Research Article |
Corresponding author: Ning Jiang ( n.jiang@caf.ac.cn ) Academic editor: Sajeewa Maharachchikumbura
© 2023 Ya-Quan Zhu, Chun-Yan Ma, Han Xue, Chun-Gen Piao, Yong Li, Ning Jiang.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Zhu Y-Q, Ma C-Y, Xue H, Piao C-G, Li Y, Jiang N (2023) Two new species of Diaporthe (Diaporthaceae, Diaporthales) in China. MycoKeys 95: 209-228. https://doi.org/10.3897/mycokeys.95.98969
|
Species of Diaporthe have been reported as plant endophytes, pathogens and saprobes on a wide range of plant hosts. Strains of Diaporthe were isolated from leaf spots of Smilax glabra and dead culms of Xanthium strumarium in China, and identified based on morphology and molecular phylogenetic analyses of combined internal transcribed spacer region (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) loci. As a result, two new species named Diaporthe rizhaoensis and D. smilacicola are identified, described and illustrated in the present study.
Leaf spots, morphology, multi-gene phylogeny, taxonomy
Diaporthe (Diaporthaceae,Diaporthales) is a species-rich genus with its asexual morph previously known as Phomopsis (
The sexual morph of Diaporthe is characterized by immersed ascomata and an erumpent pseudostroma with single or multiple tapering perithecial necks. Asci are unitunicate, sessile and clavate to cylindrical. Ascospores are elliptical to fusiform, septate or aseptate, hyaline, biseriate to uniseriate in the ascus and sometimes have appendages (
Species of Diaporthe are widely distributed, and infect a broad plant host range, e.g., agricultural crops, forest trees, vegetables, and fruits (
The genus Diaporthe includes over 1000 epithets, mostly based on morphological characteristics and host associations (
In the present study, we have analyzed five-locus dataset of combined nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone (his3), translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2). To aid the identification of two new species, we followed
In previous studies, Smilax glabra and Xanthium strumarium have been reported as hosts of Diaporthe (
In this study, we introduce two new species namely Diaporthe rizhaoensis and D. smilacicola, collected from diseased plant tissues in China. We further provide descriptions, illustrations, and DNA sequence-based phylogeny to verify identification and placement.
During 2021 and 2022, investigations were conducted to inspect for the presence of Diaporthe species associated with plant diseases in China. Leaves of Smilax glabra and culms of Xanthium strumarium showing typical symptoms of Diaporthe were collected. Infected tissues were cut into 0.5 × 0.5 cm pieces using a double-edge blade, and surface sterilized as follows. These sections underwent initial immersion for 2 min in 0.5% sodium hypochlorite, followed by 1 min in sterile distilled water, 2 min in 75% ethanol, and, finally, 1 min in sterile distilled water. The disinfected fragments were then plated onto the surface of potato dextrose agar (PDA; 200 g potatoes, 20 g dextrose, 20 g agar per L) and malt extract agar (MEA; 30 g malt extract, 5 g mycological peptone, 15 g agar per L), and incubated at 25 °C to obtain the pure culture.
