Research Article
Print
Research Article
Additions to the coriaceous families Peniophoraceae and Stereaceae (Russulales): Six novel wood-inhabiting taxa in the genera Conferticium, Gloeocystidiellum, and Peniophora from southwest China
expand article infoLu Wang, Yonggao Zhu, Siyuan He, Sana Jabeen§, Changlin Zhao
‡ Southwest Forestry University, Kunming, China
§ University of Education, Lahore, Pakistan
Open Access

Abstract

Russulales comprises a highly diverse group of species with respect to basidiomata morphology and hymenophore configuration, in which this order is highly heterogeneous, that can be classified as resupinate, effused-reflexed, discoid, clavarioid, pileate, or stipitate, and with varied hymenophores such as smooth, hydnoid, poroid, and lamellate in different russuloid species. Species in Russulales have been considered to have significant economic value. Six new wood-inhabiting fungi belonging to the genera Conferticium, Gloeocystidiellum, and Peniophora of two families, Peniophoraceae and Stereaceae (Russulales), were found in southwest China. Sequences of ITS+nLSU loci of six new taxa were generated, and phylogenetic analyses were performed with the maximum likelihood, maximum parsimony, and Bayesian inference methods with an emphasis on the phylogeny of wood-inhabiting smooth species in this order. The combined ITS+nLSU loci analysis showed that the six new species grouped within the order Russulales, in which Conferticium tuberculatum, Gloeocystidiellum cremeum, and G. fissuratum grouped into the family Stereaceae, and Peniophora albohymenia, P. hengduanensis, and P. punctata grouped into the family Peniophoraceae. The morphology and multi-gene phylogenetic analyses confirmed the novelty and placement of the six new taxa. Descriptions, illustrations, and phylogenetic analysis results of the new taxa are provided.

Key words:

Biodiversity, corticioid fungi, molecular systematics, taxonomy, Yunnan Province

Introduction

The order Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David is a highly diverse group of the class Agaricomycetes, which includes around 4,436 described species in 98 genera and 11 families (Hyde et al. 2017; Caboň et al. 2019; Vidal et al. 2019; He et al. 2024). Russulales contains not only the lamellate species like Russula Pers. and Lactarius Pers. (Herrera et al. 2018; Caboň et al. 2019) but also the poroid, hydnoid, and corticioid representatives like Asterostroma Massee, Hericium Pers., Heterobasidion Bref., and Peniophora Cooke (Miller et al. 2006; Chen et al. 2016a; Wu et al. 2020; Yuan et al. 2021; Zhou et al. 2024). In the past few decades, a lot of the new taxa of Russulales have been gathered through both morphological characteristics and DNA sequence phylogenetic analyses (Zhou and Dai 2013; Chen et al. 2015, 2016b; Wu et al. 2020; Zou et al. 2022; Bhunjun et al. 2024; Deng et al. 2024b; Dong et al. 2024; Zhou et al. 2024). Resupinate basidiomata are common in the families Echinodontiaceae, Peniophoraceae, Stereaceae, Terrestriporiaceae, and Xenasmataceae (He et al. 2024; Liu et al. 2024).

The genus Conferticium Hallenb. 1980 (Stereaceae, Russulales), typified by C. insidiosum (Bourdot & Galzin) Hallenb. (Bernicchia and Gorjón 2010), is characterized by the resupinate basidiomata with membranaceous to ceraceous, smooth to tuberculate hymenophore, a monomitic hyphal system with simple-septate, and numerous cylindrical, sinuous gloeocystidia (Bernicchia and Gorjón 2010). Based on the MycoBank database (http://www.mycobank.org, accessed on 26 February 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 26 February 2025), Conferticium has registered six specific and infraspecific names; however, only five species are widely recognized (Larsson and Larsson 2003; Bernicchia and Gorjón 2010).

Donk (1931) described Gloeocystidiellum (Stereaceae, Russulales), typified by G. porosum (Berk. and M.A. Curtis) Donk, as characterized by their resupinate basidiomata with membranaceous to ceraceous, smooth, rarely grandinioid or odontioid hymenophore, a monomitic hyphal system with simple-septate or clamped generative hyphae, and the gloeocystidia numerous, verrucose or aculeate basidiospores (Wu 1996; Bernicchia and Gorjón 2010; Zhao and Zhao 2023). Based on the MycoBank database (http://www.mycobank.org, accessed on 26 February 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 26 February 2025), Gloeocystidiellum has registered 86 specific and infraspecific names, and the actual number of species is 37 (Zhao and Zhao 2023).

The genus Peniophora Cooke (Peniophoraceae, Russulales) was introduced in 1879, typified by P. quercina Pers. ex Fr., and it is characterized by the resupinate basidiomata with a smooth hymenophore, a monomitic hyphal system, thin- to thick-walled simple-septate or clamped generative hyphae, dendrohyphidia, lamprocystidia, and gloeocystidia present or absent, and thin-walled, smooth, ellipsoid, cylindrical to allantoid basidiospores negative in Melzer’s reagents (Bernicchia and Gorjón 2010; Zou et al. 2022; Xu et al. 2023). Species of the genus prefer to grow on small branches of trees, especially dead but still attached ones in exposed and dry environments (Xu et al. 2023). Based on the MycoBank database (http://www.mycobank.org, accessed on 26 February 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 26 February 2025), Peniophora was registered with 657 specific and infraspecific names, and the actual number of the species is 211, in which most species have been moved to other genera, and the morphological circumscription of Peniophora has been narrowed (Xu et al. 2023). Currently, they occur mainly in the tropical and subtropical areas of the world (Zou et al. 2022; Xu et al. 2023).

Recently, the analysis of DNA sequences has emerged as a common method for deducing fungal phylogenies and enhancing higher classification frameworks through the integration of genetic traits (Wijayawardene et al. 2022, 2024; Dong et al. 2024; He et al. 2022, 2024; Zhang et al. 2023b; Zhao et al. 2023; Zhou et al. 2023; 2025). According to recent research on molecular systematics and divergence times, Basidiomycota is classified into 127 families belonging to 47 orders under 14 classes (He et al. 2024). The family Stereaceae included nineteen genera: Acanthobasidium, Acanthofungus, Acanthophysellum, Aleurobotrys, Aleurodiscus, Amylohyphus, Amylosporomyces, Coniophorafomes, Dextrinocystidium, Gloeocystidiellum, Gloeocystidiopsis, Gloeomyces, Gloeosoma, Megalocystidium, Neoaleurodiscus, Scotoderma, Stereodiscus, Stereum, and Xylobolus (Larsson 2007; Vu et al. 2019; He et al. 2024). According to recent research on molecular systematics, the genus Conferticium has been reported to have one new taxon, C. fissuratum Xin Yang & C.L. Zhao, which is from Yunnan Province, China (Bernicchia and Gorjón 2010; Shen et al. 2024). In the previous study, the phylogenetic relationships among russuloid basidiomycetes were investigated using sequence data from the nuclear 5.8S, ITS2, and large-subunit rDNA genes and elucidated evolutionary relationships within some species of the genus Gloeocystidiellum (Larsson and Larsson 2003). The high phylogenetic diversity among corticioid homobasidiomycetes indicated that the species G. subasperisporum (Litsch.) J. Erikss. & Ryvarden grouped into the russuloid clade and grouped with the close species Gloeodontia discolor (Berk. & M.A. Curtis) Boidin (Larsson et al. 2004). Several morphological and molecular studies as well as cultural studies and intercompatibility tests have analyzed species delimitation in the Gloeocystidiellum porosum-clavuligerum group, which revealed that the clade corresponded with two well-distinguished species, G. kenyense and G. clavuligerum (Telleria et al. 2012). The molecular research carried out on the genus Gloeocystidiellum, in which the species G. granulatum (Sheng H. Wu) E. Larss. & K.H. Larss and G. permixtum (Boidin, Lanq. & Gilles) E. Larss. & K.H. Larss are proposed as new combinations (Larsson et al. 2020). Recently, molecular studies involving Gloeocystidiellum based on single-locus or multi-locus datasets have introduced two new taxa, viz. G. lojanense A. Jaram., D. Cruz & Decock, and G. yunnanense Y.L. Zhao & C.L. Zhao (Jaramillo-Riofrío et al. 2023; Zhao and Zhao 2023).

The genus Peniophora Cooke is a large genus of corticioid fungi, which is a cosmopolitan genus with a wide distribution from boreal to tropical areas, causing a white rot on both angiosperms and gymnosperms (Yurchenko 2010; Zou et al. 2022; Xu et al. 2023). Many new lineages and taxa were found and described, and some morphologically dissimilar taxa were proved to be closely related in the phylogeny of Peniophora in recent years (Harrington et al. 2021; Lambevska-Hristova 2022; Zou et al. 2022; Xu et al. 2023). The ITS and nLSU sequences of Peniophora species, including some from type specimens, were released in GenBank in recent studies and thus made it possible to deeply study the phylogeny of this group (Vu et al. 2019; Zou et al. 2022). The researchers performed the most comprehensive phylogenetic studies using ITS+nLSU datasets, including most of the Peniophora species described worldwide (Zou et al. 2022; Xu et al. 2023). Most clades in Peniophora are far too resolved, at least considering only ITS or nLSU rDNA regions, and probably a genome full of phylogenetic reconstruction is needed to establish with certitude groups or patterns in the evolution of the different species (Xu et al. 2023; Dong et al. 2024).

Many wood-inhabiting specimens were collected during investigations on wood-inhabiting fungi in the Yunnan-Guizhou Plateau, China. To clarify the placement and relationships of these specimens, we carried out a phylogenetic and taxonomic study based on the ITS+nLSU sequences. These specimens were assigned to the genera Conferticium, Gloeocystidiellum, and Peniophora of the order Russulales. Therefore, six new species, Conferticium tuberculatum, Gloeocystidiellum cremeum, G. fissuratum, Peniophora albohymenia, P. hengduanensis, and P. punctata, are proposed with descriptions and illustrations based on the morphological characteristics and phylogenetic analyses.

