Research Article
Print
Research Article
Four new species of Entoloma subgenus Cyanula (Entolomataceae, Agaricales) from subtropical regions of China
expand article infoLin-Gen Chen, Hong Chen, Ling Ding, Yu-Qin Xu, Hui Zeng§, Sheng-Nan Wang, Jun-Qing Yan
‡ Jiangxi Agricultural University, Nanchang, China
§ Fujian Academy of Agricultural Sciences, Fuzhou, China
Open Access

Abstract

In this study, four species of Entoloma subgenus Cyanula (E. orientosinense, E. subgriseosquamulosum, E. subpraegracile, and E. wuyishanense) from subtropical regions of China, are described as new to science based on morphological and phylogenetic analyses. Morphologically, E. orientosinense is characterized by the white basidiomata, relatively large basidiospores, and carneogriseum-type lamellae edge; E. subgriseosquamulosum is recognized by the fuscous pileus, crowded and adnate lamellae, and medium-sized basidiospores; E. subpraegracile is identified by the yellow pileus and intervenose lamellae with sterile or heterogeneous edge; E. wuyishanense is distinct by the blue basidiomata and fertile lamellae edge with slightly bluish pigmentation near the stipe. Entoloma orientosinense belongs to sect. Caesiocincta, subsect. Queletia, and E. wuyishanense belongs to sect. Poliopodes. The remaining two species each form independent branches and do not belong to any known sections. Detailed descriptions, color photos, and a key to related species are presented.

Key words:

Basidiomycetes, new taxa, phylogeny, taxonomy

Introduction

Entoloma (Fr.) P. Kumm. is one of the most diverse genera within Agaricales, well-characterized by pink to brownish spore prints and angular basidiospores viewed in all views (Co-David et al. 2009). It shows extremely wide geographical distribution, occurring from the frigid zone to the tropics, and from alpine to basins, with most members being saprobic on shady and humid soil, mosses, or rotten wood in forests (Horak 1980; Noordeloos 1981; Largent 1994; Reschke et al. 2022b). So far, approximately 2000 Entoloma species have been reported in the world. In China, however, there are relatively few reports about the species of this genus, with approximately 200. Among them, some of the newly discovered species published earlier were not classified into specific subgenera (Bi et al. 1986; Zhang et al. 1994; He et al. 2011).

In the past, based on morphological taxonomy, Cyanuli was introduced by Romagnesi (1974) as a section within Rhodophyllus Quél (= Entoloma). The combination Entoloma section Cyanula (Romagn.) Noordeloos belonged to Entoloma subgenus Leptonia of wide sense. However, the subg. Leptonia, traditionally divided into three sections, viz. Leptonia, Cyanula, and Griseorubida (Noordeloos 2004), turned out to be polyphyletic. Sect. Leptonia of belonged to the /Nolanea-Claudopus clade, and Cyanula and Griseorubida to the /Inocephalus-Cyanula clade (Co-David et al. 2009). Morphologically, species of sect. Leptonia exhibited clamp connections, whereas species of Cyanula lacked clamp connections. Based on these, sect. Cyanula was elevated to subgenus rank (Noordeloos and Gates 2012; Noordeloos et al. 2022a).

The species of Entoloma subg. Cyanula are mainly characterized by their collybioid habit, vividly colorful (often blue, violaceous to brown) and squamulose pileus, absence of clamp connections, and presence of brilliant granules and intracellular pigments in hyphae. So far, at least 500–600 species of E. subg. Cyanula have been discovered worldwide.

According to previous studies, there are 13 species belonging to Entoloma subg. Cyanula in China, 7 of which were newly described (He et al. 2011, 2012; He et al. 2017). In the past few years, during our surveys on the diversity of macrofungi in the subtropical regions of China, we have found that the species diversity under E. subg. Cyanula is extremely rich. In this study, four species of this subgenus are newly described based on morphological comparisons and phylogenetic analyses.

Materials and methods

Morphological studies

The collection sites of the specimens in this study were all located in the subtropical region of East China, and these specimens were deposited in the Herbarium of Fungi, Jiangxi Agricultural University (HFJAU). Fresh specimens were photographed in the field and macroscopically recorded. The color notations followed the Methuen Handbook of Colour (Kornerup and Wanscher 1978). Microscopic structures were studied under an Olympus BX53 microscope (Olympus corporation, Tokyo, Japan) by making squash preparations of sections of dried specimens. The sections were hydrated with 5% KOH solution or H2O, and 1% Congo red was used as the staining agent when observing colorless tissues. Melzer’s reagent was selected for determining whether the spores were amyloid or not (Horak 2005). At least 20 basidiospores, basidia, and cystidia were measured for each collection. The range of spore size is expressed as the form (a) b–c (d), in which “a” and “d” represent the minimum and maximum values, and 90% of the spores falling within the range “b–c”. The meanings of the other spore characteristics were as follows: “Q” stood for the ratio of length and width; “av” symbolized average value; “n” meant the number of measurements; and “Qm” indicated average “Q” ± standard deviation (Bas 1969). The morphological descriptions were based on the work of Noordeloos et al. (2022a).

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from dried specimens with the NuClean Plant Genomic DNA kit (CWBIO, China) (Wang et al. 2022). The nrDNA ITS and LSU regions were amplified respectively using the primer pairs of ITS1F/ITS4, LR0R/LR5 (White et al. 1990).

PCR amplification was conducted with a 25 μL reaction system as follows: 1 µL DNA, 1 µL each for forward and reverse primers, 9.5 µL ddH2O, and 12.5 µL 2 × Taq Master Mix (Dye Plus, Vazyme Biotechnology Co. Ltd., Nanjing City, China). PCR was carried out using a touchdown amplification procedure following Chen et al. (2024). The PCR products were sequenced by Qing Ke Biotechnology Co. Ltd. (Wuhan City, China).

Alignment and phylogenetic analyses

In total, 173 sequences (126 ITS sequences and 47 LSU sequences) of 126 samples were used for phylogenetic analyses based on Bayesian inference (BI) and Maximum likelihood (ML). The selection of sequences for the phylogenetic analyses was based on the results of ITS BLAST and of Noordeloos et al. (2022a) (Table 1). Some species of Entoloma subg. Nolanea were designated as outgroups. The ITS sequences and the LSU sequences were separately aligned on the MAFFT online server using the automatic selection of algorithm (Katoh et al. 2019). First, phylogenetic trees were constructed separately for ITS and LSU and their congruence was checked. BI and ML phylogenetic analyses of the concatenated sequences were run using MRBAYES v.3.2.7a (Ronquist et al. 2012) and IQTREE v.2.1.2 (Nguyen et al. 2015), respectively. For the ML analysis, models of sequence evolution were assessed in IQ-Tree prior to the analysis and allowing the partitions of sequences to have different seeds (-spp) and the results were the following: TPM2 + F + I + G4 for ITS and HKY + F + I + G4 for LSU. Ultrafast bootstrap support values were calculated from 1000 replicates. For the BI analysis, the best-fit models were determined by PARTITIONFINDER (Zhang et al. 2020) based on Bayesian information criterion (BIC) and the results were the following: GTR + F + I + G4 for ITS and HKY + F + I + G4 for LSU. The Monte Carlo Markov chains were run for 40 million generations. The first 25% of trees were discarded as burn-in. The nodes with Bayesian posterior probabilities (BI-PP) ≥ 0.95 and ML bootstrap proportions (ML-BP) ≥ 95% were considered as statistically supported. A nexus file containing sequence alignment and the original trees of ML and BI analyses are provided in Suppl. material 1.

Table 1.

Details of sequences used in the phylogenetic analyses. Newly generated sequences were in bold.