Species identification was based on morphological features of the new species produced on infected plant tissues and PDA plates. Conidiomata were sectioned by hand, using a double-edged blade and structures were observed under a dissecting microscope. Over 20 fruiting bodies were sectioned, and 50 conidia were selected randomly for measurement using Axio Imager 2 microscope (Zeiss, Oberkochen, Germany). Isolate characteristics incubated on PDA at 25 °C were observed and recorded at 7 days, including colony colour, texture and the arrangement of the conidiomata. The cultures were deposited in the
China Forestry Culture Collection Center (CFCC;
http://www.cfcc-caf.org.cn/), and the specimens in the herbarium of the
Chinese Academy of Forestry (
Genomic DNA was extracted from the fresh mycelium harvested from PDA plates after 7 days using a cetyltrimethylammonium bromide (CTAB) method (
Loci | PCR primers | PCR: thermal cycles: (Annealing temp. in bold) | Reference |
---|---|---|---|
ITS | ITS1/ITS4 | (95 °C: 30 s, 48 °C: 30 s, 72 °C: 1 min) × 35 cycles |
|
cal | CAL228F/CAL737R | (95 °C: 15 s, 54 °C: 20 s, 72 °C: 1 min) × 35 cycles |
|
his3 | CYLH3F/H3-1b | (95 °C: 30 s, 57 °C: 30 s, 72 °C: 1 min) × 35 cycles |
|
|
|||
tef1 | EF1-728F/EF1-986R | (95 °C: 15 s, 54 °C: 20 s, 72 °C: 1 min) × 35 cycles |
|
tub2 | T1(Bt2a)/Bt2b | (95 °C: 30 s, 55 °C: 30 s, 72 °C: 1 min) × 35 cycles |
|
|
Sequences were edited and condensed with SeqMan v.7.1.0. The sequences generated in this study were supplemented with additional sequences obtained from GenBank (Table
Species | Location | Host | Strain | GenBank Accession Number | ||||
---|---|---|---|---|---|---|---|---|
ITS | tef1 | tub2 | cal | his3 | ||||
Diaporthe absenteum | China | Camellia sinensis | LC3429* | KP267897 | KP267971 | KP293477 | NA | KP293547 |
D. absenteum | China | Camellia sinensis | LC3564 | KP267912 | KP267986 | KP293492 | NA | KP293559 |
D. acaciarum | Tanzania | Acacia tortilis | CBS 138862* | KP004460 | NA | KP004509 | NA | KP004504 |
D. acericola | Italy | Acer negundo | MFLUCC 17-0956* | KY964224 | KY964180 | KY964074 | KY964137 | NA |
D. aceris | Japan | Acer sp. | LC8112 | KY491547 | KY491557 | KY491567 | KY491575 | NA |
D. actinidiae | New Zealand | Actinidia deliciosa | ICMP 13683* | KC145886 | KC145941 | NA | NA | NA |
D. acuta | China | Pyrus pyrifolia | CGMCC 3.19600* | MK626957 | MK654802 | MK691225 | MK691124 | MK726161 |
D. alangii | China | Alangium kurzii | CFCC 52556* | MH121491 | MH121533 | MH121573 | MH121415 | MH121451 |
D. alangii | China | Alangium kurzii | CFCC 52557 | MH121492 | MH121534 | MH121574 | MH121416 | MH121452 |
D. alnea | Netherlands | Alnus sp. | CBS 146.46 | KC343008 | KC343734 | KC343976 | KC343250 | KC343492 |
D. amaranthophila | Japan | Amaranthus tricolor | MAFF 246900 | LC459575 | LC459577 | LC459579 | LC459583 | LC459581 |
D. ambigua | South Africa | Pyrus communis | CBS 114015* | KC343010 | KC343736 | KC343978 | KC343252 | KC343494 |
D. angelicae | Austria | Heracleum sphondylium | CBS 111592* | KC343027 | KC343753 | KC343995 | KC343269 | KC343511 |
D. anhuiensis | China | Cunninghamia lanceolata | CNUCC 201901* | MN219718 | MN224668 | MN227008 | MN224549 | MN224556 |
D. arctii | Austria | Arctium lappa | CBS 139280* | KJ590736 | KJ590776 | KJ610891 | KJ612133 | KJ659218 |
D. arecae | India | Areca catechu | CBS 161.64* | KC343032 | KC343758 | KC344000 | KC343274 | KC343516 |
D. arengae | Hong Kong | Arenga engleri | CBS 114979* | KC343034 | KC343760 | KC344002 | KC343276 | KC343518 |
D. arezzoensis | Italy | Cytisus sp. | MFLUCC 15-0127 | MT185503 | NA | NA | NA | NA |
D. aseana | Thailand | Unidentified dead leaf | MFLUCC 12-0299a* | KT459414 | KT459448 | KT459432 | KT459464 | NA |