Materials and methods

Sample collection and herbarium specimen preparation

Fresh basidiomata of the wood-inhabiting fungi growing on angiosperm branches were collected from the Zhaotong and Diqing of Yunnan Province, China. The samples were photographed in situ, and fresh macroscopic details and collection information (Rathnayaka et al. 2024) were recorded. Photographs were taken by a Jianeng 80D camera (Tokyo, Japan). All photos were stacked and merged using Helicon Focus Pro 7.7.5 software. Specimens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China.

Morphology

Macromorphological descriptions are based on field notes and photos captured in the field and laboratory and follow the color terminology of Petersen (1996). Micromorphological data were obtained from the dried specimens following observation under a light microscope (Zhao et al. 2023a; Dong et al. 2024). The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB+ = cyanophilous, CB = cotton clue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI+ = amyloid, IKI– = both inamyloid and indextrinoid, L = means spore length (arithmetic average for all spores), W = means spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from a given number (b) of specimens).

DNA extraction, amplification, and sequencing

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain genomic DNA from dried specimens, according to the previous study (Zhao and Wu 2017). The ITS region was amplified with the primer pair ITS5 and ITS4 (White et al. 1990). The nuclear nLSU region was amplified with primer pair LR0R and LR7 (Vilgalys and Hester 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 54 °C for 45 s, and 72 °C for 1 min; and a final extension at 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 50 °C for 1 min, and 72 °C for 1.5 min, and a final extension at 72 °C for 10 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Limited Company, Kunming, Yunnan Province, P.R. China. All newly generated sequences were deposited in GenBank (Table 1).

Table 1.

Names, voucher numbers, references, and corresponding GenBank accession numbers of the taxa used in the phylogenetic analyses.

