Research Article
Print
Research Article
Molecular phylogeny and morphology reveal four novel species in Cordycipitaceae in China
expand article infoJing Bu, De-Ping Wei, Zheng-Hui Liu, Yang Yang§, Zhong-Liang Liu, Ji-Chuan Kang, Xing-Can Peng|, Shi-Wen Xie, He-Gui Zhang§, Zhang-Jiang He, Shi-Ke Huang, Xian Zhang|, Kevin D. Hyde|, Nalin N. Wijayawardene#, Ting-Chi Wen
‡ Guizhou University, Guiyang, China
§ Guizhou Guiwang Biotechnology Co., Ltd, Daozhen, China
| Mae Fah Luang University, Chiang Rai, Thailand
¶ Qujing Normal University, Qujing, China
# Zunyi Normal University, Zunyi, China
Open Access

Abstract

Cordycipitaceae is a well-known family in Hypocreales, comprising numerous arthropod-pathogenic species. Many taxa in this family have been identified and described through integrated morphological and molecular analyses. In this study, phylogenetic analyses using nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2 revealed a new species, Pleurodesmospora sanduensis, and a new collection of Akanthomyces baishanensis. Additionally, a concatenated 5P_TEF+3P_TEF+rpb1+MCM7 dataset was employed to clarify interspecific relationships within Samsoniella, identifying three new species: Samsoniella lurida, S. subasiatica, and S. torquatistipitata. Detailed morphological descriptions and illustrations are provided for each studied species.

Key words:

Entomopathogenic fungi, four new species, morphology, phylogeny

Introduction

Cordycipitaceae belongs to Hypocreales (Hypocreomycetidae, Sordariomycetes), and currently it includes 38 genera. Their phylogenetic relationships have been confirmed through molecular and morphological studies (Sung et al. 2001, 2007; Zare and Gams 2016; Kepler et al. 2017; Zhang et al. 2017, 2021; Mongkolsamrit et al. 2018, 2020, 2021, 2022, 2023; Flakus et al. 2019; Wei et al. 2019; Thanakitpipattana et al. 2020, 2022; Wang et al. 2020; Chen et al. 2021a, 2025; Alves et al. 2022; Araújo et al. 2022; Crous et al. 2023a; Guerra-Mateo et al. 2023; Kobmoo et al. 2023; Custódio and Pereira 2024; Hyde et al. 2024; Khonsanit et al. 2024). Most Cordycipitaceae species are known as pathogens of insects and spiders, while others are reported as hyperparasites on fungi and lichens or are isolated from soil, dung, air, and plant materials (Kepler et al. 2017; Wang et al. 2020; Wei et al. 2022). To adapt to the diverse hosts and habitats, members of Cordycipitaceae have evolved with a wide variety of teleomorphic and anamorphic characteristics (e.g., Akanthomyces, Samsoniella, and Pleurodesmospora).

The genus Akanthomyces was introduced by Lebert (1858), typifying with A. aculeatus (Mains 1950), and currently 60 epithets are listed in Index Fungorum (http://www.indexfungorum.org/, retrieval on 18 March 2025). Species of Akanthomyces are characterised by forming superficial, yellow perithecia on mycelial mat covering spider hosts and the filiform, intact ascospores (Boudier 1885; Mongkolsamrit et al. 2018). Later, the morphological diversity of Akanthomyces was broadened to include species with isaria-like and lecanicillium-like anamorphs based on phylogenetic evidence (Mongkolsamrit et al. 2018; Vinit et al. 2018; Chen et al. 2020a, b, 2022). The members of the genus have been reported as insect parasites, plant pathogens, fungicolous organisms, and inhabitants of peat, water, and rust (Wang et al. 2024b). Khonsanit et al. (2024) introduced four genera (i.e., Arachnidicola, Lecanicillium, Akanthomyces, and Kanoksria) to accommodate Akanthomyces species that are not congeneric with Akanthomyces sensu stricto.

Samsoniella was established by Mongkolsamrit et al. (2018) to accommodate S. alboaurantium, S. aurantia, and S. inthanonensis using both morphological and molecular evidence. Samsoniella is characterised by having yellow to orange, fleshy stromata and superficial perithecia and intact ascospores (Mongkolsamrit et al. 2018). Previous researchers have discovered 39 species that are mainly distributed in Asian countries such as China, Thailand, and Vietnam (Wang et al. 2024a). All Samsoniella species have been verified with molecular data, and a combination of six genes (ITS-nrSSU-nrLSU-rpb1-rpb2-3P_TEF) usually was used to study the interspecific relationship (Mongkolsamrit et al. 2018; Wang et al. 2023a, 2024a). However, the taxonomic classification of this genus is considered to be complex due to morphological plasticity, and there is a need to search for new genetic markers with higher resolution (Wang et al. 2023a).

The genus Pleurodesmospora was established based on Pleurodesmospora coccorum, which is featured with rostella-like phialidic conidiogenous pegs pasted in erect or procumbent conidiophores (Samson and Gams 1980). Pleurodesmospora species are morphologically indistinguishable, emphasising the importance of molecular analysis. Based on DNA phylogeny, Chen et al. (2021a) reported that Pleurodesmospora belongs to Cordycipitaceae and demonstrated that the concatenated ITS-3P_TEF or ITS-rpb1-rpb2-3P_TEF datasets were reliable in studying the interspecific relationships of this genus (Chen et al. 2021a; Yeh et al. 2021). Members of Pleurodesmospora are known to infect various arthropods, including Araneidae, mites, leafhoppers, and whiteflies (Samson and Gams 1980; Yeh et al. 2021). To date, only five species of this genus have been described: Pleurodesmospora coccorum, P. acaricola, P. lemaireae, P. lepidopterorum, and P. entomophila (Samson and Gams 1980; Chen et al. 2021a; Yeh et al. 2021; Tan and Shivas 2023, 2024). Pleurodesmospora acaricola, P. coccorum, and P. lepidopterorum (Chen et al. 2021a; Yeh et al. 2021) were reported from China, and P. lemaireae and P. entomophila were found in Australia (Tan and Shivas 2023, 2024).

During the surveys of entomopathogenic fungi in Guizhou, Liaoning, and Yunnan Provinces, we have collected seven insect specimens (including six Lepidoptera and one Hymenoptera) that were infected by fungi. Based on morphology, five specimens were determined as isaria-like species, one as pleurodesmospora-like, and another one as akanthomyces-like. Further morphology studies herein and molecular phylogenetic analyses revealed four novel species belonging to Pleurodesmospora and Samsoniella and one known species of Akanthomyces. New findings not only enrich the species diversity of these genera but also deepen our understanding of their morphology and ecology.

Materials and methods

Sample collection and isolation

A survey was conducted to collect dead insect specimens with fungal infections from Guizhou, Liaoning, and Yunnan provinces (China) from July to November 2023. The specimens were collected from the lower and upper surfaces of living leaves and leaf litter on the ground in evergreen and deciduous forests with less sunlight. The fresh specimens were documented and photographed in the fields using a camera on a mobile phone. Collected specimens were placed in plastic boxes and transported to the laboratory for further examination.

To prevent contamination of fresh specimens by opportunistic fungi in the humid plastic box, fungus isolation was performed on the same day as it was collected. The fresh fruiting bodies were examined using a stereomicroscope (Olympus SZX16). A small mass of conidia on the synnemata or sclerotium inside the insect host bodies was transferred to axenic potato dextrose agar (PDA) plates using a sterile needle. The cultures were incubated at room temperature until the colonies’ size attained 2–3 cm. The pure colonies were chopped into tiny bits and stored in sterile water in a centrifuge tube and then submitted to the Kunming Institute of Botany Culture Collection (KUNCC). The fresh specimens were dried with allochroic silica gel and deposited in the Herbarium of Cryptogamic Kunming Institute of Botany Academia Sinica (HKAS), Chinese Academy of Sciences, Kunming, China.

Morphological studies

The macro-characteristics of the fresh specimens, such as hosts, colour and shape of stroma, and the orientation of perithecia, were recorded and measured using a stereomicroscope (Leica S9E). Micro-morphological characteristics, such as perithecia, asci, ascospores, phialides, and conidia, were removed from the stromata or synnemata and mounted on a glass slide with water, lactic acid cotton blue or congo red solution. A Nikon compound microscope (Nikon ECLIPSE Ni) was used to photograph the above-mentioned microstructures. The axenic PDA plates isolated from fresh specimens were cultured at room temperature for 10–14 days, and the colony characteristics (e.g., size, shape, texture and colour) were recorded. Details of the asexual morphological characteristics from cultures were also documented with a Nikon compound microscope (Nikon ECLIPSE Ni).

DNA extraction and polymerase chain reaction (PCR) amplification

Total genomic DNA was extracted from axenic living cultures and dry specimens using the DNA extraction kit (Omega Fungus Genomic DNA Extraction Kit, China), following the instructions of the manufacturer. Ten loci, including the internal transcribed spacers 1 and 2 along with the 5.8S rDNA (ITS), partial region of the nuclear ribosomal small subunit (nrSSU) and large subunit (nrLSU), and the largest and second-largest subunits of RNA polymerase II (rpb1 and rpb2), were amplified. Several extra gene regions, including the partial region of the 3′ and the 5′ end of the translation elongation factor 1-alpha gene (3P_TEF and 5P_TEF), the replication licensing factor 7 (MCM7) gene, the actin beta 1 (ACT) gene and the beta-tubulin (TUB) gene, were amplified for Samsoniella species (Table 2). The primer pairs used for amplification were ITS 5 and ITS 4 for ITS (White et al. 1990), NS1 and NS4 for nrSSU (White et al. 1990), LROR and LR5 for nrLSU (Vilgalys and Hester 1990), 983F and 2218R for 3P_TEF (Rehner and Buckley 2005), EF1T and EF2T for 5P_TEF (Rehner and Buckley 2005; Bischoff et al. 2006), CRPB1A and RPB1Cr for rpb1 (Castlebury et al. 2004), fRPB2-5f and fRPB2-7cR for rpb2 (Castlebury et al. 2004), Mcm7-709 and Mcm7-1348rev for MCM7 (Schmitt et al. 2009), Act-1 and Act-4R for ACT (Voigt and Wöstemeyer 2000), Bt2a and Bt1b for TUB (Glass and Donaldson 1995). All of the PCR was performed in a 25 µl reaction mixture consisting of 12.5 µl of the mixture, 7.5 µl of double distilled water, 1 µl of each primer, and 3 µl of DNA template, using a T100 Thermal Cycler (Bio-Rad). The PCR program for these six loci (nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2) was outlined in Wei et al. (2021), while the PCR procedures for the 5P_TEF and MCM7 genes were respectively given by Bischoff et al. (2006) and Schmitt et al. (2009). The PCR protocols for the ACT and TUB were respectively referenced from Voigt et al. (1999) and Glass and Donaldson (1995). The PCR products were purified and sequenced at Sangon Biotech Company (Shanghai, China) with the above-mentioned primers. The newly generated sequences were submitted to GenBank for assignment of accession number.

Sequence alignment and phylogenetic analyses

The quality of the sequence chromatogram generated in this study was examined using BioEdit (Hall et al. 2011). The forward and reverse sequences were assembled using Seqman (Clewley 1995) and verified with those sequence data available in GenBank through the BLAST tool. Taxa used for phylogenetic analyses of Cordycipitaceae were selected following related articles (Chen et al. 2020c; Wang et al. 2020, 2024b) and BLAST research results of the newly generated sequences (Table 1).

Table 1.

GenBank accession numbers of the taxa used in this study.