D. australiana | Australia | Macadamia | CBS 146457 | MN708222 | MN696522 | MN696530 | NA | NA |
D. batatas | USA | Ipomoea batatas | CBS 122.21* | KC343040 | KC343766 | KC344008 | KC343282 | KC343524 |
D. beilharziae | Australia | Indigofera australis | BRIP 54792* | JX862529 | JX862535 | KF170921 | NA | NA |
D. biconispora | China | Citrus grandis | ZJUD62 | KJ490597 | KJ490476 | KJ490418 | MT227578 | KJ490539 |
D. biguttulata | China | Citrus limon | ZJUD47* | KJ490582 | KJ490461 | KJ490403 | NA | KJ490524 |
D. brasiliensis | Brazil | Aspidosperma sp. | CBS 133183* | KC343042 | KC343768 | KC344010 | KC343284 | KC343526 |
D. caatingaensis | Brazil | Tacinga inamoena | CBS 141542* | KY085927 | KY115603 | KY115600 | NA | KY115605 |
D. camelliae-oleiferae | China | Camellia oleifera | HNZZ027* | MZ509555 | MZ504707 | MZ504718 | MZ504685 | MZ504696 |
D. caryae | China | Carya illinoensis | CFCC 52563* | MH121498 | MH121540 | MH121580 | MH121422 | MH121458 |
D. caryae | China | Carya illinoensis | CFCC 52564 | MH121499 | MH121541 | MH121581 | MH121423 | MH121459 |
D. cercidis | China | Cercis chinensis | CFCC 52565* | MH121500 | MH121542 | MH121582 | MH121424 | MH121460 |
D. cercidis | China | Cercis chinensis | CFCC 52566 | MH121501 | MH121543 | MH121583 | MH121425 | MH121461 |
D. chiangraiensis | Thailand | Bauhinia sp. | MFLUCC 17-1669* | MF190119 | MF377598 | NA | NA | NA |
D. chrysalidocarpi | China | Chrysalidocarpus lutescens | SAUCC194.35 | MT822563 | MT855760 | MT855876 | MT855646 | MT855532 |
D. cichorii | Italy | Cichorium intybus | MFLUCC 17-1023* | KY964220 | KY964176 | KY964104 | KY964133 | NA |
D. cinmomi | China | Cinnamomum sp. | CFCC 52569* | MH121504 | MH121546 | MH121586 | NA | MH121464 |
D. cinmomi | China | Cinnamomum sp. | CFCC 52570 | MH121505 | MH121547 | MH121587 | NA | MH121465 |
D. citriasiana | China | Citrus unshiu | CGMCC 3.15224* | JQ954645 | JQ954663 | KC357459 | KC357491 | KJ490515 |
D. columnaris | USA | Vaccinium vitisidaea | AR3612* | AF439625 | NA | NA | NA | NA |
D. compacta | China | Camellia sinensis | CGMCC 3.17536* | KP267854 | KP267928 | KP293434 | NA | KP293508 |
D. convolvuli | Turkey | Convolvulus arvensis | CBS 124654* | KC343054 | KC343780 | KC344022 | KC343296 | KC343538 |
D. cucurbitae | Canada | Cucumis sp. | DAOM 42078* | KM453210 | KM453211 | KP118848 | NA | KM453212 |
D. cuppatea | South Africa | Aspalathus linearis | CBS 117499* | KC343057 | KC343783 | KC344025 | KC343299 | KC343541 |
D. cyatheae | Taiwan | Cyathea lepifera | YMJ 1364* | JX570889 | KC465406 | KC465403 | KC465410 | NA |
D. discoidispora | China | Citrus unshiu | ZJUD89* | KJ490624 | KJ490503 | KJ490445 | NA | KJ490566 |
D. drenthii | Australia | Macadamia | CBS 146453 | MN708229 | MN696526 | MN696537 | NA | NA |
D. durionigena | Vietnam | Durio zibethinus | VTCC 930005 | MN453530 | MT276157 | MT276159 | NA | NA |
D. endocitricola | China | Citrus maxima | ZHKUCC 20-0012* | MT355682 | MT409336 | MT409290 | MT409312 | NA |
D. endophytica | Brazil | Schinus terebinthifolius | CBS 133811* | KC343065 | KC343791 | KC344033 | KC343307 | KC343549 |
D. eucalyptorum | China | Eucalyptus | CBS 132525* | MH305525 | NA | NA | NA | NA |
D. eugeniae | Indonesia | Eugenia aromatica | CBS 444.82* | KC343098 | KC343824 | KC344066 | KC343340 | KC343582 |
D. fraxini-angustifoliae | Australia | Fraxinus angustifolia | BRIP 54781* | JX862528 | JX862534 | KF170920 | NA | NA |
D. fructicola | Japan | Passiflora edulis × P. edulis f. | MAFF 246408* | LC342734 | LC342735 | LC342736 | LC342738 | LC342737 |
