Research Article
Print
Research Article
A new species and four new records of Bacidia (Lecanorales, Ramalinaceae) from South Korea, with a key to Korean species
expand article infoBeeyoung Gun Lee, Jae-Seoun Hur§
‡ Baekdudaegan National Arboretum, Bonghwa, Republic of Korea
§ Sunchon National University, Suncheon, Republic of Korea
Open Access

Abstract

A new species, Bacidia fuscopallida Lee & Heo and four new records, B. ekmaniana R. C. Harris, Ladd & Lendemer, B. friesiana (Hepp) Körb., B. heterochroa (Müll. Arg.) Zahlbr. and B. suffusa (Fr.) A. Schneid., are described from South Korea. Bacidia fuscopallida differs from B. diffracta S. Ekman, the most similar species, by warted but non-granular thallus, paler and smaller apothecia without pruina, proper exciple without crystals, over 11-septate ascospores and smaller pycnidia and pycnoconidia. Bacidia ekmaniana is recorded new to Asia, B. heterochroa is reported new to northeastern Asia and B. friesiana and B. suffusa are new to Korea. Molecular analyses employing internal transcribed spacer (ITS) sequences strongly support the classification of the five species of Bacidia. A surrogate key is provided to assist in the identification of all 19 taxa in Bacidia of Korea.

Keywords

biodiversity, corticolous, lichen, phylogeny, taxonomy

Introduction

Bacidia has become a species-rich genus since De Notaris’ (1846) introduction. Bacidia (230 spp. including Bacidiopsora) is one of the largest genera in Ramalinaceae, with Ramalina (230 spp.) (Wijayawardene et al. 2020). The genus Bacidia was defined in a wide sense by the characteristics of crustose lichens with a chlorococcoid photobiont, biatorine or lecideine apothecia, 8-spored asci with colourless and transversely 3- or more septate ascospores (Zahlbruckner 1905, 1921–1940). However, the traditional characterisation of the genus has been considered coarse and unnatural. The genus has been split (e.g. Santesson 1952; Vězda 1978) and particularly new taxonomic applications, based on ascus structures (Hafellner 1984), excipulum structures (Vězda 1990) and molecular results (Ekman and Wedin 2000; Ekman 2001) have reclassified the large genus into tens of different genera (e.g. Vězda 1986; Sérusiaux 1986, 1993, 1995; Lücking 1992, 1995; Aptroot and Sipman 1993; Lücking et al. 1994; Ekman 1996; Kistenich et al. 2018). Ekman (2001) represented that Bacidia might be delimited to the B. rosella (Pers.) De Not., the type species, group in a strict sense (Brand et al. 2009) and most Bacidia species with blue-green pigment in epihymenium are closer to Toninia than the type species group, based on molecular phylogeny although B. schweinitzii (Fr. ex E. Michener) A. Schneid.) can be an exception.

Bacidia is one of the least explored genera in Korea and the genus has just been reported since the 2010s. Since Joshi et al. (2011) introduced B. arceutina (Ach.) Th. Fr., B. schweinitzii and B. subincompta (Nyl.) Arnold (syn. Toniniopsis subincompta (Nyl.) Kistenich, Timdal, Bendiksby & S. Ekman), overall 18 species have been recorded in Korea (Zhang et al. 2012; Aptroot and Moon 2014, 2015; Kondratyuk et al. 2016, 2017, 2019a, b; Liu 2018; Yakovchenko et al. 2018). Although detected on diverse substrates (e.g. bark, moss, rock or artificial wood fence), they are mainly corticolous and were collected on deciduous, wide-leaved tree barks in humid forests.

This study describes a new species and four new records of the lichen genus Bacidia. Field surveys for the lichen biodiversity in the main mountains of Korea, i.e. Baekdudaegan, and several forested wetlands of South Korea were carried out during the spring to summer of 2019–2021 and 54 specimens of Bacidia were collected from barks of deciduous wide-leaved trees and shrubs (Fig. 1). The specimens were comprehensively analysed and identified as a new species, B. fuscopallida, and four new records, B. ekmaniana, B. friesiana, B. heterochroa and B. suffusa. All the collected specimens are deposited in the Herbarium of the Baekdudaegan National Arboretum (KBA), South Korea.

Figure 1. 

Specific collection sites (black symbols) for the new species Bacidia fuscopallida (black star) and four new records, B. ekmaniana (black club), B. friesiana (black diamond), B. heterochroa (black hearth) and B. suffusa (black spade).

Materials and methods

Morphological and chemical analyses

Hand sections were prepared manually with a razor blade under a stereomicroscope (Olympus optical SZ51; Olympus, Tokyo, Japan), examined under a compound microscope (Nikon Eclipse E400; Nikon, Tokyo, Japan) and pictured using a software programme (NIS-Elements D; Nikon, Tokyo, Japan) and a DS-Fi3 camera (Nikon, Tokyo, Japan) mounted on a Nikon Eclipse Ni-U microscope (Nikon, Tokyo, Japan). The ascospores were examined at 1000× magnification in water. The length and width of the ascospores were measured and the range of spore sizes was shown with average, standard deviation (SD), length-to-width ratio and the number of measured spores. Thin-layer chromatography (TLC) was performed using solvent system C according to standard methods (Orange et al. 2001).

Isolation, DNA extraction, amplification and sequencing

Hand-cut sections of ten to twenty ascomata per collected specimen were prepared for DNA isolation (Table 1) and DNA was extracted with a NucleoSpin Plant II Kit in line with the manufacturer’s instructions (Macherey-Nagel, Düren, Germany). PCR amplifications for the internal transcribed spacer region (ITS1-5.8S-ITS2 rDNA) RNA genes were achieved using Bioneer’s AccuPower PCR Premix (Bioneer, Daejeon, Korea) in 20-μl tubes with 16 μl of distilled water, 2 μl of DNA extracts and 2 μl of the primers ITS5 and ITS4 (White et al. 1990). The PCR thermal cycling parameters used were 95 °C (15 sec), followed by 35 cycles of 95 °C (45 sec), 54 °C (45 sec) and 72 °C (1 min) and a final extension at 72 °C (7 min), based on Ekman (2001). The annealing temperature was occasionally altered by ±1 degree in order to obtain a better result. PCR purification and DNA sequencing were accomplished by the genomic research company Macrogen (Seoul, Korea).

Table 1.

Hand-cut section information for DNA isolation.

Species Bacidia fuscopallida Bacidia ekmaniana Bacidia friesiana Bacidia heterochroa Bacidia suffusa
Specimens KBA-L-0001010 (isotype), KBA-L-0001037 (paratype), KBA-L-0001049 (paratype) KBA-L-0000072, KBA-L-0002037 KBA-L-0001910, KBA-L-0001913, KBA-L-0001914, KBA-L-0001917 KBA-L-0000386, KBA-L-0002714, KBA-L-0002727, KBA-L-0002734 KBA-L-0000358, KBA-L-0000359, KBA-L-0000368, KBA-L-0002776, KBA-L-0002778, KBA-L-0002835
Ascomata sections per specimen 20 10 20 10 10
Ascomata sections per species 60 20 80 40 60

Phylogenetic analyses

An independent phylogenetic tree for the genus Bacidia was produced from 84 sequences from GenBank and 12 newly-generated sequences for the new species and the new records (Table 2). All ITS sequences were aligned and edited manually using ClustalW in Bioedit v.7.2.6.1 (Hall 1999). All missing and ambiguously aligned data and phylogenetically uninformative positions were removed and phylogenetically informative regions were finally analysed in MEGA X (Stecher et al. 2020). The final alignment comprised 930 bp, in which 102 variable regions were detected. The phylogenetically informative regions were 585. Phylogenetic trees with bootstrap values were obtained in RAxML GUI 2.0 beta (Edler et al. 2019) using the Maximum Likelihood method with a rapid bootstrap with 1,000 bootstrap replications and GTR GAMMA (GTR + G4) for the substitution matrix. The posterior probabilities were obtained in BEAST 2.6.4 (Bouckaert et al. 2019) using the GTR 123454 model, as the appropriate model of nucleotide substitution produced by the Bayesian model averaging methods with bModelTest (Bouckaert and Drummond 2017), empirical base frequencies, gamma for the site heterogeneity model, four categories for gamma and a 10,000,000 Markov Chain Monte Carlo chain length with a 10,000-echo state screening and 1,000 log parameters. Then, a consensus tree was constructed in TreeAnnotator 2.6.4 (Bouckaert et al. 2019) with the first 25% discard as a burn-in, no posterior probability limit, a maximum clade credibility tree for the target tree type and median node heights. All trees were displayed in FigTree 1.4.2 (Rambaut 2014) and edited in Microsoft Paint. Overall analyses in the materials and methods were undertaken based on Lee and Hur (2020).