Species strain nrLSU ITS nrSSU 3P_TEF rpb1 rpb2 References
Akanthomyces aculeatus HUA186145T MF416520 MF416465 Kepler et al. 2017
A. aculeatus HUA 772 KC519370 KC519371 KC519368 KC519366 Kepler et al. 2017
A. australiensis BRIP 72630a OR527524 OR527516 OR512197 OR514840 OR514848 Kepler et al. 2017
A. baishanensis CGMCC3.25673T PP179404 PP464678 PP464641 PP464655 Pu et al. 2025
A. baishanensis CGMCC3.25674 PP179405 PP464679 PP464642 PP464656 Pu et al. 2025
A. baishanensis HKAS144393 PQ492341 PQ492702 PQ492709 PQ499067 PQ499073 PQ499080 This study
A. bannaensis CLZhao 34016T PP571897 PP571895 PP588774 Zhang et al. 2024
A. buriramensis BCC 45158 ON008543 ON013546 ON013561 Khonsanit et al. 2024
A. buriramensis BCC 47939T ON008545 ON013548 ON013563 Khonsanit et al. 2024
A. fusiformis BCC 40756T ON008549 ON013552 ON013567 ON013576 Khonsanit et al. 2024
A. laosensis YFCC 1910942 OQ509511 OQ509524 OQ506287 OQ511536 OQ511550 Wang et al. 2024b
A. laosensis YFCC 1910941T OQ509510 OQ509523 OQ506286 OQ511535 OQ511549 Wang et al. 2024b
A. niveus BCC 79887T ON008551 ON013554 ON013578 Khonsanit et al. 2024
A. niveus BCC 40747 ON008550 ON013553 ON013568 ON013577 Khonsanit et al. 2024
A. noctuidarum BBH 16595 MT356085 MT356073 MT477979 MT477995 MT478005 Aini et al. 2020
A. noctuidarum BCC 47498 MT356086 MT356074 MT477980 MT477996 MT477988 Aini et al. 2020
A. noctuidarum BCC 28571 MT356087 MT356075 MT477981 MT478009 MT478006 Aini et al. 2020
A. noctuidarum BCC 36265T MT356084 MT356072 MT477978 MT477994 MT477987 Aini et al. 2020
A. phariformis BCC 45148T ON008556 ON013559 ON013583 Khonsanit et al. 2024
A. pseudonoctuidarum YFCC 1808943T OQ509512 OQ509525 OQ506288 OQ511537 OQ511551 Khonsanit et al. 2024
A. pseudonoctuidarum YFCC 1808944 OQ509513 OQ509526 OQ506289 OQ511538 OQ511552 Khonsanit et al. 2024
A. pyralidarum BCC 32191 MT356092 MT356081 MT477983 MT478001 MT477989 Aini et al. 2020
A. pyralidarum BCC 40869 MT356093 MT356082 MT477984 MT478002 MT477990 Aini et al. 2020
A. pyralidarum BCC 28816T MT356091 MT356080 MT477982 MT478000 MT478007 Aini et al. 2020
Akanthomyces sp. BCC 76537 ON008557 ON006550 ON013560 ON013584 Aini et al. 2020
A. taiwanicus NTUPPMCC 20-060 MT974356 MT974202 MW200213 MW200221 MW200230 Chuang et al. 2024
A. tortricidarum BCC 28583 MT356090 MT356079 MT477986 MT477999 MT477993 Aini et al. 2020
A. tortricidarum BCC 41868 MT356089 MT356077 MT477985 MT477998 MT478008 Aini et al. 2020
A. tortricidarum BCC 72638T MT356088 MT356076 MT478004 MT477997 MT477992 Aini et al. 2020
A. tuberculatus BCC 16819 GQ249987 GQ250012 GQ249962 GQ250037 Kepler et al. 2017
A. xixiuensis XX21081764T OP693480 OP693460 OP693478 OP838887 OP838889 OP838891 Liu et al. 2024
A. xixiuensis HKAS125851 OP693481 OP693461 OP693479 OP838888 OP838890 OP838892 Liu et al. 2024
Arachnidicola araneicola GY 29011 MK942435 MK955945 MK955948 Chen et al. 2019
Ara. araneogenus GZUIF DX1 KU893152 MH978181 MH978184 Chen et al. 2018
Ara. bashanensis CQ 05621T OQ300420 OQ300412 OQ325024 OQ349684 Chen et al. 2023a
Ara. bashanensis CQ 05622 OQ300421 OQ300411 OQ325025 OQ349685 Chen et al. 2023a
Ara. beibeiensis CQ 05921T OQ300424 OQ300415 OQ325028 OQ349688 Chen et al. 2023a
Ara. beibeiensis CQ 05922 OQ300427 OQ300416 OQ325029 OQ349689 Chen et al. 2023a
Ara. coccidioperitheciatus NHJ 6709 EU369042 JN049865 EU369110 EU369025 EU369067 EU369086 Kepler et al. 2017
Ara. kanyawimiae TBRC 7242 MF140718 MF140751 MF140838 MF140784 MF140808 Mongkolsamrit et al. 2018
Ara. kanyawimiae TBRC 7244T MF140716 MF140752 MF140836 Mongkolsamrit et al. 2018
Ara. kanyawimiae TBRC 7243 MF140717 MF140750 MF140837 MF140783 MF140807 Mongkolsamrit et al. 2018
Ara. kunmingensis YFCC 1808940T OQ509509 OQ509522 OQ506285 OQ511534 OQ511548 Wang et al. 2024b
Ara. kunmingensis YFCC 1808939 OQ509508 OQ509521 OQ506284 OQ511533 OQ511547 Wang et al. 2024b
Ara. subaraneicola YFCC 2107937T OQ509514 OQ509527 OQ506290 OQ511539 OQ511553 Wang et al. 2024b
Ara. subaraneicola YFCC 2107938 OQ509515 OQ509528 OQ506291 OQ511540 OQ511554 Wang et al. 2024b
Ara. sulphureus TBRC 7248T MF140722 MF140758 MF140843 MF140787 MF140812 Mongkolsamrit et al. 2018
Ara. thailandicus TBRC 7245T MF140719 MF140754 MF140839 MF140809 Mongkolsamrit et al. 2018
Ara. tiankengensis KY 11571T ON502825 ON502848 ON525447 ON525446 Chen et al. 2023a
Ara. tiankengensis KY 11572 ON502827 ON502821 ON525449 ON525448 Chen et al. 2023a
Ara. waltergamsii TBRC 7252T MF140714 MF140748 MF140834 MF140782 MF140806 Mongkolsamrit et al. 2018
Beauveria bassiana ARSEF 1564 HQ880761 HQ880974 HQ880833 HQ880905 Rehner et al. 2011
B. caledonica ARSEF 2567T AF339520 HQ880817 NG064865 EF469057 EF469086 HQ880961 Rehner et al. 2011
B. medogensis BUB 426 MG642846 MG642832 MG642889 MG642904 MG642859 MG642874 Imoulan et al. 2016
B. scarabaeidicola ARSEF 5689 AF339524 JN049827 AF339574 DQ522335 DQ522380 DQ522431 Kepler et al. 2017
B. sinensis BUB 504 MG642838 MG642825 MG642880 MG642895 MG642852 MG642865 Chen et al. 2013
Cordyceps amoene-rosea CBS 107.73T MF416550 MH860646 AY526464 MF416494 MF416651 MF416445 Wang et al. 2020
C. amoene-rosea CBS 729.73 MF416551 MH860794 MF416604 MF416495 MF416652 MF416446 Wang et al. 2020
C. coleopterorum CBS 110.73T JF415988 AY624177 JF415965 JF416028 JN049903 JF416006 Kepler et al. 2017
C. farinosa CBS 111113 MF416554 AY624181 AY526474 MF416499 MF416656 MF416450 Kepler et al. 2017
C. fumosorosea CBS 244.31 MF416557 MH855200 MF416609 MF416503 MF416660 MF416454 Kepler et al. 2017
C. javanica CBS 134.22 MF416558 MH854719 MF416610 MF416504 MF416661 MF416455 Kepler et al. 2017
C. militaris OSC 93623 AY184966 JN049825 AY184977 DQ522332 DQ522377 Kepler et al. 2017
C. tenuipes ARSEF 5135 JF415980 AY624196 MF416612 JF416020 JN049896 JF416000 Kepler et al. 2017
Kanoksria zaquensis HMAS 246917 MT789696 MT789698 MT789700 MT797811 MT797809 Wang et al. 2023b
Kanoksria zaquensis HMAS 246915T MT789697 MT789699 MT789701 MT797812 MT797810 Wang et al. 2023b
Lecanicillium araneosus KY 11341T ON502832 ON502826 ON525443 ON525442 Chen et al. 2022
L. araneosus KY 11342 ON502837 ON502844 ON525445 ON525444 Chen et al. 2022
L. attenuatus CBS 402.78 AF339565 AJ292434 AF339614 EF468782 EF468888 EF468935 Kepler et al. 2017
L. lecanii CBS 102067T KM283795 MH862778 KM283771 KM283818 KM283838 KM283860 Kepler et al. 2017
L. lepidopterorum SD05152 MT705974 MT727045 Chen et al. 2020a
L. longisporum CBS 126.27T KM283797 AJ292385 KM283820 KR064300 KM283862 Kepler et al. 2017
L. muscarius MFLU 181145 MH497224 MH497223 MH497222 MH511807 MH511806 Kepler et al. 2017
L. neoaraneogenus GZU1031LeaT KX845705 KX845697 KX845699 KX845701 Shrestha et al. 2019
L. neocoleopterorum GY11242 MN093297 MN097815 MN097817 MN097814 Shrestha et al. 2019
L. pissodis CBS 118231T KM283799 KM283775 KM283822 KM283842 KM283864 Chen et al. 2020a
L. sabanensis JCh041 KC633263 KC633274 Kepler et al. 2017
Lecanicillium sp. YFCC 945 OQ509531 OQ506294 OQ511543 OQ511557 Wang et al. 2024b
L. uredinophilum KACC 44082T KM283782 KM283758 KM283806 KM283828 KM283848 Wang et al. 2020
L. uredinophilum KUN 101466 MG948307 MG948305 MG948309 MG948315 MG948311 MG948313 Wang et al. 2020
Pleurodesmospora acaricola R. Kirschner 4968 MZ435417 LC629776 Yeh et al. 2021
P. coccorum CBS 460.73 MH872455 MH860743 Yeh et al. 2021
P. entomophila BRIP 72652aT OR527526 OR527518 OR514842 OR514850 Tan and Shivas 2023
P. lemaireae BRIP 76543aT PQ792647 PQ806958 Tan and Shivas 2024
P. lepidopterorum DY10502 MW826577 MW834319 MW834318 Chen et al. 2021a
P. lepidopterorum DY10501T MW826576 MW834317 MW834315 MW834316 Chen et al. 2021a
P. sanduensis HKAS144399T PQ492342 PQ492703 PQ492710 PQ499068 PQ499074 PQ499081 This study
Samsoniella alboaurantium CBS 262.58T MG665232 AY624179 JQ425685 Mongkolsamrit et al. 2018
S. alboaurantium CBS 240.32 JF415979 AY624178 JF416019 JN049895 JF415999 Mongkolsamrit et al. 2018
S. alpina YFCC 5818 MN576809 MN576753 MN576979 MN576869 MN576923 Wang et al. 2020
S. alpina YFCC 5831 MN576810 MN576754 MN576980 MN576870 MN576924 Wang et al. 2020
S. anhuiensis RCEF2830T OM268848 OM268843 OM483864 OM751889 Wang et al. 2024a
S. anhuiensis RCEF2590 OR978316 OR978313 OR966516 OR989964 Wang et al. 2024a
S. antleroides YFCC 6113 MN576804 MN576748 MN576974 MN576864 MN576918 Wang et al. 2020
S. antleroides YFCC 6016T MN576803 MN576747 MN576973 MN576863 MN576917 Wang et al. 2020
S. aranea RCEF2831 OM268849 OM268844 OM483865 OM751882 OM802500 Wang et al. 2024a
S. aranea RCEF2868 OM268850 OM268845 OM483866 OM751883 OM802501 Wang et al. 2024a
S. asiatica YFCC 869T OQ476473 OQ506153 OQ506195 OQ506187 Wang et al. 2023a
S. asiatica YFCC 870 OQ476474 OQ506154 OQ506196 OQ506188 Wang et al. 2023a
S. asiatica YFCC 871 OQ476475 OQ506155 OQ506197 OQ506189 Wang et al. 2023a
S. aurantia TBRC 7271 MF140728 MF140764 MF140846 MF140791 MF140818 Mongkolsamrit et al. 2018
S. aurantia TBRC 7272 MF140727 MF140763 MF140845 MF140817 Mongkolsamrit et al. 2018
S. cardinalis YFCC 5830 MN576788 MN576732 MN576958 MN576848 MN576902 Wang et al. 2020
S. cardinalis YFCC 6144T MN576786 MN576730 MN576956 MN576846 MN576900 Wang et al. 2020
S. coccinellidicola YFCC 8772T ON621670 ON563166 ON676514 ON676502 ON568685 Wang et al. 2022
S. coccinellidicola YFCC 8773 ON621671 ON563167 ON676515 ON676503 ON568686 Wang et al. 2022
S. coleopterorum A19501T MT626376 MN101586 MT642600 MN101585 Chen et al. 2020c
S. cristata YFCC 6023 MN576792 OQ476480 MN576736 MN576962 MN576852 MN576906 Wang et al. 2020
S. cristata YFCC 7004T MN576793 OQ476481 MN576737 MN576963 MN576853 MN576907 Wang et al. 2020
S. duyunensis DY09162 OQ363114 OQ379242 OQ398146 Chen et al. 2023b
S. duyunensis DY07501 OR263307 OR263188 OR282780 OR282773 OR282776 Chen et al. 2023b
S. duyunensis DY09502 OR263427 OR263189 OR282781 OR282777 Chen et al. 2023b
S. erucae KY 11121T ON502835 ON502828 ON525425 ON525424 Chen et al. 2022
S. erucae KY 11122 ON502822 ON502847 ON525427 ON525426 Chen et al. 2022
S. farinospora YFCC 8774T ON621672 ON563168 ON676516 ON676504 ON568687 Wang et al. 2022
S. farinospora YFCC 9051 ON621673 ON563169 ON676517 ON676505 ON568688 Wang et al. 2022
S. fusiformispora RCEF5406 OM268851 OM268846 OM751890 Wang et al. 2024a
S. fusiformispora RCEF2588T OR978315 OR978312 Wang et al. 2024a
S. guizhouensis KY 11161T ON502830 ON502823 ON525429 ON525428 Chen et al. 2022
S. guizhouensis KY 11162 ON502846 ON502845 ON525431 ON525430 Chen et al. 2022
S. haniana YFCC 8769T ON621674 ON563170 ON676518 ON676506 ON568689 Wang et al. 2022
S. haniana YFCC 8770 ON621675 ON563171 ON676519 ON676507 ON568690 Wang et al. 2022
S. haniana YFCC 8771 ON621676 ON563172 ON676520 ON676508 ON568691 Wang et al. 2022
S. hepiali Cor-4 MN576799 MN576743 MN576969 MN576859 MN576913 Wang et al. 2020
S. hepiali YFCC 661 MN576795 MN576739 MN576965 MN576855 MN576909 Wang et al. 2020
S. hepiali ICMM 82-2T MN576794 MN576738 MN576964 MN576854 MN576908 Wang et al. 2020
S. hymenopterorum A19521 MN128224 MN101588 MT642603 Chen et al. 2020c
S. hymenopterorum A19522T MN128081 MN101591 MN101589 Chen et al. 2020c
S. inthanonensis TBRC 7915 MF140725 MF140761 MF140849 MF140790 MF140815 Mongkolsamrit et al. 2018
S. kunmingensis YHH 16002T MN576802 MN576746 MN576972 MN576862 MN576916 Wang et al. 2020
S. lanmaoa YFCC 6193 MN576790 MN576734 MN576960 MN576850 MN576904 Wang et al. 2020
S. lanmaoa YFCC 6148T MN576789 MN576733 MN576959 MN576849 MN576903 Wang et al. 2020
S. lasiocampidarum NTUPPMCC 20-061 MT974364 MT974211 MW200220 MW200229 Chuang et al. 2024
S. lasiocampidarum NTUPPMCC 20-062 T MT974361 MT974208 MW200218 MW200227 MW200236 Chuang et al. 2024
S. lasiocampidarum NTUPPMCC 20-063 MT974363 MT974210 MW200219 MW200238 Chuang et al. 2024
S. DL 10071T MN128076 MN101592 Chen et al. 2020c
S. DL 10072 MN128084 Chen et al. 2020c
S. lurida HKAS144387T PQ492339 PQ492700 PQ492707 PQ499065 PQ499078 This study
S. lurida HKAS144388 PQ492340 PQ492701 PQ492708 PQ499066 PQ499072 PQ499079 This study
S. neopupicola KY 11322 ON502833 ON502834 ON525435 ON525434 Chen et al. 2022
S. neopupicola KY 11321T ON502839 ON502843 ON525433 ON525432 Chen et al. 2022
S. pseudogunnii GY 407202 MZ831865 MZ831863 MZ855234 MZ855240 Chen et al. 2021b
S. pseudogunnii GY 407201 MZ827010 MZ827470 MZ855233 MZ855239 Chen et al. 2021b
S. pseudotortricidae YFCC 9052T ON621677 ON563173 ON676521 ON676509 ON568692 Wang et al. 2022
S. pseudotortricidae YFCC 9053 ON621678 ON563174 ON676522 ON676510 ON568693 Wang et al. 2022
S. pupicola DY 101682 MZ827635 MZ827008 MZ855232 MZ855238 Chen et al. 2021b
S. pupicola DY 101681T MZ827009 MZ827085 MZ855231 MZ855237 Chen et al. 2021b
S. ramosa YFCC 6020T MN576805 MN576749 MN576975 MN576865 MN576919 Wang et al. 2020
S. sanmingense CGMCC3.25661 PP179392 PP177395 PP482033 PP464664 PP464647 Pu et al. 2025
S. sanmingense CGMCC3.25662 T PP179393 PP177396 PP482034 PP464665 PP464648 Pu et al. 2025
S. sapaensis YFCC 873T OQ476489 OQ506152 OQ506194 OQ506186 Wang et al. 2023a
S. sapaensis YFCC 872 OQ476488 OQ506151 OQ506193 OQ506185 Wang et al. 2023a
S. YFCC 8766T ON621679 ON563175 ON676523 ON676511 ON568694 Wang et al. 2022
S. YFCC 8767 ON621680 ON563176 ON676524 ON676512 ON568695 Wang et al. 2022
S. YFCC 8768 ON621681 ON563177 ON676525 ON676513 ON568696 Wang et al. 2022
S. subasiatica HKAS144400T PQ492343 PQ492704 PQ492711 PQ499069 PQ499075 PQ499082 This study
S. tiankengensis KY 11741T ON502838 ON502840 ON525437 ON525436 Chen et al. 2022
S. tiankengensis KY 11742 ON502841 ON502849 ON525439 ON525438 Chen et al. 2022
S. tortricidae YFCC 6013 MN576807 MN576751 MN576977 MN576867 MN576921 Wang et al. 2020
S. tortricidae YFCC 6142 MN576808 MN576752 MN576978 MN576868 MN576922 Wang et al. 2020
S. tortricidae YFCC 6131T MN576806 MN576750 MN576976 MN576866 MN576920 Wang et al. 2020
S. torquatistipitata HKAS144411T PQ492345 PQ492706 PQ492713 PQ499071 PQ499077 PQ499084 This study
S. torquatistipitata HKAS144402 PQ492344 PQ492705 PQ492712 PQ499070 PQ499076 PQ499083 This study
S. vallis DY091092 OR263431 OR263190 OR282783 Chen et al. 2023b
S. vallis DY091091 OR263428 OR263191 OR282782 Chen et al. 2023b
S. vallis DY07242 OR263308 OR263186 OR282779 OR282775 Chen et al. 2023b
S. vallis DY07241T OR263306 OR263159 OR282778 OR282772 OR282774 Chen et al. 2023b
S. winandae MY12469.01T OM491231 OM491228 OM687896 OM687901 OM687899 Crous et al. 2023b
S. yuanzuiensis NTUPPMCC 20-064T MT974359 MT974206 MW200225 MW200234 Chuang et al. 2024
S. yuanzuiensis NTUPPMCC 20-065 MT974360 MT974207 MW200217 MW200226 MW200235 Chuang et al. 2024
S. yunnanensis YFCC 1527T MN576812 MN576756 MN576982 MN576872 MN576926 Wang et al. 2020
S. yunnanensis YFCC 1824 MN576813 MN576757 MN576983 MN576873 MN576927 Wang et al. 2020
S. yunnanensis YFCC 7282 MN576814 MN576758 MN576984 MN576874 MN576928 Wang et al. 2020
Simplicillium lanosoniveum CBS 101267 AF339554 AJ292395 DQ522357 DQ522405 DQ522463 Spatafora et al. 2007
Sim. lanosoniveum CBS 704.86 AF339553 DQ522358 DQ522406 DQ522464 Spatafora et al. 2007

