Research Article |
Corresponding author: Evgeny Ilyukhin ( evgeny.ilyukhin@gmail.com ) Corresponding author: Sajeewa S. N. Maharachchikumbura ( sajeewa83@yahoo.com ) Academic editor: Francesco Dal Grande
© 2025 Evgeny Ilyukhin, Yanpeng Chen, Svetlana Markovskaja, Ashwag Shami, Sajeewa S. N. Maharachchikumbura.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Ilyukhin E, Chen Y, Markovskaja S, Shami A, Maharachchikumbura SSN (2025) Comprehensive genome analysis of two Cytospora (Cytosporaceae, Diaporthales) species associated with canker disease of spruce: C. piceae and C. piceicola sp. nov. MycoKeys 117: 89-119. https://doi.org/10.3897/mycokeys.117.145445
|
Cytospora canker (CC) is among the most important diseases in conifer trees (Picea spp., mainly). This disease poses a significant risk factor for forest health, potentially leading to economic losses for wood producers. To provide a genomic basis of the CC pathogenesis, the genomes of two Cytospora species associated with the disease were sequenced and further analyzed within a set of Diaporthales species. The first species was identified as C. piceae. The second was described as C. piceicola sp. nov. based on morphological characteristics and multi-gene phylogenetic analysis. The novel species is sister to other Cytospora species isolated from conifers. Here, we report 39.7 and 43.8 Mb highly contiguous genome assemblies of C. piceae EI-19(A) and C. piceicola EI-20, respectively, obtained using Illumina sequencing technology. Despite notably different genome sizes, these species share the main genome characteristics, such as predicted gene number (10,862 and 10,742) and assembly completeness (97.6% and 98.1%). A wide range of genes encoding carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, and secreted effectors were found. Multiple experimentally validated virulence genes were also identified in the studied species. The defined arsenals of enzymes and effectors generally relate to the hemibiotrophic lifestyle with a capability to switch to biotrophy. The obtained evidence also supports that C. piceae EI-19(A) and C. piceicola EI-20 can cause severe canker disease symptoms in Picea spp. specifically. It was additionally observed that the strains of C. piceae may have different pathogenicity and virulence characteristics based on the analyses of predicted secondary metabolite complements, effectomes, and virulence-related genes. Phylogenomic analysis and timetree estimations indicated that divergence of the studied species may have occurred relatively late, 11-10 million years ago. Compared to other members of Diaporthales, C. piceae EI-19(A) and C. piceicola EI-20 implied a moderate rate of gene contraction, but the latter experienced significant gene loss that can additionally support host specificity attributed to these species. But uncovered gene contraction events may point out potential lifestyle differentiation and host shift of the studied species. It was revealed that EI-19(A) and C. piceicola EI-20 carry distinct secretomes and effectomes among Diaporthales species. This feature can indicate a species lifestyle and pathogenicity potential. These findings highlight potential targets for identification and/or detection of pathogenic Cytospora in conifers. The introduced draft genome sequences of C. piceae and C. piceicola can be employed as tools to understand basic genetics and pathogenicity mechanisms of fungal species causing canker disease in woody plants. The identified pathogenicity and virulence-related genes would serve as potential candidates for host-induced gene silencing aimed at making plant hosts more resistant to pathogenic species. Furthermore, the comparative genomics component of the study will facilitate the functional analysis of the genes of unknown function in all fungal pathogens.
Carbohydrate-active enzymes, Cytospora canker, effector proteins, Sordariomycetes, virulence genes
The ascomycetous genus Cytospora (Cytosporaceae, Diaporthales) includes fungal species occurring mainly on woody plants worldwide. Cytospora spp. are found to be associated with more than 600 hosts, including both angiosperms and gymnosperms (
Cytospora canker (CC) is one of the most common diseases of spruce (Picea spp.) and fir (Abies spp.) in North America. In Canada, forests cover about half of the territory with a predominance of conifers (67.8%) (
Early and accurate species identification is crucial for disease management practices. Previously, Cytospora (Valsa) kunzei was the only species reported as a causal agent of CC in the region (Kamiri and Laemmlen 1981). However, recent studies showed that several Cytospora species were associated with canker disease of spruce trees (
Since Cytospora species are found to be the main causal agents of spruce canker disease, more information is required to understand pathogen-host interactions and disease pathogenesis. In order to successfully colonize plant tissue, a fungus needs to overcome chemical and physical barriers established by a host. Fungal plant pathogens evolved different lifestyles (e.g., biotrophy), which require specific gene sets (
Of the Cytospora genomes available via NCBI (http://www.ncbi.nlm.nih.gov/) and Mycocosm (
This study identifies the species of Cytospora associated with canker disease of Picea glauca (Moench) Voss in the Niagara Region, Ontario, Canada. The genomes of C. piceae EI-19(A) and novel species C. piceicola EI-20 were sequenced and analyzed to identify the contents of CWDEs, BSGCs, effectors, and virulence-associated genes. Additionally, a comparative analysis was performed to reveal the lifestyle and pathogenicity potential of the studied species. There is a noticeable lack of updated studies for the region. This absence hinders a comprehensive understanding of CC and its associated pathogens. Therefore, the results of this study will provide a foundation for further research of pathogenicity and virulence-related genes of fungal plant pathogens and formulate effective canker disease prevention and control strategies.
