichia sp. present study
Stigmidium sp. (lichenicolous fungus) present study
Thelidium sp. present study
Wetmoreana sp. present study

ever, is closest to the Catapyrenium-Placidiopsis-Verrucaria p.p. (V. caerulea DC., V. 
praetermissa (Trevis.) Anzi) clade (Muggia et al. 2010) with sequence identities of 
96−97 %.  The placement of the Verrucaria cf. dolosa specimen is more difficult to 
assess, since its sequence shows lower similarities of 92−94 % to representatives of dif-
ferent Verrucariceae genera, such as Agonimia, Bagliettoa and Verrucaria spp.

Finally, the mtSSU sequence of the Wetmoreana cf. appressa specimen from St. 
Eustatius is difficult to interpret, since it matches more closely with sequences of the 
Xanthorioideae (sequence identity 97−99 %) than with Teloschistoideae, in which 
Wetmoreana is placed (e.g. Arup et al. 2013). 

The lichen flora of St. Eustatius can be characterised as lowland, relatively dry 
Caribbean. As can be seen from Table 1, most species were found on one substratum 
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type, but some are less specialised. Also, there is a marked difference between the li-
chens of the different plots and the three main areas on St. Eustatius (Northern Hills, 
central urban area, The Quill). However, the authors refrain from performing statisti-
cal comparisons of the lichen diversity between plots, since the number of plots per 
main area differs and is still low and the sampling strategy was devised by specialists of 
other organism groups. Nevertheless, the lichen data will be useful for an island-wide, 
plot-based comparison of diversity amongst all organism groups sampled during the 
2015 inventory. 

In Table 2, an updated checklist is presented of the lichens of St. Eustatius, citing 
only identified species, but based on all available sources and with their taxonomy 
(nomenclature and sometimes species concept) updated where necessary. According 
to this list, a total of 263 species are currently known from St. Eustatius. As a side ef-
fect of revising the existing records, one record becomes questionable, viz. Myriostigma 
candidum Kremp., which is not known from the Neotropics. It is intended to continue 
the exploration of the lichens of this island in the near future.
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Abstract
Twenty seven species of Psathyrella have been found in Northeast China. Amongst them, P. conica, 
P. jilinensis, P. mycenoides and P. subsingeri are described as new species, based on studying morpho-
logical characteristics and phylogenetic analyses. Detailed morphological descriptions, line drawings 
and photographs of the new species are presented. Phylogenetic analysis of the nuclear ribosomal 
internal transcribed spacer (ITS) region and an identification key to the 27 Psathyrella species oc-
curing in Northeast China are provided.

Keywords
Basidiomycete, new taxon, phylogenetic analysis, taxonomy

Introduction

Psathyrella (Fr.) Quél. is one of the large genera of Agaricales Underw. which consists 
of 1,030 records in Index Fungorum (http://www.indexfungorum.org), comprising 
approximately 500 species (Smith 1972; Kits van Waveren 1985; Örstadius and Kund-
sen 2012;). It is characteristic of fragile basidiomata, hygrophanous pileus, brown to 
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black brown spore print, always present cheilocystidia and basidiospores smooth or 
rarely granulose or with myxosporium, fading to greyish in concentrated sulphuric 
acid (H2SO4).

The studies of this genus mainly focused on Europe and North America in recent 
years (Romagnesi 1952; Smith 1972; Kits van Waveren 1985; Nagy et al. 2011; Örsta-
dius and Kundsen 2012; Örstadius et al. 2015). In China, 51 names (Psathyrella s.l.) 
were reported, including four new species (Chiu 1973; Bi et al. 1985; Bi et al. 1987; 
Bi 1991; Wang and Bau 2014). Amongst them, 21 species can be found in Northeast 
China which includes Helongjiang Province, Jinlin Province, Liaoning Province and 
the northeast of Inner Mongolia Autonomous Region (Wang 2014).

Due to the morphological plasticity of the Psathyrella, some species cannot be 
distinguished clearly and many names have been combined (Örstadius and Kundsen 
2012). Therefore, the aim of this study is to clarify the diversity of Psathyrella in North-
east China by traditional taxonomy and molecular phylogenetic analysis. The examined 
specimens (from 1997 to 2017) are deposited in the Herbarium of Mycology, Jilin 
Agricultural University (HMJAU). As a result of morphological and molecular obser-
vations, 27 species of Psathyrella were identified, and of which P. conica, P. jilinensis, 
P. mycenoides and P. subsingeri were reported as new species. Molecular phylogenetic 
affinities of the 27 species based on the nuclear ribosomal internal transcribed spacer 
(ITS) region and an identification key to them are provided.

Materials and methods

Morphological studies

Specimens are deposited in the Herbarium of Mycology, Jilin Agricultural University 
(HMJAU). Macroscopic characteristics were recorded from fresh specimens. Colour 
codes are from Kornerup and Wanscher (1978). Samples for microscopic examination 
were mounted in water and 5% aqueous KOH. Amyloid reactions were diagnosed 
in Melzer’s reagent. Thirty basidiospores, cystidia and basidia were measured for each 
collection. The basidiospores quotient (Q=L/B) was calculated from measurements of 
basidiospores.

DNA extraction and sequencing

The NuClean Plant Genomic DNA kit (CWBIO) was employed for DNA extraction 
and PCR am plification from dried specimens. PCR was performed using a touchdown 
programme (Yan and Bau 2017) and the ITS region was amplified with the primer pair 
ITS1 and ITS4 (White et al. 1990). The details of sequenced specimens are given in 
Table 1. The DNA sequencing was done by Comate Bioscience Co., Ltd., Changcun 
City, China.
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Table 1. Sequenced specimens used in phylogenetic analysis.

Taxa Voucher Locality
GenBank 
accession 
no. (ITS)

P. amaura (Berk. & Broome) 
Pegler HMJAU 37810 Jilin: Qiupi Village, Tonghua City MG734724

P. bipellis (Quél.) A.H. Sm. HMJAU 25349 Jilin: Jilin Agricultural University MG734722
P. borealis HMJAU 37924 Inner Mongolia Autonomous Region: Mangui Town MG734743
P. borealis A.H. Sm. HMJAU 37911 Jilin: Changbai Mountain National Nature Reserve MG734746
P. boreifasciculata Kytöv. & 
Liimat. HMJAU 27556 Heilongjiang: Nanwenghe National Nature Reserve KX901850

P. candolleana HMJAU 37994 Jilin: Dayangcha, Erdaobaihe Town MG734719
P. candolleana (Fr.) Maire HMJAU 37994 Liaoning: Wulong Mountain MG734720
P. conica HMJAU 22096 Jilin: Lushuihe Town, Baishan City MG734713

P. conica HMJAU 37846 
Type Jilin: Changbai Mountain National Nature Reserve MG734739

P. conica HMJAU 37905 Jilin: Changbai Mountain National Nature Reserve MG734745
P. effibulata Örstadius & 
E. Ludw. HMJAU 37832 Jilin: Jingyuetan National Scenic Area MG734727

P. fennoscandica Örstadius & 
E. Larss. HMJAU 37918 Heilongjiang: Shuanghe National Nature Reserve MG734723

P. gordonii HMJAU 35984 Jilin: Jilin Agricultural University KX901852
P. gordonii (Berk. & Broome) 
A. Pearson & Dennis HMJAU 35983 Jilin: Jilin Agricultural University KY120974

P. jilinensis HMJAU 37822 
Type Jilin: Changbai Mountain National Nature Reserve MG734717

P. jilinensis HMJAU 37824 Jilin: Changbai Mountain National Nature Reserve MG734721
P. lutensis (Romagn.)  
M.M. Moser HMJAU 37840 Inner Mongolia Autonomous Region: Huihe 

National Nature Reserve MG734748

P. luteopallida A.H. Sm. HMJAU 5148 Jilin: Zuojia Town, Jilin City MG734736
P. mammifera HMJAU 21908 Jilin: Mahutou Mountain, Changchun City MG734734
P. mammifera (Romagn.) 
Courtec. HMJAU 37882 Jilin: Changbai Mountain National Nature Reserve MG734740

P. mycenoides HMJAU 37888 
Type Jilin: Jilin Agricultural University MG734730

P. mycenoides HMJAU 37993 Jilin: Jilin Agricultural University MG734731
P. obtusata HMJAU 37307 Jilin: Changbai Mountain National Nature Reserve KY224080
P. obtusata (Pers.) A.H. Sm. HMJAU 37310 Jilin: Changbai Mountain National Nature Reserve KY224081
P. panaeoloides (Maire) 
Arnolds HMJAU 23696 Jilin: Lushuihe Town, Baishan City MG734733

P. pertinax (Fr.) Örstadius HMJAU 6830 Jilin: Changbai Mountain National Nature Reserve MG734735
P. phegophila HMJAU 37848 Jilin: Songjiang Town MG734738
P. phegophila HMJAU 37804 Heilongjiang: Shengshan National Nature Reserve MG734726

P. phegophila Romagn. HMJAU 28267 Inner Mongolia Autonomous Region: Baiyin’aobao 
National Nature Reserve MG734728

P. piluliformis (Bull.) 
P.D. Orton HMJAU 37922 Heilongjiang: Shuanghe National Nature Reserve MG734716

P. pygmaea (Bull.) Singer HMJAU 37850 Jilin: Changbai Mountain National Nature Reserve MG734744

P. senex (Peck) A.H. Sm. HMJAU 4450 Inner Mongolia Autonomous Region: 
Hulunbeier City MG734732
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Taxa Voucher Locality
GenBank 
accession 
no. (ITS)