Table 2.

Species list and DNA sequence information employed for phylogenetic analysis.

No. Species ITS Voucher
1 Bacidia absistens AF282085 Ekman 3223 (BG)
2 Bacidia albogranulosa MK158340 J. Malicek 9622
3 Bacidia albogranulosa MK158342 J. Vondrak 11888 (PRA)
4 Bacidia arceutina AF282083 Ekman 3110 (BG)
5 Bacidia arceutina JQ796851 LG DNA 579
6 Bacidia areolata MH048614 M-0182592
7 Bacidia auerswaldii AF282122 Johansson 20 (UPS)
8 Bacidia bagliettoana AF282123 Ekman 3137 (BG)
9 Bacidia bagliettoana MG838190 O-L-175215
10 Bacidia beckhausii AF282071 Holien 6744 (TRH)
11 Bacidia beckhausii JF714252 MSSRF Lichen Herbarium
12 Bacidia biatorina AF282079 Knutsson 94–148
13 Bacidia caligans AF282096 Johansson 21 (UPS)
14 Bacidia circumspecta MH539764 L-13006
15 Bacidia circumspecta AF282124 Ekman L1330 (LD)
16 Bacidia cylindrophora MG926005 Kurokawa 1692
17 Bacidia cylindrophora MG926006 Ohmura 7091 (GZU)
18 Bacidia diffracta AF282090 Wetmore 26401 (MIN)
19 Bacidia diffracta MH048620 Harris 46555-A
20 Bacidia ekmaniana ON352611 KBA-L-0002037
21 Bacidia elongata MH048626 M-0182571
22 Bacidia elongata MH048629 M-0182627
23 Bacidia fraxinea AF282088 Johansson 1620 (BG)
24 Bacidia friesiana ON352609 KBA-L-0001910
25 Bacidia friesiana ON352610 KBA-L-0001913
26 Bacidia friesiana MH539765 L-13159
27 Bacidia fuscopallida ON352607 KBA-L-0001010
28 Bacidia fuscopallida ON352608 KBA-L-0001049
29 Bacidia fuscoviridis AM292665 Nordin 5058 (UPS)
30 Bacidia gigantensis MT425200 MCM242
31 Bacidia hemipolia AF282072 Toensberg 25091 (BG)
32 Bacidia heterochroa ON352606 KBA-L-0000386
33 Bacidia heterochroa ON352612 KBA-L-0002727
34 Bacidia heterochroa ON352613 KBA-L-0002734
35 Bacidia hostheleoides AF282081 Seaward 108121
36 Bacidia incompta AF282092 Ekman 3144 (BG)
37 Bacidia incompta MG461697 KoLRI Udo-32
38 Bacidia kurilensis MH048612 M-0182622
39 Bacidia kurilensis MH048610 M-0182620
40 Bacidia kurilensis MH048611 M-0182621
41 Bacidia laurocerasi MH048609 Galanina 424
42 Bacidia laurocerasi subsp. laurocerasi MN483106 Spribille 26334 (KLGO)
43 Bacidia laurocerasi subsp. laurocerasi AF282078 Wetmore 74318 (MIN)
44 Bacidia lutescens MG925952 Ekman 3655 (BG)
45 Bacidia lutescens AF282082 Ekman L1161 (LD)
46 Bacidia medialis AF282102 Ekman L1193 (LD)
47 Bacidia polychroa AF282089 Knutsson 91–215
48 Bacidia rosella AF282086 Ekman 3117 (BG)
49 Bacidia rubella AF282087 Ekman 3021 (BG)
50 Bacidia rubella HQ650644 AFTOL-ID 1793
51 Bacidia rubella JQ796852 LG DNA 578
52 Bacidia rubella KX132984 LIFU076–16
53 Bacidia rubella MG461695 AFTOL-ID 1793
54 Bacidia rubella EU266078 Hur H06122
55 Bacidia rubella MH048630 M-0182581
56 Bacidia rubella MK158343 J. Vondrak 12200 (PRA)
57 Bacidia sabuletorum AF282069 Ekman 3091 (BG)
58 Bacidia sachalinensis MH048621 M-0182619
59 Bacidia sachalinensis MH048625 M-0182624
60 Bacidia schweinitzii AF282080 Wetmore 72619 (MIN)
61 Bacidia schweinitzii KX151766 Lendemer 31230A (NY)
62 Bacidia scopulicola AF282084 Ekman 3106 (BG)
63 Bacidia sigmosporae MW622004 P.v.d. Boom 55090
64 Bacidia sipmanii JQ796853 LG DNA 361
65 Bacidia sorediata KX151772 Lendemer 33787 (NY)
66 Bacidia sorediata KX151775 Barton 658 (NY)
67 Bacidia squamulosula MG925955 Kalb & Kalb in Kalb, Lich. neotrop. 405
68 Bacidia subareolata MK499342 MFLU 16-0573
69 Bacidia subincompta AF282125 Ekman 3413 (BG)
70 Bacidia subincompta KX098342 WSL DF231
71 Bacidia suffusa ON352605 KBA-L-0000359
72 Bacidia suffusa ON352614 KBA-L-0002776
73 Bacidia suffusa ON352615 KBA-L-0002778
74 Bacidia suffusa ON352616 KBA-L-0002835
75 Bacidia suffusa AF282091 Wetmore 74771 (MIN)
76 Bacidia suffusa AY756456 Andersen 99 (BG)
77 Bacidia suffusa MH048615 M-0182601
78 Bacidia suffusa MH048616 M-0182593
79 Bacidia suffusa MH048617 M-0182594
80 Bacidia suffusa MH048618 M-0289887
81 Bacidia suffusa MH048619 M-0289888
82 Bacidia suffusa MW728313 LAH 36839
83 Bacidia suffusa MW788561 LAH 36838
84 Bacidia vermifera AF282109 Johansson 1619 (BG)
85 Bacidia vermifera KX132992 LIFU084-16 (versA)
86 Bacidia wellingtonii MG925953 Ziviagina s.n.
87 Bacidia sp. AY756133 KoLRI Udo-32
88 Bacidia sp. KX098339 WSL DF223
89 Bacidia sp. KX098340 WSL DF72
90 Bacidia sp. KX098341 WSL DF80
91 Bacidia sp. MG773660 Palice 19352
92 Biatora bacidioides MG773663 Palice 19221
93 Biatora bacidioides MG773664 Palice 19685
94 Biatora pontica KF650977 C. Printzen 6114 (BG)
95 Biatora pontica MK778588 J. Malicek 10212
96 Biatora printzenii KF650978 C. Printzen 6837 (BG)
Overall 96

Results and discussion

Phylogenetic analyses

The new species is positioned in the genus Bacidia in the ITS tree (Fig. 2). The ITS tree describes B. fuscopallida, the new species, being nested with B. hostheleoides (Nyl.) Zahlbr., supported by a bootstrap value of 98 and a posterior probability of 1.00 for the branch. Bacidia fuscopallida is located in its own clade without any sequences close to it, although B. fuscopallida is sister to B. hostheleoides.

Figure 2. 