Species Location Voucher Number GenBank No. (ITS) GenBank No. (LSU) Sequence origin
Entoloma albidosimulans Australia MEN 2004-065, isotype MK277956 Varga et al. (2019)
E. albinellum USA TENN:070403 KY777375 Unpublished in GenBank
E. argus Vietnam LE F-312694, holotype OM987263 OM996175 Morozova et al. (2022)
E. argus Vietnam LE F-315916 OM987264 Morozova et al. (2022)
E. arion Vietnam LE F-312691, holotype OM987259 OM996176 Morozova et al. (2022)
E. arion Vietnam LE F-312692 OM987260 Morozova et al. (2022)
E. arion Vietnam LE F-315917 OM987261 Morozova et al. (2022)
E. asprellum Estonia TUF106064 UDB011486 UNITE
E. atropapillatum Brazil FK0898, holotype KF679354 KF738940 Karstedt et al. (2020)
E. azureosquamulosum China HKAS53408 JQ410334 JQ410326 He et al. (2012)
E. azureosquamulosum China GDGM29254 JQ410335 He et al. (2012)
E. azureosquamulosum China GDGM27355, holotype NR_137086 NG_059214 He et al. (2012)
E. caespitosum China GDGM27564 JQ281477 JQ320130 He et al. (2012)
E. caespitosum China GDGM24025 JQ281490 JQ410327 He et al. (2012)
E. caespitosum China GDGM24026 JQ281491 JQ320133 He et al. (2012)
E. calceus Norway O-F-259457, holotype NR_182489 Noordeloos et al. (2022b)
E. calceus France LIP0402265 ON008492 Noordeloos et al. (2022b)
E. calceus Norway JL12-19 ON008493 Noordeloos et al. (2022b)
E. callipygmaeum Russia LE312488 MZ145205 Dima et al. (2021)
E. callipygmaeum Russia LE312487 MZ145206 Dima et al. (2021)
E. callipygmaeum Russia LE253784, holotype MZ145207 Dima et al. (2021)
E. carneogriseum Norway O-F-256479 UDB07673714 UNITE
E. cetratum Sweden LE311888, neotype OL338280 Reschke et al. (2022a)
E. chalybeum Russia LE254353 KC898445 KC898500 Morozova et al. (2014)
E. chalybeum Denmark TUF105760 UDB034191 UNITE
E. consanguineum New Zealand PDD80751 MW775252 Unpublished in GenBank
E. consanguineum New Zealand PDD80751 MW775268 Unpublished in GenBank
E. coracis Norway O-F-256850, holotype MW934571 MW934251 Crous et al. (2021b)
E. coracis Norway O-F-67255 MW934572 Crous et al. (2021b)
E. coracis Norway O-F-251952 MW934573 Crous et al. (2021b)
E. corvinum France FA4261 OR419868 Armada et al. (2023)
E. cyanostipitum China GDGM31318, holotype KY711237 KY972694 He et al. (2017)
E. cyanostipitum China SAAS2239 KY711238 KY972695 He et al. (2017)
E. cyanostipitum China GDGM31294 KY972700 KY972693 He et al. (2017)
E. dislocatum Spain L0607565, holotype ON008483 Noordeloos et al. (2022b)
E. dislocatum Spain SFC-080612-01 ON008484 Noordeloos et al. (2022b)
E. dislocatum Italy TUF105920, paratype UDB0799300 UNITE
E. exile Germany Lueck8 KP965773 KP965791 Karich et al. (2015)
E. exile KM187354 MF977976 Unpublished in GenBank
E. griseocyaneum Russia LE254351 KC898444 KC898498 Morozova et al. (2014)
E. griseocyaneum Germany KaiR997 MZ611684 Reschke et al. (2022b)
E. icarus Vietnam LE F-312696, holotype OM987257 OM996174 Morozova et al. (2022)
E. icarus Vietnam LE F-312697 OM987258 Morozova et al. (2022)
E. incanum Sweden LE312503, neotype OK161247 OK161275 Crous et al. (2021b)
E. incanum Russia LE311794 OK161249 OK161276 Crous et al. (2021b)
E. incanum Russia LE315858 OK161250 Crous et al. (2021b)
E. isborscanum Russia LE312486 MW934564 Crous et al. (2021a)
E. isborscanum Russia LE302088, holotype MW934566 MW934253 Crous et al. (2021a)
E. linkii Norway O-F-256353 UDB07673651 UNITE
E. mastoideum China GDGM28820 JQ281476 JQ410328 He et al. (2012)
E. mastoideum China GDGM26597 JQ291564 JQ320126 He et al. (2012)
E. meridionale Greece ACAM2014-0127 OL679698 Lebeuf et al. (2021)
E. meridionale Greece ACAM2018-0152 OL679699 Lebeuf et al. (2021)
E. meridionale Greece ACAM2018-0153, holotype OL679700 Lebeuf et al. (2021)
E. minutigranulosum Russia LE312484 MZ145210 Dima et al. (2021)
E. minutigranulosum Russia LE312483 MZ145212 Dima et al. (2021)
E. minutigranulosum Russia LE302096, holotype MZ145214 Dima et al. (2021)
E. mougeotii Estonia TUF106917 UDB015645 UNITE
E. mougeotii Estonia TUF101633 UDB016265 UNITE
E. mougeotii Estonia TUF106505 UDB019720 UNITE
E. mutabilipes Finland TUR610/12 LN850550 Kokkonen (2015)
E. mutabilipes Estonia TUR8788 LN850551 Kokkonen (2015)
E. notabile Cyprus L-0607514, holotype OL343537 Vila et al. (2021)
E. olivaceomarginatum USA PUL00036174 ON561593 Unpublished in GenBank
E. orientosinense China HFJAU1414, holotype PQ584686 This work
E. orientosinense China HFJAU1907 PQ584690 PQ584707 This work
E. orientosinense China HFJAU2616 PQ584687 This work
E. orientosinense China HFJAU2920 PQ584688 PQ584708 This work
E. orientosinense China HFJAU4048 PQ584689 PQ584709 This work
E. pallidostriatum Spain L-0607566, holotype NR_177630 Vila et al. (2021)
E. perasprellum France GC01100310, holotype MZ145177 Dima et al. (2021)
E. perasprellum Sweden GB-0204547 / JBJ 19-107 MZ145179 Dima et al. (2021)
E. perasprellum Sweden GB-0204548 / JBJ 19-122 MZ145180 Dima et al. (2021)
E. perchalybeum Sweden GB-0209474, holotype NR_182490 Noordeloos et al. (2022b)
E. perchalybeum Finland TUR190180 ON008495 Noordeloos et al. (2022b)
E. poliopus Estonia TUF120264 UDB024655 UNITE
E. praegracile China GDGM29251 JQ281482 JQ320129 He et al. (2013)
E. praegracile China GDGM29256 JQ320107 He et al. (2013)
E. pseudocoelestinum Germany Lueck10 KP965774 KP965792 Karich et al. (2015)
E. pseudocoelestinum KM132400 MF977966 Unpublished in GenBank
E. pseudosubcorvinum Thailand SDBR-CMUNK0985, holotype MZ215769 MZ203540 Bhunjun et al. (2022)
E. pseudosubcorvinum Thailand SDBR-CMUNK1367 MZ215770 MZ203541 Bhunjun et al. (2022)
E. pulchripes Russia LE312485 MZ145187 Dima et al. (2021)
E. pulchripes Russia LE311808, holotype MZ145188 Dima et al. (2021)
E. pulchripes Russia LE311809 MZ145189 Dima et al. (2021)
E. queletii Turkey OKA-TR1002 MT741747 Unpublished in GenBank
E. queletii Estonia TUF141044 UDB07674927 UNITE
E. riparium Italy L-0607563, holotype NR_177632 Vila et al. (2021)
E. riparium Estonia TUF120259 UDB024650 UNITE
E. septentrionale Norway O-F-254295, holotype NR_174647 Noordeloos et al. (2021)
E. sericeum Germany KaiR237 OL338118 OL338542 Reschke et al. (2022a)
E. sericeum VHAs03 2 DQ367430 DQ367423 Unpublished in GenBank
E. serrulatum Norway O-F-158208/DMS-730296 MZ869016 Reschke et al. (2022b)
E. serrulatum Russia LE254361 KC898447 KC898501 Morozova et al. (2014)
E. serrulatum Iran EnSe-1 KT833862 Unpublished in GenBank
E. sicoense Portugal PO F2244, holotype OR026624 Fachada et al. (2023)
E. sicoense Portugal PO F2245 OR026625 Fachada et al. (2023)
E. subcaesiocinctum China SAAS103 KY711235 KY972698 He et al. (2017)
E. subcaesiocinctum China SAAS133, holotype KY711236 KY972697 He et al. (2017)
E. subcorvinum USA MGW1494 KY744168 Unpublished in GenBank
E. subcorvinum USA SAT1518905 KY744169 Unpublished in GenBank
E. subgriseosquamulosum China HFJAU3967 PQ584696 This work
E. subgriseosquamulosum China HFJAU3969, holotype PQ584697 PQ584721 This work
E. subpraegracile China HFJAU1822, holotype PQ584698 PQ584710 This work
E. subpraegracile China HFJAU3094 PQ584706 PQ584711 This work
E. subpraegracile China HFJAU3164 PQ584700 PQ584712 This work
E. subpraegracile China HFJAU3168 PQ584705 This work
E. subpraegracile China HFJAU5110 PQ584701 This work
E. subpraegracile China HFJAU5115 PQ584699 PQ584713 This work
E. subpraegracile China HFJAU5140 PQ584702 PQ584714 This work
E. subpraegracile China HFJAU5175 PQ584703 PQ584715 This work
E. subpraegracile China HFJAU5177 PQ584704 PQ584716 This work
E. subserrulatum USA TENN:068464 KY744143 Unpublished in GenBank
E. subserrulatum USA TENN:070407 KY744177 Unpublished in GenBank
E. subtenuicystidiatum China GDGM 28459, holotype JQ320109 JQ320116 He et al. (2013)
E. subtenuicystidiatum China GDGM 29246 JQ320114 JQ320132 He et al. (2013)
E. turci Austria WU25055 UDB0802163 UNITE
E. viridomarginatum The Netherlands JAC15761 MW775255 Unpublished in GenBank
E. viridomarginatum The Netherlands JAC12344 MW775264 Unpublished in GenBank
E. wuyishanense China HFJAU3571, holotype PQ584691 This work
E. wuyishanense China HFJAU3871 PQ584692 PQ584717 This work
E. wuyishanense China HFJAU3874 PQ584694 PQ584718 This work
E. wuyishanense China HFJAU3878 PQ584693 PQ584719 This work
E. wuyishanense China HFJAU3881 PQ584695 PQ584720 This work