Taxa Voucher Locality GenBank accession Reference
ITS nLSU
Acanthobasidium bambusicola He2357 China KU559343 KU574833 Dai and He 2016
Acanthobasidium penicillatum HHB13223 USA KU574816 Maekawa et al. 2023
Acanthofungus rimosus Wu 9601-1 China MF043521 AY039333 Maekawa et al. 2023
Acanthophysellum cerussatum He 20120920—3 China KU559339 KU574830 Maekawa et al. 2023
Acanthophysium bisporum T614 USA AY039327 Maekawa et al. 2023
Acanthophysium lividocaeruleum FP-100292 USA AY039319 Maekawa et al. 2023
Aleurobotrys botryosus He2712 China KX306877 KY450788 Maekawa et al. 2023
Aleurobotrys botryosus Wu 9302-61 China AY039331 Maekawa et al. 2023
Aleurodiscus bambusinus He4261 China KY706207 KY706219 Yan et al. 2018
Aleurodiscus canadensis Wu1207-90 China KY706203 KY706225 Yan et al. 2018
Aleurodiscus mirabilis Dai 13281 China KU559350 KU574839 Yan et al. 2018
Asterostroma laxum EL33-99 Estonia AF506410 AF506410 Larsson and Larsson 2003
Asterostroma muscicola KHL9537 Puerto Rico AF506409 AF506409 Larsson and Larsson 2003
Asterostroma rhizomorpharum CLZhao 31212 China OR672732 OR879302 Zhou et al. 2024
Asterostroma yunnanense CLZhao 22781 China OR048809 OR506285 Deng et al. 2024a
Baltazaria octopodites FLOR 56449 Brazil MH260025 MH260047 Leal-Dutra et al. 2018
Conferticium heimii CBS321.66 African MH858805 MH858805 Tian et al. 2018
Conferticium ochraceum CLZhao 21515 China ON211619 Present study
Conferticium ochraceum G07_P24A Switzerland KT943933 Stroheker et al. 2018
Conferticium ravum CBS:125849 Estonia MH863805 MH875269 Vu et al. 2019
Conferticium ravum NH13291 USA AF506382 AF506382 Larsson and Larsson 2003
Conferticium tuberculatum CLZhao 29376* China PQ166602 PQ295861 Present study
Conferticium tuberculatum CLZhao 29390 China PQ166603 PQ295862 Present study
Dichostereum effuscatum GG930915 France AF506390 AF506390 Larsson and Larsson 2003
Dichostereum pallescens NH7046/673 Canada AF506392 AF506392 Larsson and Larsson 2003
Entomocorticium cobbii B720 USA MT741707 MT741692 Harrington et al. 2021
Entomocorticium whitneyi B1069 USA MT741713 MT741698 Harrington et al. 2021
Gloeocystidiellum aspellum He4262 China KY860460 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum aspellum LIN 625 China AF506432 AF506432 Yan et al. 2018
Gloeocystidiellum bisporum CBS/961.96 Sweden AY048875 AY048875 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum bisporum KHL11135 Norway AY048877 AY048877 Larsson and Larsson 2003
Gloeocystidiellum clavuligerum GB/NH11185 Spain AF310088 AF310088 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum clavuligerum NH13159/2731 Russia AF310083 AF310083 Larsson and Larsson 2003
Gloeocystidiellum compactum Wu880615-21 China AF506434 AF506434 Maekawa et al. 2023
Gloeocystidiellum cremeum CLZhao 29477* China PQ287846 PQ295863 Present study
Gloeocystidiellum cremeum CLZhao 33623 China PQ287847 PQ295864 Present study
Gloeocystidiellum cremeum CLZhao 33690 China PQ287848 Present study
Gloeocystidiellum fissuratum CLZhao 32247 China PQ287849 PQ295865 Present study
Gloeocystidiellum fissuratum CLZhao 32303 China PQ287850 PQ295866 Present study
Gloeocystidiellum fissuratum CLZhao 32498* China PQ287851 Present study
Gloeocystidiellum formosanum Wu9404-19 China AF506439 AF506439 Maekawa et al. 2023
Gloeocystidiellum heimii LY/CBS321.66 African AF506381 AF506381 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum kenyense TFC/15278 Portugal FR878082 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum kenyense TFC/15309 Portugal FR878083 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum lojanense HUTPL(F)/2181 Ecuador OP377059 OP377059 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum lojanense HUTPL(F)/550 Ecuador OP377083 OP377083 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum luridum HK9808 Germany AF506421 AF506421 Maekawa et al. 2023
Gloeocystidiellum porosum CBS/51085 Netherlands AF310097 AF310097 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum porosum NH 10434 Denmark AF310094 AF310094 Larsson and Hallenberg 2001
Gloeocystidiellum purpureum Wu9310-45 China AF441338 AF441338 Larsson and Hallenberg 2001
Gloeocystidiellum rajchenbergii GB/NH16348 Chile JQ734555 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum rajchenbergii GB/NH16358 Chile JQ734554 Jaramillo-Riofrío et al. 2023
Gloeocystidiellum triste KHL10334 Sweden AF506442 AF506442 Maekawa et al. 2023
Gloeocystidiellum yunnanense CLZhao 7165 China MZ710569 MZ710571 Zhao and Zhao 2023
Gloeocystidiellum yunnanense CLZhao 7202 China MZ710570 MZ710572 Zhao and Zhao 2023
Gloeocystidiopsis flammea CBS:324.66 African AF506437 AF506437 Larsson and Larsson 2003
Gloeocystidiopsis heimii CBS:321.66 Sweden AF506381 AF506381 Larsson and Larsson 2003
Gloiothele lactescens EL8-98 Sweden AF506453 AF506453 Larsson and Larsson 2003
Gloiothele lamellosa KHL11031 Venezuela AF506454 AF506454 Larsson and Larsson 2003
Lachnocladium schweinfurthianum KM 49740 Cameroon MH260033 MH260051 Leal-Dutra et al. 2018
Megalocystidium chelidonium LodgeSJ110.1 USA AF506441 AF506441 Larsson and Larsson 2003
Megalocystidium diffissum V.Spirin4244 Sweden MT477147 MT477147 Maekawa et al. 2023
Megalocystidium leucoxanthum HK9808 Sweden AF506420 AF506420 Maekawa et al. 2023
Metulodontia nivea NH13108 Russia AF506423 AF506423 Larsson and Larsson 2003
Neoaleurodiscus fujii He2921 China KU559357 KU574845 Dai et al. 2017
Neoaleurodiscus fujii Wu0807-41 Japan FJ799924 Dai et al. 2017
Parapterulicium subarbusculum FLOR 56456 Brazil MH260026 MH260048 Leal-Dutra et al. 2018
Peniophora albobadia CBS:329.66 France MH858809 MH870448 Vu et al. 2019
Peniophora albobadia He2159 USA MK588755 MK588795 Xu et al. 2023
Peniophora albohymenia CLZhao 23473* China PQ066419 PQ295867 Present study
Peniophora aurantiaca CBS:396.50 France MH856678 MH868195 Vu et al. 2019
Peniophora aurantiaca UBCF:19732 Canada HQ604854 HQ604854 Xu et al. 2023
Peniophora bicornis He3609 China MK588763 MK588803 Xu et al. 2023
Peniophora bicornis He4767 China MK588764 MK588804 Xu et al. 2023
Peniophora borbonica He4597 China MK588766 MK588806 Xu et al. 2023
Peniophora borbonica He4606 China MK588765 MK588805 Xu et al. 2023
Peniophora cinerea CLZhao 23390 China PQ166604 PQ295868 Present study
Peniophora cinerea He3725 China MK588769 MK588809 Xu et al. 2023
Peniophora crassitunicata CLZhao 29461 China PQ166605 PQ295869 Present study
Peniophora crassitunicata He3814 China MK588770 MK588810 Xu et al. 2023
Peniophora cremicolor He5380 China MK588791 MK588831 Xu et al. 2023
Peniophora duplex CBS:286.58 Canada MH857787 MH869321 Vu et al. 2019
Peniophora duplex TPDuB1022 USA AF119519 Harrington and Hsaiu 2003
Peniophora erikssonii CBS:287.58 France MH857788 MH869322 Vu et al. 2019
Peniophora erikssonii Cui 11871 China MK588771 MK588811 Xu et al. 2023
Peniophora exima T-523 USA MK588772 MK588812 Xu et al. 2023
Peniophora fasticata CBS:942.96 Ethiopia MH862624 Vu et al. 2019
Peniophora fissilis CBS:681.91 Reunion MH862298 MH873975 Vu et al. 2019
Peniophora fissilis CBS:684.91 Mascarene Islands MH862299 MH873976 Vu et al. 2019
Peniophora gilbertsonii CBS:357.95 USA MH862528 MH874164 Vu et al. 2019
Peniophora gilbertsonii CBS:360.95 USA MH862530 MH874165 Vu et al. 2019
Peniophora guadelupensis CBS:715.91 Guadeloupe MH862304 MH873977 Vu et al. 2019
Peniophora halimi CBS:863.84 France MH861844 MH873532 Vu et al. 2019
Peniophora halimi CBS:864.84 France MH861845 MH873533 Vu et al. 2019
Peniophora hengduanensis CLZhao 34697* China PQ066422 PQ295870 Present study
Peniophora incarnata CBS:398.50 France MH856680 MH868197 Vu et al. 2019
Peniophora incarnata CBS:399.50 France MH856681 MH868198 Vu et al. 2019
Peniophora junipericola CBS:349.54 Sweden MH857354 Vu et al. 2019
Peniophora junipericola He2462 China MK588773 MK588813 Xu et al. 2023
Peniophora kuehneri CBS:719.91 Mascarene Islands MH862307 MH873980 Vu et al. 2019
Peniophora kuehneri He4745 China MK588757 MK588797 Xu et al. 2023
Peniophora kuehneroides CBS:731.91 Mascarene Islands MH862317 MH873989 Vu et al. 2019
Peniophora kuehneroides CBS:732.91 Mascarene Islands MH862318 MH873990 Vu et al. 2019
Peniophora laete CBS:256.56 France MH857617 MH869165 Vu et al. 2019
Peniophora lassa He3052 China MK588758 MK588798 Xu et al. 2023
Peniophora lassa SP6129 Russia KJ509191 Spirin and Kout 2015
Peniophora laxitexta BAFC 3309 Argentina FJ882040 Robles et al. 2011
Peniophora laxitexta LGMF1159 Argentina JX559580 Xu et al. 2023
Peniophora lilacea CBS:337.66 Armenia MH858813 MH870452 Vu et al. 2019
Peniophora limitata olrim 963 Lithuania AY787678 Lygis et al. 2005
Peniophora lycii Boid-437 France MK588774 MK588814 Xu et al. 2023
Peniophora lycii CBS:264.56 France MH857624 MH869169 Vu et al. 2019
Peniophora major He5528 China MK588792 MK588832 Xu et al. 2023
Peniophora malaiensis CBS:679.91 Singapore MH862297 MH873974 Vu et al. 2019
Peniophora malaiensis CLZhao 23595 China PQ166607 PQ295871 Present study
Peniophora manshurica He2956 China MK588776 MK588816 Xu et al. 2023
Peniophora manshurica He3729 China MK588777 MK588817 Xu et al. 2023
Peniophora meridionalis CBS:289.58 France MH857789 MH869323 Vu et al. 2019
Peniophora molesta CBS:676.91 Gabon MH862294 MH873973 Vu et al. 2019
Peniophora molesta CBS:677.91 Gabon MH862295 Vu et al. 2019
Peniophora monticola CBS:649.91 Reunion MH862289 MH873970 Vu et al. 2019
Peniophora nuda CLZhao 23406 China PQ166608 PQ295872 Present study
Peniophora nuda He5280 China MK588778 MK588818 Xu et al. 2023
Peniophora ovalispora CBS:653.91 Mascarene Islands MH862290 MH873971 Vu et al. 2019
Peniophora parvocystidiata CBS:716.91 Guadeloupe MH862305 MH873978 Vu et al. 2019
Peniophora piceae 209 Russia JX507718 Grum-Grzhimaylo et al. 2016
Peniophora piceae olrim10 Sweden AY781264 Vasiliauskas et al. 2005
Peniophora pilatiana CBS:265.56 France MH857625 MH869170 Vu et al. 2019
Peniophora pilatiana CBS -A1/A2 China MK588780 MK588820 Xu et al. 2023
Peniophora pini CBS:274.56 France MH857632 MH869177 Vu et al. 2019
Peniophora pini Hjm 18143 Sweden EU118651 EU118651 Larsson 2007
Peniophora pithya CBS:277.56 France MH857635 MH869180 Vu et al. 2019
Peniophora pithya He3107 China MK588781 MK588821 Xu et al. 2023
Peniophora polygonia CBS:404.50 France MH856684 MH868201 Vu et al. 2019
Peniophora polygonia He4651 China MK588782 MK588822 Xu et al. 2023
Peniophora proxima CBS:405.50 France MH856685 MH868202 Vu et al. 2019
Peniophora proxima He5498 China MK588783 MK588823 Xu et al. 2023
Peniophora pseudopini DAOM-30124-Sp Canada MK588784 MK588824 Xu et al. 2023
Peniophora pseudopini TPPpB1007 USA AF119514 Leal-Dutra et al. 2018
Peniophora punctata CLZhao 33769* China PQ066418 Present study
Peniophora quercina CBS:408.50 France MH856688 MH868205 Vu et al. 2019
Peniophora quercina CBS:407.50 France MH856687 MH868204 Vu et al. 2019
Peniophora reidii CBS:397.83 France MH861616 MH873334 Vu et al. 2019
Peniophora rhoica CBS:943.96 Ethiopia MH862625 MH874246 Vu et al. 2019
Peniophora roseoalba CLZhao 31523 China PQ166609 PQ295873 Present study
Peniophora roseoalba CLZhao 3513 China ON786559 OP380690 Zou et al. 2022
Peniophora rufa CBS:351.59 Canada MH857891 MH869432 Vu et al. 2019
Peniophora rufa He2788 China MK588786 MK588826 Xu et al. 2023
Peniophora rufomarginata CBS:281.56 France MH857639 MH869183 Vu et al. 2019
Peniophora rufomarginata CBS:282.56 France MH857640 MH869184 Vu et al. 2019
Peniophora septentrionalis CBS:294.58 Canada MH857791 MH869325 Vu et al. 2019
Peniophora shenghuae CLZhao 23654 China PQ066420 Present study
Peniophora shenghuae CLZhao 35044 China PQ066421 Present study
Peniophora shenghuae He3507 China MK588788 MK588828 Xu et al. 2023
Peniophora shenghuae He5447 China MK588790 MK588830 Xu et al. 2023
Peniophora simulans CBS:874.84 France MH861849 MH873537 Vu et al. 2019
Peniophora simulans CBS:875.84 France MH861850 MH873538 Vu et al. 2019
Peniophora sphaerocystidiata HHB-8827-Sp USA MK588787 MK588827 Xu et al. 2023
Peniophora subsalmonea CBS:696.91 Mascarene Islands MH862302 Vu et al. 2019
Peniophora subsalmonea CBS:697.91 Mascarene Islands MH862303 Vu et al. 2019
Peniophora taiwanensis Wu9206-28 China MK588793 MK588833 Xu et al. 2023
Peniophora taiwanensis Wu9209-14 China MK588794 MK588834 Xu et al. 2023
Peniophora tamaricicola CBS:438.62 Morocco MH858203 MH869802 Vu et al. 2019
Peniophora tamaricicola CBS:439.62 Morocco MH858204 MH869803 Vu et al. 2019
Peniophora trigonosperma CBS:402.83 France MH861618 MH873335 Vu et al. 2019
Peniophora trigonosperma He3602 China MK588762 MK588802 Xu et al. 2023
Peniophora tristicula CBS:210.63 Pakistan MH858266 Vu et al. 2019
Peniophora tristicula He4775 China MH669235 MH669239 Liu and He 2018
Peniophora versicolor CBS:358.61 Morocco MH858082 MH869651 Vu et al. 2019
Peniophora versiformis CBS:358.54 France MH857360 MH868902 Vu et al. 2019
Peniophora versiformis He3029 China MK588756 MK588796 Xu et al. 2023
Peniophora vietnamensis He5242 Vietnam MK588761 MK588801 Xu et al. 2023
Peniophora vietnamensis He5252 Vietnam MK588761 MK588801 Xu et al. 2023
Peniophora violaceolivida CBS:348.52 France MH857077 MH868613 Vu et al. 2019
Peniophora yunnanensis CLZhao 7347 China OP380616 Zou et al. 2022
Peniophora yunnanensis CLZhao 3978 China OP380617 OP380689 Zou et al. 2022
Scytinostroma acystidiatum CLZhao 32022 China PQ166610 PQ295874 Present study
Scytinostroma acystidiatum Dai 24608 China OQ689127 OQ629351 Zhang et al. 2023
Scytinostroma bambusinum CLZhao 32789 China PQ166599 PQ295875 Present study
Scytinostroma bambusinum JXH 643 China OR510627 PP660872 Ji et al. 2024
Scytinostroma macrospermum Dai 24606 China OQ689126 OQ629350 Wang et al. 2020
Scytinostroma portentosum EL11-99 Sweden AF506470 AF506470 Larsson and Larsson 2003
Stereodiscus limonisporus CBS:125846 New Zealand MH875266 Maekawa et al. 2023
Stereum complicatum He2234 China KU559368 KU574828 Maekawa et al. 2023
Stereum hirsutum Wu1109—127 China LC430906 LC430909 Maekawa et al. 2023
Stereum sanguinolentum He2111 China KU559367 KU574827 Maekawa et al. 2023
Vararia fissurata CLZhao 8171 China OQ025219 OR539503 Deng et al. 2024b
Vararia investiens TAA164122 Norway AF506484 AF506484 Larsson and Larsson 2003
Vararia tropica CBS:704.81 France MH861447 MH873189 Vu et al. 2019
Vararia yaoshanensis CLZhao 20693 China PP091665 PP091684 Deng et al. 2024b
Vesiculomyces citrinus EL53-97 Sweden AF506486 AF506486 Deng et al. 2024b
Xylobolus frustulatus He2231 USA KU881905 KU574825 Maekawa et al. 2023
Xylobolus subpileatus FP-106735 USA AY039309 Maekawa et al. 2023