Phylogenetic relationships amongst available species in the genus Bacidia, based on a Maximum Likelihood analysis of the dataset of ITS sequences. The tree was rooted with the sequences of the genus Biatora, based on Gerasimova et al. (2018). Maximum Likelihood bootstrap values ≥ 70% and posterior probabilities ≥ 95% are shown above internal branches. Branches with bootstrap values ≥ 90% are shown as thick lines. New sequences produced in this study are presented in bold. All species names are followed by the GenBank accession numbers.

Taxonomy

Bacidia fuscopallida B.G. Lee & T.I. Heo, sp. nov.

MycoBank No: 843830
Fig. 3

Diagnosis

Bacidia fuscopallida differs from B. diffracta by generally non-granular, olive-green thallus, pale yellow-orange apothecia without pruina, the absence of crystals in proper exciple, slightly narrower ascospores with up to 15-septation and smaller pycnidia and pycnoconidia.

Type

South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung, 37°34.45'N, 128°55.00'E, 271 m alt., on bark of Acer pictum var. mono (Maxim.) Maxim. ex Franch., 17 June 2020, B.G. Lee & H.J. Lee 2020-000811, with Porina hirsuta Aptroot & K.H. Moon (holotype: KBA-L-0001011!); same locality, on bark of Acer pictum var. mono, 17 June 2020, B.G. Lee & H.J. Lee 2020-000801 (isotype: KBA-L-0001001); same locality, on bark of Acer pictum var. mono, 17 June 2020, B.G. Lee & H.J. Lee 2020-000806, with Mikhtomia gordejevii (Tomin) S.Y. Kondr., Kärnefelt, Elix, A. Thell, Jung Kim, A.S. Kondr. & Hur, Straminella varia (Hoffm.) S.Y. Kondr., Lőkös & Farkas, Phaeophyscia limbata (Poelt) Kashiw., Porina hirsuta (isotype: KBA-L-0001006); same locality, on bark of Acer pictum var. mono, 17 June 2020, B.G. Lee & H.J. Lee 2020-000810 (isotype: KBA-L-0001010; GenBank ON352607 for ITS); South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung, 37°34.39' N, 128°55.01'E, 349 m alt., on bark of Quercus mongolica Fisch. ex Ledeb., 17 June 2020, B.G. Lee & H.J. Lee 2020-000837, with Opeltia flavorubescens (Huds.) S.Y. Kondr. & Hur (paratype: KBA-L-0001037); South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung, 37°34.28'N, 128°54.88'E, 438 m alt., on bark of Acer triflorum Kom., 17 June 2020, B.G. Lee & H.J. Lee 2020-000849, with Biatora pacifica Printzen, Tønsberg & G. Thor (paratype: KBA-L-0001049; GenBank ON352608 for ITS).

Thallus corticolous, crustose, areoles in young stage and soon coarsely continuous or warted on aging, often overlapping for each other, rarely granular, thin when not overlapping, olivish-green, margin indeterminate, 40–90 μm thick; cortex indistinct, hyaline, up to 5 μm thick; medulla a little shown as mycelia below algal layer; photobiont chlorococcoid, cells globose to subglobose, 5–15 μm thick, algal layer composing most part of thallus, 35–80 μm thick. Prothallus indistinct or whitish-grey and endosubstratal when present.

Apothecia numerous, solitary, marginate and flat in young stage and seeming immarginate and convex on aging (consistently marginate and flat on bark of Acer triflorum), 0.1–0.7 mm diam. (mean = 0.33; SD = 0.14; n = 105). Pruina absent. Disc biatorine, thalline exciple absent, pale yellow to pale orange in young stage and slightly more blackish generally around margin when mature (much more blackish on bark of A. triflorum and Q. mongolica from young stage). Proper exciple 65–80 μm wide laterally (SD = 5.7; n = 15), with radiating hyphae of 1–2.5 μm wide (SD = 0.5; n = 10) and outermost cell 2.5–4 μm wide (SD = 0.6; n = 10), hyaline to pale yellow around rim, but darker downwards (pale yellow to pale brown) and the dark colour extending to hypothecium. Epihymenium hyaline, with a little pigment of pale yellow to pale olive-brown locally, smooth and not granular, ca. 5 μm high. Hymenium hyaline, 70–100 μm high (SD = 8.9; n = 10). Hypothecium clearly pigmented, pale orange-brown to brown, prosoplectenchymatous (irregularly arranged), 70–130 μm high (SD = 18.9; n = 10). Crystals absent or a little present in upper hypothecium. Oil droplets absent. Paraphyses simple, rarely branched at tips, 1–1.5 μm wide, tips not or little swollen, not pigmented, 1.5–2 μm wide. Asci cylindrical to narrowly clavate, 8-spored, 49–72 × 11–14 μm (SD = 7.3 (L), 0.9 (W); n = 11). Ascospores 3- to 15-septate, acicular to filiform, 24–69 × 2–3.5 μm (mean = 52.8 × 2.6 μm; SD = 8.7 (L), 0.6 (W); L/W ratio = 3.8–30.5, ratio mean = 17.6, ratio SD = 5.0; n = 104). Pycnidia black, immersed and upper half only shown, globose, 60–65 μm high and 55–75 μm wide (SD = 2.4 (H), 8.2 (W); n = 5), with brownish wall, K–. Pycnoconidia hyaline, filiform, curved or almost straight, 6–17 × 0.3–0.5 μm (mean = 10.4 × 0.5 μm; SD = 2.9 (L), 0.1 (W); n = 53).

Chemistry

Thallus K– or K+ slightly yellow, KC–, C–, Pd–, UV–. Epihymenium K+ purple extending to outermost layers of proper exciple, C–. No lichen substance was detected by TLC.

Distribution and ecology

The species occurs on barks of Acer pictum var. mono, A. triflorum and Quercus mongolica. The species is currently known from the type collections.

Etymology

The species epithet indicates the pale brown colour of the lichen’s apothecia.

Notes

The new species is similar to B. diffracta and B. polychroa (Th. Fr.) Körb. in having colourless epihymenium with pale orange-brown pigment and K+ purple reaction, distinctly pigmented hypothecium with yellow, orange or brown, long ascospores generally with L/W ratio over 10 amongst corticolous species. However, B. diffracta differs from the new species by granular thallus, darker and larger apothecia with pruina, proper exciple with radiating clusters of minute crystals, slightly wider ascospores with up to 11-septation and larger pycnidia and pynoconidia (Ekman 1996) (Table 3).

Table 3.

Comparison of the new species with close species in the genus Bacidia.

Species Bacidia fuscopallida Bacidia diffracta Bacidia hostheleoides Bacidia polychroa Bacidia purpurans
Thallus growth form warted, rarely granular finely granular wrinkled or granular to subsquamulose finely wrinkled to warted, sometimes areolate areolate
Thallus colour olivish-green pale grey, green-grey, yellow-grey to grey pale grey to pale green-grey white to grey or yellow-grey pale grey-green to dark green
Prothallus white-grey around margin, endosubstratal white-pale grey between granules, endosubstratal absent white, arachnoid
Apothecia (mm in diam.) 0.1–0.7 0.5–1.1 0.5–0.8 0.4–1.2
Disc colour pale yellow to pale orange (young); more blackish (old) brown-orange to dark brown brown-orange brown-orange to dark brown dark purple-brown to brown
Pruina absent white absent white absent
Crystals in proper exciple absent radiating clusters of minute crystals absent with or without radiating clusters of minute crystals absent
Crystals in hymenium small crystals at bottom absent
Epihymenium colour colourless with pale yellow-brown pigment colourless with pale orange-brown pigment very pale orange colourless with brown-orange pigment greyish
Hymenium height (μm) 70–100 70–100 ca. 60 55–100 ca. 100
Hypothecium colour pale orange-brown to brown pale brown to orange-brown very pale orange brown-orange to dark brown orange-brown
Hypothecium height (μm) 70–130 ca. 60
Ascospore (μm) 24–69 × 2–3.5 32–69 × 1.9–4.1 16–25 × 2.9–5 31–74 × 1.9–5 50–75 × 2–4
Ascospore L/W ratio 4–31 9–27 4–9 7–30
Ascospore septation 3–15 3–11 3–5 2–15 3–15
Pycnidia (μm) 55–75 150 50–100 100–170 150–200
Pycnoconidia 6–17 × 0.3–0.5 10–15 × 0.5–0.6 ①10–14 × 0.5 ②6–9 × 1.6–2 10–17 × 0.6–0.8 20–25 × 0.8
Substance absent atranorin, (trace of zeorin) absent (trace of atranorin) atranorin
Reference this study Ekman (1996) Ekman (1996) Ekman (1996); Smith et al. (2009) Lendemer et al. (2016)

The new species is more similar to B. polychroa in having coarsely continuous or warted thallus. However, B. polychroa differs from the new species by greyish thallus, darker and larger apothecia often with pruina, proper exciple often with radiating clusters of minute crystals, wider ascospores and larger pycnidia and pycnoconidia (Ekman 1996; Smith et al. 2009) (Table 3).