Branches of Picea glauca were collected from the trees with typical symptoms of CC in the Niagara region, Ontario, Canada, in 2020. The isolates were first obtained using the single spore isolation technique (
The description of the new species was carried out using the pure culture of the representative isolate. Radial colony growth and color were assessed after 7 and 14 days of fungus incubation under room temperature in the dark on MEA, respectively. Morphological characterization and measurements of asexual reproductive structures (conidiomata (n = 10), conidiophores (n = 20), and conidia (n = 50)) were performed with dissecting (AmScope SE306R-PZ) and compound (AmScope B120C-E5) microscopes. Pictures were taken with a 12 MP digital AmScope camera MD1200A supplied with AmScopeX software (AmScope, Irvine, CA, USA).
Total genomic DNA (gDNA) was extracted from 8-10-day-old pure cultures using the DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The internal transcribed spacer (ITS) region was amplified with the primer pair ITS1/ITS4 (
The initial identification was performed employing the BLASTn tool against the GenBank nucleotide database of the National Center for Biotechnology Information (NCBI). Sequence data of the related reference strains (
Strains of the Cytospora genus used in phylogenetic analysis with their GenBank accession numbers. Ex-type strains are marked with T. Strains obtained in this study are marked in bold. Sequence data retrieved from genome assemblies is marked with *. NA indicates that data is not available.
Species | Strain | Host | GenBank accession numbers | ||||
---|---|---|---|---|---|---|---|
ITS | act | rpb2 | tef1-α | tub2 | |||
Cytospora ailanthicola | CFCC 89970 | Ailanthus altissima | MH933618 | MH933526 | MH933592 | MH933494 | MH933565 |
C. albodisca | CFCC 53161 | Platycladus orientalis | MW418406 | MW422899 | MW422909 | MW422921 | MW422933 |
C. albodisca | CFCC 54373 | Platycladis orientalis | MW418407 | MW422900 | MW422910 | MW422922 | MW422934 |
C. alba | CFCC 55462T | Salix matsudana | MZ702593 | OK303457 | OK303516 | OK303577 | OK303644 |
C. alba | CFCC 55463 | Salix matsudana | MZ702594 | OK303458 | OK303517 | OK303578 | OK303645 |
C. ampulliformis | MFLUCC 16-0583T | Sorbus intermedia | KY417726 | KY417692 | KY417794 | NA | NA |
C. ampulliformis | MFLUCC 16-0629 | Acer platanoides | KY417727 | KY417693 | KY417795 | NA | NA |
C. amydgali | CBS 144233T | Prunus dulcis | MG971853 | MG972002 | NA | MG971659 | MG971718 |
C. atrocirrhata | CFCC 89615 | Juglans regia | KR045618 | KF498673 | KU710946 | KP310858 | KR045659 |
C. atrocirrhata | CFCC 89616 | Juglans regia | KR045619 | KF498674 | KU710947 | KP310859 | KR045660 |
C. beilinensis | CFCC 50493T | Pinus armandii | MH933619 | MH933527 | NA | MH933495 | MH933561 |
C. beilinensis | CFCC 50494 | Pinus armandii | MH933620 | MH933528 | NA | MH933496 | MH933562 |
C. berberidis | CFCC 89927T | Berberis dasystachya | KR045620 | KU710990 | KU710948 | KU710913 | KR045661 |
C. berberidis | CFCC 89933 | Berberis dasystachya | KR045621 | KU710991 | KU710949 | KU710914 | KR045662 |