P. singeri A.H. Sm. HMJUA 37867 Jilin: Changbai Mountain National Nature Reserve MG734718
P. spintrigeroides HMJAU 37820 Jilin: Changbai Mountain National Nature Reserve MG367203
P. spintrigeroides P.D. Orton HMJAU 37901 Jilin: Changbai Mountain National Nature Reserve MG734737
P. squamosa HMJAU 37816 Heilongjiang: Nanwenghe National Nature Reserve MG367206
P. squamosa (P. Karst.) 
A.H. Sm. HMJAU 35923 Jilin: Lushuihe Town, Baishan City MG734729

P. subsingeri HMJAU 37814 Yunnan: Yeya Lake MG734714
P. subsingeri HMJAU 37811 Jilin: Jilin Agricultural University MG734715

P. subsingeri HMJAU 37913 
Type Jilin: ingyuetan National Scenic Area MG734725

P. subsingeri HMJAU 37915 Henan: Boerdeng National Forest Park MG734742

P. subspadiceogrisea HMJAU 35992 
Type Jilin: Changbai Mountain National Nature Reserve KY678465

P. subspadiceogrisea T. Bau & 
J.Q. Yan HMJAU 35996 Jilin: Changbai Mountain National Nature Reserve KY678466

P. subterrestris A.H. Sm. HMJAU 37885 Jilin: Changbai Mountain National Nature Reserve MG734747
P. subterrestris HMJAU 37887 Jilin: Songjiang Town MG734741

Data analyses

ITS1+5.8S+ITS2 sequences of 27 species were tested with BLAST in GenBank. Fifty 
five sequences were downloaded from GenBank, including 21 type species of Psath-
yrella, based on BLAST results and referred to the recent studies (Nagy et al. 2013; 
von Bonsdorff et al. 2014; Örstadius et al. 2015; Yan and Bau 2017). A total of 103 
ITS sequences were aligned using MAFFT 7.205 (Katoh and Standley 2013). The 
aligned ITS dataset consisted of 643 nucleotide sites (including gaps). The best model 
(GTR+I+G) was selected by AIC in MRMODELTEST 2.3 (Nylander 2004). Bayes-
ian Inference (BI) was performed with MRBAYES 3.2.6 and four Markov Chains 
(MCMC) were run for three million generations, sampling every 300th generation. 
The first 25% trees were discarded (Ronquist and Huelsenbeck 2003). Maximum like-
lihood analysis was performed with IQTREE 1.5.6 (Nguyen et al. 2014).

Results

The phylogenetic tree (Figure 1) shows that all studied materials fall into Psathyrella, with 
a high statistical support value (BPP=1). It is divided into 14 clades. Most of them have a 
high statistical support value (BPP≥0.95, Bootstrap≥75), except /fibrillosa I and /fibrillosa II.

Four new species are separated into individual lineages (BPP=1, Bootstrap=100) 
and are independent from the close taxa. Psathyrella conica forms a distinct lineage in 
/fibrillosa II; P. jilinensis belongs to /fibrillosa II and groups together with P. borealis; 
P. mycenoides belongs to /prona and is closely related to P. lilliputana Örstadius & E. 
Larss.; and P. subsingeri forms a distinct lineage in /candolleana.
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Figure 1. Bayesian and Maximum Likelihood tree inferred from partial ITS sequence data (BPP≥0.95, Boot-
strap≥75 are indicated). The tree is rooted with Coprinellus sclerocystidiosus (M. Lange & A.H. Sm.) Vilgalys, 
Hopple & Jacq. Johnson. Newly generated sequences appear in bold. ● indicates newly described species.

The positions of some species are firstly supplemented: P. amaura belongs to /pyg-
maea and is very close to P. olympiana A.H. Sm.; P. borealis belongs to /fibrillosa II. P. 
mammifera belongs to /spadiceogrisea; P. singeri A.H. Sm. belongs to /candolleana; and 
P. subterrestris belongs to /noli-tangere.
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Taxonomy

Psathyrella conica T. Bau & J.Q. Yan, sp. nov.
MycoBank: MB823858
Figs 2a–b, 3

Diagnosis. Pileus campanulate to conical, with a subacute to obtuse umbo in early 
stage. Lamellae 3.0–5.0 mm broad, close. Basidiospores 7.8–8.8 × 4.0–4.5(–5.0) μm, 
germ pore indistinct or absent. Pleurocystidia numerous, narrowly utriform, with ob-
tuse to broad obtuse or slightly subcapitate at apex. Cheilocystidia scattered.

Holotype. CHINA. Jilin Province, Yanbian Korean Autonomous Prefecture, Antu 
County, Changbai Mountain, 30 Jun 2017, HMJAU 37846.

Etymology. Name refers to the conical pileus.
Description. Pileus 12–45 mm, campanulate to conical, with a subacute to obtuse 

umbo in early stage, hygrophanous, chestnut (7D4–7D6), becoming dirty white with 
slightly yellowish-brown (6C5–6C6) as drying, striate indistinctly. Veil with a thin 
coating of white to dirty white (6A1–6B1) fibrils, evanescent. Context dirty white with 
slightly pink (6B4–6B5), about 3.0 mm thick at stipe centre. Lamellae 3.0–5.0 mm 
broad, close, adnate to slightly adnexed, coffee-cream (6C4–6C6); edges white (6A1), 
saw-toothed under 20× magnifier. Stipe 34–85 × 2.0–7.0 mm, cylindrical, slightly 

Figure 2. Basidiomata of Psathyrella species. a–b Psathyrella conica c–e Psathyrella jilinensis f Psathyrella 
mycenoides g–i Psathyrella subsingeri; Bars: 10 mm (a, c, d, f–h). Photographs a–e, g–i by Jun-Qing Yan; 
Photograph f by Tolgor Bau.
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Figure 3. Microscopic features of Psathyrella conica (HMJAU 37846). a Basidiomata b Basidiospores 
c Basidia d Pileipellis e Pleurocystidia f Cheilocystidia. Bars: 10 mm (a); 10 μm (b–f). Drawing by Jun-
Qing Yan.

expanded or not at base, white, with slightly brown at base, hollow, equal, surface cov-
ered with white (6A1) fibrils in early stage, evanescent. Odour and taste indistinctive.

Basidiospores 7.8–8.8 × 4.0–4.5(–5.0) μm, Q=1.8–2.1(–2.3), oblong-ellipsoid to 
oblong, in profile slightly flattened on one side, pale yellowish-brown in water, yel-
lowish-brown to brown in 5% potassium hydroxide (KOH), inamyloid, smooth, with 
1–2 guttulate, germ pore indistinct or absent. Basidia 20–25 × 7.3–9.8 μm, clavate, 
hyaline, 4- or 2-spored. Pleurocystidia 43–61 × (8.5–)9.8–12 μm, numerous, narrowly 
utriform, thin-walled, hyaline, with obtuse to broad obtuse or slightly subcapitate, 
sometimes adhering subhyaline deposits. Cheilocystidia scattered, similar to pleuro-
cystidia, 24–39 × 8.5–12 μm; spheropedunculate or clavate cells abundant, 20–29 × 
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12–18 μm. Trama of gills irregular, up to 20 μm broad. Pileipellis consisting of 2–3 
cells deep layer of subglobose cell, 25–37 μm broad. Clamps present.

Habit and habitat. Solitary to scattered on rotten wood or humus in mixed forests.
Other specimens examined. Jilin Province, Baishan City, Fusong County, Lushu-

ihe town, 7 Jul 2004, HMJAU 4969; 29 Jun 2005, HMJAU 4923; 25 Jun 2009, 
HMJAU 22096; Yanbian Korean Autonomous Prefecture, Antu County, Changbai 
Mountain, 23 Jun 2012, HMJAU 25342; 4 Jul 2015, HMJAU 37826; 29 Jun 2017, 
HMJAU 37847, HMJAU 37904; 6 Aug 2017, HMJAU 37905.

Psathyrella jilinensis T. Bau & J.Q. Yan, sp. nov.
MycoBank: MB823856
Figs 2c–e, 4

Diagnosis. Pileus paraboloid to convex, margin at first appendiculate with adhering 
patches of white evanescent inner veil. Lamellae 2.0–5.0 mm broad, moderately close. 
Basidiospores (5.8–)6.3–7.3(–7.8) × (2.9–)3.4–4.4 μm, germ pore absent or indis-
tinct. Pleurocystidia fusiform to narrowly fusiform. Cheilocystidia similar to pleuro-
cystidia. Cheilocystidia and pleurocystidia covered by hyaline, hemispherical amor-
phous incrustation at apex.

Holotype. CHINA. Jilin Province: Changbai Mountain, Antu County, Yanbian 
Korean Autonomous Prefecture, 42°23'51"N, 126°05'47"E, 760 m alt., 7 Jul 2015, 
HMJAU 37822.