The new species is quite similar to B. purpurans R. C. Harris, Ladd & Lendemer in having greenish thallus with areoles and K+ purple reaction in epihymenium. However, B. purpurans differs from the new species by arachnoid prothallus, darker apothecia, green excipular rim adjacent to epihymenium, greyish epihymenium, shorter hypothecium, absence of crystals, larger ascospores and larger pycnidia and pycnoconidia (Lendemer et al. 2016) (Table 3).

Figure 3. 

Bacidia fuscopallida (KBA-L-0001011, holotype for A–D, G–O KBA-L-0001049 for E, F KBA-L-0001010 for P, Q) in morphology A, B habitus and apothecia on bark of Acer pictum var. mono. Olive-green thallus and pale yellow-orange apothecia C vertical section of apothecia D prothallus present around margin of habitus (red arrows) E, F habitus and apothecia growing on bark of Acer triflorum G apothecial section H epihymenium colourless or a little pigmented I epihymenium K+ purple J small crystals (red arrows) present in upper hypothecium K proper exciple pigmented with pale or colourless margin. Radiating hyphae wider to margin L photobiont composing most part of thallus M, N asci cylindrical to narrowly clavate. Ascospores not twisted in ascus O ascospores acicular to filiform up to 15-septate P pycnidia globose with brown wall Q pycnoconidia curved or almost straight. Scale bars: 1 mm (A, E); 500 μm (B, C, F); 2 mm (D); 200 μm (G); 50 μm (H–J, P); 20 μm (K, L); 10 μm (M–O, Q).

The new species can be compared with B. hostheleoides in sharing non-pruinose apothecia and proper exciple without crystals. However, B. hostheleoides differs from the new species by greyish thallus, absence of prothallus, shorter hymenium, paler hypothecium and shorter ascospores with a few septa (Ekman 1996) (Table 3).

Bacidia ekmaniana R. C. Harris, Ladd & Lendemer, The Bryologist 119 (2): 154 (2016)

Fig. 4

Description

Thallus corticolous, crustose, somewhat granular when young and smoother when mature, grey, greenish-grey to pale grey, margin indeterminate. Prothallus generally not detected or whitish-grey when present.

Apothecia consistently flat or slightly convex when mature, marginate, without pruina, 0.4–1.4 mm diam. (mean = 0.75, SD = 0.23, n = 104). Disc biatorine, without thalline exciple, pale straw, light brown to brown, with a distinct proper margin which is smooth to rugose and becoming thinner but still distinct when mature. Proper exciple pale brown to red-brown, paler or colourless around rim and thicker downwards, 80–120 μm wide laterally. Epihymenium hyaline, smooth but not granular, ca. 5 μm high. Hymenium hyaline, 80–140 μm high. Hypothecium red-brown, prosoplectenchymatous (irregularly arranged), 120–250 μm high. Small crystals present a little in hypothecium, dissolving in K. Oil droplets absent. Asci narrowly clavate, 8-spored, 70–105 × 8–12 μm (n = 5). Ascospores acicular to filiform, cells near head sometimes irregularly swollen, 3- to 9-septate, 52–71 × 2–4.5 μm (n = 15). Pycnidia not detected.

Figure 4. 

Four new records of B. ekmaniana (KBA-L-0000412 for A–C), B. friesiana (KBA-L-0001914 for D–F), B. heterochroa (KBA-L-0000386 for G–I) and B. suffusa (KBA-L-0000359 for J–L) in morphology A habitus and apothecia. Granular thallus with green-grey pigment and straw-coloured apothecia B–C apothecial section with colourless epihymenium, red-brown hypothecium, and pale excipulum D habitus and apothecia. Thallus pale grey with slightly brownish pigment and pale pink apothecia E, F apothecial section with greenish epihymenium G habitus and apothecia. Thallus pale yellowish-grey and black apothecia with red pigment H, I apothecial section and proper exciple with dark margin J habitus and apothecia. Thallus whitish pale grey and pruinose apothecia K, L apothecial section with radiating clusters of crystals, which produce pruina on surface. Scale bars: 500 μm (A, D, G, J); 100 μm (B, E, H, K); 50 μm (C, I, L); 20 μm (F).

Chemistry

Thallus K–, C–. Apothecial section K–, C–. No lichen substance was detected by TLC.

Notes

Bacidia ekmaniana is easily confused with B. schweinitzii under the microscope, as well as in the field because both species often share their habitat and the habiti of both species look similar particularly when the ascomata of the latter are paler. Both species are often detected from one specimen under the microscope and those were frequently regarded as one species, i.e. B. schweinitzii. Generally, however, B. ekmaniana differs from the latter by paler ascomata. Bacidia ekmaniana has brown but not black apothecia when mature (Lendemer et al. 2016). Bacidia ekmaniana differs from the latter by colourless epihymenium and paler hypothecium as well.

Bacidia ekmaniana is more similar to B. arceutina than B. schweinitzii in morphology in having pale ascomata. However, B. ekmaniana differs from B. arceutina by the colourless to pale excipular rim, colourless epihymenium and wider ascospores with more septation (Ekman 1996; also see the key couplet 23). Bacidia ekmaniana is new to Asia and this is the second record after North America (Lendemer et al. 2016). Bacidia ekmaniana is supposed to occur widespread throughout the world as the species was assumed to be B. schweinitzii in the past. Phylogenetic analysis resulted in B. ekmaniana being located in its own clade in the genus Bacidia (Fig. 2).