C. bungeana | CFCC 50495T | Pinus bungeanae | MH933621 | MH933529 | MH933593 | MH933497 | MH933563 |
C. bungeana | CFCC 50496 | Pinus bungeanae | MH933622 | MH933530 | MH933594 | MH933498 | MH933564 |
C. californica | CBS 144234T | Juglans regia | MG971935 | MG972083 | NA | MG971645 | NA |
C. carbonacea | CFCC 89947 | Ulmus pumila | KR045622 | KP310842 | KU710950 | KP310855 | KP310825 |
C. carpobroti | CMW 48981T | Carpobrotus edulis | MH382812 | NA | NA | MH411212 | MH411207 |
C. celtidicola | CFCC 50497T | Celtis sinensis | MH933623 | MH933531 | MH933595 | MH933499 | MH933566 |
C. celtidicola | CFCC 50498 | Celtis sinensis | MH933624 | MH933532 | MH933596 | MH933500 | MH933567 |
C. centrivillosa | MFLUCC 16-1206T | Sorbus domestica | MF190122 | NA | MF377600 | NA | NA |
C. centrivillosa | MFLUCC 17-1660 | Sorbus domestica | MF190123 | NA | MF377601 | NA | NA |
C. ceratosperma | CFCC 89624 | Juglans regia | KR045645 | NA | KU710976 | KP310860 | KR045686 |
C. ceratosperma | CFCC 89625 | Juglans regia | KR045646 | NA | KU710977 | KP31086 | KR045687 |
C. chrysosperma | CFCC 89981 | Populus alba | MH933625 | MH933533 | MH933597 | MH933501 | MH933568 |
C. chrysosperma | CFCC 89982 | Ulmus pumila | KP281261 | KP310835 | NA | KP310848 | KP310818 |
C. cinnamomea | CFCC 53178T | Prunus armeniaca | MK673054 | MK673024 | NA | NA | MK672970 |
C. coryli | CFCC 53162T | Corylus mandshurica | MN854450 | NA | MN850751 | MN850758 | MN861120 |
C. corylina | CFCC 54684T | Corylus heterophylla | MW839861 | MW815951 | MW815937 | MW815886 | MW883969 |
C. corylina | CFCC 54685 | Corylus heterophylla | MW839862 | MW815952 | MW815938 | MW815887 | MW883970 |
C. cotini | MFLUCC 14-1050T | Cotinus coggygria | KX430142 | NA | KX430144 | NA | NA |
C. cotoneastricola | CF 20197027 | Cotoneaster sp. | MK673072 | MK673042 | MK673012 | MK672958 | MK672988 |
C. cotoneastricola | CF 20197028 | Cotoneaster sp. | MK673073 | MK673043 | MK673013 | MK672959 | MK672989 |
C. curvispora | CFCC 54000T | Corylus heterophylla | MW839851 | MW815931 | MW815945 | MW815880 | MW883963 |
C. curvispora | CFCC 54001 | Corylus heterophylla | MW839854 | MW815933 | MW815947 | MW815882 | MW883965 |
C. davidiana | CXY 1350T | Populus davidiana | KM034870 | NA | NA | NA | NA |
C. diopuiensis | CFCC55479 | Undefined wood | MK912137 | MN685819 | NA | NA | NA |
C. diopuiensis | CFCC55527 | Koelreuteria paniculata | ON376918 | ON390905 | ON390908 | ON390914 | ON390923 |
C. discotoma | CFCC 53137T | Platycladus orientalis | MW418404 | MW422897 | MW422907 | MW422919 | MW422931 |
C. discotoma | CFCC 54368 | Platycladus orientalis | MW418405 | MW422898 | MW422908 | MW422920 | MW422932 |
C. donetzica | MFLUCC 15-0864 | Crataegus monogyna | KY417729 | KY417695 | KY417797 | NA | NA |
C. donetzica | MFLUCC 16-0574T | Crataegus monogyna | KY417731 | KY417697 | KY417799 | NA | NA |
C. donglingensis | CFCC 53159T | Platycladus orientalis | MW418412 | MW422903 | MW422915 | MW422927 | MW422939 |
C. donglingensis | CFCC 53160 | Platycladus orientalis | MW418414 | MW422905 | MW422917 | MW422929 | MW422941 |
C. elaeagni | CFCC 89632 | Elaeagnus angustifolia | KR045626 | KU710995 | KU710955 | KU710918 | KR045667 |