In order to investigate the interspecific relationship among Samsoniella, a separated phylogenetic analysis based on combined four-gene (5P_TEF+3P_TEF+rpb1+MCM7) was performed with a larger taxa sampling from this genus (Table 2). The four loci were independently aligned with reference sequences using MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/). The alignments of each locus were improved using Trimal v.1.2 (Capella-Gutiérrez et al. 2009) and were concatenated using Sequence Matrix v. 1.7.8 (Vaidya et al. 2011). The final combined dataset was converted to a NEXUS file for Bayesian inference analysis and a FASTA file for maximum likelihood analysis using Aliview (Larsson 2014).

Table 2.

GenBank accession numbers of the Samsoniella used in this study.

Species strain 3P_TEF 5P_TEF rpb1 MCM7 References
Samsoniella alboaurantium CBS 240.32 JF416019 JN049895 Mongkolsamrit et al. 2018
S. alboaurantium CBS 262.58T MF416497 MF416654 Mongkolsamrit et al. 2018
S. alpina YFCC 5818T MN576979 OQ506160 MN576869 OQ506229 Wang et al. 2023a
S. alpina YFCC 5831 MN576980 OQ506161 MN576870 OQ506230 Wang et al. 2023a
S. antleroides YFCC 6016T MN576973 OQ506162 MN576863 OQ506231 Wang et al. 2023a
S. antleroides YFCC 6113 MN576974 OQ506163 MN576864 OQ506232 Wang et al. 2023a
S. anhuiensis RCEF2830T OM483864 OM751889 Wang et al. 2024a
S. anhuiensis RCEF2590 OR966516 OR989964 Wang et al. 2024a
S. aranea RCEF2831 OM483865 OM751882 Wang et al. 2024a
S. aranea RCEF2868 OM483866 OM751883 Wang et al. 2024a
S. asiatica YFCC 869T OQ506153 OQ506164 OQ506195 OQ506233 Wang et al. 2023a
S. asiatica YFCC 870 OQ506154 OQ506165 OQ506196 OQ506234 Wang et al. 2023a
S. asiatica YFCC 871 OQ506155 OQ506166 OQ506197 OQ506235 Wang et al. 2023a
S. aurantia TBRC 7271T MF140846 MF140791 Mongkolsamrit et al. 2018
S. aurantia YFCC 874 OQ506157 OQ506167 OQ506199 OQ506236 Wang et al. 2023a
S. aurantia YFCC 880 OQ506156 OQ506168 OQ506198 OQ506237 Wang et al. 2023a
S. cardinalis YFCC 5830 MN576958 OQ506169 MN576848 OQ506238 Wang et al. 2023a
S. cardinalis YFCC 6144T MN576956 OQ506170 MN576846 OQ506239 Wang et al. 2023a
S. coccinellidicola YFCC 8772T ON676514 ON676502 Wang et al. 2022
S. coccinellidicola YFCC 8773 ON676515 ON676503 Wang et al. 2022
S. A19501T MN101586 MT642600 Chen et al. 2020c
S. cristata YFCC 6023 MN576962 OQ506171 MN576852 OQ506240 Wang et al. 2023a
S. cristata YFCC 7004T MN576963 OQ506172 MN576853 OQ506241 Wang et al. 2023a
S. duyunensis DY09162 OQ398146 Chen et al. 2023b
S. duyunensis DY07501 OR282780 OR282773 Chen et al. 2023b
S. duyunensis DY09502 OR282781 Chen et al. 2023b
S. erucae KY11121T ON525425 Chen et al. 2022
S. erucae KY11122 ON525427 Chen et al. 2022
S. farinospora YFCC 8774T ON676516 ON676504 Wang et al. 2022
S. farinospora YFCC 9051 ON676517 ON676505 Wang et al. 2022
S. fusiformispora RCEF5406 OM751890 Wang et al. 2024a
S. guizhouensis KY11161T ON525429 Chen et al. 2022
S. guizhouensis KY11162 ON525431 Chen et al. 2022
S. haniana YFCC 8769T ON676518 ON676506 Wang et al. 2022
S. haniana YFCC 8771 ON676520 ON676508 Wang et al. 2022
S. hepiali ICMM 82-2T MN576964 OQ506173 MN576854 OQ506242 Wang et al. 2023a
S. hepiali YFCC 868 OQ506158 OQ506175 OQ506200 OQ506244 Wang et al. 2023a
S. hepiali YFCC 2702 MN576966 OQ506174 MN576856 OQ506243 Wang et al. 2023a
S. hymenopterorum A19521 MN101588 MT642603 Chen et al. 2020c
S. hymenopterorum A19522T MN101591 MN101589 Chen et al. 2020c
S. inthanonensis TBRC 7915T MF140849 MF140790 Mongkolsamrit et al. 2018
S. kunmingensis YHH 16002T MN576972 MN576862 Wang et al. 2023a
S. lanmaoa YFCC 6148T MN576959 OQ506176 MN576849 OQ506245 Wang et al. 2023a
S. lanmaoa YFCC 6193 MN576960 OQ506177 MN576850 OQ506246 Wang et al. 2023a
S. lasiocampidarum NTUPPMCC 20-061 MW200220 MW200229 Chuang et al. 2024
S. lasiocampidarum NTUPPMCC 20-062T MW200218 MW200227 Chuang et al. 2024
S. lasiocampidarum NTUPPMCC 20-063 MW200219 Chuang et al. 2024
S. DL 10071T MN101592 Chen et al. 2020c
S. lurida HKAS144387T PQ499065 This study
S. lurida HKAS144388 PQ499066 PQ499072 PV158406 This study
S. neopupicola KY11321T ON525433 Chen et al. 2022
S. neopupicola KY11322 ON525435 Chen et al. 2022
S. pseudogunnii GY407201T MZ855233 Chen et al. 2021b
S. pseudogunnii GY407202 MZ855234 Chen et al. 2021b
S. pseudotortricidae YFCC 9052T ON676521 ON676509 Wang et al. 2022
S. pseudotortricidae YFCC 9053 ON676522 ON676510 Wang et al. 2022
S. pupicola DY101681T MZ855231 Chen et al. 2021b
S. pupicola DY101682 MZ855232 Chen et al. 2021b
S. ramosa YFCC 6020T MN576975 OQ506178 MN576865 Wang et al. 2023a
S. sanmingense CGMCC3.25661 PP482033 PP464664 Pu et al. 2025
S. sanmingense CGMCC3.25662 PP482034 PP464665 Pu et al. 2025
S. sapaensis YFCC 872 OQ506151 OQ506179 OQ506193 OQ506247 Wang et al. 2023a
S. sapaensis YFCC 873T OQ506152 OQ506180 OQ506194 OQ506248 Wang et al. 2023a
S. YFCC 8766T ON676523 ON676511 Wang et al. 2022
S. YFCC 8767 ON676524 ON676512 Wang et al. 2022
S. subasiatica HKAS144400T PQ499069 PV158402 PQ499075 PV158407 This study
S. tiankengensis KY11741T ON525437 Chen et al. 2022
S. tiankengensis KY11742 ON525439 Chen et al. 2022
S. tortricidae YFCC 6131T MN576976 OQ506181 MN576866 OQ506249 Wang et al. 2023a
S. tortricidae YFCC 6142 MN576978 OQ506182 MN576868 OQ506250 Wang et al. 2023a
S. torquatistipitata HKAS144411T PQ499071 PQ499077 PV158408 This study
S. torquatistipitata HKAS144402 PQ499070 PQ499076 PV158409 This study
S. vallis DY091092 OR282783 Chen et al. 2023b
S. vallis DY091091 OR282782 Chen et al. 2023b
S. vallis DY07242 OR282779 Chen et al. 2023b
S. vallis DY07241T OR282778 OR282772 Chen et al. 2023b
S. winandae MY12469.01T OM687896 OM687901 Crous et al. 2023b
S. yuanzuiensis NTUPPMCC 20-064T MW200225 Chuang et al. 2024
S. yuanzuiensis NTUPPMCC 20-065 MW200217 MW200226 Chuang et al. 2024
S. yunnanensis YFCC 1527T MN576982 OQ506183 MN576872 OQ506251 Wang et al. 2020, 2023a
S. yunnanensis YFCC 1824 MN576983 OQ506184 MN576873 OQ506252 Wang et al. 2020, 2023a
Akanthomyces waltergamsii YFCC 883 OQ506159 OQ506201 OQ506253 Wang et al. 2023a

Maximum likelihood (ML) analysis was performed using IQ-TREE 1.6.12 (Minh et al. 2020) with branch support being estimated from 1000 ultrafast bootstraps. The Bayesian inference (BI) analysis was run on MrBayes on XSEDE (3.2.7a) in the CIPRES Science Gateway. The GTR+I+G model was selected as the best-fit substitution model by MrModeltest 2.3 implemented in MrMTgui v.1.0 (Nylander 2004; Nuin 2007). Four simultaneous Markov chains were run for 100,000,000 generations, and trees were sampled every 1000 generations. Finally, phylogenetic trees were visualised using Figtree v.1.4.0 (Rambaut 2016) and edited using Adobe Illustrator 2020.