Results

Phylogenetic analysis

A total of 2136 characters were used in subsequent analyses (ITS, 841 bp; LSU, 1,295 bp), of which 1382 were constant, 670 were parsimony-informative, and 84 were singleton. For Bayesian analysis, the average standard deviation of split frequencies was less than 0.01 after 20 million generations.

The results of the phylogenetic analysis were shown in Fig. 1. The results were consistent with previous studies (Noordeloos et al. 2022a; Brandrud et al. 2023). The four new species were clustered in the subg. Cyanula clade and formed separate and well-supported branches, respectively. Among them, Entoloma orientosinense formed a separate and well-supported lineage (BI-PP = 1, ML-BP = 99%), and groups together with E. albinellum (Peck) Hesler and E. queletii (Boud.) Noordel. nested in the sect. Caesiocincta, subsect. Queletia (BI-PP = 1, ML-BP = 100%). Entoloma subgriseosquamulosum independently formed a well-supported branch (BI-PP = 1, ML-BP = 100%). Entoloma subpraegracile formed a sister lineage with E. praegracile Xiao L. He & T.H. Li (BI-PP = 1, ML-BP = 100%), well clustered in a small clade (BI-PP = 1, ML-BP = 100%). Entoloma wuyishanense formed a well-supported lineage within the sect. Poliopodes (BI-PP = 1, ML-BP = 100%).

Figure 1. 

Phylogram of Entoloma subg. Cyanula spp. generated by Bayesian inference (BI) analysis based on ITS and LSU, rooted with E. subgenus Nolanea spp. Bayesian inference (BI-PP) ≥ 0.95 and ML bootstrap proportions (ML-BP) ≥ 95% are indicated as PP/BP. The new taxa are marked in bold.

Taxonomy

Entoloma orientosinense J.Q. Yan, L.G. Chen & S.N. Wang, sp. nov.

MycoBank No: 858361
Fig. 2

Etymology.

Refers to its type specimen originating from the eastern regions of China.

Holotype.

China • Anhui Province, Chizhou City, Shitan County, Guniujiang Nature Reserve, 30.0303°N, 117.5290°E, alt. 783 m, 9 October 2019, collected by Yu-Peng Ge, HFJAU1414.

Diagnosis.

Entoloma orientosinense is mainly characterized by the white, collybioid basidiomata, fibrillous and not striate pileus, narrow, adnate to decurrent lamellae, glabrous stipe, 5–6 angled basidiospores, sterile lamellae edge of carneogriseum-type, cylindrical to subclavate cheilocystidia, absence of cell pigments and clamp connections in hyphae. It differs from E. albinellum by its non-striate pileus, adnate to decurrent lamellae, and smaller basidiospores.

Macromorphology.

Basidiomata rather small, collybioid. Pileus 8–20 mm wide, convex then flattened with depressed center, with entire margin, slightly hygrophanous, fibrillous when young, then repent or raised scaly, not translucently striate, white (3A1–2). Lamellae moderately distant, 1.5–2.0 mm wide, with three types of lamellulae, adnate to decurrent, subventricose, initially white, then pink (11B4–6), with serrulate and concolourous edge. Stipe 20–25 × 2.0–3.0 mm, central, terete, tapered upwards, hollow, concolorous or paler with the pileus, minutely tomentose in the upper part elsewhere smooth and glabrous, base with white tomentum. Context thin, concolorous to the surface. Odor indistinct, taste not tested.

Micromorphology.

Basidiospores (8.5)9.3–11.0(12.5) × (6.0)6.5–8.0(9.0) μm, (av = 10.1 ×7.3 μm), Q = 1.2–1.6(1.7) (Qm = 1.4 ± 0.07, n = 200), heterodiametrical, 5–6 angles in profile view, thick-walled, inamyloid. Basidia 40–52 × 11–13 μm, clavate, 4-spored, sterigmata 5.0–10 μm long, clampless. Pleurocystidia absent. Lamellae edge sterile of carneogriseum-type. Cheilocystidia regularly dispersed in the lamellae edge, 17–47 × 4.0–7.0 μm, narrowly cylindrical to subclavate, septate, with slightly inflated apex. Lamellar trama regular, made up of cylindrical hyphae 7.0–13 µm wide. Pileipellis a cutis made up of cylindrical hyphae 8.0–11 μm broad, with transitions to a trichoderm towards the margin with clavate terminal elements 10–18 μm wide, not pigmented. Stipitipellis a cutis composed of densely arranged, cylindrical hyphae, up to 11 μm wide, slightly constricted at the septa, with acute or tapered end. Clamp connections absent.

Figure 2. 

E. orientosinense A, B basidiomata A HFJAU1414, holotype B HFJAU2616 C basidiospores D cheilocystidia E pileipellis F lamellar trama. All microscopic structures were observed in 5% KOH, and used 1% Congo red as the stain except C. Scale bars: 10 mm (A, B); 20 μm (C); 30 μm (D–F).

Habitat.

Solitary or scattered on soil in mixed coniferous-broad-leaved forest, or on rotten wood, soil, and moss in broadleaved forest.

Distribution.

So far known from eastern China.

Additional specimens examined.