Phylogenetic analyses

Sequences were aligned using MAFFT version 7, adjusting the direction of nucleotide sequences according to the first sequence and selecting the G-INS-i iterative refinement method (Katoh et al. 2019). The alignment was adjusted manually using AliView version 1.27 (Larsson 2014). A dataset of concatenated ITS and nLSU sequences was used to determine the phylogenetic position of the six new species. (1) Vararia tropica A.L. Welden and V. yaoshanensis Y.L. Deng & C.L. Zhao were assigned as outgroups to root trees in the ITS+nLSU analysis (Fig. 1) (Deng et al. 2024b); (2) Stereum complicatum (Fr.) Fr. and S. hirsutum (Willd.) Pers. were assigned as outgroups to root trees following the ITS+nLSU analysis (Fig. 2) (Maekawa et al. 2023); (3) Gloeocystidiellum yunnanense Y.L. Zhao & C.L. Zhao and G. porosum Berk. & M.A. Curtis) Donk were assigned as outgroups to root trees following the ITS+nLSU analysis (Fig. 3) (Zhao and Zhao 2023); (4) Asterostroma rhizomorpharum H.M. Zhou & C.L. Zhao and A. yunnanense Y.L. Deng & C.L. Zhao were assigned as outgroups to root trees following the ITS+nLSU analysis (Fig. 4) (Zhou et al. 2024).

Figure 1. 

Maximum parsimony strict consensus tree illustrating the phylogeny of Conferticium and Gloeocystidiellum and related genera in the family Stereaceae, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 2. 

Maximum parsimony strict consensus tree illustrating the phylogeny of two new species and related species in the genus Gloeocystidiellum, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 3. 

Maximum parsimony strict consensus tree illustrating the phylogeny of Peniophora and related genera in the family Peniophoraceae, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 4. 

Maximum parsimony strict consensus tree illustrating the phylogeny of three new species and related species in the genus Peniophora, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI) analyses were applied to the combined three datasets following the methods outlined in a previous study (Zhao and Wu 2017), and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics—tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI)—were calculated for each maximum parsimonious tree generated. Additionally, the multiple sequence alignment was also analyzed using maximum likelihood (ML) in RAxML-HPC2 through the Cipres Science Gateway (Miller et al. 2012). Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates. jModelTest v2 (Darriba et al. 2012) was used to determine the best-fit evolutionary model for each data set for Bayesian inference (BI), which was performed using MrBayes 3.2.7a (Ronquist et al. 2012). The first one-fourth of all generations was discarded as burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received a maximum likelihood bootstrap value (BS) ≥ 70%, a maximum parsimony bootstrap value (BT) ≥ 50%, or Bayesian posterior probabilities (BPP) ≥ 0.95.

Result

The phylogeny of Stereaceae

The dataset based on ITS+nLSU (Fig. 1) comprises sequences from 44 fungal specimens representing 35 species from GenBank. The dataset had an aligned length of 2,136 characters, of which 1,324 characters are constant, 250 are variable and parsimony-uninformative, and 562 are parsimony-informative. Maximum parsimony analysis yielded five equally parsimonious trees (TL = 2,504, CI = 0.5112, HI = 0.4888, RI = 0.6001, RC = 0.3068). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was GTR+I+G. The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that Conferticium tuberculatum, Gloeocystidiellum cremeum, and G. fissuratum grouped into the family Stereaceae.

The phylogeny of Gloeocystidiellum

The dataset based on ITS+nLSU (Fig. 2) comprises sequences from 31 fungal specimens representing 18 species from GenBank. The dataset had an aligned length of 2,154 characters, of which 1,605 characters are constant, 131 are variable and parsimony-uninformative, and 418 are parsimony-informative. Maximum parsimony analysis yielded five equally parsimonious trees (TL = 1,039, CI = 0.7372, HI = 0.2628, RI = 0.8640, RC = 0.6370). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was GTR+I+G. The phylogenetic tree (Fig. 2) inferred from ITS+nLSU sequences revealed that Gloeocystidiellum cremeum and G. fissuratum grouped into the genus Gloeocystidiellum.

The phylogeny of Peniophoraceae

The dataset based on ITS+nLSU (Fig. 3) comprises sequences from 36 fungal specimens representing 34 species from GenBank. The dataset had an aligned length of 2,375 characters, of which 1,345 characters are constant, 304 are variable and parsimony-uninformative, and 726 are parsimony-informative. Maximum parsimony analysis yielded five equally parsimonious trees (TL = 3,317, CI = 0.5246, HI = 0.4754, RI = 0.6349, RC = 0.3330). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was GTR+I+G. The phylogenetic tree (Fig. 3) inferred from ITS+nLSU sequences revealed that Peniophora albohymenia, P. hengduanensis, and P. punctata grouped into the family Peniophoraceae.

The phylogeny of Peniophora

The dataset based on ITS+nLSU (Fig. 4) comprises sequences from 110 fungal specimens representing 66 species from GenBank. The dataset had an aligned length of 2,006 characters, of which 1,389 characters are constant, 194 are variable and parsimony-uninformative, and 423 are parsimony-informative. Maximum parsimony analysis yielded five equally parsimonious trees (TL = 2,470, CI = 0.3441, HI = 0.6559, RI = 0.6067, RC = 0.2088). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was SYM+I+G. The phylogenetic tree (Fig. 4) inferred from ITS+nLSU sequences revealed that Peniophora albohymenia, P. hengduanensis, and P. punctata grouped into the genus Peniophora.

Taxonomy

Conferticium tuberculatum L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855872
Figs 5, 6

Typification.

China. • Yunnan Province: Zhaotong, Daguan County, Huanglianhe Scenic Spot, GPS coordinates: 27°72'N, 103°92'E, altitude: 1480 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 3 Jul 2023, CLZhao 29376, GenBank: ITS = PQ166602, nLSU = PQ295861 (SWFC!).

Diagnosis.

It is characterized by coriaceous basidiomata with tuberculate hymenophore surface, a monomitic hyphal system with simple-septa generative hyphae, and ellipsoid to broadly ellipsoid basidiospores.

Etymology.

Tuberculatum (Lat.): refers to the species having the tuberculate basidiomata.

Description.

Basidiomata. Annual, resupinate, closely adnate, coriaceous, without odor or taste when fresh, up to 10 cm long, 3 cm wide, and 400 μm thick. Hymenophore tuberculate, white when fresh, white to cream upon drying. Sterile margin narrow, white to cream, up to 1 mm.

Figure 5. 

Basidiomata of Conferticium tuberculatum (holotype CLZhao 29376). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system. Monomitic; generative hyphae simple-septate, colorless, thin-walled, smooth, rarely branched, interwoven, 3–3.5 µm in diameter, IKI+, CB–; tissues unchanged in KOH.

Hymenium. Gloeocystidia of two types: (1) fusiform, often with an apical appendix, flexuous, colorless, thin-walled, smooth, 34–46 × 7–9 µm; (2) clavate, colorless, thin-walled, smooth, 36–39 × 7–8 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal simple septum and four sterigmata, 33.5–43 × 8–10 µm; basidioles numerous, in shape similar to basidia but smaller.

Figure 6. 

Microscopic structures of Conferticium tuberculatum (holotype CLZhao 29376): basidiospores (A); basidia and basidioles (B); gloeocystidia (C); a section of the hymenium (D). Scale bars: 10 µm (A–D).

Spores. Basidiospores ellipsoid to broadly ellipsoid, colorless, thin-walled, smooth, IKI+, CB–, (8–)8.5–11 × (5.5–)6–7.5 µm, L = 9.69 µm, W = 6.66 µm, Q = 1.46–1.58 (n = 60/2).

Additional specimen examined (paratype).

China. • Yunnan Province: Zhaotong, Daguan County, Huanglianhe Scenic Spot, GPS coordinates: 27°72'N, 103°92'E, altitude: 1480 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 3 Jul 2023, CLZhao 29390, GenBank: ITS = PQ166603, nLSU = PQ295862 (SWFC!).

Gloeocystidiellum cremeum L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855873
Figs 7, 8

Holotype.

China. • Yunnan Province: Zhaotong, Wumengshan National Nature Reserve, GPS coordinates: 27°77'N, 104°25'E, altitude: 1900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 20 Sep 2023, CLZhao 33623, GenBank: ITS = PQ287847, nLSU = PQ295864 (SWFC!).

Diagnosis.

It is characterized by cream membranaceous basidiomata, a monomitic hyphal system with clamped generative hyphae, thick-walled, subcylindrical to obclavate gloeocystidia, and ellipsoid to subglobose basidiospores.

Figure 7. 

Basidiomata of Gloeocystidiellum cremeum (holotype CLZhao 33623). Scale bars: 1 cm (A); 1 mm (B).

Etymology.

Cremeum (Lat.): refers to the species having a cream color of the hymenial surface.