D. fulvicolor | China | Pyrus pyrifolia | CGMCC 3.19601* | MK626859 | MK654806 | MK691236 | MK691132 | MK726163 |
D. ganjae | USA | Cannabis sativa | CBS 180.91* | KC343112 | KC343838 | KC344080 | KC343354 | KC343596 |
D. goulteri | Australia | Helianthus annuus | BRIP 55657a* | KJ197290 | KJ197252 | KJ197270 | NA | NA |
D. guangdongensis | China | Citrus maxima | ZHKUCC 20-0014* | MT355684 | MT409338 | MT409292 | MT409314 | NA |
D. guangxiensis | China | Vitis vinifera | JZB320094* | MK335772 | MK523566 | MK500168 | MK736727 | NA |
D. gulyae | Australia | Helianthus annuus | BRIP 54025* | JF431299 | JN645803 | KJ197271 | NA | NA |
D. guttulata | China | Unknown | CGMCC 3.20100 | MT385950 | MT424685 | MT424705 | MW022470 | MW022491 |
D. helianthi | Serbia | Helianthus annuus | CBS 592.81* | KC343115 | KC343841 | KC344083 | KC343357 | KC343599 |
D. heterostemmatis | China | Heterostemma grandiflorum | SAUCC194.85* | MT822613 | MT855925 | MT855810 | MT855692 | MT855581 |
D. hongkongensis | China | Dichroa febrífuga | CBS 115448* | KC343119 | KC343845 | KC344087 | KC343361 | KC343603 |
D. hordei | Norway | Hordeum vulgare | CBS 481.92* | KC343120 | KC343846 | KC344088 | KC343362 | KC343604 |
D. huangshanensis | China | Camellia oleifera | CNUCC 201903* | MN219729 | MN224670 | MN227010 | NA | MN224558 |
D. hubeiensis | China | Vitis vinifera | JZB320123 | MK335809 | MK523570 | MK500148 | MK500235 | NA |
D. hunanensis | China | Camellia oleifera | HNZZ023* | MZ509550 | MZ504702 | MZ504713 | MZ504680 | MZ504691 |
D. infecunda | Brazil | Schinus sp. | CBS 133812* | KC343126 | KC343852 | KC344094 | KC343368 | KC343610 |
D. infertilis | Suriname | Camellia sinensis | CBS 230.52* | KC343052 | KC343778 | KC344020 | KC343294 | KC343536 |
D. kochmanii | Australia | Helianthus annuus | BRIP 54033* | JF431295 | JN645809 | NA | NA | NA |
D. kongii | Australia | Portulaca grandifla | BRIP 54031* | JF431301 | JN645797 | KJ197272 | NA | NA |
D. krabiensis | Thailand | marine based habitats | MFLUCC 17-2481* | MN047101 | MN433215 | MN431495 | NA | NA |
D. leucospermi | Australia | Leucospermum sp. | CBS 111980* | JN712460 | KY435632 | KY435673 | KY435663 | KY435653 |
D. limonicola | Malta | Citrus limon | CPC 28200* | NR_154980 | MF418501 | MF418582 | MF418256 | MF418342 |
D. litchiicola | Australia | Litchi chinensis | BRIP 54900* | JX862533 | JX862539 | KF170925 | NA | NA |
D. lithocarpi | China | Lithocarpus glabra | CGMCC 3.15175* | KC153104 | KC153095 | KF576311 | KF576235 | NA |
D. longicolla | USA | Glycine max | FAU599 | KJ590728 | KJ590767 | KJ610883 | KJ612124 | KJ659188 |
D. longispora | Canada | Ribes sp. | CBS 194.36* | KC343135 | KC343861 | KC344103 | KC343377 | KC343619 |
D. lusitanicae | Portugal | Foeniculum vulgare | CBS 123212 | KC343136 | KC343862 | KC344104 | KC343378 | KC343620 |
D. lusitanicae | Portugal | Foeniculum vulgare | CBS 123213* | MH863280 | KC343863 | KC344105 | KC343379 | KC343621 |
D. malorum | Portugal | Malus domestica | CAA 734* | KY435638 | KY435627 | KY435668 | KY435658 | KY435648 |
D. manihotia | Rwanda | Manihot utilissima | CBS 505.76 | KC343138 | KC343864 | KC344106 | KC343380 | KC343622 |
D. masirevicii | Australia | Helianthus annuus | BRIP 57892a* | KJ197276 | KJ197239 | KJ197257 | NA | NA |
D. mayteni | Brazil | Maytenus ilicifolia | CBS 133185 | KC343139 | KC343865 | KC344107 | KC343381 | KC343623 |