China • Fujian Province, Wuyishan City, 27.7139°N, 117.6533°E, alt. 1113 m, 27 June 2022, collected by Jun-Qing Yan and Bing-Ring Ke, HFJAU4048 • Zhejiang Province, Lishui City, Suichang County, Huangtakou Village, 28.2679°N, 118.9435°E, alt. 346 m, 12 July 2020, collected by Jun-Qing Yan and Yan-Liu Chen, HFJAU1907 • Qingtian County, Shigu Lake, 28.2063°N, 120.0415°E, alt. 1130 m, 31 July 2021, collected by Jun-Qing Yan, Bing-Ring Ke, and Zhi-Heng Zeng, HFJAU2616 • Nanyang Village, 27.9603°N, 120.0020°E, alt. 522 m, 6 August 2021, collected by Yu-Peng Ge and Lan-Yu Sun, HFJAU2920.

Notes.

Morphologically, Entoloma orientosinense has much in common with E. albidosimulans G.M. Gates & Noordel. and E. albinellum with regard to the white and collybioid basidiomata. However, E. albidosimulans is distinct by its broader (up to 6 mm), adnate-emarginate lamellae, and belonging to E. subg. Alboleptonia species (Gates and Noordeloos 2007). Entoloma albinellum differs from new species by its striate pileus, adnexed lamellae, and larger basidiospores (11–12.5 × 7.5–8.5 μm) (Hesler 1967).

In the molecular data, E. orientosinense fits well within subg. Cyanula, sect. Caesiocincta, subsect. Queletia including E. albinellum and E. queletii. E. queletii is distinguished from new species by the vinaceous-pink pileus and larger basidiospores (10–13 × 6.5–9.0 μm) (Bas et al. 1988a).

Entoloma subgriseosquamulosum J.Q. Yan, L.G. Chen & S.N. Wang, sp. nov.

MycoBank No: 858362
Fig. 3

Etymology.

Refers to its morphology similar to “Entoloma griseosquamulosum”.

Holotype.

China • Fujian Province, Wuyishan City, Yangzhuang Town, Xiyuan Village, 27.7632°N, 117.8139°E, alt. 533 m, 26 June 2022, collected by Jun-Qing Yan, Cheng-Feng Nie, and Lin-Gen Chen, HFJAU3969.

Diagnosis.

Entoloma subgriseosquamulosum is mainly characterized by the rather small, collybioid basidiomata, fuscous pileus, crowded and adnate lamellae, glabrous stipe, medium-sized basidiospores with 5–6 angles, mostly 5 angles, and absence of clamp connections. It differs from E. griseosquamulosum G.M. Gates & Noordel. by its gray stipe, smaller basidiospores, and absence of brilliant granules in hyphae.

Macromorphology.

Basidiomata rather small, collybioid. Pileus 11–20 mm wide, campanulate to convex with slight depressed center, with entire margin, not hygrophanous, gray hairy scaly with denser center, translucently striate almost up to 1/2 of the radius, fuscous (4D2–4F2) to dark gray (1F1–4F1), darker at center. Lamellae relatively crowded, 2.0–4.0 mm wide, with two types of lamellulae, adnate to emarginate, ventricose, initially white, then brownish-rose, with entire and concolorous edge. Stipe 20–42 × 1.5–3.0 mm, central, terete, equal, hollow, gray (1C1–1E1), darker downwards, sparsely white fibrillous in the upper part elsewhere smooth and glabrous, base with white mycelium. Context thin, white. Odor indistinct, taste not tested.

Figure 3. 

E. subgriseosquamulosum A–D basidiomata A, B HFJAU3969, holotype C, D HFJAU3967 E basidiospores F cheilocystidia G basidia G, H pileipellis. G was observed in H2O, remaining microstructures all were observed in 5% KOH, and used 1% Congo red as the stain except E. Scale bars: 10 mm (A–D); 20 μm (E); 30 μm (F–H).

Micromorphology.

Basidiospores (8.1)8.4–10.5(11) × (6.0)6.5–8.0(8.5) μm, (av = 9.3 ×7.4 μm), Q = 1.1–1.4(1.5) (Qm = 1.3 ± 0.07, n = 100), subisodiameterical or heterodiametrical, 5–6 angles, mostly 5 angles in profile view, thick-walled, inamyloid. Basidia 27–36 × 10–13 μm, clavate, 4-spored, sterigmata 6.0–9.0 μm long, clampless. Pleurocystidia absent. Lamellae edge sterile of poliopus-type. Cheilocystidia 27–64 × 9.0–14 μm, clavate. Lamellar trama regular, made up of cylindrical hyphae 7.0–12 µm wide. Pileipellis a trichoderm made up of cylindrical hyphae 6.0–12 μm broad, with clavate terminal elements and yellow-brown intracellular pigment. Stipitipellis a cutis composed of densely arranged, cylindrical hyphae, 7.0–17 μm wide, slightly constricted at the septa, with acute or attenuated end. Clamp connections absent.

Habitat.

Solitary on soil or moss in broad-leaved forest.

Distribution.

So far known from Fujian Province in China.

Additional specimens examined.

China • Fujian Province, Wuyishan City, Yangzhuang Town, Xiyuan Village, 27.7652°N, 117.8164°E, alt. 512 m, 26 June 2022, collected by Jun-Qing Yan, Cheng-Feng Nie, and Lin-Gen Chen, HFJAU3967.

Notes.

Morphologically, several similar species within Entoloma subg. Cyanula that share brown to brown-gray pileus can be distinguished from the new species as follows: E. anatinum (Lasch) Donk is characterized by its larger basidiospores (9.0–13.5 × 7.5–9.0 μm) with 6–9 angles, and fertile lamellae edge (Donk 1949); E. glaucobasis Huijsman ex Noordel. has larger basidiospores (10–13.5 × 7.0–8.0 μm) (Noordeloos 1985); E. griseosquamulosum differs from the new species by the gray-violet stipe, larger basidiospores (9.0–12 × 7.0–9.0 μm), and presence of abundant brilliant granules in all hyphae (Noordeloos and Gates 2009); E. phaeomarginatum E. Horak is recognized by the fibrillose pileus, brown lamellae edge, and larger basidiospores (10–13 × 7.0–8.0 μm) (Horak 1973); E. saponicum G.M. Gates & Noordel. is distinct by the blackish brown lamellae edge and presence of abundant brilliant granules in all hyphae (Noordeloos and Gates 2009).

Phylogenetically, E. cyanostipitum Xiao L. He & W.H. Peng is closest to the new species. However, E. cyanostipitum is distinct by the deep blue pileus margin, lamellae edge and stipe, and the ITS region, with an 84% similarity (He et al. 2017).

Entoloma subpraegracile J.Q. Yan, L.G. Chen & S.N. Wang, sp. nov.

MycoBank No: 856754
Fig. 4

Etymology.

Refers to its macroscopic morphology similar to “Entoloma praegracile

Holotype.

China • Zhejiang Province, Lishui City, Qingyuan County, Bandaihoushang Village, 27.6748°N, 119.0780°E, alt. 1084 m, 7 July 2020, collected by Jun-Qing Yan and Yan-Liu Chen, HFJAU1822.

Diagnosis.

Entoloma subpraegracile is mainly characterized by the yellow, glabrous, and striate pileus, white, adnexed to adnate lamellae with tiny lateral veins, 5–7 angled and medium-sized basidiospores, sterile or heterogeneous lamellae edge of serrulatum-type, cylindrical or clavate cheilocystidia, and absence of clamp connections. It differs from E. praegracile by the larger basidiomata, and sterile or heterogeneous lamellae edge.

Macromorphology.

Basidiomata rather small. Pileus 10–20 mm wide, conical when young, then convex to flattened with depressed, rarely cuspidate center, with entire margin, not hygrophanous, smooth and glabrous, translucently striate almost up to the center, ochre (7B4–6), grayish yellow (1A4–5) to tawny (2C4–6), darker at center. Lamellae relatively dense, 1.5–2.0 mm wide, with tiny lateral veins and two or three types of lamellulae, adnate to adnexed, subventricose, white, with entire and concolorous edge. Stipe 25–35 × 2.0–2.5 mm, central, terete. equal, hollow, concolorous or paler with the pileus, smooth and glabrous, sometimes grooved, white tomentose at the base. Context thin, concolorous to the surface. Odor indistinct, taste not tested.