Description.

Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 8.5 cm long, 2 cm wide, and 300 μm thick. Hymenophore smooth, white when fresh, white to cream upon drying. Sterile margin cream, up to 1 mm.

Figure 8. 

Microscopic structures of Gloeocystidiellum cremeum (holotype CLZhao 33623): basidiospores (A); basidia and basidioles (B); gloeocystidia (C); a section of the hymenium (D). Scale bars: 5 µm (A, B); 10 µm (C, D).

Hyphal system. Monomitic; generative hyphae with clamp connections, colorless, thin-walled, smooth, branched, interwoven, 2–3 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Gloeocystidia numerous, variable in size and shape, subcylindrical to obclavate, colorless, slightly thick-walled, smooth, mostly 70–77 × 7.5–10.5 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal clamp connection and four sterigmata, 19–24 × 3–4.5 µm; basidioles numerous, in shape similar to basidia but smaller.

Spores. Basidiospores ellipsoid to subglobose, colorless, thin-walled, smooth, IKI+, CB–, (3.5–)4–5 × (2–)2.5–3.5 µm, L = 4.41 µm, W = 2.97 µm, Q = 1.39–1.51 (n = 90/3).

Additional specimens examined (paratypes).

China. • Yunnan Province: Zhaotong, Weixin County, Tianxing National Forest Park, GPS coordinates: 28°05'N, 105°09'E, altitude: 900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 5 Jul 2023, CLZhao 29477, GenBank: ITS = PQ287846, nLSU = PQ295863; • Zhaotong, Wumengshan National Nature Reserve, GPS coordinates: 27°77'N, 104°25'E, altitude: 1900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 20 Sep 2023, CLZhao 33690, GenBank: ITS = PQ287848 (SWFC!).

Gloeocystidiellum fissuratum L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855874
Figs 9, 10

Holotype.

China. • Yunnan Province: Zhaotong, Wumengshan National Nature Reserve, GPS coordinates: 27°77'N, 104°25'E, altitude: 1900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 28 Aug 2023, CLZhao 32498, GenBank: ITS = PQ287851 (SWFC!).

Diagnosis.

It is characterized by white to cinnamon-buff, membranaceous basidiomata with grandinioid and cracking hymenophore surfaces, a monomitic hyphal system with clamped generative hyphae, numerous, variable in size and shape gloeocystidia, and subglobose basidiospores.

Etymology.

Fissuratum (Lat.): refers to the species having a cracking hymenial surface.

Description.

Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 8.5 cm long, 2 cm wide, and 300 μm thick. Hymenophore grandinioid, cracking, white to cinnamon-buff when fresh, cinnamon-buff upon drying. Sterile margin cream, up to 2 mm.

Figure 9. 

Basidiomata of Gloeocystidiellum fissuratum (holotype CLZhao 32498). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system. Monomitic; generative hyphae with clamp connections, colorless, thin-walled, smooth, branched, interwoven, 2–3 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Gloeocystidia numerous, variable in size and shape, subclavate to obclavate, colorless, thin-walled, smooth, mostly 57–88 × 9–10 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal clamp connection and four sterigmata, 13–16 × 4–5 µm; basidioles numerous, in shape similar to basidia but smaller.

Figure 10. 

Microscopic structures of Gloeocystidiellum fissuratum (holotype CLZhao 32498): basidiospores (A); basidia and basidioles (B); gloeocystidia (C); a section of the hymenium (D). Scale bars: 5 µm (A, B); 10 µm (C, D).

Spores. Basidiospores subglobose, colorless, thin-walled, verrucose, IKI+, CB–, (3–)3.5–4.5(–5) × 2.5–3.5(–4) µm, L = 4.04 µm, W = 3.06 µm, Q = 1.26–1.32 (n = 90/3).

Additional specimens examined (paratypes).

China. • Yunnan Province: Zhaotong, Wumengshan National Nature Reserve, GPS coordinates: 27°77'N, 104°25'E, altitude: 1900 m asl., on angiosperm stump, leg. C.L. Zhao, 28 Aug 2023, CLZhao 32247, GenBank: ITS = PQ287849; nLSU = PQ295865; on the fallen branch of Picea, leg. C.L. Zhao, 28 Aug 2023, CLZhao 32303, GenBank: ITS = PQ287850, nLSU = PQ295866 (SWFC!).

Peniophora albohymenia L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855875
Figs 11, 12

Holotype.

China. • Yunnan Province: Zhaotong, Fenghuangshan National Forest Park, GPS coordinates: 27°30'N, 103°70'E, altitude: 1950 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 24 Aug 2022, CLZhao 23473, GenBank: ITS = PQ066419, nLSU = PQ295867 (SWFC!).

Diagnosis.

It is characterized by white to pale pink, smooth membranaceous basidiomata, a monomitic hyphal system with simple-septa generative hyphae, and allantoid to cylindrical basidiospores.

Etymology.

Albohymenia (Lat.): refers to the species having white basidiomata.

Description.

Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 9 cm long, 3.5 cm wide, and 300 μm thick. Hymenophore smooth, white when fresh, white to pale pink upon drying. Sterile margin narrow, white, up to 1 mm.

Figure 11. 

Basidiomata of Peniophora albohymenia (holotype CLZhao 23473). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system. Monomitic; generative hyphae with simple-septa, colorless, slightly thick-walled, smooth, rarely branched and septate, more or less parallel to substrate, 4–4.5 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Cystidia of two types: (1) Gloeocystidia fusiform, flexuous, colorless, thin-walled, smooth, 31.5–35.5 × 6–7 µm; (2) Lamprocystidia abundant, subulate to subcylindrical, heavily encrusted with crystals in the middle and upper parts, thin-walled, colorless, embedded or projecting beyond the hymenium, with a basal simple-septum, 31–42 × 10–13.5 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal simple septum and four sterigmata, 23.5–26 × 4.5–6 µm; basidioles numerous, in shape similar to basidia but slightly smaller.

Figure 12. 

Microscopic structures of Peniophora albohymenia (holotype CLZhao 23473): basidiospores (A); basidia and basidioles (B); lamprocystidia (C); gloeocystidia (D); a section of the hymenium (E). Scale bars: 10 µm (A–E).

Spores. Basidiospores allantoid to cylindrical, colorless, thin-walled, smooth, IKI–, CB–, (7–)8.5–11(–11.5) × 3–4.5(–5) µm, L = 9.65 µm, W = 3.93 µm, Q = 2.46 (n = 30/1).

Peniophora hengduanensis L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855876
Figs 13, 14

Holotype.

China. • Yunnan Province: Diqing, Weixi County, Zhonglu Town, GPS coordinates: 27°16'N, 99°15'E, altitude: 2250 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 14 Oct 2022, CLZhao 34697, GenBank: ITS = PQ066422, nLSU = PQ295870 (SWFC!).

Diagnosis.

It is characterized by pink to vinaceous, smooth membranaceous basidiomata, a monomitic hyphal system with simple-septa, and allantoid to subcylindrical basidiospores.

Etymology.

Hengduanensis (Lat.): refers to the locality (Hengduan Mountains) of the type specimen.

Description.

Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 7.5 cm long, 4 cm wide, and 400 μm thick. Hymenophore smooth, pale pink when fresh, pink to vinaceous upon drying. Sterile margin narrow, white to vinaceous, up to 1 mm.

Figure 13. 

Basidiomata of Peniophora hengduanensis (holotype CLZhao 34697). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system. Monomitic; generative hyphae with simple-septa, colorless, thin-walled, smooth, rarely branched, rarely septate, more or less parallel to substrate, 3.5–4.5 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Cystidia of two types: (1) Gloeocystidia obclavate, colorless, slightly thick-walled, smooth, 50.5–66 × 11–14.5 µm; (2) Lamprocystidia abundant, subulate to subcylindrical, heavily encrusted with crystals in the middle and upper parts, thin-walled, colorless, embedded or projecting beyond the hymenium, with a basal simple septum, 21.5–25 × 9.5–11 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal simple septum and four sterigmata, 20–32.5 × 4.5–6 µm; basidioles numerous, in shape similar to basidia but slightly smaller.

Figure 14. 

Microscopic structures of Peniophora hengduanensis (holotype CLZhao 34697): basidiospores (A); basidia and basidioles (B); lamprocystidia (C); gloeocystidia (D); a section of the hymenium (E). Scale bars: 10 µm (A–E).

Spores. Basidiospores allantoid to subcylindrical, colorless, thin-walled, smooth, IKI–, CB–, (6–)6.5–8.5(–9) × 2.5–3.5(–4) µm, L = 7.35 µm, W = 3.15 µm, Q = 2.33 (n = 30/1).

Peniophora punctata L. Wang & C.L. Zhao, sp. nov.

MycoBank No: 855877
Figs 15, 16

Holotype.

China. • Yunnan Province: Zhaotong, Xiaocaoba, Wumengshan National Nature Reserve, GPS coordinates: 27°77'N, 104°25'E, altitude: 1900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 21 Sep 2023, CLZhao 33769, GenBank: ITS = PQ066418 (SWFC!).

Diagnosis.

It is characterized by pink to slightly purple, cushion-shaped, smooth membranaceous basidiomata, a monomitic hyphal system with simple-septa, thick-walled generative hyphae, and allantoid basidiospores.

Etymology.

Punctata (Lat.): refers to the species having cushion-shaped basidiomata.

Description.

Basidiomata. Annual, resupinate, closely adnate, cushion-shaped, membranaceous, without odor or taste when fresh, up to 3 cm long, 1.5 cm wide, and 300 μm thick. Hymenophore smooth, pink to slightly purple when fresh, purple upon drying. Sterile margin narrow, white to vinaceous, up to 1 mm.

Figure 15. 