C. elaeagni | CFCC 89633 | Elaeagnus angustifolia | KF765677 | KU710996 | KU710956 | KU710919 | KR045668 |
C. elaeagnicola | CFCC 52882T | Elaeagnus angustifolia | MK732342 | MK732345 | MK732348 | NA | NA |
C. elaeagnicola | CFCC 52883 | Elaeagnus angustifolia | MK732343 | MK732346 | MK732349 | NA | NA |
C. erumpens | CFCC 50022 | Prunus padus | MH933627 | MH933534 | NA | MH933502 | MH933569 |
C. erumpens | CFCC 53163 | Prunus padus | MK673059 | MK673029 | MK673000 | MK672948 | MK672975 |
C. eucalypti | CBS 144241 | Eucalyptus globulus | MG971907 | MG972056 | NA | MG971617 | MG971772 |
C. euonymicola | CFCC 50499T | Euonymus kiautschovicus | MH933628 | MH933535 | MH933598 | MH933503 | MH933570 |
C. euonymicola | CFCC 50500 | Euonymus kiautschovicus | MH933629 | MH933536 | MH933599 | MH933504 | MH933571 |
C. euonymina | CFCC 89993T | Euonymus kiautschovicus | MH933630 | MH933537 | MH933600 | MH933505 | MH933590 |
C. euonymina | CFCC 89999 | Euonymus kiautschovicus | MH933631 | MH933538 | MH933601 | MH933506 | MH933591 |
C. fugax | CXY 1371 | Populus simonii | KM034852 | NA | NA | NA | KM034891 |
C. fugax | CXY 1381 | Populus ussuriensis | KM034853 | NA | NA | NA | KM034890 |
C. galegicola | MFLUCC 18-1199T | Galega officinalis | MK912128 | MN685810 | MN685820 | NA | NA |
C. gigalocus | CFCC 89620T | Juglans regia | KR045628 | KU710997 | KU710957 | KU710920 | KR045669 |
C. gigalocus | CFCC 89621 | Juglans regia | KR045629 | KU710998 | KU710958 | KU710921 | KR045670 |
C. gigaspora | CFCC 50014 | Juniperus procumbens | KR045630 | KU710999 | KU710959 | KU710922 | KR045671 |
C. gigaspora | CFCC 89634T | Salix psammophila | KF765671 | KU711000 | KU710960 | KU710923 | KR045672 |
C. globosa | MFLU 16-2054T | Abies alba | MT177935 | NA | MT432212 | MT454016 | NA |
C. globosa | CBS 118977 | Abies alba | PP988852 | KX964768 | KX965518 | KX965130 | KX964947 |
C. granati | CBS 144237T | Punica granatum | MG971799 | MG971949 | NA | MG971514 | MG971664 |
C. haidianensis | CFCC 54056 | Euonymus alatus | MT360041 | MT363978 | MT363987 | MT363997 | MT364007 |
C. haidianensis | CFCC 54057T | Euonymus alatus | MT360042 | MT363979 | MT363988 | MT363998 | MT364008 |
C. hejingensis | CFCC 59571T | Salix sp. | PP060455 | PP059657 | PP059663 | PP059667 | PP059673 |
C. hejingensis | C3479 | Salix sp. | PP060456 | PP059658 | PP059664 | PP059668 | PP059674 |
C. hippophaës | CFCC 89639 | Hippophaë rhamnoides | KR045632 | KU711001 | KU710961 | KU710924 | KR045673 |
C. hippophaës | CFCC 89640 | Hippophaë rhamnoides | KF765682 | KF765730 | KU710962 | KP310865 | KR045674 |
C. japonica | CFCC 89956 | Prunus cerasifera | KR045624 | KU710993 | KU710953 | KU710916 | KR045665 |
C. japonica | CFCC 89960 | Prunus cerasifera | KR045625 | KU710994 | KU710954 | KU710917 | KR045666 |
C. jilongensis | CFCC 59569T | Prunus davidiana | PP060457 | PP059659 | NA | PP059669 | PP059675 |
C. jilongensis | XZ083 | Prunus davidiana | P060458 | PP059660 | NA | PP059670 | PP059676 |
C. joaquinensis | CBS 144235 | Populus deltoides | MG971895 | MG972044 | NA | MG971605 | MG971761 |