Specimens examined

South Korea, North Gyeongsang Province, Bonghwa, Chunyang-myeon, Mt. Munsu, 36°59.28'N, 128°48.17'E, 1,058 m alt., on bark of Quercus mongolica, 29 August 2019, B.G. Lee 2019-000072 (KBA-L-0000072); South Korea, South Jeolla Province, Gokseong, Jukgok-myeon, Taeansa Temple, 35°08.06'N, 127°23.26'E, 297 m alt., on bark of Salix pierotii Miq., 25 May 2020, B.G. Lee 2020-000212, with Bacidia schweinitzii (KBA-L-0000412); same locality, on bark of Salix pierotii, 25 May 2020, B.G. Lee 2020-000227, with Bacidia schweinitzii, Coenogonium pineti (Ach.) Lücking & Lumbsch, Phaeophyscia rubropulchra (Degel.) Moberg, Porina melanops Malme (KBA-L-0000427); same locality, on bark of Idesia polycarpa Maxim., 25 May 2020, B.G. Lee 2020-000231, with Bacidia schweinitzii, Porina aff. melanops (KBA-L-0000431); same locality, on bark of Idesia polycarpa, 25 May 2020, B.G. Lee 2020-000232 (KBA-L-0000432); same locality, on bark of Taxicodendron vernicifluum (Stokes) F. A. Barkley, 25 May 2020, B.G. Lee 2020-000233, with Biatora aff. pacifica, Lecidea sp., Phaeophyscia rubropulchra, Rinodina sp., Traponora varians (Ach.) J. Kalb & Kalb (KBA-L-0000433); South Korea, North Gyeongsang Province, Bonghwa, Chunyang-myeon, Mt. Okseok, 37°00.91'N, 128°46.65'E, 1,085 m alt., on bark of Quercus mongolica, 15 September 2020, B.G. Lee & H.J. Lee 2020-001159, with Anisomeridium polypori (Ellis & Everh.) M.E. Barr, Bacidia schweinitzii, Rinodina sp. (KBA-L-0001359); same locality, on bark of Quercus mongolica, 15 September 2020, B.G. Lee & H.J. Lee 2020-001162, with Rinodina sp. (KBA-L-0001362); South Korea, North Jeolla Province, Jangsu, Mt. Youngchui, 35°38.59'N, 127°37.00'E, 907 m alt., on bark of Carpinus tschonoskii Maxim., 08 June 2021, B.G. Lee & H.J. Lee 2021-000563, with Lecanora megalocheila (Hue) H. Miyaw., Rinodina orientalis Sheard (KBA-L-0002035); same locality, on bark of Carpinus tschonoskii, 08 June 2021, B.G. Lee & H.J. Lee 2021-000565, with Arthonia apatetica (A. Massal.) Th. Fr., Lecidella euphorea (Flörke) Kremp. (KBA-L-0002037; GenBank ON352611 for ITS); same locality, on bark of Carpinus tschonoskii, 08 June 2021, B.G. Lee & H.J. Lee 2021-000569, with Anisomeridium polypori, Lecidella euphorea, Rinodina orientalis, Scoliciosporum sp. (KBA-L-0002041); same locality, on bark of Carpinus tschonoskii, 08 June 2021, B.G. Lee & H.J. Lee 2021-000573, with Arthonia apatetica, Lecanora aff. imshaugii Brodo, Lecidella euphorea, Porina hirsuta (KBA-L-0002045); South Korea, North Jeolla Province, Jangsu, Mt. Jangan, 35°38.58'N, 127°36.96'E, 925 m alt., on bark of Carpinus tschonoskii, 09 June 2021, B.G. Lee & H.J. Lee 2021-000759 (KBA-L-0002231); same locality, on bark of Carpinus tschonoskii, 09 June 2021, B.G. Lee & H.J. Lee 2021-000760, with Phaeophyscia adiastola (Essl.) Essl., Porina hirsuta, Rinodina orientalis, Scoliciosporum chlorococcum (Graewe ex Stenh.) Vězda (KBA-L-0002232); same locality, on bark of Carpinus tschonoskii, 09 June 2021, B.G. Lee & H.J. Lee 2021-000766, with Lecania sp., Phaeophyscia sp., Rinodina orientalis (KBA-L-0002238); South Korea, North Jeolla Province, Jangsu, Mt. Baegun, 35°36.76'N, 127°36.85'E, 661 m alt., on bark of Cornus walteri Wangerin, 10 June 2021, B.G. Lee & H.J. Lee 2021-000926 (KBA-L-0002398); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000927 (KBA-L-0002399); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000928 (KBA-L-0002400); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000929, with Phaeophyscia adiastola (KBA-L-0002401); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000930, with Phaeophyscia rubropulchra (KBA-L-0002402); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000931, with Lecanora sp., Phaeophyscia adiastola (KBA-L-0002403); same locality, on bark of Cornus walteri, 10 June 2021, B.G. Lee & H.J. Lee 2021-000932 (KBA-L-0002404).

Bacidia friesiana (Hepp) Körb., Parerga lichenol. (Breslau) 2: 133 (1860) [1865]

Fig. 4

Description

Thallus corticolous, crustose, thin, little developed or indistinct, generally not continuous, minutely granular with contiguous granules when developed, pale grey with slightly brownish colour, margin indeterminate. Prothallus not detected.

Apothecia consistently flat or convex when mature, marginate, without pruina, 0.1–0.5 mm diam. (mean = 0.23, SD = 0.07, n = 107). Disc biatorine, without thalline exciple, pale pink to pale yellow when young and darker (particularly around margin) when mature. Proper exciple hyaline with or without pale brown pigment, the pigment slightly thicker close to hymenium or excipular rim, 40–50 μm wide laterally. Epihymenium bluish-green, ca. 5 μm high. Hymenium hyaline, 40–45 μm high. Hypothecium hyaline, 50–60 μm high; upper hypothecium paraplectenchymatous (globular to angular), lower hypothecium prosoplectenchymatous (periclinally or irregularly arranged). Crystals or oil droplets absent. Asci narrowly clavate, 8-spored, 39–41 × 10–12 μm (n = 3). Ascospores acicular to filiform, 3- or 7-septate, 28–38 × 1.5–2.5 μm (n = 14). Pycnidia not detected.

Chemistry

Epihymenium K–, C–. Hymenium K– or a few undeveloped asci K+ purplish. No lichen substance was detected by TLC.

Notes

Bacidia friesiana is similar to B. circumspecta (Norrl. & Nyl.) Malme and B. igniarii (Nyl.) Oxner (syn. Scutula igniarii (Nyl.) S. Ekman) in having epihymenium with green pigments, proper exciple without crystals and dark hypothecium amongst corticolous species. However, B. friesiana differs from the latter two by the excluded margin of apothecia and acicular ascospores. The latter species have a permanent margin of apothecia and bacilliform or clavate ascospores (Ekman 1996).

Phylogenetic analysis resulted in B. friesiana of Korea (ON352609 and ON352610) being nested with the sequences of Russia (MH539765), supported by a bootstrap value of 100 and a posterior probability of 1.00 for the branch (Fig. 2). Bacidia friesiana was previously reported from Europe, North America and Russian Far East (Smith et al. 2009; Gerasimova et al. 2018). This is a new record to Korea.

Specimens examined

South Korea, Gangwon Province, Yanggu, Nam-myeon, Dumu-ri, nearby a forested wetland, 38°02.12'N, 128°05.14'E, 421 m alt., on bark of Salix pierotii, 28 April 2020, B.G. Lee 2020-000164, with Mikhtomia gordejevii, Candelaria concolor (Dicks.) Arnold, Phaeophyscia adiastola, Porina cf. melanops, Rinodina cf. subminuta (KBA-L-0000364); South Korea, Gyeonggi Province, Yangpyeong, Cheongun-myeon, Dowon-ri, a forested wetland, 37°32.55'N, 127°48.60'E, 443 m alt., on bark of Salix pierotii, 31 May 2021, B.G. Lee & H.J. Lee 2021-000438, with Lecidella euphorea, Phaeophyscia adiastola, Rinodina orientalis (KBA-L-0001910; GenBank ON352609 for ITS); same locality, on bark of Aralia elata (Miq.) Seem., 31 May 2021, B.G. Lee & H.J. Lee 2021-000440, with Lecidella euphorea, Phaeophyscia adiastola, Traponora varians (KBA-L-0001912); same locality, on bark of Aralia elata, 31 May 2021, B.G. Lee & H.J. Lee 2021-000441, with Hyperphyscia adglutinata (Flörke) H. Mayrhofer & Poelt, Rinodina orientalis (KBA-L-0001913; GenBank ON352610 for ITS); same locality, on bark of Aralia elata, 31 May 2021, B.G. Lee & H.J. Lee 2021-000442, with Rinodina orientalis, Traponora varians (KBA-L-0001914); same locality, on bark of Aralia elata, 31 May 2021, B.G. Lee & H.J. Lee 2021-000443, with Hyperphyscia adglutinata, Rinodina orientalis, Traponora varians (KBA-L-0001915); same locality, on bark of Aralia elata, 31 May 2021, B.G. Lee & H.J. Lee 2021-000444, with Phaeophyscia adiastola, P. rubropulchra, Rinodina orientalis (KBA-L-0001916); same locality, on bark of Aralia elata, 31 May 2021, B.G. Lee & H.J. Lee 2021-000445 (KBA-L-0001917).