Etymology. Name refers to the type locality where the new species was collected.
Description. Pileus 17–45 mm, paraboloid to convex, hygrophanous, reddish-

brown (8E5–8E6) at centre, pale yellowish-brown (7C6–7D7) at margin in early 
stage, yellowish-brown (6B5–6C5), striate up to 1/2 from margin at maturity, be-
coming slightly brown (7C5–7D6) as pileus dries. Veil white (6A1), thin, fibrillose, 
at first as appendiculate inner veil or adhering patches at pileus margin, evanescent. 
Context white (6A1), thin, very fragile, about 2.0 mm thick at centre. Lamellae 2.0–
5.0 mm broad, moderately close, adnate, greyish to greyish-brown (7C1–7C3); edges 
saw-toothed under 20× magnification. Stipe 40–50 × 3.0–7.0 mm, white (6A1), cy-
lindrical, hollow, surface covered with slight white (6A1) evanescent fibrils. Odour 
and taste indistinctive.

Basidiospores (5.8–)6.3–7.3(–7.8) × (2.9–)3.4–4.4 μm, Q= (1.4–)1.8–2.0(–2.3), 
oblong-ellipsoid, in profile flattened on one side, pale brown in water, brown in 5% 
KOH, gradually becoming greyish-brown, inamyloid, smooth, germ pore absent or 
indistinct, about 0.9 μm wide (if it can be observed). Basidia 15–17 × 6.0–7.0 μm, 
clavate, hyaline, 4 or 2-spored. Pleurocystidia fusiform, narrowly fusiform, rarely nar-
rowly utriform, thin-walled or slightly thick-walled, apex obtuse to subacute, hyaline, 
covered by hyaline, hemispherical amorphous incrustation, which can dissolve in 5% 
KOH. Cheilocystidia 37–51 × 8.5–12 μm, similar to pleurocystidia, hyaline, covered 
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Figure 4. Microscopic features of Psathyrella jilinensis (HMJAU 37822). a Basidiomata b Basidiospores 
c Basidia d Pileipellis e Pleurocystidia f Cheilocystidia. Bars: 10mm (a); 10μm (b–f). Drawing by Jun-
Qing Yan.

with amorphous incrustation at apex. Trama of gills parallel to hyphae, up to 15 μm 
broad. Pileipellis consisting of 2–3 cells deep layer of subglobose cell, 20–30 μm broad. 
Veil composed of cylindrical hyphae, 8.5–10 μm broad. Clamps present.

Habit and habitat. Solitary to scattered on rotten wood or humus in mixed forests.
Other specimens examined. Jilin Province, Baishan City, Fusong County, Lushu-

ihe town, 27 Jun 2009, HMJAU 22099; 9 Jul 2015, HMJAU 37823; Yanbian Korean 
Autonomous Prefecture, Antu County, Changbai Mountain, 23 Jun 2012, HMJAU 
25351; 31 Aug 2012, HMJAU 25351; Dayangcha, 6 Jul 2015, HMJAU 37824.
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Psathyrella mycenoides T. Bau, sp. nov.
MycoBank: MB823857
Figs 2f, 5

Diagnosis. Pileus 4.0–5.0 mm, hemispherical to convex. Stipe slender. Basidiospores 
8.8–9.2(–9.7) × 4.9–5.4 μm, germ pore distinct, but small. Pleurocystidia scattered, 
fusiform to lageniform with an obtuse apex. Cheilocystidia lageniform, with an obtuse 
apex or clavate to spheropedunculate with a long or short mucronate apex.

Holotype. CHINA. Jilin Province, Changchun City, Jilin Agricultural University, 
43°48'36"N, 125°24'25"E, 220 m alt., 10 Sep 2016, HMJAU 37888.

Etymology. Name refers to its macroscopic characteristics similar to Mycena.
Description. Pileus 4.0–5.0 mm, hemispherical to convex, dirty white with pink-

ish (7A4–7B5), hygrophanous, striate up to centre from margin. Veil not observed. 
Context very thin and very fragile, about 0.5 mm thick at stipe centre. Lamellae 1.5–
2.0 mm broad, adnate to slightly adnexed, pale brown (7C3–7C4), edges saw-toothed 
under 20× magnification. Stipe slender, 25–30 × 0.5–1.0 mm, hygrophanous, subhya-
line, cylindrical, hollow, equal, fragile, evanescently pruinose at apex.

Basidiospores 8.8–9.2(–9.7) × 4.9–5.4 μm, Q=1.6–2.0, ellipsoid to oblong- el-
lipsoid, in profile flattened on one side, pale yellowish-brown in water, becoming dark 
grey to dark brown in 5% KOH, germ pore distinct, but small, about 0.9 μm broad. 
Basidia 15–17 × 8.8–10 μm, clavate, hyaline, 4- or 2-spored. Pleurocystidia 37–56 
× 12–17 μm, scattered, fusiform to lageniform with an obtuse apex, thin-walled and 
hyaline. Cheilocystidia numerous, 29–44 × 9.8–17 μm, hyaline, lageniform with an 
obtuse apex or clavate to spheropedunculate, with long or short mucronate apex, rarely 
spheropedunculate. Trama of gills irregular, hyphae up to 10 μm broad. Pileipellis hy-
meniderm, cells 20–30 μm broad. Clamps present.

Habit and habitat. Solitary to scattered on humus in mixed forests.
Other specimens examined. CHINA. Jilin Province, Changchun City, Jilin Agri-

cultural University, 12 Sep 2016, HMJAU 37993.

Psathyrella subsingeri T. Bau & J.Q. Yan, sp. nov.
MycoBank: MB823855
Figs 2g–i, 6

Diagnosis. Pileus 15–40 mm, paraboloid to conical. Lamellae 2.0–4.0 mm broad, 
close. Basidiospores 5.8–7.8(–8.8) × 3.9–4.4(–5.0) μm, very pale, nearly hyaline or 
slightly yellow in water and 5% KOH. Germ pore absent. Pleurocystidia absent. 
Cheilocystidia utriform to predominantly spheropedunculate.

Holotype. CHINA. Jilin Province, Changchun City, Jingyuetan National Scenic 
Area, 43°47'38"N, 125°26'55"E, 200 m alt., 25 Jun 2017, HMJAU 37913.

Etymology. Name refers to its microscopic characteristics similar to P. singeri.
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Figure 5. Microscopic features of Psathyrella mycenoides (HMJAU 37888). a Basidiomata b Basidi-
ospores c Basidia d Pileipellis e Pleurocystidia f Cheilocystidia. Bars: 10mm (a); 10μm (d–f). Drawing 
by Jun-Qing Yan.

Description. Pileus 15–40 mm, paraboloid to conical, obtuse or slightly um-
bonate at disc, hygrophanous, dark reddish-brown (8E7–8F8) or faint yellowish-brown 
(5C5–5C4), becoming yellowish-brown (6D5–6D6) as pileus dries, striate indistinct. 
Veil present in early stage, thin, white (6A1), fibrillose, evanescent. Context white 
(6A1), thin and very fragile, about 2.5 mm thick at stipe centre. Lamellae 2.0–4.0 mm 
broad, close, adnate, pale brown (6C4–6C5), edges white (6A1), saw-toothed under 
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Figure 6. Microscopic features of Psathyrella subsingeri (HMJAU 37913). a Basidiomata b Basidiospores 
c Basidia d Pileipellis e Cheilocystidia f Caulocystidia. Bar: 10 mm (a); 10 μm (b–f). Drawing by Jun-
Qing Yana.

20× magnifier. Stipe 35–50 × 3.0–4.5 mm, cylindrical, hollow, equal, fragile, covered 
with slight white (6A1) fibrils, which fall off easily. Spore print chocolate (7E7–7E8). 
Odour and taste indistinctive.

Basidiospores 5.8–7.8(–8.8) × 3.9–4.4(–5.0) μm, Q=1.4–2.0, ellipsoid to oblong-
ellipsoid, in profile flattened on one side, very pale, nearly hyaline or slightly yellow 
in water and 5% KOH, inamyloid, smooth. Germ pore absent. Basidia 15–22 × 7.3–
9.8 μm, 4- or 2-spored, clavate, hyaline. Pleurocystidia absent. Cheilocystidia utriform 
to spheropedunculate, rarely clavate to fusiform with an obtuse to broadly obtuse apex, 
thin-walled, hyaline. Caulocystidia 26–37 × 9.8–15 μm, rarely, various, clavate, utri-
form, thin-walled, hyaline. Trama of gills irregular, up to 15 μm broad. Pileipellis con-
sisting of 1–2 cells, deep layer of subglobose cell, 20–32 μm broad. Clamps present.

Habit and habitat. Solitary to scattered on terrestrial or humus in mixed forests.
Other specimens examined. Henan Province, Xinyang City, Boerdeng National 

Forest Park, 16 Jul 2017, HMJAU 37915; Xian Mountain, 15 Jul 2017, HMJAU 
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37931; Jilin Province, Changchun City, Jilin Agricultural University, 21 Jun 2016. 
HMJAU 37811; Jingyuetan National Scenic Area, 25 Jun 2017, HMJAU 37914; 7 
Jul 2017, HMJAU 37849; Tonghua City, Qiupi Village, 6 Aug 2015, HMJAU 37812, 
HMJAU 37813; Yunnan Province, Yeya Lake, 7 Aug 2016, HMJAU 37814; 6 Aug 
2017, HMJAU 37852; 23 Aug 2017, HMJAU 37962.