D. megalospora | Not stated | Sambucus canadensis | CBS 143.27* | KC343140 | KC343866 | KC344108 | KC343382 | KC343624 |
D. melitensis | Malta | Citrus limon | CPC 27873* | MF418424 | MF418503 | MF418584 | MF418258 | MF418344 |
D. melonis | USA | Cucumis melo | CBS 507.78* | KC343142 | KC343868 | KC344110 | KC343384 | KC343626 |
D. melonis | Indonesia | Glycine soja | CBS 435.87 | KC343141 | KC343867 | KC344109 | KC343383 | KC343625 |
D. middletonii | Australia | Rapistrum rugostrum | BRIP 54884e* | KJ197286 | KJ197248 | KJ197266 | NA | NA |
D. millettiae | China | Millettia reticulata | GUCC9167* | MK398674 | MK480609 | MK502089 | MK502086 | NA |
D. minusculata | China | saprobic on decaying wood | CGMCC 3.20098* | MT385957 | MT424692 | MT424712 | MW022475 | MW022499 |
D. miriciae | Australia | Helianthus annuus | BRIP 54736j* | KJ197282 | KJ197244 | KJ197262 | NA | NA |
D. musigena | Australia | Musa sp. | CBS 129519* | KC343143 | KC343869 | KC344111 | KC343385 | KC343267 |
D. myracrodruonis | Brazil | Astronium urundeuva | URM 7972* | MK205289 | MK213408 | MK205291 | MK205290 | 17 |
D. nelumbonis | Taiwan | Nelumbo nucifera | R. Kirschner 4114* | KT821501 | NA | LC086652 | NA | NA |
D. neoarctii | USA | Ambrosia trifi | CBS 109490* | KC343145 | KC343871 | KC344113 | KC343387 | KC343629 |
D. neoraonikayaporum | Thailand | Tectona grandis | MFLUCC 14-1136* | KU712449 | KU749369 | KU743988 | KU749356 | NA |
D. oculi | Japan | Homo sapiens | HHUF 30565* | LC373514 | LC373516 | LC373518 | NA | NA |
D. osmanthi | China | Osmanthus fragrans | GUCC9165* | MK398675 | MK480610 | MK502091 | MK502087 | NA |
D. ovalispora | China | Citrus limon | CGMCC 3.17256* | KJ490628 | KJ490507 | KJ490449 | NA | KJ490570 |
D. oxe | Brazil | Maytenus ilicifolia | CBS 133186* | KC343164 | KC343890 | KC344132 | KC343406 | KC343648 |
D. pandanicola | Thailand | Pandanus sp. | MFLUCC 17-0607* | MG646974 | NA | MG646930 | NA | NA |
D. paranensis | Brazil | Maytenus ilicifolia | CBS 133184* | KC343171 | KC343897 | KC344139 | KC343413 | KC343655 |
D. pascoei | Australia | Persea americana | BRIP 54847* | JX862532 | JX862538 | KF170924 | NA | NA |
D. passiflorae | South America | Passiflora edulis | CBS 132527* | JX069860 | KY435633 | KY435674 | KY435664 | KY435654 |
D. passifloricola | Malaysia | Passiflora foetida | CBS 141329* | KX228292 | NA | KX228387 | NA | KX228367 |
D. perseae | Netherlands | Persea gratissima | CBS 151.73* | KC343173 | KC343899 | KC343141 | KC343415 | KC343657 |
D. pescicola | China | Prunus persica | MFLUCC 16-0105* | KU557555 | KU557623 | KU557579 | KU557603 | NA |
D. phaseolorum | USA | Phaseolus vulgaris | AR4203* | KJ590738 | KJ590739 | KJ610893 | KJ612135 | KJ659220 |
D. phoenicicola | India | Areca catechu | CBS 161.64* | MH858400 | GQ250349 | JX275440 | JX197432 | NA |
D. podocarpi-macrophylli | China | Podocarpus macrophyllus | CGMCC 3.18281* | KX986774 | KX999167 | KX999207 | KX999278 | KX999246 |
D. pseudolongicolla | Serbia | Glycine max | PL42* | JQ697843 | JQ697856 | NA | NA | NA |
D. pseudolongicolla | Croatia | Glycine max | CBS 127269 | KC343155 | KC343881 | KC344123 | KC343397 | KC343639 |
D. pseudomangiferae | Dominican Republic | Mangifera indica | CBS 101339* | KC343181 | KC343907 | KC344149 | KC343423 | KC343665 |
D. pseudooculi | Japan | Homo sapiens | HHUF 30617* | NR_161019 | LC373517 | LC373519 | NA | NA |
D. pseudophoenicicola | Spain | Phoenix dactylifera | CBS 462.69* | KC343184 | KC343910 | KC344152 | KC343426 | KC343668 |