Bacidia heterochroa (Müll. Arg.) Zahlbr., Cat. Lich. Univers. 4: 204 (1926) [1927]

Fig. 4

Description

Thallus corticolous, crustose, continuous, wrinkled, or warted, pale yellowish-grey, margin indeterminate or determinate. Prothallus generally not present or locally present as blackish bordering a different lichen.

Apothecia flat, marginate, without pruina, 0.2–0.6 mm diam. (mean = 0.33, SD = 0.11, n = 72). Disc lecideine, without thalline exciple, blackish or reddish-black. Proper exciple hyaline with pale brown pigment dispersed, pigment slightly thicker close to hymenium, 80–100 μm wide laterally. Epihymenium brown to dark brown, ca. 10 μm high. Hymenium hyaline, 80–95 μm high. Hypothecium hyaline, 80–120 μm high, with a little pale yellow pigment. Crystals or oil droplets absent. Asci narrowly clavate to cylindrical, 8-spored, 42–48 × 12–13 μm (n = 3). Ascospores acicular to filiform, 9- or 10-septate, 36–67 × 2.5–4 μm (n = 11). Pycnidia not detected.

Chemistry

Epihymenium K+ purple or intensifying, extending to excipular rim. No lichen substance was detected by TLC.

Notes

Bacidia heterochroa is the most similar to B. laurocerasi (Delise ex Duby) Zahlbr. in having smooth thallus without granules, absence of crystals in exciple, epihymenium without green pigments, pale to colourless hypothecium, K+ purple in apothecial section and narrow ascospores less than 4 μm wide amongst corticolous species. However, B. heterochroa differs from B. laurocerasi by distinctly brown-pigmented paraphysial tips, less than 16-septate ascospores which are shorter but wider (less than 80 μm long but over 3.5 μm wide) and substrate preference to deciduous trees or shrubs (Ekman 1996; Brodo 2016; also see the key couplet 21).

Phylogenetic analysis resulted in B. heterochroa of Korea (ON352606, ON352612 and ON352613) being nested in a sister clade to B. laurocerasi, supported by a bootstrap value of 75 without a posterior probability as the Maximum Likelihood analysis did not match with the Bayesian Inference for the clade. The sequences of B. heterochroa were not compared with previous records due to the lack of data (Fig. 2). Bacidia heterochroa was previously reported from Thailand in Asia (Aptroot et al. 2007) and this is a new record to northeastern Asia.

Specimens examined

South Korea, Gangwon Province, Yanggu, Nam-myeon, Dumu-ri, a forested wetland, 38°02.12'N, 128°05.14'E, 421 m alt., on bark of Salix koriyanagi Kimura ex Goerz, 28 April 2020, B.G. Lee 2020-000186 (KBA-L-0000386; GenBank ON352606 for ITS); South Korea, South Jeolla Province, Damyang, Changpyeong-myeon, Oedong-ri, a forested wetland, 35°12.00'N, 127°00.88'E, 338 m alt., on bark of Fraxinus rhynchophylla Hance, 12 May 2021, B.G. Lee & D.Y. Kim 2021-000214 (KBA-L-0001686); South Korea, Gangwon Province, Jeongseon, Imgye-myeon, Gamok-ri, a forested wetland, 37°32.47'N, 128°57.72'E, 760 m alt., on bark of Acer tartaricum subsp. ginnala (Maxim.) Wesm., 17 June 2021, B.G. Lee & H.J. Lee 2021-001241, with Lecanora chionocarpa Hue (KBA-L-0002713); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001242, with Phaeophyscia adiastola (KBA-L-0002714); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001255, with Opeltia flavorubescens, Phaeophyscia adiastola (KBA-L-0002727; GenBank ON352612 for ITS); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001257, with Hyperphyscia adglutinata, Lecidella euphorea (KBA-L-0002729); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001262, with Lecidella euphorea, Phaeophyscia adiastola, Rinodina orientalis (KBA-L-0002734; GenBank ON352613 for ITS); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001263, with Opeltia flavorubescens, Phaeophyscia adiastola, Rinodina orientalis (KBA-L-0002735); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001267, with Lecidella euphorea, Porina hirsuta, Rinodina orientalis, Straminella varia (KBA-L-0002739); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001269, with Lecidella euphorea, Opeltia flavorubescens, Phaeophyscia rubropulchra, Rinodina orientalis (KBA-L-0002741).

Bacidia suffusa (Fr.) A. Schneid., Guide Study Lich.: 110 (1898)

Fig. 4

Description

Thallus corticolous, crustose, continuous, wrinkled, warted or subsquamulose, often granular locally, whitish pale grey. Prothallus generally not present or present as dark brown to black between different colonies.

Apothecia flat, marginate, with a little or heavy white pruina, generally more pruinose at margin, 0.3–1.7 mm diam. (mean = 0.75, SD = 0.28, n = 116). Disc lecideine, without thalline exciple, brown to dark brown. Proper exciple with radiating clusters of crystals produced around hypothecium and expanding to excipular rim and finally shown as pruina on surface, hyaline downwards but brown around rim, the brown concolorous or slightly paler to epihymenium, 80–100 μm wide laterally. Epihymenium brown to dark brown, ca. 10 μm high, with pruina (ca. 10 μm high) on surface. Hymenium hyaline, 70–80 μm high. Hypothecium hyaline, 80–100 μm high. Other small crystals present a few in upper hypothecium. Oil droplets absent. Asci cylindrical, 8-spored, 65–75 × 10–16 μm (n = 7). Ascospores acicular to filiform, up to 13-septate, 45–70 × 2.5–4.5 μm (n = 10). Pycnidia not detected.

Chemistry

Thallus K+ yellow, KC–, C–, Pd–, UV–. Epihymenium K–. Atranorin was detected by TLC.

Notes

Bacidia suffusa is the most similar to B. russeola (Kremp.) Zahlbr. in having dark apothecia, generally colourless epihymenium without green pigment, long ascospores with the L/W ratio over 11, pale or colourless hypothecium and K+ purple reaction on epihymenium and nearby excipular rim amongst corticolous species. However, B. suffusa differs from B. russeola by the presence of pruina on the disc and in proper exciple as radiating clusters of crystals and more than 10-septate ascospores (Ekman 1996).

Phylogenetic analysis resulted in B. suffusa of Korea (ON352605, ON352614, ON352615 and ON352616) being nested in a sister clade of the sequences of Pakistan (MW728313 and MW788561), Russia (MH048615, MH048616 and MH048617) or U.S.A. (MH048618 and MH048619). The molecular data of Korea converged into the previous data of B. suffusa, supported by a bootstrap value of 100 and a posterior probability of 1.00 for the branch (Fig. 2). Bacidia suffusa was previously detected from North America, North Caucasus, Russian Far East and Pakistan, but rare or absent in Europe (Otte 2007; Gerasimova et al. 2018, 2021; Adrees et al. 2022). This is a new record to Korea.