C. junipericola | MFLU 17-0882T | Juniperus communis | MF190125 | NA | NA | MF377580 | NA |
C. juniperina | CFCC 50501T | Juniperus przewalskii | MH933632 | MH933539 | MH933602 | MH933507 | NA |
C. juniperina | CFCC 50502 | Juniperus przewalskii | MH933633 | MH933540 | MH933603 | MH933508 | MH933572 |
C. kantschavelii | CXY 1383 | Populus maximowiczii | KM034867 | NA | NA | NA | NA |
C. kuanchengensis | CFCC 52464T | Castanea mollissima | MK432616 | MK442940 | MK578076 | NA | NA |
C. kuanchengensis | CFCC 52465 | Castanea mollissima | MK432617 | MK442941 | MK578077 | NA | NA |
C. kunsensis | CFCC 59570T | Prunus padus | PP060459 | PP059661 | PP059665 | PP059671 | PP059677 |
C. kunsensis | C3488 | Prunus padus | PP060460 | PP059662 | PP059666 | PP059672 | PP059678 |
C. leucosperma | CFCC 89622 | Pyrus bretschneideri | KR045616 | KU710988 | KU710944 | KU710911 | KR045657 |
C. leucosperma | CFCC 89894 | Pyrus bretschneideri | KR045617 | KU710989 | KU710945 | KU710912 | KR045658 |
C. longispora | CBS 144236T | Prunus domestica | MG971905 | MG972054 | NA | MG971615 | MG971764 |
C. longistiolata | MFLUCC 16-0628 | Salix × fragilis | KY417734 | KY417700 | KY417802 | NA | NA |
C. lumnitzericola | MFLUCC 17-0508T | Lumnitzera racernosa | MG975778 | MH253457 | MH253453 | NA | NA |
C. mali | CFCC 50028 | Malus pumila | MH933641 | MH933548 | MH933606 | MH933513 | MH933577 |
C. mali | CFCC 50029 | Malus pumila | MH933642 | MH933549 | MH933607 | MH933514 | MH933578 |
C. mali-spectabilis | CFCC 53181T | Malus spectabilis | MK673066 | MK673036 | MK673006 | MK672953 | MK672982 |
C. melnikii | CFCC 89984 | Rhus typhina | MH933678 | MH933551 | MH933609 | MH933515 | MH933580 |
C. mougeotii | ATCC 44994T | Picea abies | AY347329 | NA | NA | NA | NA |
C. mougeotii | CBS 198.50 | Picea abies | PP988918 | KX964794 | |||
C. myrtagena | CFCC 52454 | Castanea mollissima | MK432614 | MK442938 | MK578074 | NA | NA |
C. myrtagena | CFCC 52455 | Castanea mollissima | MK432615 | MK442939 | MK578075 | NA | NA |
C. nivea | CFCC 89641 | Elaeagnus angustifolia | KF765683 | KU711006 | KU710967 | KU710929 | KR045679 |
C. nivea | MFLUCC 15-0860 | Salix acutifolia | KY417737 | KY417703 | KY417805 | NA | NA |
C. notastroma | NE_TFR5 | Populus tremuloides | JX438632 | NA | NA | JX438543 | NA |
C. notastroma | NE_TFR8 | Populus tremuloides | JX438633 | NA | NA | JX438542 | NA |
C. ochracea | CFCC 53164T | Cotoneaster sp. | MK673060 | MK673030 | MK673001 | MK672949 | MK672976 |
C. oleicola | CBS 144248T | Olea europaea | MG971944 | MG972098 | NA | MG971660 | MG971752 |
C. olivacea | CFCC 53174 | Prunus cerasifera | MK673058 | MK673028 | MK672999 | NA | MK672974 |
C. olivacea | CFCC 53175 | Prunus dulcis | MK673062 | MK673032 | MK673003 | NA | MK672978 |
C. palm | CXY 1276 | Cotinus coggygria | JN402990 | NA | NA | KJ781296 | NA |
C. palm | CXY 1280T | Cotinus coggygria | JN411939 | NA | NA | KJ781297 | NA |
C. parakantschavelii | MFLUCC 15-0857T | Populus × sibirica | KY417738 | KY417704 | KY417806 | v | |
C. paracinnamomea | CFCC 55453 | Salix matsudana | MZ702594 | OK303456 | OK303515 | OK303576 | OK303643 |