D. pseudophoenicicola | Iraq | Mangifera indica | CBS 176.77 | KC343183 | KC343909 | KC344151 | KC343425 | KC343667 |
D. pterocarpicola | Thailand | Pterocarpus indicus | MFLUCC 10-0580a* | JQ619887 | JX275403 | JX275441 | JX197433 | NA |
D. pyracanthae | Portugal | Pyracantha coccinea | CBS 142384* | KY435635 | KY435625 | KY435666 | KY435656 | KY435646 |
D. racemosae | South Africa | Euclea racemosa | CPC 26646* | MG600223 | MG600225 | MG600227 | MG600219 | MG600221 |
D. raonikayaporum | Brazil | Spondias mombin | CBS 133182* | KC343188 | KC343914 | KC344156 | KC343430 | KC343672 |
D. rhodomyrti | China | Rhodomyrtus tomentosa | CFCC 53101 | MK432643 | MK578119 | MK578046 | MK442965 | MK442990 |
D. rhodomyrti | China | Rhodomyrtus tomentosa | CFCC 53102 | MK432644 | MK578120 | MK578047 | MK442966 | MK442991 |
D. rizhaoensis | China | Xanthium strumarium | CFCC 57562* | OP955930 | OP959767 | OP959773 | OP959782 | OP959785 |
D. rizhaoensis | China | Xanthium strumarium | CFCC 57563 | OP955931 | OP959766 | OP959772 | OP959781 | OP959784 |
D. rizhaoensis | China | Xanthium strumarium | CFCC 57564 | OP955932 | OP959765 | OP959771 | OP959780 | OP959783 |
D. rosae | Thailand | Rosa sp. | MFLUCC 17-2658* | MG828894 | NA | MG843878 | MG829273 | NA |
D. rosiphthora | Brazil | Rosa sp. | COAD 2914* | MT311197 | MT313693 | NA | MT313691 | NA |
D. rossmaniae | Portugal | Vaccinium corymbosum | CAA762* | MK792290 | MK828063 | MK837914 | MK883822 | MK871432 |
D. sackstonii | Australia | Helianthus annuus | BRIP 54669b* | KJ197287 | KJ197249 | KJ197267 | NA | NA |
D. salinicola | Thailand | Xylocarpus sp. | MFLU 18-0553* | MN047098 | MN077073 | NA | NA | NA |
D. sambucusii | China | Sambucus williamsii | CFCC 51986* | KY852495 | KY852507 | KY852511 | KY852499 | KY852503 |
D. sambucusii | China | Sambucus williamsii | CFCC 51987 | KY852496 | KY852508 | KY852512 | KY852500 | KY852504 |
D. schimae | China | Schima superba | CFCC 53103* | MK432640 | MK578116 | MK578043 | MK442962 | MK442987 |
D. schimae | China | Schima superba | CFCC 53104 | MK432641 | MK578117 | MK578044 | MK442963 | MK442988 |
D. schini | Brazil | Schinus terebinthifolius | CBS 133181* | KC343191 | KC343917 | KC344159 | KC343433 | KC343675 |
D. schoeni | Italy | Schoenus nigricans | MFLU 15-1279* | KY964226 | KY964182 | KY964109 | KY964139 | |
D. sclerotioides | Netherlands | Cucumis sativus | CBS 296.67* | KC343193 | KC343919 | KC344161 | KC343435 | KC343677 |
D. searlei | Australia | Macadamia | CBS 146456* | MN708231 | NA | MN696540 | NA | NA |
D. sennae | China | Senna bicapsularis | CFCC 51636* | KY203724 | KY228885 | KY228891 | KY228875 | NA |
D. sennae | China | Senna bicapsularis | CFCC 51637 | KY203725 | KY228886 | KY228892 | KY228876 | NA |
D. serafiniae | Australia | Helianthus annuus | BRIP 55665a* | KJ197274 | KJ197236 | KJ197254 | NA | NA |
D. siamensis | Thailand | Dasymaschalon sp. | MFLUCC 10-0573a* | JQ619879 | JX275393 | JX275429 | JX197423 | NA |
D. sinensis | China | Amaranthus sp. | ZJUP0033-4* | MK637451 | MK660449 | MK660447 | NA | MK660451 |
D. smilacicola | China | Smilax glabra | CFCC 54582* | OP955933 | OP959770 | OP959776 | OP959779 | OP959788 |
D. smilacicola | China | Smilax glabra | CFCC 58764 | OP955934 | OP959769 | OP959775 | OP959778 | OP959787 |
D. smilacicola | China | Smilax glabra | CFCC 58765 | OP955935 | OP959768 | OP959774 | OP959776 | OP959786 |
D. sojae | USA | Glycine max | FAU635* | KJ590719 | KJ590762 | KJ610875 | KJ612116 | KJ659208 |