Figure 4. 

E. subpraegracile A, B basidiomata A HFJAU1822, holotype B HFJAU5115 C basidiospores D pileipellis E cheilocystidia F heterogeneous lamellae edge. All microscopic structures were observed in 5% KOH, and used 1% Congo red as the stain except C. Scale bars: 10 mm (A, B); 20 μm (C); 30 μm (D–F).

Micromorphology.

Basidiospores (7.0)8.5–10.5(12) × (6.0)6.5–7.5(8.5) μm, (av = 9.6 ×7.0 μm), Q = 1.2–1.6(1.7) (Qm = 1.4 ± 0.08, n = 200), heterodiametrical, 5–7(8) angles in profile view, appearing nodulose, thick-walled, inamyloid. Basidia 27–37 × 9–12 μm, clavate, slightly constricted at middle, mainly 2-spored, sterigmata 6.0–12 μm long, clampless. Pleurocystidia absent. Lamellae edge sterile or heterogeneous of poliopus-type. Cheilocystidia dense clusters on lamellae edge, 21–53 × 7.0–14 μm, cylindrical or clavate. Lamellar trama regular, made up of cylindrical hyphae 4.0–8.0 µm wide. Pileipellis a cutis made up of cylindrical hyphae 5.0–12 μm broad, with transitions to a trichoderm towards the center with clavate terminal elements 10–16 μm wide, with tawny intracellular pigment. Stipitipellis a cutis composed of densely arranged, cylindrical hyphae, 7.0–15 μm wide, slightly constricted at the septa, with rounded end. Clamp connections absent.

Habitat.

Solitary or scattered on soil in mixed coniferous-broad-leaved forest.

Distribution.

So far known from eastern China.

Additional specimens examined.

China • Fujian Province, Wuyishan City, 27.8594°N, 117.9096°E, alt. 372 m, 12 August 2021, collected by Jun-Qing Yan and Ze-Wei Liu, HFJAU3094 • 27.8563°N, 117.8661°E, alt. 668 m, 13 August 2021, collected by Qin Na, Yu-Peng Ge, and Lan-Yu Sun, HFJAU3164, HFJAU3168 • 27.7221°N, 117.7072°E, alt. 654 m, 16 August 2023, collected by Nian-Kai Zeng, Cheng-Feng Nie, Hua-Zhi Qin, Hui Deng, Tian Jiang, and Run-Xiang Zhao, HFJAU5110, HFJAU5115, HFJAU5140, HFJAU5175, HFJAU5177.

Notes.

In the phylogenetic tree, E. subpraegracile groups together with E. praegracile. Entoloma praegracile differs from the new species by the smaller pileus (less than 10 mm), fertile lamellae edge, and the ITS sequence with 86% similarity (He et al. 2011).

Some similar species with a yellow pileus within subg. Cyanula can be distinguished from the new species as follows: E. chloropolium (Fr.) M.M. Moser is recognized by the fertile to heterogeneous lamellae edge, and septate cheilocystidia (Noordeloos 2004); E. formosum (Fr.) Noordel. is characterized by its squamulose pileus, larger basidiospores (9.0–12.5 × 6.0–8.0 μm), and fertile or heterogeneous lamellae edge (Bas et al. 1988b). E. luteoochraceum Ribes & Vila is distinct by the squamous pileus, 4-spored basidia, and fertile lamellae edge (Ribes and Vila 2013); E. pseudoturci Noordel. has tomentose to squamous and not striate pileus, porphyrogriseum-type lamellae edge, and brilliant granules in tissue cells (Noordeloos 1984).

Entoloma wuyishanense J.Q. Yan, L.G. Chen & S.N. Wang, sp. nov.

MycoBank No: 858363
Fig. 5

Etymology.

Refers to the collection locality of the holotype specimen – Wuyishan National Natural Park.

Holotype.

China • Fujian Province, Nanping City, Wuyishan National Natural Park, 27.5418°N, 117.4743°E, alt. 422 m, 7 June 2022, collected by Jun-Qing Yan and Lin-Gen Chen, HFJAU3571.

Diagnosis.

Entoloma wuyishanense is mainly characterized by the rather small and blue basidiomata, squamous and striate pileus, white and adnexed lamellae with fertile edge with slightly bluish pigmentation near the stipe, relatively large basidiospores with 5–6 angles, pileipellis with fuscous intracellular pigment. It differs from E. azureosquamulosum Xiao L. He & T.H. Li by the striate pileus, adnexed lamellae, larger basidiospores, and fertile lamellae edge.

Figure 5. 

E. wuyishanense A–C basidiomata HFJAU3571, holotype B, C HFJAU3871 D basidiospores E, F pileipellis G basidia H fertile lamellar edge. E was observed in H2O D, F–H were observed in 5% KOH, and used 1% Congo red as the stain except D. Scale bars: 10 mm (A–C); 20 μm (D); 30 μm (E–H).

Macromorphology.

Basidiomata rather small. Pileus 2.0–11 mm wide, conical when young, then convex to flattened with depressed center, with entire, straight or wavy margin, not hygrophanous, squamous with denser center, translucently striate almost up to the center, deep blue (20E4–7) to light gray-blue (20B2–3), darker at center. Lamellae moderately distant, 1.0–3.0 mm wide, with two types of lamellulae, adnexed, ventricose, white, with entire and bluish edge near the stipe. Stipe 9.0–26 × 1.0–2.0 mm, central, terete, equal, hollow, concolorous with pileus, paler downwards, white fibrillose, glabrescent with age, base with white mycelium. Context thin, gray-blue. Odor indistinct, taste not tested.

Micromorphology.

Basidiospores (9.5)10–13.5(15) × (6.5)7.5–9.5(10) μm, (av = 11.7 ×8.5 μm), Q = 1.2–1.7(2.0) (Qm = 1.4 ± 0.11, n = 200), heterodiametrical, 5–6 angles in profile view, sometimes appearing nodulose, thick-walled, inamyloid. Basidia 25–33 × 10–13 μm, clavate, slightly constricted at middle, 4- or 2-spored, sterigmata 6.0–10 μm long, clampless. Lamellae edge fertile. Cystidia absent. Lamellar trama regular, made up of cylindrical hyphae 5.0–11 µm wide. Pileipellis a trichoderm made up of clavate to pyriform terminal cells, 41–65 × 22–36 μm. Pigment fuscous, intracellular, diffuse in pileipellis. Stipitipellis a cutis composed of densely arranged, cylindrical hyphae, 5.0–12 μm wide, with rounded end. Clamp connections absent.

Habitat.

Solitary or scattered on moss in mixed coniferous-broad-leaved forest.

Distribution.

So far known from eastern China.

Additional specimens examined.

China • Zhejiang Province, Lishui City, Songyang County, Zicao Village, 28.4874°N, 119.5783°E, alt. 722 m, 2 July 2022, collected by Jun-Qing Yan, Cheng-Feng Nie, and Meng-Hui Han, HFJAU3871, HFJAU3874, HFJAU3878 • Lishui City, Yunhe County, Chongtou Town, Xiayang Village, 28.0499°N, 119.4732°E, alt. 592 m, 4 July 2022, collected by Jun-Qing Yan and Cheng-Feng Nie, HFJAU3881.

Notes.

Morphologically, E. azureosquamulosum is the most similar species with the distinction that E. azureosquamulosum exhibits not striate pileus, adnate lamellae, smaller basidiospores (8–10.5 × 6.5–8.0 μm), and sterile lamellae edge (He et al. 2012).