Discussion

These phylogenetic results are very much in congruence with the study of Larsson and 
Örstadius (2008) and Örstadius et al. (2015), except /fibrillosa, which separates to two 
lineages (/fibrillosa I and /fibrillosa II). As only ITS sequences were analysed in this 
study, this accounts for the difference and the very low support value (BPP<0.3). Four 
new species are separated into individual lineages (BPP=1) and distinct from other 
closely related taxa.

Psathyrella conica is a distinct lineage in fibrillosa II, which is independent from 
any other related taxa. Morphologically, it can be classified in subsection Spadiceogri-
seae (Kits van Waveren 1985). Only P. clivensis (Berk. & Broome) P. D. Orton does 
not have a germ pore in this subsection, but basidiospores of P. clivensis are obviously 
broader, 8–10 × 5.5–6.5 μm and ellipsoid to ovoid (Kits van Waveren 1985). It can 
also be classified in section Fatuae (Smith 1972), some species having sturdy stipe and 
utriform cystidia, but they can be clearly distinguished from P. conica by other micro-
morphology. Psathyrella acadiensis A.H. Sm. has smaller basidiospores, which are only 
up to 6.0 μm long; P. albocinerascens A.H. Sm. has an obvious germ pore and white 
pileus in the early stage; P. amarella A.H. Sm. and P. spadiceogrisea (Schaeff.) Maire 
have an obvious germ pore; P. vesiculocystis A.H. Sm. has pedicellate-pleurocystidia 
(Smith 1972). Furthermore, P. terrestris Natarajan has aspects of P. conica, whose pileus 
is umbonate, but it has broadly utriform pleurocystidia and its basidiospores are dark 
brown, subglobose and up to 8.5 μm broad (Natarajan 1978).

Psathyrella jilinensis grouped together with P. borealis in /fibrillosa II. However, 
P. borealis has an obvious germ pore. Morphologically, it can be classified in section 
Hydrophilae by basidiospores rarely exceeding 7.5 μm and the presence of pleurocyst-
idia. There are hardly any other species in the section that match the characteristics of 
P. jilinensis. The pleurocystidia of P. atomatoides (Peck) A.H. Sm. do not have amor-
phous incrustation. Basidiospores of P. cortinarioides P.D. Orton and P. pertinax have 
a clearly truncated base. Cystidia of P. umbrina Kits van Wav. have subacute apex and 
their basidiospores are broader, up to 4.5–5.5 μm (Kits van Waveren 1985; Örstadius 
and Kundsen 2012). Furthermore, P. cokeri (Murrill) A.H. Sm., P. pennata and P. sub-
similissima A.H. Sm. have some similar aspects of P. jilinensis, but P. cokeri (Murrill) 
A.H. Sm. and P. subsimilissima A.H. Sm. do not have amorphous incrustation (Smith 
1972) and P. pennata grows on burnt soil, its basidiospores being larger and narrowly 
amygdaloid (Örstadius and Kundsen 2012).
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Psathyrella mycenoides belongs to /prona and is placed close to P. lilliputana. However 
P. lilliputana has larger (9.5–11 × 5.0–6.0 μm) and snout-like basidiospores (Örstadius 
et al. 2015). Morphologically, more than 10 species of Psathyrella have very small ba-
sidiomata, whose pileus rarely exceeds 10 mm, but they can be separated by obvious 
characteristics as follows: P. byssina (Murrill) A.H. Sm. and P. scheppingensis Arnolds have 
smaller basidiospores, which rarely exceed 7.5 μm (Smith 1972; Arnolds 2003); P. copri-
noides A. Delannoy, Chiaffi, Courtec. & Eyssart. and P. tenuicula (P. Karst.) Örstadius & 
Huhtinen have pileocystidia and slender basidiospores (Örstadius and Huhtinen 1996; 
Delannoy et al. 2002); the coprophilous fungi of P. granulose Arnolds have utriform cys-
tidia (Arnolds 2003); basidiospores of P. liciosae Contu & Pacioni are partly phaseoliform 
in side view and ochraceous-brown in 5% KOH (Contu and Pacioni 1998); P. minima 
Peck has very distant lamellae (Peck 1878); and basidiospores of P. psilocyboides A.H. Sm. 
are truncated at the base (Smith 1972).

Psathyrella subsingeri belongs to /candollena. Only P. luteopallida and P. singeri 
have nearly hyaline basidiospores pores in this clade. However, the basidiospores of P. 
luteopallida are longer than 8.0 μm. The basidiospores of P. singeri are broader, up to 
5.5 μm (Smith 1972). Morphologically, P. subsingeri belongs to section Spintrigerae 
with basidiospores less than 9.0 μm and absent pleurocystidia (Kits van Waveren 
1985). Its cheilocystidium is similar to P. submicrospora Heykoop & G. Moreno 
[= Coprinopsis submicrospora (Heykoop & G. Moreno) Örstadius & E. Larss.], but 
basidiospores of P. submicrospora are predominantly amygdaliform (Heykoop and 
Moreno 2002). It also can be classified in series Atricastaneae (Smith 1972). There 
are only three species in the series that match the characteristic of subhyaline to hya-
line basidiospores in water or 5% KOH. However, they can be separated as follows: 
the basidiospores of P. atricastanea (Murrill) A.H. Sm are truncate; P. albipes A.H. 
Sm. and P. subhyalinispora (Murrill) A.H. Sm. differ in having an obvious germ pore 
(Smith 1972). Furthermore, P. aequatoriae Singer has subhyaline to hyaline basidi-
ospores, but differs by smaller and sometimes papillate pileus. Psathyrella olympiana 
and P. bipellis [= P. odorata (Peck) Sacc.] have aspects of P. subsingeri in macroscopic 
characteristics, whose pileus are reddish-brown, but have pleurocystidia (Örstadius 
and Kundsen 2012).

Key to species of Psathyrella in Northeast China

1 Pleurocystidia absent ...................................................................................2
– Pleurocystidia present .................................................................................5
2 Basidiospores brown in 5% KOH ......................................... P. candolleana
– Basidiospores very pale, subhyaline in 5% KOH  ........................................3
3 Basidiospores predominantly longer than 8.0 μm ..................P. luteopallida
– Basidiospores shorter ..................................................................................4
4 Basidiospores up to 5.5 μm broad .................................................. P. singeri
– Basidiospores up to 4.5 μm broad .............................................P. subsingeri
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5 Basidiospores longer than 10 μm, pleurocystidia utriform to clavate, some-
times with yellowish-brown inclusions ...........................................P. bipellis

– Not as above ...............................................................................................6
6 Germ pore always or predominantly distinctly visible .................................7
– Germ pore absent or predominantly indistinctly visible ............................19
7 Pleurocystidia rarely, lageniform, shorter than 40 μm, clamps absent ...P. effibulata
– Not as above ...............................................................................................8
8 Basidiospores up to 7.0 μm long .................................................................9
– Basidiospores longer..................................................................................10
9 Pleurocystidia up to 35 μm long, mostly with distinct crystals .... P. pygmaea
– Pleurocystidia up to 65 μm long, without crystals ..................P. piluliformis
10 Basidiomata densely caespitose, cheilocystidia fusiform or mucronat, basidi-

ospores 8.5–9.8 × 4.6–5.1 μm .........................................P. boreifasciculata
– Not as above .............................................................................................11
11 Pleurocystidia mostly fusiform or lageniform ............................................12
– Pleurocystidia mostly utriform, narrowly utriform or clavate ....................14
12 Basidiomata vary small, pileus up to 5.0 mm, cheilocystidia with long or 

short mucronate ......................................................................P. mycenoides
– Not as above .............................................................................................13
13  Grown on sphagnum, basidiospores 8.8–9.2 × 4.4–5.0 μm .........P. borealis
– Terrestrial or basidiomata attached to bits of woody debris, basidiospores 

7.3–8.8 × 4.1–4.4 μm ........................................................... P. subterrestris
14 Basidiospores distinctly triangular ........................................ P. panaeoloides
– Not as above .............................................................................................15
15 Pleurocystidia often with in ammonia greenish deposits, basidiospores 8.8–

9.7 × 4.4–4.9 μm .......................................................................... P. lutensis
– Not as above .............................................................................................16
16 Cheilocystidia clavate to spheropedunculate, pleurocystidioid cheilocystidia 

scattered ...................................................................................P. phegophila
– Pleurocystidioid cheilocystidia numerous ..................................................17
17 Basidiospores up to 6.0 μm broad ...................................... P. fennoscandica
– Basidiospores up to 5.0 μm broad .............................................................18
18 Veil strongly developed and flocculose, pleurocystidia utriform or clavate .....

 ....................................................................................................P. gordonii
– eil with a thin coating of fibrils, pleurocystidia narrowly utriform .....P. senex
19 Pleurocystidia distinctly thick-walled or slightly thick-walled, covered with 

distinct crystals, basidiospores up to 9 μm long .........................................20
– Not as above .............................................................................................21
20 Pleurocystidia utriform, distinctly thick-walled ............................ P. amaura
– Pleurocystidia fusiform, slightly thick-walled or thin-walled .......P. jilinensis
21 Pleurocystidia fusiform, lageniform, with obtuse or subacute apex ............22
– Pleurocystidia utriform, narrowly utriform, with obtuse to broad obtuse 

apex ..........................................................................................................25
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22 Cheilocystidia mucronate, basidiospores ellipsoid, pale brown in 5% KOH .....
 ....................................................................................................... P. obtusata

– Not as above .............................................................................................23
23 Basidiospores (6.8–)7.3–7.8(–8.8) × 3.4–4.9 μm, base often broadly trun-

cate, in profile often phaseoliform ............................................... P. pertinax
– Not as above .............................................................................................24
24 Basidiospores oblong to oblong-ellipsoid, pleurocystidia thin-walled ............