D. spinosa | China | Pyrus pyrifolia | CGMCC 3.19602* | MK626849 | MK654811 | MK691234 | MK691129 | MK726156 |
D. stewartii | Not stated | Cosmos bipinnatus | CBS 193.36* | MH867279 | GQ250324 | JX275421 | JX197415 | NA |
D. subellipicola | China | on dead wood | KUMCC 17-0153* | MG746632 | MG746633 | MG746634 | NA | NA |
D. subordinaria | New Zealand | Plantago lanceolata | CBS 464.90* | KC343214 | KC343940 | KC344182 | KC343456 | KC343698 |
D. taiwanensis | Taiwan | Ixora chinensis | NTUCC 18-105-1* | MT241257 | MT251199 | MT251202 | MT251196 | NA |
D. taoicola | China | Prunus persica | MFLUCC 16-0117* | KU557567 | KU557635 | KU557591 | NA | NA |
D. tarchonanthi | South Africa | Tarchonanthus littoralis | CBS 146073* | MT223794 | NA | MT223733 | NA | MT223759 |
D. tecomae | Brazil | Tabebuia sp. | CBS 100547* | KC343215 | KC343941 | KC344183 | KC343457 | KC343699 |
D. tectonae | Thailand | Tectona grandis | MFLUCC 12-0777* | KU712430 | KU749359 | KU743977 | KU749345 | NA |
D. tectonendophytica | Thailand | Tectona grandis | MFLUCC 13-0471* | KU712439 | KU749367 | KU743986 | KU749354 | NA |
D. tectonigena | China | Tectona grandis | MFLUCC 12-0767* | KU712429 | KU749371 | KU743976 | KU749358 | NA |
D. tectonigena | China | Camellia sinensis | LC6512 | KX986782 | KX999174 | KX999214 | KX999284 | KX999254 |
D. terebinthifolii | Brazil | Schinus terebinthifolius | CBS 133180* | KC343216 | KC343942 | KC344184 | KC343458 | KC343700 |
D. thunbergiicola | Thailand | Thunbergia laurifolia | MFLUCC 12-0033* | KP715097 | KP715098 | NA | NA | NA |
D. tulliensis | Australia | Theobroma cacao | BRIP 62248a* | KR936130 | KR936133 | KR936132 | NA | NA |
D. ueckeri | USA | Cucumis melo | FAU656* | KJ590726 | KJ590747 | KJ610881 | KJ612122 | KJ659215 |
D. unshiuensis | China | Fortunella margarita | CGMCC 3.17566* | KJ490584 | KJ490463 | KJ490405 | NA | KJ490526 |
D. unshiuensis | China | Carya illinoensis | CFCC 52594 | MH121529 | MH121571 | MH121606 | MH121447 | MH121487 |
D. unshiuensis | China | Carya illinoensis | CFCC 52595 | MH121530 | MH121572 | MH121607 | MH121448 | MH121488 |
D. vawdreyi | Australia | Psidium guajava | BRIP 57887a | KR936126 | KR936129 | KR936128 | NA | NA |
D. vexans | USA | Solanum melongena | CBS 127.14 | KC343229 | KC343955 | KC344197 | KC343471 | KC343713 |
D. viniferae | China | Vitis vinifera | JZB320071* | MK341550 | MK500107 | MK500112 | MK500119 | NA |
D. vochysiae | Brazil | Vochysia divergens | LGMF1583* | MG976391 | MK007526 | MK007527 | MK007528 | MK033323 |
D. xishuangbanica | China | Camellia sinensis | CGMCC 3.18283* | KX986784 | KX999176 | KX999217 | NA | NA |
D. xishuangbanica | China | Camellia sinensis | LC6707 | KX986783 | KX999175 | KX999216 | NA | KX999255 |
In the present study, we followed
Phylogram of Diaporthe sojae species complex resulting from a maximum likelihood analysis based on a combined matrix of ITS, cal, his3, tef1 and tub2 loci. Numbers above the branches indicate ML bootstrap values (left, ML BS ≥ 50%) and Bayesian posterior probabilities (right, BPP ≥ 0.9). Isolates from the present study are marked in bold blue.
Phylogram of Diaporthe arecae species complex resulting from a maximum likelihood analysis based on a combined matrix of ITS, cal, his3, tef1 and tub2 loci. Numbers above the branches indicate ML bootstrap values (left, ML BS ≥ 50%) and Bayesian posterior probabilities (right, BPP ≥ 0.9). Isolates from the present study are marked in bold blue.
Named after the collection site of the type specimen, Rizhao City.