In the phylogenetic tree, E. wuyishanense belongs to Cyanula sect. Poliopodes, within which several species have blue pileus, including E. argus O.V. Morozova, E.S. Popov, A.V. Alexandrova & Noordel., E. calceus Noordel., Bendiksen, Brandrud, P.-A. Moreau & Vila, E. corvinum (Kühner) Noordel., E. icarus O.V. Morozova, E.S. Popov & Noordel., and E. perchalybeum Noordel., J.B. Jordal & Dima. However, the lamellae edge of the latter in all species is sterile. In addition, E. argus is characterized by the adnate lamellae and smaller basidiospores (≤10 μm) (Morozova et al. 2022); E. calceus shows 6–9 angled basidiospores (Noordeloos et al. 2022b); E. corvinum is recognized by its not striate pileus, adnate lamellae, and smaller basidiospores (8.0–11 × 6.5–7.5 μm) (Noordeloos 1982); E. icarus can be easily differentiated by the lateral stipe and adnate lamellae (Morozova et al. 2022); E. perchalybeum is distinct by the adnate lamellae and 6–7 rather bluntly angled basidiospores (Noordeloos et al. 2022b).

Discussion

Entoloma subg. Cyanula currently is divided into 11 sections (Noordeloos et al. 2022a; Dima et al. 2023), and which formed well-supported clades and confirmed taxonomic positions within subgenus in this study. It is worth mentioning that two of the four newly discovered species in this study, along with the majority of previously reported new taxa of subg. Cyanula from China, do not belong to any known sections. To address this issue, continued phylogenetic studies of subg. Cyanula based on both morphological characters and molecular markers for more representative specimens of this subgenus from China are necessary. This will result in a more natural classification in the future.

Notably, based on the results of this phylogenetic analysis, we have realized that the sect. Caesiocincta is divided into three clades. However, since none of the originating branches of these scattered clades is supported, the cause of this result cannot be determined. Additional specimen data are needed for further analysis.

The present study expands our understanding of entolomoid species by providing descriptions and phylogenetic analyses for four new species. The findings enrich our knowledge of the distribution of E. subg. Cyanula species in China and the overall diversity of Entoloma.

Key to Entoloma subg. Cyanula species reported in China

1 Pileus white to pink 2
Pileus other colored 3
2 Pileus white, not striate, with depressed center; lamellae adnate to decurrent; basidiospores 5–6 angled; pigment not E. orientosinense
Pileus pink, striate, with umbonate center; lamellae subfree to adnexed; basidiospores 6–8 angled; pigment yellow encrusting E. mastoideum
3 Pileus yellow-brown to grayish-brown 4
Pileus blue to violaceous 13
4 Pileus glabrous to fibrillose 5
Pileus squamulose to velvety 8
5 Basidiospores Lav ≥ 11 μm; pileus striate, with depressed center; lamellae adnate; lamellae edge sterile or heterogeneous E. subtenuicystidiatum
Basidiospores Lav < 11 μm 6
6 Pileus ≥ 20 mm, with margin exceeding lamellae; lamellae adnate-emarginate to adnexed E. caespitosum
Pileus < 20 mm 7
7 Lamellae edge sterile or heterogeneous; pileus not hygrophanous E. subpraegracile
Lamellae edge fertile; pileus hygrophanous E. praegracile
8 Lamellae edge fertile; pileus striate; lamellae adnate or emarginate; basidiospores 8.0–14 × 5.5–10 μm E. insidiosum
Lamellae edge sterile 9
9 Basidiospores Lav ≥ 10 μm; pileus striate; lamellae adnexed; pigment yellow-brown intracellular E. longistriatum
Basidiospores Lav < 10 μm 10
10 Cheilocystidia cylindrical to clavate 11
Cheilocystidia fusiform, lageniform, vesiculose to spheropedunculate 12
11 Pileus striate; lamellae adnate to emarginate; lamellae edge entire and concolorous with lamellae E. subgriseosquamulosum
Pileus not striate; lamellae adnexed to short decurrent; lamellae edge serrulate and blue-black E. subcaesiocinctum
12 Cheilocystidia fusiform to lageniform; pileus not striate; lamellae adnexed to free; lamellae edge concolorous with lamellae E. pseudosubcorvinum
Cheilocystidia vesiculose or spheropedunculate; pileus not striate; lamellae adnate-emarginate; lamellae edge brown E. pulchripes
13 Lamellae edge fertile; pileus squamous, striate; lamellae adnexed; lamellae edge blue; basidiospores 10–13.5 × 7.5–9.5 μm E. wuyishanense
Lamellae edge sterile 14
14 Pileus not striate 15
Pileus striate 16
15 Lamellae adnate-emarginate; cheilocystidia fusoid E. azureosquamulosum
Lamellae short decurrent; cheilocystidia cylindrical to subclavate E. cyanostipitum
16 Cheilocystidia subglobose or sphaeropedunculate; lamellae edge concolorous with lamellae E. ekaterinae
Cheilocystidia broadly clavate or lageniform; lamellae edge blackish purple E. callipygmaeum

Acknowledgments

The authors are very grateful for assistance of Yu-Peng Ge and Meng-Hui Han in the field specimen collection and the anonymous reviewers of the manuscript.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was financed by the National Natural Science Foundation of China (32460326, 31960008), Jiangxi Provincial Natural Science Foundation (20224BAB205003), Fujian Provincial Natural Science Foundation (2023J01379), and the Project of FAAS (XTCXGC2021007).

Author contributions

Conceptualization, Jun-Qing Yan; methodology, Jun-Qing Yan and Sheng-Nan Wang; software, Lin-Gen Chen, Hong Chen, Ling Ding and Yu-Qin Xu; formal analysis, Hui Zeng, Jun-Qing Yan, and Sheng-Nan Wang; investigation, Lin-Gen Chen, Hong Chen, Ling Ding, and Jun-Qing Yan; resources, Hui Zeng and Jun-Qing Yan; writing – original draft, Lin-Gen Chen; writing – review and editing, Jun-Qing Yan; visualization, Jun-Qing Yan and Sheng-Nan Wang; supervision, Jun-Qing Yan; project administration, Jun-Qing Yan; funding acquisition, Jun-Qing Yan. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Lin-Gen Chen https://orcid.org/0009-0000-2506-181X