Results

Phylogenetic analyses

The six-locus dataset (nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2) comprises 118 representative taxa sampled from nine genera within Cordycipitaceae, with two strains of Simplicillium lanosoniveum (CBS 101267 and CBS 704.86) selected as the outgroup. The ML tree inferred from the six-locus dataset is shown in Fig. 1, in which the seven strains generated in this study belong to three genera: Akanthomyces, Pleurodesmospora and Samsoniella. The isolate HKAS144393 clusters with Akanthomyces baishanensis (CGMCC3.25673 and CGMCC3.25674) with strong statistical support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). The isolate HKAS144399 constitutes a distinct lineage which branches off the clade of Pleurodesmospora acaricola and P. entomophila with maximum support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). The remaining five strains (HKAS144411, HKAS144402, HKAS144388, HKAS144402, and HKAS144400) group with species of Samsoniella with inadequate support.

Figure 1. 

Phylogram generated from maximum likelihood analysis of Cordycipitaceae based on a six-locus dataset (nrLSU, ITS, nrSSU, 3P_TEF, rpb1 and rpb2). SH-aLRT support ≥ 75%, ultrafast bootstrap support (UFB) ≥ 75%, and PP values ≥ 95% are indicated above or below branches. A hyphen (–) indicates values lower than 75% SH-aLRT, 75% UFB, and 95% PP. The isolates in this study are shown in bold red. Generic names are indicated on the right side of the tree. Ex-types are indicated by “T”.

To clarify the phylogenetic placements of the five specimens of Samsoniella, a separated phylogenetic tree based on four genes (5P_TEF+3P_TEF+rpb1+MCM7) was constructed with larger taxa sampling from Samsoniella. The four-locus dataset included 79 taxa of Samsoniella with 3077 bp characters (737 bp for 5P_TEF, 986 bp for nrSSU, 725 bp for 3P_TEF, 629 bp for rpb1). Akanthomyces waltergamsii YFCC 883 was designated as the out-group taxon. The ML tree (Fig. 2) shows that the isolates HKAS144387 and HKAS144388 are sisters to S. kunmingensis and are closely related to S. tortricidae, with moderate support (86% SH-aLRT / 89% UFB, Fig. 2). The isolate HKAS144400 shows a sister relationship to Samsoniella winandae with significant support (89% SH-aLRT / 94% UFB / 0.99 PP, Fig. 2). The isolates HKAS144411 and HKAS144402 were placed in a clade distantly related to other Samsoniella species with strong support (98% SH-aLRT / 100% UFB / 1.00 PP, Fig. 2). The guidelines of Maharachchikumbura et al. (2021) were followed when determining whether species were novel.

Figure 2. 

Phylogram generated from maximum likelihood analysis of Samsoniella based on a four-locus dataset (5P_TEF+3P_TEF+rpb1+MCM7). SH-aLRT support ≥ 75%, ultrafast bootstrap support ≥ 75%, and PP values ≥ 95% are indicated above or below branches. A hyphen (–) indicates values lower than 75% SH-aLRT, 75% UFB, and 95% PP. The isolates in this study are shown in bold red. Ex-types are indicated by “T”.

Taxonomy

Akanthomyces baishanensis H.L. Pu & J.Z. Qiu, in Pu, Yang, Keyhani, Yang, Zheng, Qiu, Mao, Shang, Lin, Xiong, Lin, Lai, Huang, Yuan, Liang, Fan, Ma, Qiu & Qiu, J. Fungi 11(1, no. 28): 16 (2025)

Fig. 3

Description.

Parasitic on moth (Lepidoptera). Sexual morph. See Pu et al. (2025). Asexual morph. Synnemata arising from the moth body, white, erect, simple, subuliform (2 × 2.7 mm) or subglobose (0.2 × 0.5 mm). Hyphae smooth, septate, hyaline, 1.4–2.5 μm ( = 1.8 µm, n = 30) in diam. Conidiophores developing from superficial hyphae of synnemata, micronematous, branched, smooth-walled, bearing solitary to clusters of phialides. Phialides 6–29.6 × 1.6–3.2 µm ( = 19 × 2.7 µm, n = 30), monophialidic, trimorphic, arising from anastomosing mycelia, slender filiform in shape (Fig. 3G), or arising from conidiophores, cylindrical (Fig. 3E, H, I) or subuliform (Fig. 3F) at basal portion, tapering into a thin neck. Conidia 3.2–4.7 × 1.8–2.8 µm ( = 3.9 × 2.2 µm, n = 50), forming on tip of phialides, hyaline, smooth-walled, fusiform, globose or broadly ovoid, gathering in chains.

Figure 3. 

Akanthomyces baishanensis (HKAS144393) a fungus on an adult moth b–d synnemata e–k phialides and conidia. Scale bars: 5 mm (a); 1 mm (b); 0.5 mm (c); 100 µm (d); 30 µm (g); 20 µm (e, f, h, i); 10 µm (j); 5 µm (k).

Material examined.

China • Liaoning Province, Tieling City (42°17'22.3"N, 123°50'22.2"E), on a dead adult moth (Lepidoptera) on the stem of a plant, 25 August 2023, Ting-Chi Wen, HLJ2023082515 (HKAS144393).

Notes.

Phylogenetic analysis based on six gene markers revealed that the specimen HKAS144393 and Akanthomyces baishanensis (CGMCC3.25673 and CGMCC3.25674) form a robustly supported monophyletic clade (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). Both HKAS144393 and A. baishanensis exhibit parasitic relationships with adult moths. Notably, HKAS144393 represents a naturally occurring asexual morph characterised by trimorphic conidiogenous structures, while the asexual morph of A. baishanensis described by Pu et al. (2025) was obtained from culture and displayed only a single type of conidiogenous structure. Our observations demonstrate greater morphological plasticity in this species than previously recognised.

Pleurodesmospora sanduensis J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Fig. 4

Etymology.

In reference to the location of the type specimen, Sandu County of Guizhou Province, China.

Description.

Parasitic on adult Lepidoptera. Sexual morph. Undetermined. Asexual morph. Colonies on natural specimen white, sparse, only covering the abdomen of host. Conidiophores micronematous, cylindrical, erect or procumbent, sparsely branched, smooth, hyaline, septate, ca. 1.3–2.8 μm ( = 2 µm, n = 30) in width, from the middle part to the distal end densely covered by numerous minute, dentiform pegs, 0.7–1.8 × 0.5–0.8 µm ( = 1 × 0.7 µm, n = 25). Conidia obovoid, globose, smooth-walled, 2.7–4.8 × 1.4–2.5 µm ( = 3.7 × 2 µm, n = 30), arranged in short chains.

Figure 4. 

Pleurodesmospora sanduensis (HKAS144399) a fungus on host b, c obverse (b) and reverse (c) of colony on PDA d–I conidiophore and conidiogenous cells j, k–m conidia adhering in a chain. Scale bars: 2 mm (a); 20 µm (d, e, f, h, i); 10 µm (g, j, k); 5 µm (l, m).

Culture characteristics.

colonies on PDA reaching a diameter of 42 mm in three weeks at room temperature, white, circular, velvety, flat, edge entire, surface wrinkled, with radially striate, mycelia dense at centre, becoming loose outward, reverse cream-yellow.

Type.

China • Guizhou Province, Qiannan Buyei and Miao Autonomous Prefecture, Sandu County, the Yaoren Mountain (25°59'41"N, 107°56'41"E, alt. 987.1 m), on a dead adult of Lepidoptera on leaf litter, 08 July 2023, Jing Bu, YRS23070803B (holotype HKAS144399, ex-holotype KUNCC24-18538).

Notes.

Six-locus phylogenetic analyses show that the Pleurodesmospora sanduensis is separated from other species of Pleurodesmospora with strong statistical support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). Pleurodesmospora sanduensis is phylogenetically closely related to P. acaricola and P. entomophila. Pairwise nucleotide differences between P. sanduensis and P. entomophila (Tan and Shivas 2023) revealed 6 bp in nrLSU, 28 bp in ITS, 25 bp in 3P_TEF, and 74 bp in rpb2. These molecular divergences support the recognition of P. sanduensis as a novel species, consistent with the taxonomic thresholds proposed by Jeewon and Hyde (2016). Pleurodesmospora sanduensis is similar to P. acaricola in producing loose and white colonies covering the host. However, Pleurodesmospora sanduensis differs from P. acaricola by its larger conidia (2.7–4.8 × 1.4–2.5 µm vs. 2.5–3 × 2 µm) in chains, but it is solitary in P. acaricola (Yeh et al. 2021). Additionally, chlamydospores are observed in P. acaricola, while it is absent in P. sanduensis.

Samsoniella lurida J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Fig. 5

Etymology.

Referring to the pale stromata arising from the host, which is different from other species in Samsoniella.

Figure 5. 

Samsoniella lurida (HKAS144387) a habitat b stromata and synnemata arising from host c, d fertile part with perithecia e vertical section of perithecia f ascus cap g, h asci i ascospore j synnema k–m conidiophores, phialides and conidia. Scale bars: 5 mm (b); 3 mm (c, d); 200 µm (e); 20 µm (f, g, h, i); 0.5 mm (j); 30 µm (k); 10 µm (l, m).

Description.

Parasitic on cocoon of Lepidoptera. Sexual morph. Stromata 6.4–8.6 mm long, pale orange, cylindrical, unbranched or branched at base, arising from the head and end of the insect cocoon. Stipe cylindrical, pale orange, 0.4–0.8 mm wide. Fertile part clavate, pale orange, 2.5–3.1 × 0.6–1 mm, often with sterile tip (0.5–1.2 mm). The lateral sides had a longitudinal ditch without perithecia. Perithecia superficial, crowded, broadly ovoid, 205–455 × 144–274 µm ( = 319 × 198 µm, n = 15). Asci hyaline, cylindrical, 128–219 × 1.4–3.6 µm ( = 170 × 2.6 µm, n = 20). Ascus caps hemispherical, hyaline, 1.2–1.8 × 1.6–3 μm ( = 1.5 × 2.5 μm, n = 20). Ascospores filiform, hyaline, aseptate, 86–175 × 0.4–1 μm ( = 132 × 0.7 μm, n = 15) wide, do not disarticulate into part-spores. Asexual morph. Synnemata arising from the middle of the host, erect, single, 1.2 × 0.2–0.35 mm, producing a mass of floccose conidia at the apex. Hyphae smooth-walled, hyaline, septate, 1.5–3.6 µm ( = 2.5 µm, n = 30) wide. Conidiophores smooth-walled, cylindrical, verticillate, 2.3–9.1 × 1.9–2.9 µm ( = 4.9 × 2.3 µm, n = 15). Phialides verticillate, in whorls of two to five, lageniform, 4.2–7.3 µm ( = 5.7 µm, n = 30) long, basal portion cylindrical, tapering abruptly toward the apex, from 1.7–2.5 µm ( = 2.1 µm, n = 30) wide (base) to 0.5–0.9 µm ( = 0.7 µm, n = 30) wide (apex). Conidia smooth-walled, hyaline, fusiform, 1.9–2.7 × 1.1–1.9 µm ( = 2.3 × 1.4 µm, n = 30).

Type.

China • Yunnan Province, Kunming City, Panlong District, the Longchuanqiao Forest Park (25°17'05.26"N, 102°78'07.88"E, alt. 1963.9 m), on a lepidopteran cocoon buried in soil, 20 September 2023, Jing Bu, LCQ2023092034B (holotype HKAS144387).

Additional materials examined.

China • Yunnan Province, Kunming, Xishan District, Tuanjie Country (25°08'61.38"N, 102°46'11.71"E, alt. 1971.2 m) on lepidopteran larva buried in soil, 17 October 2023, Jing Bu, MLSX2023101741B (HKAS144388, living culture KUNCC24-18534).