Basidiomata of Peniophora punctata (holotype CLZhao 33769). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system. Monomitic; generative hyphae with simple-septa, colorless, slightly thick-walled, smooth, rarely branched, rarely septate, more or less parallel to substrate, 2.5–3.5 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Cystidia of two types: (1) Gloeocystidia fusiform or subclavate, slightly flexuous, colorless, slightly thick-walled, smooth, 31.5–51.5 × 6–8 µm; (2) Lamprocystidia abundant, subulate to subcylindrical, heavily encrusted with crystals in the middle and upper parts, thin-walled, colorless, embedded or projecting beyond the hymenium, with a basal simple septum, 36–39 × 8.5–12.5 µm. Basidia subcylindrical to subclavate, slightly flexuous, with a basal simple septum and four sterigmata, 18–21.5 × 3–4.5 µm; basidioles numerous, in shape similar to basidia but slightly smaller.

Figure 16. 

Microscopic structures of Peniophora punctata (holotype CLZhao 33769): basidiospores (A); basidia and basidioles (B); lamprocystidia (C); gloeocystidia (D); a section of the hymenium (E). Scale bars: 10 µm (A–E).

Spores. Basidiospores allantoid, colorless, thin-walled, smooth, IKI–, CB–, 5–7(–7.5) × 1.5–2.5 µm, L = 6.08 µm, W = 2.22 µm, Q = 2.73 (n = 30/1).

Discussion

A large number of studies were focused on the taxonomy and phylogeny of Russulales taxa in the last ten years (He et al. 2019; Wijayawardene et al. 2022; Wu et al. 2020; Zou et al. 2022; Li et al. 2023; Deng et al. 2024b; Dong et al. 2024; Liu et al. 2024; Zhou et al. 2024). Both families, Peniophoraceae and Stereaceae, are well-supported large groups in Russulales, and most species have resupinate and effused-reflexed basidiomata growing on fallen twigs, branches, or trunks of woody plants or bamboos (Larsson and Larsson 2003; Miller et al. 2006; Zhou and Dai 2013; De Crop et al. 2016; He et al. 2024). Molecular analyses have elucidated the evolutionary relationships, in which the findings demonstrate significant morphological changes occurring at both the levels of family and genus (Larsson and Larsson 2003; Miller et al. 2006; Zhao et al. 2017; He et al. 2019; Wu et al. 2020). Elucidating morphological differences for its overall appearance, structure, colors, spore characters, and hyphal structure, as well as its habitat, this distinction holds significant importance for making phylogenetic and systematic conclusions (Miller et al. 2006; Dong et al. 2024; He et al. 2024).

Phylogenetically, the multiple genes with ITS+nLSU analysis showed that the six new species grouped within the order Russulales, in which Conferticium tuberculatum, Gloeocystidiellum cremeum, and G. fissuratum grouped into the family Stereaceae. Conferticium tuberculatum is separated from closely related species C. ravum, which can be delimited from C. tuberculatum by its smooth, yellowish to isabelline hymenophore, shorter basidia (20–30 × 4–6 µm), and ellipsoid to ovoid, verrucose basidiospores (6–7 × 4–4.5 µm; Bernicchia and Gorjón 2010). Based on the ITS+nLSU sequence data (Fig. 2), Gloeocystidiellum cremeum is grouped with G. fissuratum L. Wang & C.L. Zhao and G. yunnanense Y.L. Zhao & C.L. Zhao in the Gloeocystidiellum clade. However, G. fissuratum differs from G. cremeum by its white to cinnamon-buff, grandinioid, and cracking hymenophore and smaller basidia (13–16 × 4–5 µm); G. yunnanense is distinguished from G. cremeum by its cream, ceraceous, and grandinioid hymenophore, smaller basidia (12.5–14.5 × 3.5–4.5 µm), and slightly thick-walled, aculeate, ellipsoid basidiospores (Zhao and Zhao 2023). Gloeocystidiellum fissuratum is distinguished from G. yunnanense by cream, ceraceous, and grandinioid hymenophore, smaller basidia (12.5–14.5 × 3.5–4.5 µm), and slightly thick-walled, aculeate, ellipsoid basidiospores (Zhao and Zhao 2023).

Based on the ITS+nLSU analysis, three new taxa, Peniophora albohymenia, P. hengduanensis, and P. punctata, were grouped into the family Peniophoraceae. As inferred from the sequence data (Fig. 4), Peniophora albohymenia is a sister of P. reidii Boidin & Lanq. However, P. reidii is distinguished from P. albohymenia by its pinkish gray to gray basidiomata and longer gloeocystidia (25–75 × 5.5–7.5 µm; Boidin and Lanquetin 1983). Based on the ITS+nLSU sequence data (Fig. 4), Peniophora hengduanensis formed a sister group with P. crassitunicata Boidin, Lanq. However, P. crassitunicata is distinguished from P. hengduanensis by its pinkish gray to grayish violaceous basidiomata, thick-walled generative hyphae, and bigger, very thick-walled (2–3 µm) gloeocystidia (60–115 × 8–15 µm) (Boidin and Lanquetin 1983). Peniophora punctata is a closely related species, viz., P. borbonica Boidin, Lanq, and P. laxitexta C.E. Gómez. However, P. borbonica is delimited from P. punctata by its smooth, purplish gray or gray hymenophore, longer gloeocystidia (30–60 × 7–12 µm), and suballantoid to cylindrical, bigger basidiospores (8–10.5 × 2.7–3.5 µm; Boidin and Gilles 2000); P. laxitexta can be distinguished from P. punctata by its longer basidia (27–35 × 4.5–6 µm) and bigger lamprocystidia (30–60 × 10–22 µm; Gómez and Loewenbaum 1976).

Morphologically, Conferticium ochraceum (Fr.) Hallenb. is similar to C. tuberculatum by having smooth ceraceous basidiomata. However, C. ochraceum differs in its coriaceous basidiomata with pale yellowish hymenophore surface and subcylindrical to subovate basidiospores (4–6.5 × 2.5–3.5 µm; Bernicchia and Gorjón 2010). Gloeocystidiellum clavuligerum (Höhn. and Litsch.) Nakasone and G. porosum (Berk. and M.A. Curtis) Donk are similar to G. cremeum by both having ellipsoid to subglobose basidiospores. However, G. clavuligerum differs in its gloeocystidia with a more or less constricted to moniliform apex (50–80 × 8–12 µm; Bernicchia and Gorjón 2010); G. porosum differs in its bigger gloeocystidia (80–200 × 8–15 µm, Bernicchia and Gorjón 2010). Gloeocystidiellum clavuligerum and G. porosum are similar to G. fissuratum by both having verrucose, thin-walled basidiospores. However, G. clavuligerum differs in its longer basidia (25–30 × 4–5 µm; Bernicchia and Gorjón 2010); G. porosum differs in its bigger gloeocystidia (80–200 × 8–15 µm; Bernicchia and Gorjón 2010).

Morphologically, Peniophora roseoalba L. Zou & C.L. Zhao and P. shenghuae Y.L. Xu, Yan Tian & S.H. He are similar to P. albohymenia by both having fusiform, flexuous gloeocystidia. However, P. roseoalba differs in its ellipsoid basidiospores (4–6.5 × 3–5 µm; Zou et al. 2022); P. shenghuae differs in its coriaceous basidiomata with a brownish-orange hymenophore surface (Xu et al. 2023). Peniophora vietnamensis Y.L. Xu, Y. Tian & S.H. He, and P. pini (Schleich. ex DC.) Boidin are similar to P. hengduanensis by having subcylindrical basidia. However, P. vietnamensis differs in its oblong cylindrical basidiospores (14–17 × 4–6 µm; Xu et al. 2023); P. pini differs in its clamped generative hyphae and longer lamprocystidia (25–40 × 5–8 µm; Bernicchia and Gorjón 2010). Peniophora crassitunicata Boidin, Lanq. & Gilles, and P. pithya (Pers.) J. Erikss. are similar to P. punctata by having allantoid basidiospores. However, P. crassitunicata differs in its clamped generative hyphae and longer subcylindrical basidia (25–40 × 4.5–6 µm; Andreasen and Hallenberg 2009); P. pithya differs in its clamped generative hyphae and longer lamprocystidia (30–70 × 8–15 µm; Bernicchia and Gorjón 2010).

Ecological functions performed by members of the order Russulales include mycorrhizal symbiosis and wood decay, which play an important role in nutrient cycling and decomposition within forest ecosystems (Cui et al. 2019; Wu et al. 2019, 2022; Liu et al. 2023; Dai et al. 2021; Deng et al. 2024b; Hyde et al. 2024; Wang et al. 2024a, b; Zhao et al. 2024). Although in the Basidiomycota, there has been a clear evolutionary trend in the development of different types of basidiomata, the taxonomy and phylogeny of some taxa in the order Russulales are still unresolved (Larsson and Larsson 2003; Miller et al. 2006; He et al. 2019, 2024; Wijayawardene et al. 2022, 2024; Wu et al. 2020; Bhunjun et al. 2024; Dong et al. 2024; Liu et al. 2024). In the present study, these data are also crucial as a supplement to the global knowledge of wood-inhabiting of the order Russulales.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project Nos. 32170004, U2102220) and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111).