Specimens examined

South Korea, Gangwon Province, Yanggu, Nam-myeon, Dumu-ri, a forested wetland, 38°02.12'N, 128°05.14'E, 421 m alt., on bark of Salix pierotii Miq., 28 April 2020, B.G. Lee 2020-000158 (KBA-L-0000358); same locality, on bark of Salix pierotii, 28 April 2020, B.G. Lee 2020-000159 (KBA-L-0000359; GenBank ON352605 for ITS); same locality, on bark of Salix pierotii, 28 April 2020, B.G. Lee 2020-000168, with Candelaria concolor, Phaeophyscia adiastola, Phaeophyscia hirtuosa (Kremp.) Essl. (KBA-L-0000368); South Korea, Gangwon Province, Gangneung, Okgye-myeon, Mt. Seokbyung, 37°34.45'N, 128°55.01'E, 271 m alt., on bark of Acer pictum var. mono, 17 June 2020, B.G. Lee & H.J. Lee 2020-000799 (KBA-L-0000999); South Korea, Gangwon Province, Jeongseon, Imgye-myeon, Gamok-ri, a forested wetland, 37°32.47'N, 128°57.72'E, 760 m alt., on bark of Fraxinus chiisanensis Nakai, 17 June 2021, B.G. Lee & H.J. Lee 2021-001304, with Normandina pulchella (Borrer) Nyl., Phaeophyscia sp. (KBA-L-0002776; GenBank ON352614 for ITS); same locality, on bark of Fraxinus chiisanensis, 17 June 2021, B.G. Lee & H.J. Lee 2021-001305, with Anisomeridium polypori, Normandina pulchella, Phaeophyscia sp., Porina hirsuta (KBA-L-0002777); same locality, on bark of Fraxinus chiisanensis, 17 June 2021, B.G. Lee & H.J. Lee 2021-001306, with Normandina pulchella, Opeltia flavorubescens, Phaeophyscia adiastola (Essl.) Essl. (KBA-L-0002778; GenBank ON352615 for ITS); same locality, on bark of Fraxinus chiisanensis, 17 June 2021, B.G. Lee & H.J. Lee 2021-001308, with Phaeophyscia adiastola (KBA-L-0002780); same locality, on bark of Fraxinus chiisanensis, 17 June 2021, B.G. Lee & H.J. Lee 2021-001320, with Opeltia flavorubescens (KBA-L-0002792); same locality, on bark of Acer tartaricum subsp. ginnala, 17 June 2021, B.G. Lee & H.J. Lee 2021-001363 (KBA-L-0002835; GenBank ON352616 for ITS).

Key to the species of Bacidia in Korea (19 taxa)

The key is composed of all 19 species in the genus Bacidia of Korea, including synonyms in Bacidina and Toniniopsis species.

1 Epihymenium with green pigment 2
Epihymenium colourless, yellow-brown, brown to dark brown, but without green pigment 5
2 Proper exciple with radiating clusters of coarse crystals (up to 7 μm wide); hymenium ca. 100 μm high; ascospores 40–68 × 2.5–3 μm; atranorin present B. schweinitzii
Proper exciple without crystals; hymenium less than 70 μm high; ascospores less than 50 μm long; without substance 3
3 Hypothecium colourless to pale blue-green; thallus pale grey to pale brown-grey without green colour B. friesiana
Hypothecium colourless to brown, dark red-brown; thallus grey-green to green-brown 4
4 Proper exciple with green pigment at rim, pale to colourless downwards; hypothecium K– or K+ green-brown; generally on rock or occasionally on bark or moss B. egenula (Bacidina egenula)
Proper exciple colourless at rim, red-brown to black-brown downwards; hypothecium K+ purple; on bark B. subincompta (Toniniopsis subincompta)
5 On rock 6
On bark or wood 12
6 Apothecia pruinose 7
Apothecia not pruinose 8
7 Thallus coarsely granular without forming soredia; apothecia 0.7–1.2 mm diam.; hymenium 70–100 μm high; hypothecium colourless to pale yellow or pale orange; ascospores 40–70 × 2.5–3 μm, 3- to 7-septate B. rubella
Thallus granular with soredia; apothecia 0.3–0.7 mm diam.; hymenium 40–50 μm high; hypothecium orange-brown to dark red-brown; ascospores 24–46 × 1–2 μm, 1- to 3-septate B. arnoldiana (Bacidina arnoldiana)
8 Disc brown, red-brown to black; hypothecium pale brown to dark brown 9
Disc pale yellow, pale orange to dark brown; hypothecium colourless to pale yellow or pale orange 10
9 Proper exciple dark coloured; ascospores 25–35 × 6–10 μm, with L/W ratio less than 10 B. hakonensis
Proper exciple colourless to pale brown; ascospores 24–46 × 1–2 μm, with L/W ratio over 10 B. arnoldiana (Bacidina arnoldiana)
10 Thallus rimose, wrinkled or warted, but not granular; disc pale yellow or pale grey; epihymenium K– B. chloroticula (Bacidina chloroticula)
Thallus granular; disc pale to dark brown; epihymenium K+ purple 11
11 Thallus granular forming isidia- or coral-like structures; prothallus absent; apothecia flat; ascospores 25–34 × 1.1–1.9 μm; occasionally on old wood B. egenuloidea (Bacidina egenuloidea)
Thallus granular-warted; white prothallus present on border; apothecia flat to convex; ascospores 24–43 × 2–2.5 μm B. inundata (Bacidina inundata)
12 On wood. Thallus granular forming isidia- or coral-like structures; disc pale orange to dark purple-brown; proper exciple orange-brown to brown at rim; on old wood, but generally on rock B. egenuloidea (Bacidina egenuloidea)
On bark 13
13 Proper exciple with radiating clusters of crystals; white pruina present; atranorin present as a major compound or a trace 14
Proper exciple without crystals; pruina absent; without substance 17
14 Hypothecium brown-orange to dark brown; apothecial section K+ purple-red B. polychroa
Hypothecium colourless to pale yellow or pale orange; apothecial section K– 15
15 Thallus generally coarsely granular, pale grey to green-grey; prothallus white to pale grey when present; ascospores up to 9-septate B. rubella
Thallus smooth, wrinkled, warted or granular locally, white-grey to grey; prothallus absent; ascospores up to 13-septate 16
16 Thallus grey; disc not pruinose generally, but sometimes white-pruinose; proper exciple with radiating clusters of minute crystals (ca. 0.5 μm wide); epihymenium without distinct colour; ascospores 50–85 × 2.6–3.4 μm B. fraxinea
Thallus whitish pale grey; disc light to heavily pruinose; proper exciple with radiating clusters of coarse crystals (up to 10 μm wide); epihymenium brown to dark brown; ascospores 45–70 × 2.5–4.5 μm B. suffusa
17 Thallus granular with soredia-like goniocysts 18
Thallus smooth, wrinkled, warted or rarely granular, but without soredia 19
18 Hypothecium colourless; conidia curved without hook B. delicata (Bacidina delicata)
Hypothecium orange-brown to dark red-brown; conidia hooked B. sulphurella (Bacidina sulphurella)
19 Disc purple-brown to black or slightly blackish when mature; epihymenium K+ purple 20
Disc pale yellow, pale grey or pale brown; epihymenium K– 22
20 Proper exciple colourless to pale yellow at rim; thallus olive-green; apothecia generally pale yellow to pale orange with slightly blackish pigment; epihymenium colourless with a little pale yellow-brown pigment B. fuscopallida
Proper exciple dark brown to black-brown at rim; thallus white to pale grey; apothecia purple-brown to black; epihymenium brown to dark brown 21
21 Brown pigment of epihymenium deposited in caps of paraphysial tips; thallus wrinkled or warted, but not squamulose; prothallus blackish on border when present; ascospores 32–67 × 2.5–4.5 μm, 3- to 15-septate B. heterochroa
Brown pigment of epihymenium distributed in upper hymenial jelly; thallus wrinkled or warted, sometimes squamulose to varnish-like crust; prothallus white between areoles; ascospores 45–80 × 2–3.5 μm, 7- to 28-septate B. laurocerasi
22 Thallus rimose, wrinkled or warted; apothecia ca. 0.2 mm diam.; hypothecium colourless; ascospores 24–28 × 1–1.2 μm, 0- to 3-septate; occasionally on rock B. chloroticula (Bacidina chloroticula)
Thallus granular to smooth; apothecia 0.4–1.4 mm diam.; hypothecium straw, yellow-brown to red-brown; ascospores 45–70 × 1.5–4 μm, 3- to 15-septate 23
23 Proper exciple yellow-brown to brown at rim; epihymenium yellow-brown; ascospores 1.5–2.5 μm wide, 3- to 7-septate B. arceutina
Proper exciple colourless to pale yellow at rim; epihymenium colourless; ascospores 2–4.5 μm wide, 3- to 15-septate B. ekmaniana

Acknowledgements

This work was supported by a grant from the Korean Forest Service Program through the Korea National Arboretum (KNA-202003127AF-00) for the forested wetland conservation of Korea.