Notes.

Phylogenetic analyses revealed that two specimens of Samsoniella lurida (HKAS144387 and HKAS144388) are closely related to S. kunmingensis and S. tortricidae (Fig. 2). Morphological comparisons demonstrate distinct characteristics among these species. S. kunmingensis and S. tortricidae produce larger, brightly coloured, multi-branched stromata with oblong-ovate to fusiform perithecia; S. lurida is characterised by pallid stromata and broadly ovoid perithecia (Table 3). Furthermore, S. lurida possesses a unique sterile tip, a feature not observed in other known Samsoniella species. Sequence comparisons between S. lurida and S. kunmingensis showed that there are 8 bp differences within 943 bp 3P_TEF and 12 bp differences within 979 bp rpb2. S. lurida differs from S. tortricidae by 10 bp within 943 bp 3P_TEF and 11 bp within 979 bp rpb2. Both morphological characters and molecular analyses support this fungus as a new species in Samsoniella (Jeewon and Hyde 2016).

Table 3.

Comparison between the sexual morphs in Samsoniella. The data generated in this study are shown in bold.

Species Host Stromata (mm) Fertile Part (mm) Perithecia (µm) Asci (µm) Ascospores (µm) References
S. cristata Lepidopteran pupa solitary or two, 25–40 long, crista-like crista-like or subulate, 3.1–18.5 × 0.9–8.0 superficial, narrowly ovoid, 370–485 × 150–245 cylindrical,8-spored,180–356 × 3.0–4.8 bola-shaped, septate, 155–290 × 1.0–1.3 Wang et al. 2020
S. inthanonensis Lepidopteran larva gregarious, 20–50 long, 1–1.5 broad, cylindrical to clavate clavate, 8–15 × 1.5–2 superficial, ovoid, 417.5–474.5 × 205–260 cylindrical, 8-spored, 300 × 2–2.5 bola-shaped, 3 or 4 septate, 221.5–267 × 0.5–1 Mongkolsamrit et al. 2018
S. kunmingensis Lepidopteran pupa solitary, 23 long, cylindrical to clavate clavate, 3.3–4.2 × 0.8–1.2 superficial, narrowly ovoid to fusiform,
330–395 × 110–185
cylindrical, 8-spored, 150–297 × 3.0–4.6 bola-shaped, septate, 127–190 × 0.8–1.5 Wang et al. 2020
S. lanmaoa Lepidopteran pupa two to five, 38–69 long, palmately branched clavate, 8.5–11.2 × 0.6–2.3 superficial, narrowly ovoid to fusiform, 360–467 × 124–210 cylindrical, 8-spored, 160–325 × 3.3–4.8 bola-shaped, septate, 135–260 × 0.9–1.4 Wang et al. 2020
S. lurida Lepidopteran pupa 6.4–8.6 long, cylindrical clavate, 2.5–3.1 × 0.6–1.0, sterile tip 0.5–1.2 wide superficial, broadly ovoid, 205–455 × 144–274 cylindrical, 128–219 × 1.4–3.6 filiform, aseptate, 86.1–174.7 × 0.4–1.0 This study
S. pseudotortricidae Lepidopteran pupa solitary to several, 20–65 long, clavate clavate to subulate, 10–17 × 1.5–4.2 superficial, narrowly ovoid to fusiform, 285.7–313.2 × 149.2–154.9 / / Wang et al. 2022
S. torquatistipitata Coleoptera solitary, 4.4 × 0.1–0.3, clavate clavate, 1.5 × 0.4 superficial, lageniform, 263–353 × 174–238 cylindrical, 8-spored, up to 114–173 × 1.6–3.3 filiform, 86.2–125.7 × 0.3–0.6 This study
S. tortricidae Lepidopteran cocoon gregarious, 25–60 clavate to subulate, 5–15 × 1.2–2.3 superficial, narrowly ovoid to fusiform, 350–468 × 140–225 cylindrical, 8-spored, 170–285 × 2.8–4.0 bola-shaped, septate, 120–235 × 0.8–1.3 Wang et al. 2020
S. winandae Lepidopteran cocoon multiple, 8–20 long and 0.5–2 broad, cylindrical to enlarging apically clavate, 2–8 × 2–3 superficial, narrowly ovoid, 500–570 × 135–180 cylindrical, 8-spored, 300 × 4–5 bola shaped, 3 or 5 septate, 200–265 × 0.5–1 Crous et al. 2023b

Samsoniella torquatistipitata J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Fig. 6

Etymology.

From the Latin “torqu”, referring to the stipe of stroma, is torsional rather than cylindrical.

Figure 6. 

Samsoniella torquatistipitata (HKAS144411) a fungus on the adult ant b fertile part c vertical section of stroma d perithecium e–g asci h ascospore i, j ascus cap k, l obverse (k) and reverse (l) of colony on PDA; m–r conidiophores and phialides; s, t conidia. Scale bars: 3 mm (a); 1 mm (b); 200 µm (c); 100 µm (d); 50 µm (e, m); 30 µm (f, g, h); 20 µm (n, o); 10 µm (i, j, p, q, r); 3 µm (s, t).

Description.

Parasitic on ant (Hymenopteran). Sexual morph. Stroma arising from head of ant, orange, single, simple, 4.4 × 0.1–0.3 mm. Stipe fleshy, torsional, reddish-orange, up to 2.7 mm long. Fertile part cylindrical, becoming acuate toward the end, reddish-orange, 1.7 × 0.4 mm. Perithecia lageniform, superficial, 255–368 × 163–244 µm ( = 288 × 190 µm, n = 5), growing on one side of fertile part. Asci cylindrical, hyaline, 8-spored, 114–173 × 1.6–3.3 µm ( = 135 × 2.4 µm, n = 20), with hemispherical cap, 1.7–2.5 × 1.1–1.8 µm ( = 2.2 × 1.4 µm, n = 20). Ascospores filiform, aseptate, hyaline, 86–125 × 0.3–0.6 μm ( = 98.6 × 0.5 µm, n = 15), non-disarticulating. Asexual morph. produced on the cultures, hyphomycetous. Hyphae smooth, septate, hyaline, 1.2–2.0 μm ( = 1.6 µm, n = 30) in diam. Conidiophores smooth-walled, cylindrical or elongated ellipsoid, verticillate with phialides in whorls of two to five or singly along the hyphae, 4.4–18.4 × 1.7–3.9 µm ( = 8.4 × 2.7 µm, n = 30). Phialides lageniform, 6.1–10.7 µm ( = 8.0 µm, n = 30) long, basal portion inflated, 1.8–3.5 µm ( = 2.6 µm, n = 30) wide, tapering abruptly into a thin neck, 0.7–1.4 µm ( = 0.9 µm, n = 30) wide. Conidia subglobose, hyaline, 1.8–2.8 µm ( = 2.3 µm, n = 50) in diam.

Culture characteristics.

colonies on PDA reaching 40 mm in 14 days at room temperature, circular, flat, edge entire, mycelia dense, cottony, creamy yellow at centre, becoming white outward, with concentric rings, sporulation, reverse creamy yellow, with radially striate.

Type.

China • Yunnan Province, Puer City, Simao District, Plum Lake Park (22°72'66.83"N, 100°97'83.57"E, alt. 1354.5 m), on an adult ant (Hymenoptera) buried in soil, 25 October 2023, Jing Bu, DSSZ20231025110B (holotype HKAS144411, ex-holotype KUNCC24-18535).

Additional materials examined.

China • Yunnan Province, Puer, Simao District, Plum Lake Park (22°75'14.29"N, 100°97'73.13"E, alt. 1338.8 m), on lepidopteran cocoon buried in soil, 26 October 2023, Jing Bu, MZH20231025119B (paratype HKAS144402, ex-paratype KUNCC24-18536).

Notes.

The phylogenetic tree (Fig. 2) showed that Samsoniella torquatistipitata constitutes a distinct clade distantly related to S. cristata, S. kunmingensis, S. lurida, and S. tortricidae. A pairwise comparison of 3P_TEF, rpb1, MCM7, and rpb2 showed that S. torquatistipitata differs from S. cristata, S. kunmingensis, S. lurida, and S. tortricidae in 1–6 bp, 3–4 bp, 6–9 bp, and 4–16 bp, respectively. Samsoniella torquatistipitata is characterised by the small, single stroma (4.4 mm long), reddish-orange, cylindrical fertile part, superficial, lageniform perithecia, and the association with adult ants. Morphological comparisons of the novel taxa with closely related Samsoniella species are provided in Table 3. Both morphological characteristics and molecular analyses support this fungus as a new species in Samsoniella (Jeewon and Hyde 2016).

Samsoniella subasiatica J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Fig. 7

Etymology.

Referring to the morphology similar to Samsoniella asiatica.

Figure 7. 

Samsoniella subasiatica (HKAS144400) a habitat b synnema arising from pupa c lower and upper view of the colony on PDA d synnema e, f conidiophores g–i phialides j, k conidia. Scale bars: 2 mm (b); 1 mm (d); 50 µm (e); 30 µm (f); 10 µm (g, h, i, j); 2 µm (k).

Description.

Parasitic on pupa of Lepidoptera. Sexual morph. Undetermined. Asexual morph. Synnema arising from middle part of pupa, solitary, erect, flexuous, unbranched, 2.8 × 0.2 mm. Stipe cylindrical, pale orange. Hyphae smooth-walled, septate, hyaline 1.3–2.8 µm ( = 2.0 µm, n = 50). Conidiophores grouped together at the apex of synnema and the head of pupa, verticillate 3.6–7.4 × 2–3 µm ( = 5.2 × 2.4 µm, n = 20). Phialides lageniform, usually in whorls of two to five, 4.2–6.8 µm ( = 5.6 µm, n = 50) long, globose at basal portion, tapering gradually toward the apex, from 1.8–2.4 µm ( = 2.1 µm, n = 50) wide (base) to 0.6–1 µm ( = 0.8 µm, n = 50) wide (apex). Conidia single, smooth-walled, hyaline, fusiform to oval, 1.9–2.9 × 1.4–1.8 μm ( = 2.4 × 1.6 µm, n = 50).

Culture characteristics.

Colonies on PDA reaching a diameter of 27–29 mm in two weeks at room temperature, white, circular, velvety, mycelia dense, becoming loose in the outmost ring, reverse brightly yellow.

Type.

China • Guizhou Province, Qiannan Buyei and Miao Autonomous Prefecture, Anlong County (24°99'08.43"N, 105°59'76.06"E, alt. 1395.6 m), on lepidopteran pupa on leaf litter, 07 September 2023, Jing Bu, Al2023090717B (holotype HKAS144400, ex-holotype KUNCC24-18537).

Notes.

Samsoniella subasiatica morphologically resembles S. asiatica (Wang et al. 2023a) by producing a flexuous synnema, pale orange stipe, with a mass of conidia at the apex. However, S. subasiatica differs from S. asiatica in having simple synnema and larger conidia (1.9–2.9 μm vs. 1.1–1.8 μm) (Table 4). The synnema of S. asiatica is branched at the base (Wang et al. 2023a). Furthermore, phylogenetic analysis based on four loci revealed that S. subasiatica is sister to S. winandae, with moderate statistical support (89% SH-aLRT / 94% UFB / 0.99 PP; Fig. 2). However, S. subasiatica can be distinguished from S. winandae by its significantly smaller synnemata and phialides (4.2–6.8 × 1.8–2.4 µm vs. 5–12 × 2–3 µm) (Table 4). Additionally, a comparison of nucleotide sequences between S. subasiatica and S. winandae indicated that there are 6 bp differences in 3P_TEF, 14 bp in rpb1, and 8 bp in rpb2. Based on the recommendations made by Jeewon and Hyde (2016), we determined this fungus as a novel species.

Table 4.

Comparison between the asexual morphs in Samsoniella. The data generated in this study are shown in bold.