C. paracinnamomea | CFCC 55455T | Salix matsudana | MZ702598 | OK303460 | OK303519 | OK303580 | OK303647 |
C. parapistaciae | CBS 144506T | Pistacia vera | MG971804 | MG971954 | NA | MG971519 | MG971669 |
C. paraplurivora | FDS-439 | Prunus armeniaca | OL640182 | OL631586 | NA | OL631589 | NA |
C. paraplurivora | FDS-564T | Prunus persica | OL640183 | OL631587 | NA | OL631590 | NA |
C. parasitica | CFCC 53173 | Berberis sp. | MK673070 | MK673040 | MK673010 | MK672957 | MK672986 |
C. paratranslucens | MFLUCC 15-0506T | Populus alba var. bolleana | KY417741 | KY417707 | KY417809 | NA | NA |
C. paratranslucens | MFLUCC 16-0627 | Populus alba | KY417742 | KY417708 | KY417810 | NA | NA |
C. phialidica | MFLUCC 17-2498 | Alnus glutinosa | MT177932 | NA | MT432209 | MT454014 | NA |
C. piceae | CFCC 52841T | Picea crassifolia | MH820398 | MH820406 | MH820395 | MH820402 | MH820387 |
C. piceae | CFCC 52842 | Picea crassifolia | MH820399 | MH820407 | MH820396 | MH820403 | MH820388 |
C. piceae | EI-19(A), BILAS 51883 | Picea glauca | ON352564 | genome* | genome* | genome* | genome* |
C. piceicola | EI-20, BILAS 51886T | Picea glauca | ON352567 | genome* | genome* | genome* | genome* |
C. pinastri | CBS 113.81 | Abies alba | KY051777 | KX964689 | NA | NA | KX964886 |
C. pinastri | CBS 505.7 | Abies alba | KY051939 | KX964819 | NA | NA | KX964992 |
C. pingbianensis | MFLUCC 18-1204T | Undefined wood | MK912135 | MN685817 | MN685826 | NA | NA |
C. pistaciae | CBS 144238T | Pistacia vera | MG971802 | MG971952 | NA | MG971517 | MG971667 |
C. platyclade | CFCC 50504T | Platycladus orientalis | MH933645 | MH933552 | MH933610 | MH933516 | MH933581 |
C. platyclade | CFCC 50505 | Platycladus orientalis | MH933646 | MH933553 | MH933611 | MH933517 | MH933582 |
C. platycladicola | CFCC 50038T | Platycladus orientalis | KT222840 | MH933555 | MH933613 | MH933519 | MH933584 |
C. platycladicola | CFCC 50039 | Platycladus orientalis | KR045642 | KU711008 | KU710973 | KU710931 | KR045683 |
C. plurivora | CBS 144239T | Olea europaea | MG971861 | MG972010 | NA | MG971572 | MG971726 |
C. populi | CFCC 55472T | Populus sp. | MZ702609 | OK303471 | OK303530 | OK303591 | OK303658 |
C. populi | CFCC 55473 | Populus sp. | MZ702610 | OK303472 | OK303531 | OK303592 | OK303659 |
C. populicola | CBS 144240 | Populus deltoides | MG971891 | MG972040 | NA | MG971601 | MG971757 |
C. populina | CFCC 89644T | Salix psammophila | KF765686 | KU711007 | KU710969 | KU710930 | KR045681 |
C. populinopsis | CFCC 50032T | Sorbus aucuparia | MH933648 | MH933556 | MH933614 | MH933520 | MH933585 |
C. populinopsis | CFCC 50033 | Sorbus aucuparia | MH933649 | MH933557 | MH933615 | MH933521 | MH933586 |
C. predappioensis | MFLUCC 17-2458T | Platanus hybrida | MG873484 | NA | NA | NA | NA |
C. pruinopsis | CFCC 50034T | Ulmus pumila | KP281259 | KP310836 | KU710970 | KP310849 | KP310819 |
C. pruinopsis | CFCC 53153 | Ulmus pumila | MN854451 | MN850763 | MN850752 | MN850759 | MN861121 |
C. pruinosa | CFCC 50036 | Syringa oblata | KP310800 | KP310832 | NA | KP310845 | KP310815 |
C. pruinosa | CFCC 50037 | Syringa oblata | MH933650 | MH933558 | NA | MH933522 | MH933589 |