 ................................................................................................. P. squamosa
– Basidiospores ellipsoid, pleurocystidia slightly thick-walled .... P. spintrigeroides
25 Basidiospores reddish-brown in water .................................... P. mammifera
– Basidiospores yellowish-brown or pale yellowish-brown in water ..............26
26 Pileus often with subacute or obtuse umbo, basidiospores 7.8–8.8 × 4.0–

4.5(–5.0) μm, oblong to oblong-ellipsoid .......................................P. conica
– Pileus without umbo, basidiospores 6.8–7.8 × 3.9–4.9 μm, ellipsoid, rarely 

oval ...............................................................................P. subspadiceogrisea
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Abstract
Tylopilus himalayanus and T. pseudoballoui are described as new species from two Himalayan states (Sikkim 
and Uttarakhand) in India. Tylopilus himalayanus is characterised by a unique combination of features: 
reddish- or brownish-grey to purplish-grey then brown to reddish-brown or darker pileus, absence of olive 
or violet tinges on stipe surface, angular pores, stipe without reticulum or rarely with a faint reticulum 
restricted to the very apex, bitter taste of the context and positive macrochemical colour reaction of the 
stipe context with KOH (dark orange) and FeSO4 (dark green), medium sized (10.9–14.4 × 3.9–4.9 μm) 
basidiospores and occurrence under coniferous trees; T. pseudoballoui is distinguished by orange-yellow to 
brown-yellow sticky pileus, pale yellow pore surface with pinkish hues that turns pale to greyish-orange on 
bruising; angular pores, stipe concolorous to pileus with pruinose but never reticulate surface, ixocutis pat-
tern of pileipellis and occurrence under broadleaf trees. Another species, T. neofelleus, which was reported 
earlier from China and Japan, was also collected from Sikkim and reported for the first time from India. 
All three species are described with morphological details and two-locus based (nrLSU and nrITS) phylo-
genetic data.
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Introduction

The genus Tylopilus P. Karst., one of the less attractive to eye-catching ectomycor-
rhizal taxa (associated mainly with Fagales and Pinaceae) in the family Boletaceae, is 
featured by its dry, glabrous to subvelvety pileus, white to greyish pore surface usu-
ally becoming flesh pink to purple-brown at maturity, immutable to slightly brown-
ish or becoming blue-green context on bruising, solid stipe with pruina or reticula-
tion over the surface, absence of annulus or veil, flesh-pink to dull flesh-ochre spore 
print, smooth pink-coloured basidiospores, presence of pleurocystidia and absence 
of clamp-connections (Smith and Thiers 1971, Wolfe 1979, Singer 1986, Wu et al. 
2014). Further, this genus was divided into two subgenera namely, T. subg. Tylopilus 
and T. subg. Porphyrellus (Smith and Thiers 1971, Singer 1975). The former subgenus 
is characterised by “spores with pale cinnamon-yellow to pale yellow walls in KOH 
and IKI; context usually unchanging or rust coloured on injury; context not turning 
red-brown in KOH”, whereas the latter is characterised by “spores with dark brown 
walls in KOH and IKI; context usually turning blue-green on injury then becoming 
red-brown and, in some taxa, the context becoming red-brown in KOH” (Wolfe 
1979). From all over the world (mostly from North America, Australia, Asia, Africa 
and Europe), about 75 species are reported (Kirk et al. 2008, Magnago et al. 2017). 
Like some other morphology-based genera in Boletaceae, the traditional concept of 
Tylopilus (Tylopilus s.l.) was split and has given birth to a few other genera with the 
recent advancement of multi-locus phylogeny. Tylopilus s.l. appeared as polyphyletic 
and evolved in 11 different lineages during the course of evolution (Nuhn et al. 2013, 
Wu et al. 2014). Thus, taxonomic placement of the members of this genus are still 
floating and many previously considered Tylopilus species are shifted into new genera 
such as Zangia Yan C. Li & Zhu L. Yang, Australopilus Halling & Fechner and Har-
rya Halling, Nuhn & Osmundson (Li et al. 2011, Halling et al. 2012). According to 
Wu et al. (2014), all the 11 clades consisting of the members of Tylopilus come under 
five subfamilies (Austroboletoideae, Leccinoideae, Boletoideae, Pulveroboletus group 
and Zangioideae) in Boletaceae and Tylopilus s.s., typified by Tylopilus felleus (Bull.) P. 
Karst., is placed within the subfamily Boletoideae.

The entire Indian Himalayan region comes under one (“Himalaya”) of the globally 
acclaimed biodiversity hotspots and thus has immensely diverse mycobiota (including 
macrofungi) apart from its myriad flora and fauna. A wide range of phytogeographic 
variations with the presence of large numbers of ectomycorrhizal host plants, cold to 
warm monsoon, favourable humidity and plenty of rainfall, supports the growth of 
ectomycorrhizal mushrooms of Boletaceae. However, due to the lack of mushroom-
explorers or mushroom-taxonomists, most of the areas of Indian Himalaya remain 
unexplored in terms of Boletaceae (only 80 species belonging to 23 genera, while more 
than 1050 species from 66 genera are reported from the world) (Chakraborty et al. 
2017). During macrofungal surveys to different forested areas of Eastern Himalaya 
(Sikkim) and Western Himalaya, three interesting members of Tylopilus were collected 
separately. Detailed macro- and micromorphological studies followed by phylogenetic 
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analyses based on nrLSU and nrITS sequences, confirm the novelty of two of them 
and are proposed here as T. himalayanus and T. pseudoballoui, whereas the third one 
appeared as conspecific to T. neofelleus (a species so far reported from Japan and China, 
Gelardi et al. 2015) and is reported as a new record for Indian mycobiota.

Materials and methods

Morphological study

Macromorphological characters and habitat details were noted from fresh, young to 
mature basidiomata in the field and in base-camp. After recording the macromorpho-
logical characters, basidiomata were dried with a field drier. Photographs of these fresh 
and dry basidiomata and microphotographs were taken with the aid of Canon Power 
Shot SX 50HS, Canon SX 220 HS and Nikon-DS-Ri1 (dedicated to Nikon Eclipse Ni 
compound microscope) cameras. Colour codes and terms are mostly from Methuen 
Handbook of Colour (Kornerup and Wanscher, 1978). Micromorphological charac-
ters were observed with compound microscopes (Nikon Eclipse Ni-U and Olympus 
CX 41). Sections from dry specimens were mounted in a mixture of 5% KOH, 1% 
Phloxine and 1% Congo red or in distilled water. Micromorphological drawings were 
prepared with a drawing tube (attached to the Nikon Eclipse Ni microscope) at 1000×. 
The basidium length excludes that of the sterigmata. Basidiospore measurements were 
recorded in profile view from 30 basidiospores. Spore measurements and length/width 
ratios (Q) are recorded here as: minimum–mean–maximum. Herbarium codes follow 
Thiers (continuously updated).

DNA extraction, polymerase chain reaction (PCR) and sequencing

Genomic DNA (for all the species) was extracted from 100 mg of dry basidiomata 
using the InstaGeneTM Matrix Genomic DNA isolation kit (Biorad, USA) follow-
ing the manufacturer’s instructions. PCR amplification primers were ITS1 and ITS4 
(nrITS region) and LR0R and LR7 (nrLSU region) (White et al. 1990). PCR ampli-
fication on “ABI Veriti” thermal cycler protocols for nrITS and nrLSU regions were 
after Das et al. (2017). The PCR products were then purified using the QIAquick 
PCR Purification Kit (QIAGEN, Germany) before they were sent for sequencing. 
Both strands of the PCR fragments were sequenced on the 3730xl DNA Analyzer (Ap-
plied Biosystems, USA) using the amplifying primers and assembled using Sequencer 
(Gene Codes Corporation, USA). The nrITS and nrLSU sequences for DC 16-64 
(MG777524 and MG777529), DC 16-63 (MG777523 and MG777525), DC 17-31 
(MG799323 and MG799326), DC 17-25 (MG799322 and MG799328), DC 17-30 
(MG799329 and MG799327) and DC 17-35 (MG799324 and MG799325), respec-
tively, were deposited in GenBank.
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Phylogenetic analyses