Hong Chen https://orcid.org/0009-0004-0107-3962

Ling Ding https://orcid.org/0009-0000-5293-046X

Hui Zeng https://orcid.org/0000-0003-2025-844X

Sheng-Nan Wang https://orcid.org/0000-0003-0648-271X

Jun-Qing Yan https://orcid.org/0000-0003-1128-5171

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

  • Armada F, Bellanger J-M, Moreau P-A (2023) Champignons de la zone alpine. Contribution à l’étude des champignons supérieurs alpins. Fédération mycologique et botanique Dauphiné-Savoie, 376.
  • Bas C (1969) Morphology and subdivision of Amanita and a monograph of its section Lepidella. Persoonia-Molecular Phylogeny and Evolution of Fungi 5: 285–573.
  • Bas C, Wkuyper TH, Noordeloos ME, Vellinga EC, Boekhout T, Arnolds E (1988a) Flora Agaricina Neerlandica: Critical monographs on families of agarics and boleti occurring in the Netherlands. Balkema, Netherlands, 191.
  • Bas C, Wkuyper TH, Noordeloos ME, Vellinga EC, Boekhout T, Arnolds E (1988b) Flora agaricina Neerlandica: critical monographs on families of agarics and boleti occurring in the Netherlands Vol.1 Entolomataceae. Balkema, Rotterdam, 191.
  • Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, Mckenzie E, Maharachchikumbura S, Buyck B, Zhao CL, Fan YG, Zhang JY, Dissanayake AJ, Sandamali D, Jayawardena RS, Kumla J, Padamsee M, Chen YY, Liimatainen K, Ammirati JF, Phukhamsakda C, Liu J-KJ, Phonrob W, Randrianjohany E, Hongsanan S, Cheewangkoon R, Bundhun D, Khuna S, Yu WJ, Deng LS, Lu YZ, Hyde KD, Lumyong S (2022) The numbers of fungi: Are the most speciose genera truly diverse? Fungal Diversity 114: 387–462. https://doi.org/10.1007/s13225-022-00501-4
  • Brandrud TE, Bendiksen E, Jordal JB, Weholt Ø, lorås J, Dima B, Noordeloos ME (2023) Entoloma species of subgenus Cyanula (Tricholomatinae, Basidiomycota) in Norway, with emphasis on habitat preferences and distribution. Agarica: Mykologisk Tidsskrift 43: 85–137. https://doi.org/10.5617/agarica.10985
  • Chen LG, Ding L, Hong C, Zeng H, Zeng ZH, Wang SN, Yan JQ (2024) Seven New Species of Entoloma Subgenus Cubospora (Entolomataceae, Agaricales) from Subtropical Regions of China. Journal of Fungi (Basel, Switzerland) 10: 594. https://doi.org/10.3390/jof10080594
  • Co-David D, Langeveld D, Noordeloos ME (2009) Molecular phylogeny and spore evolution of Entolomataceae. Persoonia-Molecular Phylogeny and Evolution of Fungi 23: 147–176. https://doi.org/10.3767/003158509X480944
  • Crous PW, Cowan DA, Maggs-Kölling G, Yilmaz N, Thangavel R, Wingfield MJ, Noordeloos ME, Dima B, Brandrud TE, Jansen GM, Morozova OV, Vila J, Shivas R, Tan YP, Bishop-Hurley SL, Lacey E, Marney TS, Larsson E, Floch GL, Lombard L, Nodet P, Hubka V, Alvarado P, Berraf-Tebbal A, Reyes JD, Delgado G, Eichmeier A, Jordal JB, Kachalkin A, Kubátová A, Macia-Vicente JG, Malysheva E, Papp V, Rajeshkumar KC, Sharma A, Spetik M, Strašiftáková D, Tomashevskaya MA, Abad JA, Abad ZG, Alexandrova AV, Anand G, Arenas F, Ashtekar ND, Balashov S, Bañares Á, Baroncelli R, Bera I, Biketova AY, Blomquist CL, Boekhout T, Boertmann D, Bulyonkova T, Burgess TI, Carnegie A, Díaz JFC, Corriol G, Cunnington J, Cruz M, Damm U, Davoodian N, Santiago A, Dearnaley JDW, Freitas LWSd, Dhileepan K, Dimitrov RA, Piazza SD, Fatima S, Fuljer F, Galera H, Ghosh A, Giraldo A, Glushakova AM, Gorczak M, Gouliamova D, Gramaje D, Groenewald M, Gunsch CK, Gutiérrez A, Holdom D, Houbraken J, Ismailov A, Istel Ł, Iturriaga T, Jeppson M, Jurjević Ž, Kalinina L, Kapitonov VI, Kautmanová I, Khalid AN, Kiran M, Kiss L, Kovács Á, Kurose D, Kušan I, Lad S, Læssøe T, Lee HB, Luangsa-Ard JJ, Lynch M, Popov E, Matočec N, Reschke K (2021a) Fungal Planet description sheets: 1182–1283. Persoonia-Molecular Phylogeny and Evolution of Fungi 46: 313–528. https://doi.org/10.3767/persoonia.2021.46.11
  • Crous PW, Osieck ER, Jurjević Ž, Boers J, Iperen AV, Starink M, Dima B, Balashov S, Bulgakov T, Johnston PR, Morozova OV, Pinruan U, Sommai S, Alvarado P, Decock C, Lebel T, McMullan-Fisher SJM, Moreno G, Shivas R, Zhao L, Abdollahzadeh J, Abrinbana M, Ageev D, Akhmetova C, Alexandrova A, Altés A, Amaral AGG, Angelini C, Antonín V, Arenas F, Asselman P, Badali F, Baghela A, Bañares Á, Barreto RW, Baseia I, Bellanger J-M, Berraf-Tebbal A, Biketova AY, Bukharova N, Burgess TI, Cabero J, Camara MPS, Cano J, Ceryngier P, Chavez R, Cowan DA, Lima AFd, Oliveira R, denman S, Quynh DN, Dovana F, Duarte IG, Eichmeier A, Erhard A, Esteve-Raventós F, Fellin A, Ferisin G, Ferreira RJ, Ferrer A, Finy P, Gaya E, Geering ADW, Gil-Durán C, Glässnerova K, Glushakova AM, Gramaje D, Guard F, Serrudo AG, Haelewaters D, Halling RE, Hill R, Hirooka Y, Hubka V, Iliushin VA, Ivanova DD, Ivanushkina NE, Jangsantear P, Justo A, Kachalkin A, Kato S, Khamsuntorn P, Kirtsideli I, Knapp DG, Galina K, Koukol O, Kovács GM, Kruse J, Kumar TKA, Kušan I, Læssøe T, Larsson E, Lebeuf R, Levican G, Loizides M, Marinho P, Luangsa-Ard JJ, Lukina EG, Magaña V, Maggs-Kölling G, Malysheva E, Malysheva V, Martín B, Martín MP, Matočec N, McTaggart A, Mehrabi-Koushki M, Mesic A, Miller AN, Mironova P, Moreau P-A, Morte A, Müller K, Nagy LG, Nanu S, Navarro-Ródenas A, Nel W, Nguyen TH, Nóbrega T, Noordeloos ME, Olariaga I, Overton B, Ozerskaya SM, Palani P, Pancorbo F, Papp V, Pawłowska J, Thu PQ, Phosri C, Popov E, Portugal A, Pošta A, Reschke K, Reul M, Ricci GM, Rodríguez A, Romanowski J, Ruchikachorn N, Saar I, Safi A, Sakolrak B, Salzmann F, Sandoval-Denis M, Sangwichein E, Sanhueza L, Sato T, Sastoque AP, Senn-Irlet BJ, Shibata A, Siepe K, Somrithipol S, Špetík M, Pichai S, Stchigel AM, Štůsková K, Suwannasai N, Tan YP, Thangavel R, Tiago I, Tiwari S, Tkalcec Z, Tomashevskaya MA, Tonegawa C, Tran H, Tran NT, Trovão J, Trubitsyn V, Wyk JJV, Vieira WADS, Vila J, Visagie CM, Vizzini A, Volobuev S, Vu DT, Wangsawat N, Yaguchi T, Ercole E, Ferreira BW, Souza APd, Vieira BS, Groenewald JZ (2021b) Fungal Planet description sheets: 1284–1382. Persoonia-Molecular Phylogeny and Evolution of Fungi 47: 1284–1382. https://doi.org/10.3767/persoonia.2021.47.06
  • Dima B, Brandrud TE, Corriol G, Jansen GM, Jordal JB, Khalid AN, Larsson E, Lorås J, Morozova OV, Naseer A, Noordeloos ME, Rossi W, Santamaria S, Sarwar S, Sesli E, Usman M, Afshan NUS, Ahmad I, Banerjee A, Banerjee K, Bendiksen E, Colombo DRdS, Kesel AD, Dovana F, Ferisin G, Hussain S, Islam S, Jesus ALd, Kaygusuz O, Krisai-Greilhuber I, Mahammad S, Mishra DK, Nath PS, Paixão SCdOd, Panja B, Papp V, Zottarelli C, Radnoti A, Rana D, Saha R, Türkekul İ, Haelewaters D (2021) Fungal systematics and evolution: FUSE 7. Sydowia 73: 271–340. https://doi.org/10.12905/0380.sydowia73-2021-0271
  • Dima B, Noordeloos ME, Morozova OV, Jansen GM, Reschke K, Brandrud TE, Vila J (2023) Nomenclatural novelties. Index Fungorum no 546: Donk MA (1949) New and revised nomina generica conservanda proposed for Basidiomycetes (Fungi). Bulletin of the Botanical Gardens Buitenzorg 18: 83–168.