Author contributions

Contribution, CZ and LW; methodology, CZ and LW; software, LW, Sana J and CZ; validation, CZ and Sana J; formal analysis, CZ, SH, and LW; investigation, CZ and LW; resources CZ; writing—original draft preparation, LW, SH, YZ, and CZ; writing—review and editing, CZ and LW; visualization, CZ and LW; supervision, CZ; project administration, CZ; funding acquisition, CZ. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Lu Wang https://orcid.org/0009-0004-6274-5953

Yonggao Zhu https://orcid.org/0009-0008-5341-3798

Yonggao Zhu https://orcid.org/0009-0005-2478-0624

Sana Jabeen https://orcid.org/0000-0001-8839-7716

Changlin Zhao https://orcid.org/0000-0002-8668-1075

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Andreasen M, Hallenberg N (2009) A taxonomic survey of the Peniophoraceae. Synop Fungorum 26: 56–119.
  • Bernicchia A, Gorjón SP (2010) Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Italia.
  • Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo SALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterfinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024) What are the 100 most cited fungal genera? Studies in Mycology 108: 1–411. https://doi.org/10.3114/sim.2024.108.01
  • Boidin J, Gilles G (2000) Basidiomycètes Aphyllophorales de l’ile de La Reunion. XXI–Suite. Mycotaxon 75: 357–387.
  • Boidin J, Lanquetin P, Gilles G (1991) Les Peniophoraceae de la zone intertropicale (Basidiomycetes, Aphyllophorales). Bulletin de la Société Mycologique de France 107(3): 91–156.
  • Caboň M, Li GJ, Saba M, Kolařík M, Jančovičová S, Khalid AN, Moreau PA, Wen HA, Pfister DH, Adamčík S (2019) Phylogenetic study documents different speciation mechanisms within the Russula globispora lineage in boreal and arctic environments of the Northern Hemisphere. IMA Fungus 1(5): 1–16. https://doi.org/10.1186/s43008-019-0003-9
  • Chen JJ, Cui BK, Zhou LW, Korhonen K, Dai YC (2015) Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, Russulales). Fungal Diversity 71: 185–200. https://doi.org/10.1007/s13225-014-0317-2
  • Chen JJ, Cui BK, He SH, Cooper JA, Barrett MD, Chen JL, Dai YC (2016b) Molecular phylogeny and global diversity of the remarkable genus Bondarzewia (Basidiomycota, Russulales). Mycologia 108: 697–708. https://doi.org/10.3852/14-216
  • Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137–392. https://doi.org/10.1007/s13225-019-00427-4
  • Dai LD, Wu SH, Nakasone KK, Burdsall HH, He SH (2017) Two new species of Aleurodiscus s.l. (Russulales, Basidiomycota) on bamboo from tropics. Mycoscience 58(3): 213–220. https://doi.org/10.1016/j.myc.2017.02.001
  • Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40(4): 770–805. https://doi.org/10.13346/j.mycosystema.210036
  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772. https://doi.org/10.1038/nmeth.2109
  • De Crop E, Nuytinck J, Van de Putte K, Wisitrassameewong K, Hackel J, Stubbe D, Hyde KD, Roy M, Halling RE, Moreau PA, Eberhardt U, Verbeken A (2016) A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia 38(1): 58–80. https://doi.org/10.3767/003158517X693255
  • Deng YL, Li JF, Zhao CL, Zhao J. (2024a) Four new fungal species in forest ecological system from southwestern China. Journal of Fungi 10: 194. https://doi.org/10.3390/jof10030194
  • Deng YL, Jabeen S, Zhao CL (2024b) Species diversity and taxonomy of Vararia (Russulales, Basidiomycota) with descriptions of six species from Southwestern China. Mycokeys 103: 97–128. https://doi.org/10.3897/mycokeys.103.118980
  • Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Zhao CL, Akmal M (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere 15(1): 1110–1293. https://doi.org/10.5943/mycosphere/15/1/10
  • Donk MA (1931) Revisie van de Nederlandse Heterobasidiomycetae en Homobasidiomycetae - Aphyllophoraceae I. Mededelingen van de Nederlandse Mycologische Vereeniging 18–20: 67–200.
  • Gómez CE, Loewenbaum M (1976) El genero Peniopgoa (Cooke) Donk (Basidiomycetes-Aphyllophorales) de los alrededores de Buenos Aires. Darwiniana 20: 189–209.
  • Grum-Grzhimaylo OA, Debets AJ, Bilanenko EN (2016) The diversity of microfungi in peatlands originated from the White Sea. Mycologia 108(2): 233–254. https://doi.org/10.3852/14-346
  • Harrington T, Hsaiu P (2003) Phylogenetics and adaptations of basidiomycetous fungi fed upon by bark beetles (Coleoptera:Scolytidae). Symbiosis 34(2): 111–131.
  • Harrington T, Batzer JC, Mcnew D (2021) Corticioid basidiomycetes associated with bark beetles, including seven new Entomocorticium species from North America and Cylindrobasidium ipidophilum, comb. nov. Antonie van Leeuwenhoek 114(5): 1–19. https://doi.org/10.1007/s10482-021-01541-7
  • He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspe O, Kakishima M, Sánchez-Ramírez S, Vellinga CE, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell WJ, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli Jr. N, Mešić A, Moncalvo JM, Mueller GM, Nagy L, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105–367. https://doi.org/10.1007/s13225-019-00435-4
  • He MQ, Zhao RL, Liu MD, Denchev TT, Begerow D, Yurkov A, Kemler M, Millanes AM, Wedin M, McTaggart AR, Shivas RG, Buyck B, Chen J, Vizzini A, Papp V, Zmitrovich IV, Davoodian N, Hyde KD (2022) Species diversity of Basidiomycota. Fungal Diversity 114(1): 1–45. https://doi.org/10.1007/s13225-021-00497-3
  • He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Power N, Denchev CM, Kemler M, Gorjón SP, Begerow D, Valenzuela R, Davoodian N, Niskanen T, Vizzini A, Redhead SA, Ramírez Cruz V, Papp V, Dudka VA, Dutta AK, García-Sandoval R, Liu XZ, Kijpornyongpan T, Savchenko A, Tedersoo L, Theelen B, Trierveiler-Pereira L, Wu F, Zamora JC, Zeng XY, Zhou LW, Liu SL, Ghobad-Nejhad M, Giachini AJ, Li GJ, Kakishima M, Olariaga I, Haelewaters D, Sulistyo B, Sugiyama J, Svantesson S, Yurkov A, Alvarado P, Antonín V, da Silva AF, Druzhinina I, Gibertoni TB, Guzmán Davalos L, Justo A, Karunarathna SC, Galappaththi MCA, Toome-Heller M, Hosoya T, Liimatainen K, Márquez R, Mešić A, Moncalvo JM, Nagy LC, Varga T, Orihara T, Raymundo T, Salcedo I, Silva-Filho AGS, Tkalčec Z, Wartchow F, Zhao CL, Bau T, Cabarroi-Hernández M, CortésPérez A, Decock C, De Lange R, Weiss M, Menolli N, Nilsson RH, Fan YG, Verbeken A, Gaforov Y, Meiras-Ottoni A, Mendes-Alvarenga RL, Zeng NK, Wu Q, Hyde KD, Kirk PM, Zhao RL (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Diversity 126(3): 1–280. https://doi.org/10.1007/s13225-024-00535-w
  • Herrera M, Montoya L, Bandala VM (2018) Two Lactarius species (subgenus Plinthogalus) in ectomycorrhizal association with tropical Quercus trees in eastern Mexico. Mycologia 110: 1033–1046. https://doi.org/10.1080/00275514.2018.1521685
  • Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Thilini Chethana KW, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan L, Lee H, Li JF, Lin CG, Liu GN, Lu YZ, Luo ZL, Manawasinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhamsakda C, Siedlecki L, Soares AM, Tennakoon DS, Tian Q, Tibpromma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Abdel-Aziz FA, Li WJ, Senanayake IC, Shang JQ, Daranagama DA, de Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castaneda-Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones GEB, Kang JC, Karunarathna SC, Lim YW, Liu JK, Liu ZY, Plautz Jr HL, Lumyong S, Maharachchikumbura SSN, Matočec N, McKenzie EHC, Mešic A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero AI, Ryvarden L, Su HY, Suetrong S, Tkalčec Z, Vizzini A, Wen TC, Wisitrassameewong K, Wrzosek M, Xu JC, Zhao Q, Zhao RL, Mortimer PE (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87: 1–235. https://doi.org/10.1007/s13225-017-0391-3
  • Hyde KD, Baldrian P, Chen Y, Chethana KWT, De Hoog S, Doilom M, Gomes de Farias AR, Gonçalves MFM, Gonkhom D, Gui H, Hilário S, Hu Y, Jayawardena RS, Khyaju S, Kirk PM, Kohout P, Luangharn T, Maharachchikumbura SSN, Manawasinghe IS, Mortimer PE, Niego AGT, Phonemany M, Sandargo B, Senanayake IC, Stadler M, Surup F, Thongklang N, Wanasinghe DN, Bahkali AH, Walker A (2024) Current trends, limitations and future research in the fungi? Fungal Diversity 125(1): 1–71. https://doi.org/10.1007/s13225-023-00532-5
  • Jaramillo-Riofrío A, Decock C., Suárez JP, Benítez Á, Castillo G, Cruz D (2023) Screening of antibacterial activity of some resupinate fungi, reveal Gloeocystidiellum lojanense sp. nov. (Russulales) against E. coli from Ecuador. Journal of Fungi 9: 54. https://doi.org/10.3390/jof9010054
  • Ji XH, Sun B, He G, Sun QB (2024) Scytinostroma bambusinum sp. nov. (Russulales, Basidiomycota) in China evidenced by morphological characteristics and phylogenetic analyses. Biodiversity Data Journal 12: e115975. https://doi.org/10.3897/BDJ.12.e115975
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Lambevska-Hristova A (2022) New Records of Peniophora Species (Basidiomycota) for the Bulgarian Mycota. Ecologia Balkanica 14(1): 23–30
  • Larsson E, Hallenberg N (2001) Species delimitation in the Gloeocystidiellum porosum-clavuligerum complex inferred from compatibility studies and nuclear rDNA sequence data. Mycologia 93: 907–914. https://doi.org/10.1080/00275514.2001.12063225