The nrLSU and nrITS datasets were assembled according to recent previous studies 
on this genus (Gelardi et al. 2015, Magnago et al. 2017) and from BLAST (Altschul 
et al. 1997) searches in GenBank (Clark et al. 2016). As most Tylopilus collections in 
GenBank are not provided with both molecular markers, we were unable to establish 
a combined nrITS+nrLSU dataset and so have opted for present separate nrLSU and 
nrITS phylogenetic inferences. These (nrITS and nrLSU) sequences were aligned sepa-
rately in MAFFT 7.305 (Katoh and Standley 2013). For the nrLSU dataset, Xanthoco-
nium sinense (KT990666 and KT990664) and X. purpureum (KT990663) from Bole-
taceae were used as outgroup taxa. Similarly, for the nrITS dataset, two sequences from 
Gyroporus (KX869874, GQ166901), another genus in Boletales (Gyroporaceae), were 
used as the outgroup. Phylip file formats were created in AliView (Larsson 2014) using 
default settings. Phylogenies were reconstructed using Maximum Likelihood (ML) in 
RAxML 7.2.6 (Stamatakis 2006) in GTRGAMMA substitution model. All param-
eters in the ML analyses used the default settings in RAxML and Maximum Likeli-
hood bootstrap percentage (MLB) were obtained using nonparametric bootstrapping 
with 1000 replicates. Additionally (to generate supplementary data), nrLSU and nrITS 
sequences were also phylogenetically analysed using Bayesian analysis. The best-fit 
models of nucleotide evolution for nrLSU and nrITS datasets (TIMef and TrNef+G, 
respectively) were obtained in MrModeltest 3.7 (Posada and Crandall 1998). Bayes-
ian inferences were computed independently twice in MrBayes v.3.2.2 (Ronquist et 
al. 2012), under TIMef (for nrLSU) and TrNef+G (for nrITS) models, respectively. 
Bayesian posterior probabilities values (BPP) were calculated in two simultaneous runs 
with the Markov Chain Monte Carlo (MCMC) algorithm (Larget and Simon 1999). 
Markov chains were run for 1000000 generations, saving a tree every 100th genera-
tion. These analyses were terminated when the average standard deviation of split fre-
quencies fell below 0.01. The first 25% of trees was discarded as burn-in (Hall 2004). 
The convergence of runs was visually assessed using Trace function in Tracer version 
1.6.0 (Rambaut et al. 2013).

Results

Phylogenetic inferences

The nrLSU- and nrITS-based phylogenetic analyses (Figs 1–2 and Suppl. materials 1–2) 
consist of 76 and 42 sequences, respectively. In our nrLSU based ML and BI analyses (Figs 
1 and Suppl. material 1, respectively), the two Indian collections of T. himalayanus (DC 
17–25 and DC 17–31) clustered together and appeared sister (MLB = 100%, BPP = 1) 
to the North American T. intermedius (HQ161875) and T. rubrobrunneus (HQ161875). 
However, our species with its two sequences (MG799328 and MG799326) is recovered 



Two new species and one new record of the genus Tylopilus (Boletaceae)... 107

Figure 1. nrLSU based phylogram generated from Maximum likelihood (ML) analysis under GTR-
GAMMA substitution model depicting the placement of Tylopilus neofelleus, T. pseudoballoui and T. hima-
layanus within Tylopilus s.s. Two species of Xanthoconium (X. sinense and X. purpureum) were used as 
outgroup taxa. ML Bootstrap percentage (MLB) derived from this analysis (MLB >50%) are shown above 
or beneath the branches. Two novel species and a new record for Indian mycobiota are highlighted in bold 
and red font. GenBank accession no. and country name (when available) for each species are shown after 
the species name.
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Figure 2. nrITS based phylogram generated from Maximum Likelihood (ML) analysis under GTR-
GAMMA substitution model depicting the placement of Tylopilus neofelleus, T. pseudoballoui and T. hima-
layanus within Tylopilus s.s. Two sequences of Gyroporus castaneus were used as outgroup. ML Bootstrap 
percentage (MLB) derived from this analysis (MLB >50%) are shown above or beneath the branches. Two 
novel species and a new record for Indian mycobiota are highlighted in bold and red font. GenBank acces-
sion no. and country name (when available) for each species are shown after the species name.

as a distinct species. In these same analyses, the two Indian specimens of T. pseudoballoui 
(DC 17–30 and DC 17–35) are sister (MLB = 98%, BPP = 1) to a strongly supported 
clade (MLB = 99%, BPP = 1) formed by six sequences named as “T. balloui” or “T. 
aff. balloui” (EU430740, KX017298, KF112458, KX017295, KX017296, KX017297) 
from Asia. However, our Indian collections (MG799325 and MG799327) are recovered 
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as a distinct species. Our other two Indian collections of T. neofelleus (DC 16–45 and 
DC 16–63) clustered along with all the Asian counterparts (KM975495, HQ326936, 
KM975496, KM975497, KM975494, KF000101, KF112450) in a strongly supported 
clade (MLB = 100%, BPP = 1), indicating its conspecificity.

Similarly, in our nrITS-based ML and BI analyses (Figs 2 and Suppl. material 2, re-
spectively), the two Indian collections of T. himalayanus (DC 17–25 and DC 17–31), 
along with a collection of China (JN182869, wrongly labelled as “Tylopilus felleus”), 
appeared sister (MLB = 96%), in the ML analysis, or close, in the BI analysis, to a clade 
consisting of two T. rubrobrunneus sequences (KM248939 from Canada, GQ166869 
from USA) and two “T. felleus” from USA (GQ166878, GQ166904). However, our 
collection is recovered as a separate species. The two Indian specimens of T. pseudob-
alloui (DC 17-30 and DC 17-35) clustered strongly (MLB = 100%, BPP = 1) with a 
Japanese sequence of “T. balloui” (AB509625) and appeared as sister (MLB = 83%), 
in the ML analysis, to a clade consisting of one Mexican collection (represented by 
KY859806 and labelled as “Tylopilus ballouii”) and Tylopilus leucomycelinus (JF908789) 
from Guatemala and as sister (BPP = 0.85) whereas, in the BI analysis, to a clade (MLB 
= 100%) formed by eight Asian sequences of “T. balloui”, four from Japan (AB973733, 
AB973757, AB973758, AB973735) and four from Thailand (KX017304, KX017306, 
KX017305, KX017307). However, our species is recovered as a distinct species. Fi-
nally, as in the nrLSU analysis, here also the two Indian collections of T. neofelleus are 
strongly clustered (MLB = 100%, BPP = 1) with three Asian counterparts (KM975487 
and KM975489 from Japan, KM975486 from China), showing their conspecificity.

Taxonomy

Tylopilus himalayanus D. Chakr., K. Das & Vizzini, sp. nov.
MycoBank: MB823975
Figs 3, 4

Holotype. India. Sikkim: East District, Upper Chandmari, 1977 m alt., N27°23'13.7", 
E88°46'42.9", 26 Aug 2017, D. Chakraborty & K. Das, DC 17-25 (CAL 1649).

Diagnosis. Distinct from all allied taxa by a combination of sequence data (nrITS 
and nrLSU), reddish- or brownish-grey to purplish-grey, then brown to reddish-brown 
pileus in basidiomata, absence of olive or violet tinges on stipe surface, presence of angular 
pores, stipe without reticulum or rarely with a faint reticulum restricted to the very apex, 
bitter taste of the context, positive reaction of the stipe context with KOH (dark orange) 
and FeSO4 (dark green) and medium sized (10.9–14.4 × 3.9–4.9 μm) basidiospores.

Etymology. Referring to Indian Himalaya, the type locality.
Description. Pileus 71–120 mm diam., initially convex then plano-convex to appla-

nate, surface dry, matte to somewhat subvelvety, faintly areolate, brownish-grey, dull red, 
reddish-grey to purplish-grey or greyish-magenta (11–13B–C2–3) when young, gradu-
ally brown to reddish-brown (7E4–9D4) or darker, paler greyish-yellow (4C4) towards 
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Figure 3. Tylopilus himalayanus (DC 17-25, holotype). a, b Fresh basidiomata in the field and in base-
camp c Pore surface after bruising d Surface of stipe apex with reticulation e Pleurocystidia f Pileipellis 
g Tube edge h Basidiospores. Scale bars: 50 μm (f); 10 μm (e, g, h); 5 mm (c, d); 5 cm (a).

margin, pale yellow (2A3) at margin; margin entire, decurved to plane with a narrow 
flap of tissue, blond (4C4). Pore surface greyish-yellow (3C4) when young, pinkish-
white (8A2) with age, turning greyish-brown (6D3) on bruising; pores angular, 2/mm. 
Tubes adnexed to subdecurrent, 5–6 mm long, whitish-brown to brownish, light brown 
to brown (26B2–3) on bruising. Stipe 95–155 × 20–32 mm, mostly subclavate, hollow, 
pale yellow (1–2A3) at apex, brownish towards base but never violaceous; surface usually 
without any reticulum, but sometimes faintly reticulate at apex (1/8th from the juncture), 
the rest longitudinally striate. Context up to 16 mm thick in pileus, milk white (1A2), 
unchanging when exposed. Stipe context turning dark green with FeSO4, dark orange 
with 5% KOH, orange with 10% NH4OH. Taste bitter. Spore print not obtained.
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Figure 4. Tylopilus himalayanus (DC 17-25, holotype). a Basidiospores b Basidia c Pleurocystidia 
d Cheilocystidia e Pileipellis. Scale bars: 10 μm (a–e).

Basidiospores 10.9–12.5–14.4 × 3.9–4.5–4.9 μm, (n = 30; Q = 2.51–2.75–3.25), 
elongated to fusiform, inequilateral, thin-walled, smooth under light microscope. Basidia 
30–40 × 9–10 μm, four-spored, clavate. Pleurocystidia 27–54 × 8–10.5 μm, emergent 
up to 30 μm, fusoid to ventricose, appendiculate. Tube edge sterile; cheilocystidia 32–48 
× 5.2–8 μm, common, clavate to cylindrical, subfusoid to ventricose. Hymenophoral tra-
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ma divergent, hyphae septate, gelatinous, up to 6 μm wide. Pileipellis a trichoderm, up to 
150 μm thick, composed of erect hyphae, somewhat interwoven, encrusted, brown pig-
mented; terminal elements 20–50 × 5–10 μm, cylindrical to subcylindrical, sometimes 
subfusoid, content brown pigmented. Stipitipellis a cutis, made up of sub-parallel repent 
hyphae; caulocystidia not observed; caulobasidia similar to that of hymenial basidia.