Conidiomata pycnidial, small, scattered, slightly erumpent through bark surface, nearly flat, discoid, with a solitary undivided locule, 150–400 μm diam. Conidiogenous cells 6.7–11.4 × 1.6–3.0 μm, hyaline, unbranched, densely aggregated, mostly ampulliform, guttulate, aseptate, straight or slightly curved, swelling at base, tapering towards apex. Beta conidia 12.9–23.4 × 1.1–2.1 μm (mean = 18.7 × 1.4 μm, n = 50), hyaline, filiform, straight or slightly curved, aseptate, base subtruncate, tapering towards the base. Alpha conidia and gamma conidia not observed. Sexual morph not observed.
Morphology of Diaporthe rizhaoensis A colonies on PDA, MEA and SNA at 25 °C after 2 weeks B habit of conidiomata on the host C transverse section of the conidioma D longitudinal section through the conidioma E–G conidiogenous cells with attached beta conidia H–J beta conidia. Scale bars: 500 µm (B); 100 µm (C, D); 10 µm (E–J).
Colonies on potato dextrose agar (PDA) flat, spreading, with flocculent aerial mycelium and entire edge, white, reaching a 90 mm diameter after 14 days at 25 °C; on malt extract agar (MEA) flat, spreading, with flocculent aerial mycelium and crenate edge, white, reaching a 90 mm diameter after 14 days at 25 °C, forming black conidiomata with black conidial masses; on synthetic low nutrient agar (SNA) flat, spreading, with flocculent aerial mycelium forming concentric rings and entire edge, white, reaching a 90 mm diameter after 14 days at 25 °C.
China, Shandong Province, Rizhao City, Wulian County, Zhongzhi Town, on dead culms of Xanthium strumarium, 5 May 2022, Ning Jiang & Chengbin Wang (holotype
Diaporthe rizhaoensis formed a distinct clade with high support (ML/BI = 100/1), and was close to D. guttulata and D. stewartia (Fig.
Named after the host genus, Smilax.
Leaf spots subcircular to irregular, pale brown to brown, with dark brown margin. Conidiomata pycnidial, scattered, subglobose to globose, black, erumpent, exuding faint yellow translucent conidial droplets from central ostioles, 150–350 μm diam. Conidiogenous cells 11–16.2 × 1.8–2.4 μm, hyaline, phialidic, cylindrical, terminal, slightly tapering towards the apex. Alpha conidia 5.7–9.7 × 2.0–3.5 μm (mean = 7.8 × 2.6 μm, n = 50), hyaline, aseptate, smooth, guttulate, ellipsoidal to oblong ellipsoidal, with both ends obtuse. Beta conidia and gamma conidia not observed. Sexual morph not observed.
Colonies on PDA flat, with flocculent aerial mycelium and crenate edge, white to gray, reaching a 90 mm diameter after 14 days at 25 °C, forming black conidiomata with black conidial masses; on MEA flat, spreading, with flocculent aerial mycelium forming concentric rings, off-white to luteous, reaching a 90 mm diameter after 14 days at 25 °C; on SNA flat, spreading, with flocculent aerial mycelium forming concentric rings and entire edge, white, reaching a 90 mm diameter after 14 days at 25 °C.
China, Hunan Province, Changsha City, Changsha County, Kaihui Town, on leaf spots of Smilax glabra, 2 November 2020, Ning Jiang (holotype
Three Diaporthe isolates representing D. smilacicola formed a well-supported clade (ML/BI = 100/1), and appear to be distinct from the other Diaporthe species phylogenetically (Fig.
Based on the morphology and the multi-locus phylogeny, six isolates from the present study can be recognized as two new species of Diaporthe, viz. D. rizhaoensis from dead culms of Xanthium strumarium and D. smilacicola from leaf spots of Smilax glabra.
Species identification in Diaporthe was primarily based on the assumption of host-specificity, which has largely impeded the progress of establishing a proper taxonomy of Diaporthe (
Recently, the species classification of Diaporthe has become more dependent on DNA sequence-based methods rather than traditional morphological characterization. (
The two newly introducing species could potentially be pathogens, because they were isolated from diseased plant tissues, and their pathogenicity should be evaluated in further studies. And, it is necessary to evaluate the effects of environmental conditions, such as temperature, pH, and carbon sources, on mycelium growth and pathogenicity.
This research was funded by Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry (grant CAFYBB2018ZB001), and National Microbial Resource Center of the Ministry of Science and Technology of the People’s Republic of China (grant NMRC-2021-7).