  • Larsson KH, Larsson E, Ryvarden L, Spirin V (2020) Some new combinations of corticioid fungi (Basidiomycota. Agaricomycetes). Synopsis Fungorum 40: 113–117.
  • Leal-Dutra CA, Neves MA, Griffith GW, Reck MA, Clasen LA., Dentinger BT (2018) Reclassification of Parapterulicium Corner (Pterulaceae, Agaricales), contributions to Lachnocladiaceae and Peniophoraceae (Russulales) and introduction of Baltazaria gen. nov. MycoKeys 37: 39–56. https://doi.org/10.3897/mycokeys.37.26303
  • Li Y, Xu WQ, Liu SL, Yang N, He SH (2023) Species diversity and taxonomy of Scytinostroma sensu stricto (Russulales, Basidiomycota) with descriptions of four new species from China. MycoKeys 98: 133–152. https://doi.org/10.3897/mycokeys.98.105632
  • Liu SL, He SH (2018) Taxonomy and phylogeny of Dichostereum (Russulales), with descriptions of three new species from southern China. MycoKeys 40(40): 111–126. https://doi.org/10.3897/mycokeys.40.28700
  • Liu S, Shen LL, Xu TM, Song CG, Gao N, Wu DM, Sun YF, Cui BK (2023) Global diversity, molecular phylogeny and divergence times of the brown-rot fungi within the Polyporales. Mycosphere 14(1): 1564–1664. https://doi.org/10.5943/mycosphere/14/1/18
  • Liu SL, Wei XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian E, Lu YZ, Zhang JY, Ma J, Dutta AK, Acharya K, Du TY, Xu J, Kim JS, Lim YW, Gerlach A, Zeng NK, Han YX, Razaghi P, Raza M, Cai L, Calabon M, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashetti AC, Pawar KS, Jiang SH, Zhang C, Zhang H, Qing Y, Bau T, Peng XC, Wen TC, Ramirez NA, Niveiro N, Li MX, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo CH, Silva TM, Souza-Motta CM, Bezerra JDP, He G, Ji XH, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou LW 2024. Fungal diversity notes 1717–1817: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(6): 1–216. https://doi.org/10.1007/s13225-023-00529-0
  • Lygis V, Vasiliauskas R, Larsson KH, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scandinavian Journal of Forest Research 20(4): 337–346. https://doi.org/10.1080/02827580510036238
  • Maekawa N, Sugawara R, Nakano R, Shino R, Sotome K, Nakagiri K, Oba Y (2023) A new species of the genus Aleurodiscus sensu lato (Russulales, Basidiomycota) from Hachijo Island, Japan. Mycoscience 64: 109–115. https://doi.org/10.47371/mycosci.2023.06.001
  • Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway. Proceedings of the 1st Conference of the extreme Science and engineering Discovery environment: Bridging from the extreme to the Campus and Beyond. Chicago, IL, 39 pp. https://doi.org/10.1145/2335755.2335836
  • Petersen JH (1996) Farvekort. The Danish Mycological Society’s Colour-Chart. Foreningen til Svampekundskabens Fremme, Greve, Denmark, 1–6.
  • Rathnayaka AR, Tennakoon DS, Jones GE, Wanasinghe DN, Bhat DJ, Priyashantha AH, Stephenson SL, Tibpromma S, Karunarathna SC (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany, 1–28. https://doi.org/10.1080/0028825X.2024.2381734
  • Robles CA, Carmarán CC, Lopez SE (2011) Screening of xylophagous fungi associated with Platanus acerifolia in urban landscapes: Biodiversity and potential biodeterioration. Landscape and Urban Planning 100(1): 129–135. https://doi.org/10.1016/j.landurbplan.2010.12.003
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Shen LL, Wang KY, Xia H, Lang SL, Yao L, Yang X (2024) Molecular phylogeny and morphology reveal a new wood-inhabiting fungal species of Conferticium (Stereaceae, Basidiomycota) from southwest China. Phytotaxa 677(1): 077–086. https://doi.org/10.11646/phytotaxa.677.1.4
  • Stroheker S, Weiss M, Sieber TN, Bugmann H (2018) Ecological factors influencing norway spruce regeneration on Nurse Logs in a Subalpine Virgin Forest. Forests 9(3): 120. https://doi.org/10.3390/f9030120
  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA, USA.
  • Telleria MT, Dueñas M, Melo I, Beltrán-Tejera E, Rodríguez-Armas JL, Salcedo I, Martín MP (2012) Gloeocystidiellum kenyense hjortstam in Azores and Madeira. Mycotaxon 119(1): 337–343. https://doi.org/10.5248/119.337
  • Vasiliauskas R, Larsson E, Larsson KH, Stenlid J (2005) Persistence and long-term impact of Rotstop biological control agent on mycodiversity in Picea abies stumps. Biological Control 32(2): 295–304. https://doi.org/10.1016/j.biocontrol.2004.10.008
  • Vidal JM, Alvarado P, Loizides M, Konstantinidis G, Chachuła P, Mleczko P, Moreno G, Vizzini A, Krakhmalnyi M, Paz A, Cabero J, Kaounas V, Slavova M, Moreno-Arroyo B, Llistosella J (2019) A phylogenetic and taxonomic revision of sequestrate Russulaceae in Mediterranean and temperate Europe. Persoonia 42: 127–185. https://doi.org/10.3767/persoonia.2019.42.06
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • Wang H, He X, Zhao CL (2020) Scytinostroma yunnanense sp. nov. (Russulales,basidiomycota) evidenced by morphological characteristics and phylogenetic analyses in China. Phytotaxa 451(2): 145–153. https://doi.org/10.11646/phytotaxa.451.2.4
  • Wang CG, Dai YC, Kout J, Gates GM, Liu HG, Yuan Y, Vlasák J (2024a) Multi-gene phylogeny and taxonomy of Physisporinus (Polyporales, Basidiomycota). Mycosphere 15: 1455–1521. https://doi.org/10.5943/mycosphere/15/1/12
  • Wang L, Yang X, Zhao CL (2024b) The wood-decaying fungal diversity unveiled by morphology and phylogeny in Ailaoshan Mountain, Yunnan, China. Phytotaxa 661(1): 001–030. https://doi.org/10.11646/phytotaxa.661.1.1
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK, Erdoğdu M, Selçuk F, Rajeshkumar KC, Aptroot A, Błaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska J, Pem D, Pfiegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2022) Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  • Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, Santiago ALCMA, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Blaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, Silva SBG, Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan XL, Felix JRB, Galappaththi MCA, Groenewald M, Li-Su Han, Bo Huang, Hurdeal VG, Ignatieva AN, Jerônimo GH, Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li QR, Lima JLR, Liu XY, Lu WH, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawtowska J, Peintner U, Pozdnyakov LR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkuma KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapɪ M, Vooren NV, Wanasinghe DN, Weber E, Wu QZ, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao RL, Zverkov OA, Thines M, Karpov SA (2024) Classes and phyla of the kingdom Fungi. Fungal Diversity 127(1): 1–165. https://doi.org/10.1007/s13225-024-00540-z
  • Wu SH (1996) Studies on Gloeocystidiellum sensu lato (Basidiomycotina) in Taiwan. Mycotaxon 58: 1–68.
  • Wu F, Man XW, Tohtirjap A, Dai YC (2022) A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. Forest Ecosystems 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051
  • Yuan Y, Chen JJ, Korhonen K, Martin F, Dai YC (2021) An updated global species diversity and phylogeny in the forest pathogenic genus Heterobasidion (Basidiomycota, Russulales). Frontiers in Microbiology 11: 596393. https://doi.org/10.3389/fmicb.2020.596393
  • Yurchenko E (2010) The genus Peniophora (Basidiomycota) of Eastern Europe: morphology, taxonomy, ecology, distribution. National Academy of Sciences of Belarus, VF Kuprevich Insitute of Experimental Botany, Minsk.
  • Zhang QY, Liu HG, Bian LS, Chen Q (2023a) Two new species of Scytinostroma (Russulales, Basidiomycota) in Southwest China. Frontiers in Cellular and Infection Microbiology 13: 1189600. https://doi.org/10.3389/fcimb.2023.1189600
  • Zhang QY, Liu HG, Papp V, Zhou M, Dai YC, Yuan Y (2023b) New insights into the classification and evolution of Favolaschia (Agaricales, Basidiomycota) and its potential distribution, with descriptions of eight new species. Mycosphere 14: 777–814. https://doi.org/10.5943/mycosphere/14/1/10
  • Zhao H, Nie Y, Zong TK, Wang K, Lv ML, Cui YJ, Tohtirjap A, Chen JJ, Zhao CL, Wu F, Cui BK, Yuan Y, Dai YC, Liu XY (2023) Species diversity, updated classification and divergence times of the phylum Mucoromycota. Fungal Diversity 123: 49–157. https://doi.org/10.1007/s13225-023-00525-4
  • Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93–100. https://doi.org/10.1007/s11557-016-1259-8
  • Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F, He MQ, Moncalvo JC, Hyde KD (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Diversity 84: 43–74. https://doi.org/10.1007/s13225-017-0381-5
  • Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023a) Multi-gene phylogeny and taxonomy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9: 320. https://doi.org/10.3390/jof9030320
  • Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore funga and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystems 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200
  • Zhou LW, Dai YC (2013) Taxonomy and phylogeny of wood-inhabiting hydnoid species in Russulales: two new genera, three new species and two new combinations. Mycologia 105(3): 636–649. https://doi.org/10.3852/12-011
  • Zou L, Zhang XL, Deng YL, Zhao CL (2022) Four new wood-inhabiting fungal species of Peniophoraceae (Russulales, Basidiomycota) from the Yunnan-Guizhou Plateau, China. Journal of Fungi 8: 1227. https://doi.org/10.3390/jof8111227
login to comment