Species Host Synnemata (mm) Conidiophores (µm) Phialides Phialides Size (µm) Conidia (µm) References
S. aurantia Lepidopteran larva 25–75 × 1–1.5 150 × 2–3 / (5–)7.5(–9) × 2–3 fusiform, oval with pointed ends, (2–)2.5(–3)
× 1–2
Mongkolsamrit et al. 2018
S. asiatica Lepidopteran pupa 4–26 × 0.4–1.5 4.6–10.3 × 0.8–1.9 verticillate, in whorls of two to four, or solitary on hyphae 2.7–8.6 × 0.7–1.7, 0.6–1.1 wide at apex fusiform or oval, 1.1–1.8 × 0.8–1.2 Wang et al. 2023a
S. cristata Lepidopteran pupa / 3.6–11.5 × 1.7–2.5 verticillate, in whorls of two to five, or solitary on hyphae 4.5–23.2 × 1.6–2.7, 0.5–1.1 wide at apex fusiform or oval, 2.4–3.2 × 1.6–2.3 Wang et al. 2020
S. inthanonensis Lepidopteran larva / 2–3 wide verticillate, in whorls of two to five, cylindrical basal portion basal (4–)6.5–10(–12) × (1–)1.5–2(3), neck (1–)2.5(–4) × 0.5–1 fusiform, (2–)3(–3.5) × 1.5–2 Mongkolsamrit et al. 2018
S. lanmaoa Lepidopteran pupa / 3.8–13.3 × 1.5–2.1 verticillate, in whorls of two to six, usually solitary on hyphae 3.5–20.7 × 1.7–2.6, 0.5–1.1 wide at apex fusiform or oval, 1.9–2.7 × 1.4–2.0 Wang et al. 2020
S. lurida Lepidopteran pupa 1.2 × 0.2–0.35 2.3–9.1 × 1.9–2.9 verticillate, in whorls of two to five 4.2–7.3 × 1.7–2.5, 0.5–0.9 wide at apex fusiform, 1.9–2.7 × 1.1–1.9 This study
S. pseudotortricidae Lepidopteran pupa / 6.6–26.5 × 1.1–2.5 verticillate, in whorls of two to five, usually solitary on hyphae 5.4–6.9 × 1.0–1.6, 0.5–0.8 wide at apex fusiform or oval, 0.9–1.5 × 0.8–1.3 Wang et al. 2022
S. subasiatica Lepidopteran pupa 2.8 × 0.2 3.6–7.4 × 2–3 verticillate, in whorls of two to five 4.2–6.8 × 1.8–2.4, 0.6–1.0 wide at apex fusiform to oval, 1.9–2.9 × 1.4–1.8 This study
S. torquatistipitata Coleopteran adult / 4.4–18.4 × 1.7–3.9 / 6.1–10.7 × 1.8–3.5, 0.7–1.4 wide at apex subglobose, up to 1.8–2.8 in diameter This study
S. vallis Lepidopteran pupa / 11.3–22.1 × 1.3–1.4 single phialide or whorls of two to four 7.2–8.1 × 2.8–3.2 fusiform to ellipsoidal, 2.3–3.1 × 1.5–2.1 Chen et al. 2023b
S. winandae Lepidopteran pupa and cocoon 12 × 2 / verticillate, in whorls of two to five 5–12 × 2–3 ellipsoidal, 1.5–3 × 1–2 Crous et al. 2023b

Discussion

Morphology-phylogeny of Akanthomyces sensu lato

Akanthomyces sensu lato is a monophyletic lineage, and it was segregated into four genera, including Akanthomyces sensu stricto, Arachnidicola, Lecanicillium and Kanoksria, corresponding to their morphological and ecological traits (Khonsanit et al. 2024; Wang et al. 2024b, Fig. 1). Akanthomyces sensu stricto comprises seventeen species pathogenic to moths, characterised by white to creamy synnemata with cylindrical, papillate phialides and catenulate conidia (Aini et al. 2020; Khonsanit et al. 2024). Arachnidicola comprises twelve species primarily pathogenic to spiders, displaying isaria-like anamorphs (Mongkolsamrit et al. 2018; Chen et al. 2022; 2023a; Wang et al. 2024b), except for Akanthomyces thailandicus, which has a lecanicillium-like anamorph (Mongkolsamrit et al. 2018). Lecanicillium includes twelve species pathogenic to diverse hosts (e.g., Lepidoptera, Coleoptera, Hemiptera, spiders) with acremonium-like and verticillium-like anamorphs (Chiriví-Salomón et al. 2015; Chen et al. 2017, 2020a, 2020b, 2022; Manfrino et al. 2022). Kanoksria, a monotypic genus basal to the others, exhibits simplicillium-like anamorphs and is a hyperparasite on Ophiocordyceps sinensis (Wang et al. 2023b).

In this study, we identified a moth-pathogenic species, Akanthomyces baishanensis, which exhibits the typical phialide characteristics of Akanthomyces sensu stricto, along with previously undescribed phialide types within this clade. Although molecular data provide precise taxonomic evidence, morphological and ecological traits remain indispensable. An integrated taxonomy approach is necessary for resolving these complex fungal groups. Furthermore, ecological features may also provide valuable insights for the identification and discovery of novel Akanthomyces species.

The molecular phylogeny and morphology of Samsoniella

Sexual morphs of Samsoniella share similarities in producing yellowish to reddish-orange, fleshy, simple to branched stromata; superficial, ovoid to fusiform perithecia; cylindrical asci with thickened apex and filiform, multiseptate, non-disarticulating ascospores (Mongkolsamrit et al. 2018). Species of this genus are indistinguishable solely based on sexual morphology. However, they can be divided into two types based on their stroma size: Type Ia includes nine species with a length of stromata more than 25 mm and is pathogenic to lepidopteran hosts (Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023b); Type IIa includes six species with a length of stromata lower than 25 mm and are pathogenic to lepidopteran and hymenopteran hosts or hyperparasitic to Cordyceps species (Wang et al. 2020; Crous et al. 2023b) (Table 5). In this study, we introduce two new species in this group, namely, Samsoniella lurida and S. torquatistipitata, based on their sexual and asexual morphs. It is worth noting that S. torquatistipitata is pathogenic to an adult ant and has a very small, solitary, simple, reddish-orange stroma (4.4 mm in length). This is the first time to report the sexual typified species from an adult ant and contribute to the morphological diversity of Samsoniella.

Table 5.

Morphological synopsis of Samsoniella species.

Type Species Morphological characteristics Host References
Type Ia S. antleroides, S. aurantia, S. cristata, S. inthanonensis, S. lanmaoa, S. pseudotortricidae, S. ramosa, S. sapaensis, S. tortricidae. Stromata orange, fleshy, solitary to gregarious, simple or branched, more than 25 mm in length Lepidoptera Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023b
Type IIa S. cardinalis, S. hepiali, S. kunmingensis, S. lurida, S. torquatistipitata, S. winandae. Stromata orange, fleshy, solitary to gregarious, usually unbranched, less than 25 mm in length Cordyceps sp., Lepidoptera Wang et al. 2020; Crous et al. 2023b
Type Ib S. asiatica, S. aurantia, S. coccinellidicola, S. duyunensis, S. erucae, S. haniana, S. lasiocampidarum, S. ramosa, S. sapaensis, S. subasiatica, S. tiankengensis, S. vallis, S. winandae, S. yuanzuiensis, S. yunnanensis. Synnemata erect, terminal irregularly branched, with conidial mass at the subterminal region of synnemata, conidal mass powdery and floccose Lepidoptera, Coleoptera, Hymenoptera, Cordyceps sp. Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023a; Chen et al. 2022, 2023b; Crous et al. 2023b; Chuang et al. 2024
Type IIb S. alpina, S. anhuiensis, S. aranea, S. hepiali, S. hymenopterorum, S. , S. neopupicola, S. pupicola, S. pseudogunnii, S. sanmingense. White colonies surround the host surface without synnemata Lepidoptera, Coleoptera, Hymenoptera, Spider. Chen et al. 2020c, 2021b, 2022; Wang et al. 2020, 2022, 2024a; Pu et al. 2025

The asexual morphs of Samsoniella have been known from 39 species. Macromorphologically, they can be categorised into two types: Type Ib includes 16 species which have well-developed stromata and are pathogenic to Lepidoptera, Coleoptera, Hymenoptera and Cordyceps sp. (Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023a; Chen et al. 2022, 2023b; Crous et al. 2023b; Chuang et al. 2024); Type IIb includes 15 species which form white colonies on the host surface and are pathogenic to Lepidoptera, Coleoptera, Hymenoptera, and spiders (Chen et al. 2020c, 2021b, 2022; Wang et al. 2020, 2022, 2024a). Our new species S. subasiatica was known only from its asexual morphs. This species has well-developed stroma covered with a white, powdery conidia mass, extremely resembling S. asiatica. However, these two species are phylogenetically distant, indicating that characteristics of asexual morphs have less taxonomic significance in interspecific demarcation.

Collectively, taxonomic inferences from phylogenetic analyses do not align with the morphological categories outlined in Table 5. The morphological plasticity of Samsoniella species limits their utility in taxonomy, necessitating molecular analyses for accurate species delineation (Mongkolsamrit et al. 2018). The six-locus (nrLSU+ITS+nrSSU+3P_TEF+rpb1+rpb2) phylogeny effectively resolves genetically distant species, while it struggles with closely related taxa, particularly due to the limited resolution of the ITS regions. In contrast, the four-gene (5P_TEF+3P_TEF+rpb1+MCM7, Wang et al. 2023a) dataset provides superior resolution, highlighting its importance in refining the taxonomy of Samsoniella.

Acknowledgements

We would like to thank Shaun Pennycook for checking the Latin diagnosis of the new species.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31760014) and the Science and Technology Foundation of Guizhou Province (No. [2019]2451-3). Shi-Ke Huang acknowledges the Department of Education of Guizhou Province (No: [2022]310).

Author contributions

Investigation: SWX, SKH, XZ, ZHL, ZLL, YY. Resources: JCK, HGZ, ZJH, KDH. Writing - origi­nal draft: JB. Writing - review and editing: DPW, TCW, NNW, XCP.