Specimens examined. India. Sikkim: Upper Chandmari, 1977 m alt., 
N27°23'13.7", E88°46'42.9", under Pinus sp. in temperate mixed forest, 26 Aug 2017, 
D. Chakraborty & K. Das, DC 17-31 (CAL); Uttarakhand: Champawat district, Abbot 
mount, 1933 m alt., N29°25.465', E80°06.422', under Cedrus deodara in temperate 
coniferous forest, 18 Jul 2017, A. Ghosh, KD B-03 (CAL).

Tylopilus pseudoballoui K. Das, D. Chakr & Vizzini, sp. nov.
Mycobank: MB823977
Figs 5, 6

Type. INDIA. Sikkim, South District, Maenam WLS (Maenum 3), 2136 m alt., 
N27°15'34.7" E88°21'25.7", 23 Aug 2017, Quercus spp., D. Chakraborty & K. Das, 
DC 17-30 (CAL 1651)

Diagnosis. Distinct from all allied taxa by sequence data (nrITS and nrLSU) and 
morphologically by its sticky orange-yellow pileus surface, pale yellow pore surface 
which turns to pale orange or greyish-orange when bruised and absence of reticulation 
on stipe surface.

Etymology. referring to its being a look-alike of T. balloui, a North American species.
Description. Pileus 60–150 mm diam., initially convex then plano-convex, sur-

face sticky, orange-yellow to brownish-yellow (5B–C8), paler at margin; margin en-
tire, plain, without any sterile flap of tissue. Pore surface pale yellow (3A3), turning 
pale orange to greyish-orange (6A–B3) on bruising; pores angular, 5–8/mm. Tubes 
subdecurrent, 6–10 mm long, yellowish-white, brownish on bruising. Stipe 55–110 × 
20–40 mm, mostly subclavate, solid, concolorous with pileus; surface pruinose, never 
reticulate; basal mycelium white. Context 20 mm thick in pileus, chalky white (1A1), 
unchanging on exposure but turning turquoise grey (24D2–D1) with FeSO4 (chalk), 
pale yellow (4A3) with 5% KOH, yellowish-grey (4B3) in Guaiacol. Pileus surface 
brownish-red (8C8–7) on bruising, turning dark green to greenish-grey (25E–F3–2) 
in FeSO4, vivid yellow (3A8) in KOH, unchanging in NH4OH. Stipe 55–110 × 
20–40 mm, mostly subclavate, solid, concolorous with pileus; surface pruinose, never 
reticulate; basal mycelium white. Odour pleasant. Taste slightly pungent. Spore print 
not obtained.

Basidiospores 6.4–7.4–9.9 × 3.8–4.5–5.7 μm (n = 30, Q = 1.5–1.73–2.04), ellip-
soidal, thin-walled, smooth under light microscope. Basidia 22– 30 × 8–10 μm, four-
spored, clavate. Pleurocystidia 40–54 × 7–10 μm, emergent up to 30 μm, fusoid to 
ventricose, appendiculate, yellow pigmented or hyaline, mostly with dense globular to 
oily content. Tube edge fertile; cheilocystidia 33–55 × 7–10 μm, common, clavate to 
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Figure 5. Tylopilus pseudoballoui (DC 17-30, holotype). a, c Fresh basidiomata in the field b Pore surface 
after bruising d Hymenophoral trama e Pleurocystidia f Pileipellis g Stipitipellis h Basidiospores. Scale 
bars: 100 μm (d, f); 50 μm (g); 10 mm (e, h).

cylindrical, subfusoid to ventricose. Hymenophoral trama divergent, hyphae septate, 
gelatinous, up to 5 μm wide. Pileipellis an ixocutis up to 150–280 μm thick, composed 
of subparallel to suberect, somewhat interwoven hyphae; terminal elements 20–70 × 
6–11 μm, cylindrical to subcylindrical, sometimes subfusoid, content orange-brown 
pigmented. Stipitipellis up to 150 μm thick, fertile, composed of basidia and cystidia 
in several clusters; caulobasidia similar to that of hymenial basidia; caulocystidia 40–76 
× 10–12 μm, broadly clavate to subclavate or appendiculate.

Specimens examined. India. Sikkim: South District, Maenam WLS (Maenam 3), 
2136 m alt., N27°15'34.7", E88°21'25.7", 23 Aug 2017, Quercus sp., D. Chakraborty 
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Figure 6. Tylopilus pseudoballoui (DC 17-30, holotype). a Basidiospores b Basidia c Caulocystidia 
d Pleurocystidia e Pileipellis. Scale bars: 10 μm (a–e).

& K. Das, DC 17-35 (CAL); Uttarakhand: Champawat district, Abbot mount, 1885 
m alt., N29°25.466', E80°06.085', 18 July 2017, A. Ghosh, KD B-02 (CAL). Utta-
rakhand: Pauri district, 1971 m alt., N30°02.874', E79°08.221', 4 Aug 2017, K. Das, 
KD 17-24 (CAL).
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Figure 7. Tylopilus neofelleus (DC 16-63). a, b Fresh basidiomata in the field and in basecamp c Stipe 
surface with reticulation d Pileipellis e Hymenial layer showing basidia and pleurocystidia f Tube edge 
g Basidiospores. Scale bars: 50 μm (d, f); 10 μm (e, g).

Tylopilus neofelleus Hongo, J. Jpn. Bot. 42: 154 (1967)
Figs 7, 8

Description. Pileus 70–120 mm broad, convex to broadly convex; surface distinct-
ly tomentose to subvelvety, dry, subviscid when wet; reddish-brown (8–9F4) when 
young, rosewood (9C5) to vinaceous-brown (16C5) with maturity, fawn (7E4) to-
wards margin. Pores yellowish-white or cream with a pinkish tinge, orange-grey (6B2) 
with age; pore 2–3/mm, rounded. Tubes 10–15 mm, adnate-sinuate, white in colour, 
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Figure 8. Tylopilus neofelleus (DC 16-63). a Basidiospores b Pleurocystidia c Caulocystidia d Pileipellis. 
Scale bars: 10 μm (a–d).

yellow-brown or orange white with maturity. Stipe 60–100 × 18–22 mm, cylindri-
cal, solid, surface dry, glabrous to subvelutinous, typically distinctly reticulate at apex, 
reticulation greyish-ruby (12C–D4) to dark ruby (12F5); surface pinkish brown to 
vinaceous or violaceous, dark brown to reddish-brown with maturity. Context chalky 
white, but pinkish-brown when exposed. Spore print not obtained.

Basidiospores 10–11.5–13.5 × 4–4.6–5.2 μm (n = 30, Q = 2.05–2.48–2.76), 
ellipsoid to narrowly subfusoid, inequilateral, smooth, thin-walled. Basidia 30–36 × 
10–11 μm, 4-spored, clavate, thin-walled, hyaline or pale grey in KOH. Pleurocystidia 
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35–66 × 14–24 μm, scattering and numerous, fusoid-ventricose or subclavate, with 
orange brown contents. Cheilocystidia 33–38 × 9–12 μm, ventricose to fusoid, shorter 
and smaller than pleurocystidia thin-walled, with orange brown contents. Pileipellis 
100–150 μm thick, an ixotrichoderm of suberect, branched, septate hyphae; terminal 
elements ventricose to fusoid, vaculolated, 28–50 × 12–14 μm, with granular yellowish 
to brown orange contents in KOH; subterminal elements mostly with incrustations. 
Stipitipellis 35–65 μm, fertile, composed of basidia and cystidia. Caulocystidia 52–63 
× 8–13 μm, fusoid to subfusoid, ventricose to ventricose-rostrate or narrowly cylindri-
cal, content granular. Clamp connection absent in all tissues.

Habitat. Under Castanopsis sp. in temperate broadleaf forest.
Known distribution. Japan (Kawamura 1954; Hongo 1960; Imazeki et al. 1970, 

1988; Takahashi 1986; Gelardi et al. 2015), China (Ying and Zang 1994; Li and Song 
2000; Wang et al. 2004; Fu et al. 2006; Wu et al. 2011; Gelardi et al. 2015), Russia 
(Vasil’jeva 1978) and New Guinea (Hongo 1973).

Specimens examined. India. Sikkim: East district, Fambonglo WLS, 2021 m 
alt., N27°21'47.5" E88°34'13.2", 26 Aug 2016, D. Chakraborty & K. Das, DC 16-63 
(CAL); ibid., D. Chakraborty & K. Das, DC 16-64 (CAL).