References

  • Adrees M, Habib K, Khalid AN (2022) Bacidia suffusa (Fr.) A. Schneider (Ramalinaceae), an addition to the lichen biota of Pakistan confirmed by molecular phylogeny. Pakistan Journal of Botany 54(2): 731–736. https://doi.org/10.30848/PJB2022-2(32)
  • Aptroot A, Moon KH (2014) 114 new reports of microlichens from Korea, including the description of five new species, show that the microlichen flora is predominantly Eurasian. Herzogia 27(2): 347–365. https://doi.org/10.13158/heia.27.2.2014.347
  • Aptroot A, Sipman H (1993) Musaespora, a genus of pyrenocarpous lichens with campylidia, and other additions to the foliicolous lichen flora of New Guinea. Lichenologist (London, England) 25(2): 121–135. https://doi.org/10.1006/lich.1993.1021
  • Aptroot A, Saipunkaew W, Sipman HJM, Sparrius LB, Wolseley PA (2007) New lichens from Thailand, mainly microlichens from Chiang Mai. Fungal Diversity 24: 75–134.
  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15(4): e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  • Brand M, Coppins BJ, van den Boom PP, Sérusiaux E (2009) Further data on the lichen genus Bacidia s.l. in the Canary Islands and Western Europe, with descriptions of two new species. Bibliotheca Lichenologica 99: 81–92.
  • Brodo IM (2016) Keys to Lichens of North America: Revised and Expanded. Yale University Press, New Haven and London.
  • De Notaris G (1846) Bacidia. In: Parlatore F (Ed.) Giornale botanico italiano, Vol. II. Per la Societa’ tipografica, Firenze, 189–190.
  • Edler D, Klein J, Antonelli A, Silvestro D (2019) raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. https://doi.org/10.1101/800912
  • Ekman S (1996) The corticolous and lignicolous species of Bacidia and Bacidina in North America. Opera Botanica 127: 1–148.
  • Ekman S, Wedin M (2000) The phylogeny of the families Lecanoraceae and Bacidiaceae (lichenized Ascomycota) inferred from nuclear SSU rDNA sequences. Plant Biology 2(3): 350–360. https://doi.org/10.1055/s-2000-3703
  • Gerasimova JV, Ezhkin AK, Beck A (2018) Four new species of Bacidia s.s. (Ramalinaceae, Lecanorales) in the Russian Far East. Lichenologist (London, England) 50(6): 603–625. https://doi.org/10.1017/S0024282918000397
  • Gerasimova JV, Ezhkin AK, Davydov EA, Beck A (2021) Multilocus-phylogeny of the lichen-forming genus s. str. (Ramalinaceae, Lecanorales) with special emphasis on the Russian Far East. Lichenologist (London, England) 53(6): 441–455. https://doi.org/10.1017/S0024282921000396
  • Hafellner J (1984) Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Nova Hedwigia 79: 241–371.
  • Hall TA (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  • Joshi Y, Nguyen TT, Wang XY, Lőkös L, Koh YJ, Hur JS (2011) Contribution to the lichen mycota of South Korea. Mycotaxon 116(1): 61–74. https://doi.org/10.5248/116.61
  • Kistenich S, Timdal E, Bendiksby M, Ekman S (2018) Molecular systematics and character evolution in the lichen family Ramalinaceae (Ascomycota: Lecanorales). Taxon 67(5): 871–904. https://doi.org/10.12705/675.1
  • Kondratyuk SY, Lőkös L, Halda JP, Upreti DK, Mishra GK, Haji Moniri M, Farkas E, Park JS, Lee BG, Liu D, Woo JJ, Jayalal RGU, Oh SO, Hur JS (2016) New and noteworthy lichen-forming and lichenicolous fungi 5. Acta Botanica Hungarica 58(3–4): 319–396. https://doi.org/10.1556/ABot.58.2016.3-4.7
  • Kondratyuk SY, Lőkös L, Halda JP, Roux C, Upreti DK, Schumm F, Mishra GK, Nayaka S, Farkas E, Park JS, Lee BG, Liu D, Woo JJ, Hur JS (2017) New and noteworthy lichen-forming and lichenicolous fungi 6. Acta Botanica Hungarica 59(1–2): 137–260. https://doi.org/10.1556/034.59.2017.1-2.7
  • Kondratyuk SY, Halda JP, Lőkös L, Yamamoto Y, Popova LP, Hur JS (2019a) New and noteworthy lichen-forming and lichenicolous fungi 8. Acta Botanica Hungarica 61(1–2): 101–135. https://doi.org/10.1556/034.61.2019.1-2.8
  • Kondratyuk SY, Lőkös L, Farkas E, Jang SH, Liu D, Halda J, Persson PE, Hansson M, Kärnefelt I, Thell A, Fačkovcová Z, Yamamoto Y, Hur JS (2019b) New and noteworthy lichen-forming and lichenicolous fungi 9. Acta Botanica Hungarica 61(3–4): 325–367. https://doi.org/10.1556/034.61.2019.3-4.6
  • Lee BG, Hur JS (2020) A new lichenized fungus, Lecanora baekdudaeganensis, from South Korea, with a taxonomic key for Korean Lecanora species. MycoKeys 70: 39–58. https://doi.org/10.3897/mycokeys.70.51569
  • Lendemer JC, Harris RC, Ladd D (2016) The faces of Bacidia schweinitzii: Molecular and morphological data reveal three new species including a widespread sorediate morph. The Bryologist 119(2): 143–171. https://doi.org/10.1639/0007-2745-119.2.143
  • Liu D (2018) Freshwater area lichens in the mainland and islands of South Korea. PhD Thesis, Sunchon National University, Suncheon, South Korea, 194 pp.
  • Lücking R (1992) Foliicolous lichens – a contribution to the knowledge of the lichen flora of Costa Rica, Central America. Beihefte zur Nova Hedwigia 104: 1–179.
  • Lücking R (1995) Additions and corrections to the foliicolous lichen flora of Costa Rica. The family Arthoniaceae, with notes on the genus Stirtonia. Lichenologist (London, England) 27(2): 127–153. https://doi.org/10.1006/lich.1995.0011
  • Orange A, James PW, White FJ (2001) Microchemical Methods for the Identification of Lichens. The British Lichen Society, London.
  • Otte V (2007) Bacidia suffusa (Lichenes: Bacidiaceae) in Adygheya (Caucasus), the first record outside America. Abhandlungen und Berichte des Naturkundemuseums Görlitz 78: 141–145.
  • Santesson R (1952) Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12: 1–590.
  • Sérusiaux E (1995) Further new lichen species producing campylidia or complex conidiomata. Bibliotheca Lichenologica 58: 411–431.
  • Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. The British Lichen Society, London.
  • Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37(4): 1237–1239. https://doi.org/10.1093/molbev/msz312
  • Vězda A (1978) Neue oder wenig bekannte Flechten in der Tschechoslowakei. II. Folia Geobotanica et Phytotaxonomica 13(4): 397–420. https://doi.org/10.1007/BF02851943
  • Vězda A (1990) Bacidina genus novum familiae Lecideaceae s. lat. (Ascomycetes lichenisati). Folia Geobotanica et Phytotaxonomica 25(4): 431–432. https://doi.org/10.1007/BF02914011
  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11(1): 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8
  • Yakovchenko L, Davydov EA, Paukov A, Frisch A, Galanina I, Han JE, Moon KH, Kashiwadani H (2018) New lichen records from Korea-I. Mostly arctic-alpine and tropical species. Herzogia 31(2): 965–981. https://doi.org/10.13158/heia.31.2.2018.965
  • Zahlbruckner A (1905) Ascolichenes. Lieferung 3. In: Engler A, Prantl K (Eds) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesonderen den Nutzpflanzen. Engelmann, Leipzig 1(1), 97–144.
  • Zahlbruckner A (1921–1940) Catalogus Lichenum Universalis. Band I–X. Gebrüder Borntraeger, Leipzig, 701 pp.
  • Zhang LL, Wang XY, Zhao ZT, Hur JS (2012) Lichens newly recorded from the South Korean coast. Mycotaxon 122(1): 421–432. https://doi.org/10.5248/122.421