C. prunicola | MFLU 17-0995T | Prunus sp. | MG742350 | MG742353 | MG742352 | NA | NA |
C. pruni-mume | CFCC 53179 | Prunus armeniaca | MK673057 | MK673027 | NA | MK672947 | MK672973 |
C. pruni-mume | CFCC 53180T | Prunus mume | MK673067 | MK673037 | MK673007 | MK672954 | MK672983 |
C. quercicola | MFLU 17-0881 | Quercus sp. | MF190128 | NA | NA | NA | NA |
C. ribis | CFCC 50026 | Ulmus pumila | KP281267 | KP310843 | KU710972 | KP310856 | KP310826 |
C. ribis | CFCC 50027 | Ulmus pumila | KP281268 | KP310844 | NA | KP310857 | KP310827 |
C. rosicola | CF 20197024T | Rosa sp. | MK673079 | MK673049 | MK673019 | MK672965 | MK672995 |
C. rostrata | CFCC 89909 | Salix cupularis | KR045643 | KU711009 | KU710974 | KU710932 | KR045684 |
C. rostrata | CFCC 89910 | Salix cupularis | KR045644 | KU711010 | KU710975 | KU710933 | NA |
C. rusanovii | MFLUCC 15-0853 | Populus × sibirica | KY417743 | KY417709 | KY417811 | NA | NA |
C. rusanovii | MFLUCC 15-0854T | Salix babylonica | KY417744 | KY417710 | KY417812 | NA | NA |
C. saccardoi | CBS 109752 | Juniperus communis | PP988975 | KX964683 | KX965461 | KX965050 | KX964883 |
C. saccardoi | CBS 141615 | Unknown | PP988976 | NA | NA | NA | NA |
C. sacculus | CFCC 89626T | Juglans regia | KR045647 | KU711011 | KU710978 | KU710934 | KR045688 |
C. sacculus | CFCC 89627 | Juglans regia | KR045648 | KU711012 | KU710979 | KU710935 | KR045689 |
C. salicacearum | MFLUCC 15-0509 | Salix alba | KY417746 | KY417712 | KY417814 | NA | NA |
C. salicacearum | MFLUCC 15-0861 | Salix × fragilis | KY417745 | KY417711 | KY417813 | NA | NA |
C. salicicola | MFLUCC 14-1052T | Salix alba | KU982636 | KU982637 | NA | NA | NA |
C. salicicola | MFLUCC 15-0866 | Salix sp. | KY417749 | KY417715 | KY417817 | NA | NA |
C. salicina | MFLUCC 15-0862 | Salix alba | KY417750 | KY417716 | KY417818 | NA | NA |
C. salicina | MFLUCC 16-0637 | Salix × fragilis | KY417751 | KY417717 | KY417819 | NA | NA |
C. schulzeri | CFCC 50042 | Malus pumila | KR045650 | KU711014 | KU710981 | KU710937 | KR045691 |
C. sibiraeae | CFCC 50045T | Sibiraea angustata | KR045651 | KU711015 | KU710982 | KU710938 | KR045692 |
C. sibiraeae | CFCC 50046 | Sibiraea angustata | KR045652 | KU711015 | KU710983 | KU710939 | KR045693 |
C. sophorae | CFCC 50047 | Styphnolobium japonicum | KR045653 | KU711017 | KU710984 | KU710940 | KR045694 |
C. sophorae | CFCC 89598 | Styphnolobium japonicum | KR045654 | KU711018 | KU710985 | KU710941 | KR045695 |
C. sophoricola | CFCC 89595T | Styphnolobium japonicum | KR045655 | KU711019 | KU710986 | KU710942 | KR045696 |
C. sophoricola | CFCC 89596 | Styphnolobium japonicum | KR045656 | KU711020 | KU710987 | KU710943 | KR045697 |
C. sophoriopsis | CFCC 55489 | Salix matsudana | MZ702583 | OK303445 | OK303504 | OK303565 | OK303632 |
C. sophoriopsis | CFCC 89600 | Styphnolobium japonicum | KR045623 | KU710992 | KU710951 | KU710915 | KP310817 |
C. sorbi | MFLUCC 16-0631T | Sorbus aucuparia | KY417752 | KY417718 | KY417820 | NA | NA |
C. sorbicola | MFLUCC 16-0584T | Acer pseudoplatanus | KY417755 | KY417721 | KY417823 | NA | NA |