Author ORCIDs

Jing Bu https://orcid.org/0009-0006-6861-7770

De-Ping Wei https://orcid.org/0000-0002-6576-2239

Zheng-Hui Liu https://orcid.org/0000-0001-7022-4075

Zhong-Liang Liu https://orcid.org/0009-0007-9519-1418

Ji-Chuan Kang https://orcid.org/0000-0002-6294-5793

Xing-Can Peng https://orcid.org/0000-0002-7271-7639

Zhang-Jiang He https://orcid.org/0000-0002-7120-1227

Shi-Ke Huang https://orcid.org/0000-0002-2936-396X

Xian Zhang https://orcid.org/0009-0008-0919-4303

Kevin D. Hyde https://orcid.org/0000-0002-2191-0762

Nalin N. Wijayawardene https://orcid.org/0000-0003-0522-5498

Ting-Chi Wen https://orcid.org/0000-0003-1744-5869

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

  • Aini AN, Mongkolsamrit S, Wijanarka W, Thanakitpipattana D, Luangsa-ard JJ, Budiharjo A (2020) Diversity of Akanthomyces on moths (Lepidoptera) in Thailand. MycoKeys 71: 1–22. https://doi.org/10.3897/mycokeys.71.55126
  • Alves VCS, Lira RA, Lima JMS, Barbosa RN, Bento DM, Barbier E, Bernard E, Souza-Motta CM, Bezerra JDP (2022) Unravelling the fungal darkness in a tropical cave: Richness and the description of one new genus and six new species. Fungal Systematics and Evolution 10(1): 139–167. https://doi.org/10.3114/fuse.2022.10.06
  • Araújo JPM, Lebert BM, Vermeulen S, Brachmann A, Ohm RA, Evans HC, de Bekker C (2022) Masters of the manipulator: Two new hypocrealean genera, Niveomyces (Cordycipitaceae) and Torrubiellomyces (Ophiocordycipitaceae), parasitic on the zombie ant fungus Ophiocordyceps camponoti-floridani. Persoonia 49(1): 171–194. https://doi.org/10.3767/persoonia.2022.49.05
  • Boudier E (1885) Note sur un nouveau genre et quelques nouvelles especes des Pyrenomycetes. Revue Mycologique Toulouse 7: 224–227.
  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  • Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108(8): 864–872. https://doi.org/10.1017/S0953756204000607
  • Chen MJ, Huang B, Li ZZ, Spatafora JW (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124(1): 301–308. https://doi.org/10.5248/124.301
  • Chen WH, Han YF, Liang JD, Tian WY, Liang ZQ (2020c) Morphological and phylogenetic characterisations reveal three new species of Samsoniella (Cordycipitaceae, Hypocreales) from Guizhou, China. MycoKeys 74: 1–15. https://doi.org/10.3897/mycokeys.74.56655
  • Chen WH, Han YF, Liang JD, Tian WY, Liang ZQ (2021a) Multi-gene phylogenetic evidence indicates that Pleurodesmospora belongs in Cordycipitaceae (Hypocreales, Hypocreomycetidae) and Pleurodesmospora lepidopterorum sp. nov. on pupa from China. MycoKeys 80: 45–55. https://doi.org/10.3897/mycokeys.80.66794
  • Chen WH, Liang JD, Ren XX, Zhao JH, Han YF, Liang ZQ (2022) Species diversity of Cordyceps-like fungi in the Tiankeng Karst region of China. Microbiology Spectrum 10: e01975–e22. https://doi.org/10.1128/spectrum.01975-22
  • Chen WH, Liang JD, Ren XX, Zhao JH, Han YF (2023a) Study on species diversity of Akanthomyces (Cordycipitaceae, Hypocreales) in the Jinyun Mountains, Chongqing, China. MycoKeys 98: 299–315. https://doi.org/10.3897/mycokeys.98.106415
  • Chen WH, Liang JD, Ren XX, Zhao JH, Han YF (2023b) Two new species of Samsoniella (Cordycipitaceae, Hypocreales) from the Mayao River Valley, Guizhou, China. MycoKeys 99: 209–226. https://doi.org/10.3897/mycokeys.99.109961
  • Chen WH, Li D, Shu HL, Liang JD, Zhao JH, Tian WY, Han YF (2025) Four new araneogenous species and a new genus in Hypocreales (Clavicipitaceae, Cordycipitaceae) from the karst region of China. MycoKeys 112: 335–359. https://doi.org/10.3897/mycokeys.112.140799
  • Chiriví-Salomón JS, Danies G, Restrepo S, Sanjuan T (2015) Lecanicillium sabanense sp. nov.(Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa 234(1): 63–74. https://doi.org/10.11646/phytotaxa.234.1.4
  • Chuang WY, Lin YC, Shrestha B, Luangsa-ard JJ, Stadler M, Tzean SS, Wu S, Ko CC, Hsieh SY, Wu ML, Wang SC, Shen TL, Ariyawansa HA (2024) Phylogenetic diversity and morphological characterization of cordycipitaceous species in Taiwan. Studies in Mycology 109(1): 1–56. https://doi.org/10.3114/sim.2024.109.01
  • Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Pitek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral H-O, Baturo-Cieniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilaski P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, Desilva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Liwa L, Smith ME, Stefenon VM, Strašiftáková D, Suwannarach N, Szczepaska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, Vandervegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ (2023a) Fungal Planet description sheets: 1550–1613. Persoonia 51(1): 280–417. https://doi.org/10.3767/persoonia.2023.51.08
  • Crous PW, Osieck ER, Shivas RG, Tan YP, Bishop-Hurley SL, Esteve-Raventós F, Larsson E, Luangsa-ard JJ, Pancorbo F, Balashov S, Baseia IG, Boekhout T, Chandranayaka S, Cowan DA, Cruz RHSF, Czachura P, De La Peña-Lastra S, Dovana F, Drury B, Fell J, Flakus A, Fotedar R, Jurjević Ž, Kolecka A, Mack J, Maggs-Kölling G, Mahadevakumar S, Mateos A, Mongkolsamrit S, Noisripoom W, Plaza M, Overy DP, Pitek M, Sandoval-Denis M, Vauras J, Wingfield MJ, Abell SE, Ahmadpour A, Akulov A, Alavi F, Alavi Z, Altés A, Alvarado P, Anand G, Ashtekar N, Assyov B, Banc-Prandi G, Barbosa KD, Barreto GG, Bellanger JM, Bezerra JL, Bhat DJ, Bilański P, Bose T, Bozok F, Chaves J, Costa-Rezende DH., Danteswari C, Darmostuk V, Delgado G, Denman S, Eichmeier A, Etayo J, Eyssartier G, Faulwetter S, Ganga KGG, Ghosta Y, Goh J, Góis JS, Gramaje D, Granit L, Groenewald M, Gulden G, Gusmão LFP, Hammerbacher A, Heidarian Z, Hywel-Jones N, Jankowiak R, Kaliyaperumal M, Kaygusuz O, Kezo K, Khonsanit A, Kumar S, Kuo CH, Laessøe T, Latha KPD, Loizides M, Luo SM, Maciá-Vicente JG, Manimohan P, Marbach PAS, Marinho P, Marney TS., Marques G, Martín MP, Miller AN, Mondello F, Moreno G, Mufeeda KT, Mun HY, Nau T, Nkomo T, Okrasińska A, Oliveira JPAF, Oliveira RL, Ortiz DA, Pawłowska J, Pérez-De-Gregorio MA, Podile AR, Portugal A, Privitera N, Rajeshkumar KC, Rauf I, Rian B, Rigueiro-Rodríguez A, Rivas-Torres GF, Rodriguez-Flakus P, Romero-Gordillo M, Saar I, Saba M, Santos CD, Sarma PVSRN, Siquier JL, Sleiman S, Spetik M, Sridhar KR, Stryjak-Bogacka M, Szczepańska K, Taşikn H, Tennakoon DS, Thanakitpipattana D, Trovão J., Türkekul A, Van Iperen AL, Van ’T Hof P, Vasquez G, Visagie CM, Wingfield BD, Wong PTW, Yang WX, Yarar M, Yarden O, Yilmaz N, Zhang N, Zhu YN, Groenewald JZ (2023b) Fungal Planet description sheets: 1478–1549. Persoonia 50(1): 158–310. https://doi.org/10.3767/persoonia.2023.50.05
  • Custódio FA, Pereira OL (2024) New treasures in Cordycipitaceae: Fungicolous fungi associated with Pseudocercospora fijiensis and P. musae in Brazil, including Matutinistella gen. nov. Fungal Systematics and Evolution 15(1): 133–152. https://doi.org/10.3114/fuse.2025.15.06
  • Flakus A, Etayo J, Miadlikowska J, Lutzoni F, Kukwa M, Matura N, Rodriguez-Flakus P (2019) Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests led to one new family, three new genera and 13 new species of lichenicolous fungi. Plant and Fungal Systematics 64(2): 283–344. https://doi.org/10.2478/pfs-2019-0022
  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Guerra-Mateo D, Gené J, Baulin V, Cano-Lira JF (2023) Phylogeny and taxonomy of the genus Amphichorda (Bionectriaceae): An Update on Beauveria-like Strains and Description of a Novel Species from Marine Sediments. Diversity 15(7): 795. https://doi.org/10.3390/d15070795
  • Hall T, Biosciences I, Carlsbad C (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2(1): 60–61.
  • Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, Wijesinghe SN, Armand A, Biketova AY, Chethana KWT, Erdoğdu M, Ge ZW, Groenewald JZ, Hongsanan S, Kušan I, Leontyev DV, Li DW, Lin CG, Liu NG, Maharachchikumbura SSN, Matočec N, May TW, McKenzie EHC, Mešić A, Perera RH, Phukhamsakda C, Piątek M, Samarakoon MC, Selcuk F, Senanayake IC, Tanney JB, Tian Q, Vizzini A, Wanasinghe DN, Wannasawang N, Wijayawardene NN, Zhao RL, Abdel-Wahab MA, Abdollahzadeh J, Abeywickrama PD, Abhinav Absalan S, Acharya K, Afshari N, Afshan NS, Afzalinia S, Ahmadpour SA, Akulov O, Alizadeh A, Alizadeh M, Al-Sadi AM, Alves A, Alves VCS, Alves-Silva G, Antonín V, Aouali S, Aptroot A, Apurillo CCS, Arias RM, Asgari B, Asghari R, Assis DMA, Assyov B, Atienza V, Aumentado HDR, Avasthi S, Azevedo E, Bakhshi M, Bao DF, Baral HO, Barata M, Barbosa KD, Barbosa RN, Barbosa FR, Baroncelli R, Barreto GG, Baschien C, Bennett RM, Bera I, Bezerra JDP, Bhunjun CS, Bianchinotti MV, Błaszkowski J, Boekhout T, Bonito GM, Boonmee S, Boonyuen N, Bortnikov FM, Bregant C, Bundhun D, Burgaud G, Buyck B, Caeiro MF, Cabarroi-Hernández M, Cai M Feng, Cai L, Calabon MS, Calaça FJS, Callalli M, Câmara MPS, Cano-Lira J, Cao B, Carlavilla JR, Carvalho A, Carvalho TG, Castañeda-Ruiz RF, Catania MDV, Cazabonne J, Cedeño-Sanchez M, Chaharmiri-Dokhaharani S, Chaiwan N, Chakraborty N, Cheewankoon R, Chen C, Chen J, Chen Q, Chen YP, Chinaglia S, Coelho-Nascimento CC, Coleine C, CostaRezende DH, Cortés-Pérez A, Crouch JA, Crous PW, Cruz RHSF, Czachura P, Damm U, Darmostuk V, Daroodi Z, Das K, Das K, Davoodian N, Davydov EA, da Silva GA, da Silva IR, da Silva RMF, da Silva Santos AC, Dai DQ, Dai YC, de Groot Michiel D, De Kesel A, De Lange R, de Medeiros EV, de Souza CFA, de Souza FA, dela Cruz TEE, Decock C, Delgado G, Denchev CM, Denchev TT, Deng YL, Dentinger BTM, Devadatha B, Dianese JC, Dima B, Doilom M, Dissanayake AJ, Dissanayake DMLS, Dissanayake LS, Diniz AG, Dolatabadi S, Dong JH, Dong W, Dong ZY, Drechsler-Santos ER, Druzhinina IS, Du TY, Dubey MK, Dutta AK, Elliott TF, Elshahed MS, Egidi E, Eisvand P, Fan L, Fan X, Fan XL, Fedosova AG, Ferro LO, Fiuza PO, Flakus A, W. Fonseca EO, Fryar SC, Gabaldón T, Gajanayake AJ, Gannibal PB, Gao F, GarcíaSánchez D, García-Sandoval R, Garrido-Benavent I, Garzoli L, Gasca-Pineda J, Gautam AK, Gené J, Ghobad-Nejhad M, Ghosh A, Giachini AJ, Gibertoni TB, Gentekaki E, Gmoshinskiy VI, GóesNeto A, Gomdola D, Gorjón SP, Goto BT, Granados-Montero MM, Griffith GW, Groenewald M, Grossart H-P, Gu ZR, Gueidan C, Gunarathne A, Gunaseelan S, Guo SL, Gusmão LFP, Gutierrez AC, Guzmán-Dávalos L, Haelewaters D, Haituk H, Halling RE, He SC, Heredia G, HernándezRestrepo M, Hosoya T, Hoog SD, Horak E, Hou CL, Houbraken J, Htet ZH, Huang SK, Huang WJ, Hurdeal VG, Hustad VP, Inácio CA, Janik P, Jayalal RGU, Jayasiri SC, Jayawardena RS, Jeewon R, Jerônimo GH, Jin J, Jones EBG, Joshi Y, Jurjević Ž, Justo A, Kakishima M, Kaliyaperumal M, Kang GP, Kang JC, Karimi O, Karunarathna SC, Karpov SA, Kezo K, Khalid AN, Khan MK, Khuna S, Khyaju S, Kirchmair M, Klawonn I, Kraisitudomsook N, Kukwa M, Kularathnage ND, Kumar S, Lachance MA, Lado C, Latha KPD, Lee HB, Leonardi M, Lestari AS, Li C, Li H. Li J, Li Q, Li Y, Li YC, Li YX, Liao CF, Lima JLR, Lima JMS, Lima NB, Lin L, Linaldeddu BT, Linn MM, Liu F, Liu JK, Liu JW, Liu S, Liu SL, Liu XF, Liu XY, Longcore JE, Luangharn T, Luangsa-ard JJ, Lu L, Lu YZ, Lumbsch HT, Luo L, Luo M, Luo ZL, Ma J, Madagammana AD, Madhushan A, Madrid H, Magurno F, Magyar D, Mahadevakumar S, Malosso E, Malysh JM, Mamarabadi M, Manawasinghe IS, Manfrino RG, Manimohan P, Mao N, Mapook A, Marchese P, Marasinghe DS, Mardones M, Marin-Felix Y, Masigol H, Mehrabi M, MehrabiKoushki M, Meiras-Ottoni A de, Melo RFR, Mendes-Alvarenga RL, Mendieta S, Meng QF, Menkis A, Menolli Jr N, Mikšík M, Miller SL, Moncada B, Moncalvo JM, Monteiro JS, Monteiro M, Mora-Montes HM, Moroz EL, Moura JC, Muhammad U, Mukhopadhyay S, Nagy GL, Najam ul Sehar A, Najafiniya M, Nanayakkara CM, Naseer A, Nascimento ECR, Nascimento SS, Neuhauser S, Neves MA, Niazi AR, Nie Yong, Nilsson RH, Nogueira PTS, Novozhilov YK, Noordeloos M, Norphanphoun C, Nuñez Otaño N, O’Donnell RP, Oehl F, Oliveira JA, Oliveira Junior I, Oliveira NVL, Oliveira PHF, Orihara T, Oset M, Pang KL, Papp V, Pathirana LS, Peintner U, Pem D, Pereira OL, Pérez-Moreno J, Pérez-Ortega S, Péter G, Pires-Zottarelli CLA, Phonemany M, Phongeun S, Pošta A, Prazeres JFSA, Quan Y, Quandt CA, Queiroz MB, Radek R, Rahnama K, Raj KNA, Rajeshkumar KC, Rajwar Soumyadeep , Ralaiveloarisoa AB, Rämä T, Ramírez-Cruz V, Rambold G, Rathnayaka AR, Raza M, Ren GC, Rinaldi AC, Rivas-Ferreiro M, Robledo GL, Ronikier A, Rossi W, Rusevska K, Ryberg M, Safi A, Salimi F, Salvador-Montoya CA, Samant B, Samaradiwakara NP, Sánchez-Castro I, Sandoval-Denis M, Santiago ALCMA, Santos ACDS, Santos LA dos, Sarma VV, Sarwar S., Savchenko A, Savchenko K, Saxena RK, Schoutteten N, Selbmann L, Ševčíková H, Sharma A, Shen HW, Shen YM, Shu YX, Silva HF, Silva-Filho AGS, Silva VSH, Simmons DR, Singh R, Sir EB, Sohrabi M, Souza FA, Souza-Motta CM, Sriindrasutdhi V, Sruthi OP, Stadler M, Stemler J, Stephenson SL, Stoyneva-Gaertner MP, Strassert JFH, Stryjak-Bogacka M, Su H, Sun YR, Svantesson S, Sysouphanthong P, Takamatsu S, Tan TH, Tanaka K, Tang C, Tang X, Taylor JE, Taylor PWJ, Tennakoon DS, Thakshila SAD, Thambugala KM, Thamodini GK, Thilanga D, Thines M, Tiago PV, Tian XG, Tian WH, Tibpromma S, Tkalčec Z, Tokarev YS, Tomšovský M, Torruella G, Tsurykau A, Udayanga D, Ulukapı M, Untereiner WA, Usman M, Uzunov BA, Vadthanarat S, Valenzuela R, Van den Wyngaert S, Van Vooren N, Velez P, Verma RK, Vieira LC, Vieira WAS, Vinzelj JM, Tang AMC, Walker A, Walker AK, Wang QM, Wang Y, Wang XY, Wang ZY, Wannathes N, Wartchow F, Weerakoon G, Wei DP, Wei X, White JF, Wijesundara DSA, Wisitrassameewong K, Worobiec G, Wu HX, Wu N, Xiong YR, Xu B, Xu JP, Xu R, Xu RF, Xu RJ, Yadav S, Yakovchenko LS, Yang HD, Yang X, Yang YH, Yang Y, Yang YY, Yoshioka R, Youssef Noha H, Yu FM, Yu ZF, Yuan LL, Yuan Q, Zabin DA, Zamora JC, Zapata CV, Zare R, Zeng M, Zeng XY, Zhang JF, Zhang JY, Zhang S, Zhang XC, Zhao CL, Zhao H, Zhao Q, Zhao H, Zhao HJ, Zhou HM, Zhu XY, Zmitrovich IV, Zucconi L, Zvyagina E (2024) The 2024 Outline of Fungi and fungus-like taxa. Mycosphere 15(1): 5146–6239. https://doi.org/10.5943/mycosphere/15/1/25