  • Donk MA (1949) New and revised nomina generica conservanda proposed for Basidiomycetes (Fungi). Bulletin of the Botanical Gardens Buitenzorg 18: 83–168.
  • Fachada V, Pedreiro H, Raimundo S, Noordeloos ME, Dima B, Marques G (2023) Entoloma sicoense, a new species in the subgenus Cyanula (Entolomataceae). Phytotaxa 606: 133–146. https://doi.org/10.11646/phytotaxa.606.2.4
  • Gates GM, Noordeloos ME (2007) Preliminary studies in the genus Entoloma in Tasmania – II. Persoonia-Molecular Phylogeny and Evolution of Fungi 19: 157–226.
  • He XL, Li TH, Jiang ZD, Shen YH (2011) Entoloma mastoideum and E. praegracile – Two new species from China. Mycotaxon 116: 413–419. https://doi.org/10.5248/116.413
  • He XL, Li TH, Xi PG, Jiang ZD, Shen YH (2013) Phylogeny of Entoloma s.l. subgenus Pouzarella with descriptions of five new species from China. Fungal Diversity 58: 227–243. https://doi.org/10.1007/s13225-012-0212-7
  • Hesler LR (1967) Entoloma in Southeastern North America. Beihefte zur Nova Hedwigia, Germany, 196.
  • Horak E (1973) Fungi agaricini Novazelandiae I–V: I. Entoloma (Fr.) and related genera. Beihefte zur Nova Hedwigia, Germany, 86.
  • Horak E (1980) Entoloma (Agaricales) in Indomalaya and Australasia. Beihefte zur Nova Hedwigia, Germany, 352.
  • Horak E (2005) Röhrlinge und Blätterpilze in Europa: Bestimmungsschlüssel für Polyporales (pp), Boletales, Agaricales, Russulales. Elsevier, Spektrum, Akad. Verl., Munich, Germany, 557.
  • Karich A, Kellner H, Schmidt M, Ullrich R (2015) Ein bemerkenswertes Mykotop im Zittauer Gebirge mit Microglossum rufescens als Erstnachweis für Deutschland. Boletus 36: 151–163.
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kornerup A, Wanscher JH (1978) The Methuen Handbook of Colour. Eyre Methuen Ltd, UK, 252.
  • Largent DL (1994) Entolomatoid fungi of the western United States and Alaska. Mad River Press, Eureka, California, USA, 495.
  • Lebeuf R, Alexandrova A, Mendoza AC, Guivin MAC, Silva GAd, Ricaldi AMdlS, Dima B, Fryssouli V, Gkilas M, Guerrero-Abad JC, Lamoureux Y, Landry J, Mesic A, Morozova OV, Noordeloos ME, Oehl F, Paul A, Pham THG, Polemis E, Santos VM, Svetasheva T, Tkalcec Z, Vallejos-Tapullima A, Vila J, Zervakis GI, Baral H-O, Bulyonkova T, Kalinina L, Krisai-Greilhuber I, Malysheva E, Myhrer J, Pärtel K, Pennanen M, Stallman J, Haelewaters D (2021) Fungal Systematics and Evolution: FUSE 8. Sydowia 74: 193–249. https://doi.org/10.12905/0380.sydowia74-2021-0193
  • Morozova OV, Noordeloos ME, Vila J (2014) Entoloma subgenus Leptonia in boreal-temperate Eurasia: Towards a phylogenetic species concept. Persoonia-Molecular Phylogeny and Evolution of Fungi 32: 141–169. https://doi.org/10.3767/003158514X681774
  • Morozova OV, Popov E, Alexandrova A, Pham THG, Noordeloos ME (2022) Four new species of Entoloma (Entolomataceae, Agaricomycetes) subgenera Cyanula and Claudopus from Vietnam and their phylogenetic position. Phytotaxa 549: 1–21. https://doi.org/10.11646/phytotaxa.549.1.1
  • Nguyen LT, Schmidt HA, Haeseler Av, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300
  • Noordeloos ME (1981) Introduction to the taxonomy of the genus Entoloma sensu lato (Agaricales). Persoonia-Molecular Phylogeny and Evolution of Fungi 11: 121–151.
  • Noordeloos ME (1984) Studies in Entoloma – 10–13. Persoonia-Molecular Phylogeny and Evolution of Fungi 12: 195–223.
  • Noordeloos ME (1985) Notulae ad floram Agaricinam Neerlandicam X–XI. Entoloma. Persoonia-Molecular Phylogeny and Evolution of Fungi 12: 457–462.
  • Noordeloos ME (2004) Entoloma s.l. Fungi Europaei 5. Edizioni Candusso, Alassio, Italy, 618.
  • Noordeloos ME, Gates G (2009) Preliminary studies in the genus Entoloma in Tasmania-II. Cryptogamie. Mycologie 30: 107–140.
  • Noordeloos ME, Lorås J, Eidissen SE, Brandrud TE, Bendiksen E, Morozova OV, Jordal JB, Weholt Ø, Jansen GM, Larsson E, Dima B (2021) Three new Entoloma species of the Cyanula clade from (sub)alpine habitats in Northern Norway and Sweden. Sydowia 73: 185–196. https://doi.org/10.12905/0380.sydowia73-2020-0185
  • Noordeloos ME, Dima B, Morozova OV, Reschke K, Jansen GM, Brandrud TE, Jordal JB, Bendiksen E, Vila J (2022a) Entoloma Sensu Lato. Subgenera Cyanula, Leptonia, Nolanea, Trichopilus, and the/Rhombisporum Clade. Candusso Edtrice di Lidia Carla Candusso Via Saronnino 41/47 I-21040–Origgio VA, Italy, 968.
  • Noordeloos ME, Vila J, Jordal JB, Kehlet T, Brandrud TE, Bendiksen E, Moreau P-A, Dondl M, Lorås J, Larsson E, Dima B (2022b) Contributions to the revision of the genus Entoloma (Basidiomycota, Agaricales) in Europe: Six new species from subgenus Cyanula and typification of E. incarnatofuscescens. Fungal Systematics and Evolution 9: 87–97. https://doi.org/10.3114/fuse.2022.09.06
  • Reschke K, Morozova OV, Dima B, Cooper JA, Corriol G, Biketova AY, Piepenbring M, Noordeloos ME (2022a) Phylogeny, taxonomy, and character evolution in Entoloma subgenus Nolanea. Persoonia-Molecular Phylogeny and Evolution of Fungi 49: 136–170. https://doi.org/10.3767/persoonia.2022.49.04
  • Reschke K, Noordeloos ME, Manz C, Hofmann TA, Rodríguez-Cedeño J, Dima B, Piepenbring M (2022b) Fungal diversity in the tropics: Entoloma spp. in Panama. Mycological Progress 21: 93–145. https://doi.org/10.1007/s11557-021-01752-2
  • Ribes MÁ, Vila J (2013) Entoloma luteoochraceum y E. luteoviolaceum, dos nuevas especies de las Islas Canarias. Fungi Non Delineati : Raro Vel Haud Perspecte et Explorate Descripti aut Definite Picti 146: 86–92.
  • Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck J (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  • Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3: 668–678. https://doi.org/10.1038/s41559-019-0834-1
  • Vila J, Noordeloos ME, Reschke K, Moreau P-A, Battistin E, Ribes MÁ, Marulli U, Corriol G, Polemis E, Loizides M, Dima B (2021) New species of the genus Entoloma (Basidiomycota, Agaricales) from Southern Europe. Asian Journal of Mycology 29: 123–153.
  • Wang SN, Fan YG, Yan JQ (2022) Iugisporipsathyra reticulopilea gen. et sp. nov. (Agaricales, Psathyrellaceae) from tropical China produces unique ridge-ornamented spores with an obvious suprahilar plage. MycoKeys 90: 147–162. https://doi.org/10.3897/mycokeys.90.85690
  • White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, Sninsky J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, Inc, San Diego, USA, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li W, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20: 348–355. https://doi.10.1111/1755-0998.13096

Supplementary material

Supplementary material 1 

Supplementary data

Lin-Gen Chen, Hong Chen, Ling Ding, Yu-Qin Xu, Hui Zeng, Sheng-Nan Wang, Jun-Qing Yan

Data type: nex

Explanation note: A nexus file contains alignment sequence and original tree of ML and Bayes.

This dataset is made available aunder the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (539.23 kb)
login to comment