Discussion

Our first novel species in Tylopilus s.s. (Wu et al. 2014), i.e. T. himalayanus, is featured 
by its brown, reddish-brown to purplish-grey, dry pileus, angular pores, stipe usually 
without reticulum even though sometimes with faintly reticulate apex, but longitu-
dinally striate throughout, white unchanging context on exposure, bitter taste, sterile 
tube edge and trichodermic structure of pileipellis. Morphologically, T. rubrobrunneus 
Mazzer & A.H. Sm., T. felleus (Bull.) P. Karst., T. neofelleus Hongo and T. intermedius 
A.H. Sm. & Thiers resemble T. himalayanus. Tylopilus rubrobrunneus (originally report-
ed from North America) differs from this species by its olive tinge on stipe surface, pi-
leus surface with vinaceous tinges, rounded pores, negative colour reaction with KOH 
or NH4OH on context (Mazzer and Smith 1967, Smith and Thiers 1971, Grund and 
Harrison 1976, Both 1993, Bessette et al. 2010, 2016). Similarly, T. intermedius differs 
from the present Indian species by possessing a distinctively whitish pileus that stains 
pinkish buff to brown with age and context (pileus) that turns pinkish with FeSO4, 
but remains unchanged with KOH (Smith and Thiers 1971, Both 1993, Bessette et 
al. 2010, 2016). Some other members of this genus, such as T. felleus (originally de-
scribed from Europe and known from India as well without checking its conspecificity 
through phylogeny), T. neofellus (originally reported from Japan but reported here for 
the first time from India), T. plumbeoviolaceus Snell & Dick (originally reported from 
North America but also known from this country without verifying its conspecificity 
through phylogeny) and T. violatinctus T.J. Baroni & Both (originally reported from 
North America), can also be separated from T. himalayanus morphologically: T. felleus 
has brownish pileus and distinctively reticulate stipe (Lannoy and Estadès 2001, Mu-
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ñoz 2005); T. neofellus and T. plumbeoviolaceus possess reddish-brown to violaceous-
brown pileus and reticulate purplish-violaceous stipe (Snell and Dick 1941, Smith and 
Thiers 1971, Grund and Harrison 1976, Both 1993, Lakhanpal 1996, Bessette et al. 
2010, 2016, Gelardi et al. 2015); T. violatinctus is easily distinguished by the more 
brightly coloured, bluish-violet to lilac-lavender or purple-greyish pileus, bruising dark 
rusty-violet when handled, the stipe turning yellowish on bruising, pileus surface and 
context staining yellowish-brown and negative to pinkish-brown with KOH, respec-
tively, small basidiospores [(5.6–)7–9(–10) × 3–4 μm] and the growth in mixed wood-
lands possibly with Quercus, Fagus or Picea, in any case not in association pine or cedar 
trees (Baroni and Both 1998, Ortiz-Santana et al. 2007, Bessette et al. 2010).

Tylopilus balloui, as currently circumscribed (pileus orange-yellow and short ellipti-
cal, pale-coloured basidiospores), represents a species complex rather than a single spe-
cies, based on morphological data (Watling and Gregory 1988, Li and Watling 1999, 
Watling and Lee 1999, Watling and Li 1999, Watling 2001a, b, Watling et al. 2006) 
and molecular phylogenetic inference (Halling et al. 2008, Osmundson and Halling 
2010, Magnago et al. 2017 and our analyses, Figs 1–2, Suppl. materials 1–2). Due 
to its spore shape, Boletus balloui Peck was previously considered as a Gyrodon (Snell 
1941), a Gyroporus (Horak 2011) or a Rubinoboletus (Heinemann & Rammeloo 1983), 
but recent molecular studies (Halling et al. 2008; Osmundson and Halling 2010, 
Trappe et al. 2013, Wu et al. 2014, Magnago et al. 2017, Orihara and Smith 2017) 
confirmed its position in Tylopilus s.s. The true T. balloui has to be restricted only to 
the North American collections (Halling et al. 2008, Osmundson and Halling 2010). 
Our second novel species, i.e. T. pseudoballoui, a distinct species in this complex, is 
characterised by robust basidiomata with sticky orange to brownish-yellow pileus; pale 
yellow pore surface that turns to greyish-orange to orange on bruising, angular pores; 
concolorous stipe, pruinose, never reticulate; context white, unchanging on bruising 
or when exposed; pileipellis an ixocutis with somewhat interwoven hyphae; possess-
ing two types of hymenial cystidia (hyaline and pigmented with yellowish globular to 
oily content); and occurrence under Quercus spp. In the field, the present species can 
be confused with its closest look-alike T. balloui (Peck) Singer which was originally 
reported from North America. However, T. balloui differs from the Indian species 
by possessing a dry pileus surface (sticky in T. pseudoballoui), white to dingy-white 
pores and a context turning pinkish-tan on exposure. (Smith and Thiers 1971, Wolfe 
1981, Both 1993, Bessette et al. 2010, 2016, Osmundson and Halling 2010). Tylopi-
lus oradivensis Osmundson & Halling, described recently from Costa Rica, possesses 
longer spores, (7.6–)8.2–12(–13.6) × (2.6–)3-4(–4.4) μm and a dry pileus surface, 
(Osmundson and Halling 2010). Tylopilus leucomycelinus (Singer & M.H. Ivory) R. 
Flores & Simonini from Honduras and Guatemala, has a dry, fibrillose to squamulose 
pileus surface, abundant white basal mycelium, smaller spores, (5.8–)6.1–6.7(–7.3) × 
(3.4–)3.8–4.3(–4.9) μm and is associated with Pinus spp. (Singer et al. 1983, Flores 
Arzù and Simonini 2000). Moreover, our twofold phylogenetic analysis clearly sepa-
rates T. pseudoballoui (also known from Japan as clearly indicated in our Figs 2 and 



Two new species and one new record of the genus Tylopilus (Boletaceae)... 119

Suppl. material 2). Boletus balloui var. fuscatus Corner from Malaysia, is morphologi-
cally similar to the Indian collection but the former differs by its narrower stipe (width 
7–24 mm at apex, 3-12 mm at base), fawn-ochraceus pileus surface, dull purple brown 
pore surface on bruising, vinaceous to dull purple context on exposure (context un-
changing in T. pseudoballouii), sterile stipitipellis and low land distribution (1300 mm 
alt.) (Corner 1972). Tylopilus viscidulus (Pat. & Baker) Watl. & Lee also known from 
Malaysia, differs from the Indian species by its pale cream coloured pileus and stipe, 
smaller size of basidiomata (pileus 25–40 mm diam. and stipe 20–35 × 8–15 mm), 
pale brown colour of context on exposure and presence of lageniform cystidia (Patouil-
lard and Baker 1918, Watling and Lee 1999). Finally, Rubinoboletus balloui var. viscidus 
T.H. Li & Watling from Australia is distinguished by a smaller pileus (up to 70 mm 
broad), context turning pinkish on cutting and longer spores, 7.5–11.0 × 4.0–4.8 μm 
(Li and Watling 1999, Watling and Li 1999).

The combination of morphological features in Indian collections of T. neofelleus 
and two-fold phylogeny (MG777529, MG777525 in Figs 1 and Suppl. material 1; 
MG777524, MG777523 in Figs 2 and Suppl. material 2) attest the conspecificity of 
these collections with their Chinese or Japanese counterparts. Tylopilus neofelleus (= T. 
microsporus S.Z. Fu, Q.B. Wang & Y.J. Yao fide Gelardi et al. 2015) is closely related 
to T. felleus (Bull.) P. Karst. and T. plumbeoviolaceus (Snell & E.A. Dick) Snell & E.A. 
Dick. However, T. felleus (originally reported from Europe, Munoz 2005) has a brown 
pileus with olive-grey colour and distinctively brown reticulation on its yellowish stipe-
surface, while T. plumbeoviolaceus (originally reported from North America) has a deep 
violet-purplish, then purple-brown to dull cinnamon-brown pileus. Micromorpho-
logically, basidiospores of T. plumbeoviolaceus are distinctively longer [10–13(–14) × 
3–4(–5.5) μm, than those of T. neofelleus (Smith & Thiers 1971, Bessette et al. 2000, 
2006, Gelardi et al. 2015). Tylopilus  plumbeoviolaceoides T.H. Li, B. Song & Y.H. 
Shen, described from China, differs in the darkly coloured pileus and stipe ranging 
from dark violaceous to brown-vinaceous, the context turning pinkish to purplish 
when cut, and usually longer and somewhat narrower spores [(7.5–) 8.5–10.5(–12) × 
(2.5–)3.0–3.8(–4.2) μm]  (Li 2011, Gelardi et al. 2015). Finally, T. himalayanus is dis-
tinct from T. neofelleus by the absence of purplish-violaceous tinges on the stipe surface 
and of a well-developed reticulum.
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Figure S1
Authors: Dyutiparna Chakraborty, Alfredo Vizzini, Kanad Das
Data type: (measurement/occurence/multimedia/etc.)
Explanation note: nrLSU based Bayesian phylogram inferred from MrBayes under 

TIMef model of nucleotide evolution. Two species of Xanthoconium (X. sinense 
and X. purpureum) were used as outgroup taxa. Posterior probabilities values (BPP) 
are indicated above or below the respective branches. New taxa or new record for 
Indian mycobiota are shown in bold and red in the phylogram.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.33.23703.suppl1
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Figure S2
Authors: Dyutiparna Chakraborty, Alfredo Vizzini, Kanad Das
Data type: (measurement/occurence/multimedia/etc.)
Explanation note: nrITS based Bayesian phylogram inferred from MrBayes under 

TrNef+G model of nucleotide evolution. Gyroporus castaneus was used as outgroup 
species. Posterior probabilities values (BPP) are indicated above or below the re-
spective branches. New taxa or new record for Indian mycobiota are shown in bold 
and red in the phylogram.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.33.23703.suppl2