  • Imoulan A, Wu HJ, Lu WL, Li Y, Li BB, Yang RH, Wang WJ, Wang XL, Kirk PM, Yao YJ (2016) Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. Journal of Invertebrate Pathology 139: 74–81. https://doi.org/10.1016/j.jip.2016.07.006
  • Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere : Journal of Fungal Biology 7(11): 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4
  • Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt CA, Sung G-H, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen M, Li Z, Rossman AY, Spatafora JW, Shrestha B (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2): 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08
  • Khonsanit A, Thanakitpipattana D, Mongkolsamrit S, Kobmoo N, Phosrithong N, Samson RA, Crous PW, Luangsa-ard JJ (2024) A phylogenetic assessment of Akanthomyces sensu lato in Cordycipitaceae (Hypocreales, Sordariomycetes): Introduction of new genera, and the resurrection of Lecanicillium. Fungal Systematics and Evolution 14(1): 271–305. https://doi.org/10.3114/fuse.2024.14.17
  • Kobmoo N, Tasanathai K, Araújo JPM, Noisripoom W, Thanakitpipattana D, Mongkolsamrit S, Himaman W, Houbraken J, Luangsa-Ard JJ (2023) New mycoparasitic species in the genera Niveomyces and Pseudoniveomyces gen. nov. (Hypocreales : Cordycipitaceae), with sporothrix-like asexual morphs, from Thailand. Fungal Systematics and Evolution 12(1): 91–110. https://doi.org/10.3114/fuse.2023.12.07
  • Lebert H (1858) Ueber einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch Entwicklung niederer Pflanzen im lebenden Körper enstehen. Zeitschrift für Wissenschaftliche Zoologie 9: 439–453.
  • Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian EJ, Lu YZ, Zhang JY, Ma J, Dutta AK, Acharya K, Du TY, Xu J, Kim JS, Lim YW, Gerlach A, Zeng NK, Han YX, Razaghi P, Raza M, Cai L, Calabon MS, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashhetti AC, Pawar KS, Jiang SH, Zhang C, Zhang H, Qing Y, Bau T, Peng XC, Wen TC, Ramirez NA, Niveiro N, Li MX, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo CH, Silva TM, Souza-Motta CM, Bezarra JDP, He G, Ji XH, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou LW (2024) Fungal diversity notes. 1717–1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1–216. https://doi.org/10.1007/s13225-023-00529-0
  • Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD, Haelewaters D, Perera RH, Samarakoon MC, Wanasinghe DN, Bustamante DE, Liu J, Lawrence DP, Cheewangkoon R, Stadler M (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109(1): 155–179. https://doi.org/10.1007/s13225-021-00486-6
  • Manfrino R, Gutierrez A, Diez Del Valle F, Schuster C, Ben Gharsa H, López Lastra C, Leclerque A (2022) First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America. Diversity 14(12): 1118. https://doi.org/10.3390/d14121118
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37(5): 1530–1534. https://doi.org/10.1093/molbev/msaa015
  • Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Wutikhun T, Spatafora JW, Luangsa-ard JJ (2018) Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia 110(1): 230–257. https://doi.org/10.1080/00275514.2018.1446651
  • Mongkolsamrit S, Noisripoom W, Tasanathai K, Khonsanit A, Thanakitpipattana D, Himaman W, Kobmoo N, Luangsa-ard JJ (2020) Molecular phylogeny and morphology reveal cryptic species in Blackwellomyces and Cordyceps (Cordycipitaceae) from Thailand. Mycological Progress 19(9): 957–983. https://doi.org/10.1007/s11557-020-01615-2
  • Mongkolsamrit S, Noisripoom W, Pumiputikul S, Boonlarppradab C, Samson RA, Stadler M, Becker K, Luangsa-ard JJ (2021) Ophiocordyceps flavida sp. nov. (Ophiocordycipitaceae), a new species from Thailand associated with Pseudogibellula formicarum (Cordycipitaceae), and their bioactive secondary metabolites. Mycological Progress 20(4): 477–492. https://doi.org/10.1007/s11557-021-01683-y
  • Mongkolsamrit S, Noisripoom W, Tasanathai K, Kobmoo N, Thanakitpipattana D, Khonsanit A, Petcharad B, Sakolrak B, Himaman W (2022) Comprehensive treatise of Hevansia and three new genera Jenniferia, Parahevansia and Polystromomyces on spiders in Cordycipitaceae from Thailand. MycoKeys 91: 113–149. https://doi.org/10.3897/mycokeys.91.83091
  • Mongkolsamrit S, Sandargo B, Ebada SS, Noisripoom W, Jaiyen S, Luangsa-ard JJ, Stadler M (2023) Bhushaniella gen. nov. (Cordycipitaceae) on spider eggs sac: A new genus from Thailand and its bioactive secondary metabolites. Mycological Progress 22(9): 64. https://doi.org/10.1007/s11557-023-01915-3
  • Nuin P (2007) MrMTgui. v 1.0. MrModelTest/ModelTest Graphical interface for Windows/Linux.
  • Pu HL, Yang J, Keyhani NO, Yang LX, Zheng MH, Qiu CH, Mao YC, Shang JY, Lin YS, Xiong CJ, Lin LB, Lai PY, Huang YB, Yuan X, Liang HL, Fan LF, Ma XL, Qiu CJ, Qiu JZ (2025) Molecular phylogenetics and estimation of evolutionary divergence and biogeography of the family Cordycipitaceae (Ascomycota, Hypocreales). Journal of Fungi 11(1): 1–29. https://doi.org/10.3390/jof11010028
  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1): 84–98. https://doi.org/10.3852/mycologia.97.1.84
  • Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103(5): 1055–1073. https://doi.org/10.3852/10-302
  • Samson RA, Gams W (1980) Pleuurodesmospora, a new genus for the entomogenous hyphomycete gonatorrhodiella coccorum. Persoonia 11(1): 65–69.
  • Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23(1): 35–40. https://doi.org/10.3767/003158509X470602
  • Shrestha B, Kubátová A, Tanaka E, Oh J, Yoon DH, Sung JM, Sung GH (2019) Spider-pathogenic fungi within Hypocreales (Ascomycota): Their current nomenclature, diversity, and distribution. Mycological Progress 18(8): 983–1003. https://doi.org/10.1007/s11557-019-01512-3
  • Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White Jr J (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology 16(8): 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
  • Sung GH, Spatafora JW, Zare R, Hodge KT, Gams W (2001) A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72(3–4): 311–328. https://doi.org/10.1127/nova.hedwigia/72/2001/311
  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01
  • Thanakitpipattana D, Tasanathai K, Mongkolsamrit S, Khonsanit A, Lamlertthon S, Luangsa-ard JJ (2020) Fungal pathogens occurring on Orthopterida in Thailand. Persoonia 44(1): 140–160. https://doi.org/10.3767/persoonia.2020.44.06
  • Thanakitpipattana D, Mongkolsamrit S, Khonsanit A, Himaman W, Luangsa-ard JJ, Pornputtapong N (2022) Is Hyperdermium congeneric with Ascopolyporus? Phylogenetic relationships of Ascopolyporus spp. (Cordycipitaceae, Hypocreales) and a new genus Neohyperdermium on scale insects in Thailand. Journal of Fungi 8(5): 516. https://doi.org/10.3390/jof8050516
  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vinit K, Doilom M, Wanasinghe DN, Bhat DJ, Brahmanage RS, Jeewon R, Xiao Y, Hyde KD (2018) Phylogenetic placement of Akanthomyces muscarius, a new endophyte record from Nypa fruticans in Thailand. Current Research in Environmental & Applied Mycology 8(3): 404–417. https://doi.org/10.5943/cream/8/3/10
  • Voigt K, Cigelnik E, O’donnell K (1999) Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. Journal of Clinical Microbiology 37(12): 3957–3964. https://doi.org/10.1128/JCM.37.12.3957-3964.1999
  • Wang YB, Wang Y, Fan Q, Duan DE, Zhang GD, Dai RQ, Dai YD, Zeng WB, Chen ZH, Li DD, Tang DX, Xu ZH, Sun T, Nguyen TT, Tran NL, Dao VM, Zhang CM, Huang LD, Liu YJ, Zhang XM, Yang DR, Sanjuan T, Liu XZ, Yang ZL, Yu H (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Diversity 103: 1–46. https://doi.org/10.1007/s13225-020-00457-3
  • Wang ZQ, Wang Y, Dong Q, Fan Q, Dao VM, Yu H (2022) Morphological and phylogenetic characterization reveals five new species of Samsoniella (Cordycipitaceae, Hypocreales). Journal of Fungi 8(7): 747. https://doi.org/10.3390/jof8070747
  • Wang Y, Wang ZQ, Thanarut C, Dao VM, Wang YB, Yu H (2023a) Phylogeny and species delimitations in the economically, medically, and ecologically important genus Samsoniella (Cordycipitaceae, Hypocreales). MycoKeys 99: 227–250. https://doi.org/10.3897/mycokeys.99.106474
  • Wang YH, Wang WJ, Wang K, Dong CH, Hao JR, Kirk PM, Yao YJ (2023b) Akanthomyces zaquensis (Cordycipitaceae, Hypocreales), a new species isolated from both the stroma and the sclerotium of Ophiocordyceps sinensis in Qinghai, China. Phytotaxa 579(3): 198–208. https://doi.org/10.11646/phytotaxa.579.3.5
  • Wang T, Li J, Chang X, Li Z, Hywel-Jones NL, Huang B, Chen M (2024a) Morphology and multigene phylogeny reveal three new species of Samsoniella (Cordycipitaceae, Hypocreales) from spiders in China. MycoKeys 101: 329–346. https://doi.org/10.3897/mycokeys.101.111882
  • Wang Y, Wang ZQ, Luo R, Souvanhnachit S, Thanarut C, Dao VM, Yu H (2024b) Species diversity and major host/substrate associations of the genus Akanthomyces (Hypocreales, Cordycipitaceae). MycoKeys 101: 113–141. https://doi.org/10.3897/mycokeys.101.109751
  • Wei DP, Wanasinghe DN, Xu JC, To-Anun C, Mortimer PE, Hyde KD, Elgorban AM, Madawala S, Suwannarach N, Karunarathna SC, Tibpromma S, Lumyong S (2021) Three Novel Entomopathogenic Fungi From China and Thailand. Frontiers in Microbiology 11: e608991. https://doi.org/10.3389/fmicb.2020.608991
  • Wei DP, Gentekaki E, Wanasinghe DN, Tang SM, Hyde KD (2022) Diversity, molecular dating and ancestral characters state reconstruction of entomopathogenic fungi in Hypocreales. Mycosphere 13(2): 281–351. https://doi.org/10.5943/mycosphere/si/1f/8
  • Yeh YW, Huang YM, Hsieh CM, Kirschner R (2021) Pleurodesmospora acaricola sp. nov. and a new record of Pleurodesmospora coccorum (Cordycipitaceae, Ascomycota) in Taiwan. Taiwania 66(4): 517–525. https://doi.org/10.6165/tai.2021.66.517
  • Zhang ZF, Zhou SY, Eurwilaichitr L, Ingsriswang S, Raza M, Chen Q, Zhao P, Liu F, Cai L (2021) Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Diversity 106: 29–136. https://doi.org/10.1007/s13225-020-00453-7
  • Zhang X, Fu Z, Lu F, Song J, Zhao C (2024) Morphological characteristics and phylogenetic analyses revealed a new invertebrate-pathogenic fungus Akanthomyces bannaensis (Cordycipitaceae, Ascomycota), in China. Phytotaxa 666(1): 17–30. https://doi.org/10.11646/phytotaxa.666.1.2

Supplementary materials

Supplementary material 1 

Alignment of Cordycipitaceae tree-six locus

Jing Bu

Data type: fas

Explanation note: The alignment of Cordycipitaceae tree that based on six locus (nrLSU, ITS, nrSSU, tef-1α, rpb1 and rpb2).

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (612.71 kb)
Supplementary material 2 

Alignment of Samsoniella tree-five locus

Jing Bu

Data type: fas

Explanation note: The alignment of Samsoniella tree based on five locus (nrLSU, nrSSU, tef-1α, rpb1 and rpb2).

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (249.18 kb)
Supplementary material 3 

Legend for supplementary figures of single gene tree

Jing Bu

Data type: docx

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (4.92 MB)
login to comment