C. sorbicola | MFLUCC 16-0633 | Cotoneaster melanocarpus | KY417758 | KY417724 | KY417826 | NA | NA |
C. sorbina | CF 20197660T | Sorbus tianschanica | MK673052 | MK673022 | NA | MK672943 | MK672968 |
C. spiraeae | CFCC 50049T | Spiraea salicifolia | MG707859 | MG708196 | MG708199 | NA | NA |
C. spiraeae | CFCC 50050 | Spiraea salicifolia | MG707860 | MG708197 | MG708200 | NA | NA |
C. spiraeicola | CFCC 53138T | Spiraea salicifolia | MN854448 | NA | MN850749 | MN850756 | MN861118 |
C. spiraeicola | CFCC 53139 | Tilia nobilis | MN854449 | NA | MN850750 | MN850757 | MN861119 |
C. tamaricicola | CFCC 50507 | Rosa multifolora | MH933651 | MH933559 | MH933616 | MH933525 | MH933587 |
C. tamaricicola | CFCC 50508T | Tamarix chinensis | MH933652 | MH933560 | MH933617 | MH933523 | MH933588 |
C. tanaitica | MFLUCC 14-1057T | Betula pubescens | KT459411 | KT459413 | NA | NA | NA |
C. thailandica | MFLUCC 17-0262T | Xylocarpus moluccensis | MG975776 | MH253459 | MH253455 | NA | NA |
C. thailandica | MFLUCC 17-0263 | Xylocarpus moluccensis | MG975777 | MH253460 | MH253456 | NA | NA |
C. tibetensis | CF 20197026 | Cotoneaster sp. | MK673076 | MK673046 | MK673016 | MK672962 | MK672992 |
C. tibetensis | CF 20197029 | Cotoneaster sp. | MK673077 | MK673047 | MK673017 | MK672963 | MK672993 |
C. tibouchinae | CPC 26333T | Tibouchina semidecandra | KX228284 | NA | NA | NA | NA |
C. translucens | CXY 1351 | Populus davidiana | KM034874 | NA | NA | NA | KM034895 |
C. translucens | CXY 1359 | Populus × beijingensis | KM034871 | NA | NA | NA | KM034894 |
C. ulmi | MFLUCC 15-0863T | Ulmus minor | KY417759 | NA | NA | NA | NA |
C. verrucosa | CFCC 53157T | Platycladus orientalis | MW418408 | NA | MW422911 | MW422923 | MW422935 |
C. verrucosa | CFCC 53158 | Platycladus orientalis | MW418410 | MW422901 | MW422913 | MW422925 | MW422937 |
C. vinacea | CBS 141585T | Vitis interspecific | KX256256 | NA | NA | KX256277 | KX256235 |
C. viridistroma | CBS 202.36T | Cercis canadensis | MN172408 | NA | NA | MN271853 | NA |
C. viticola | Cyt2 | Vitis interspecific | KX256238 | NA | NA | KX256259 | KX256217 |
C. viticola | CBS 141586T | Vitis vinifera | KX256239 | NA | NA | KX256260 | KX256218 |
C. xinjiangensis | CFCC 53182 | Rosa sp. | MK673064 | MK673034 | MK673004 | MK672951 | MK672980 |
C. xinjiangensis | CFCC 53183T | Rosa sp. | MK673065 | MK673035 | MK673005 | MK672952 | MK672981 |
C. xinglongensis | CFCC 52458T | Castanea mollissima | MK432622 | MK442946 | MK578082 | NA | NA |
C. xinglongensis | CFCC 52459 | Castanea mollissima | MK432623 | MK442947 | MK578083 | NA | NA |
C. xylocarpi | MFLUCC 17-0251T | Xylocarpus granatum | MG975775 | MH253458 | MH253454 | NA | NA |
C. zhaitangensis | CFCC 56227T | Euonymus japonicus | OQ344750 | OQ398760 | OQ398789 | OQ410623 | OQ398733 |
C. zhaitangensis | CFCC 57537 | Euonymus japonicus | OQ344751 | OQ398761 | OQ398790 | OQ410624 | OQ398734 |
Diaporthe vaccinii | CBS 160.32 | Vaccinium macrocarpon | KC343228 | JQ807297 | NA | KC343954 | KC344196 |
The obtained gDNA of the strains EI-19(A) and EI-20 was quantified employing the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA). Libraries were prepared with the NEBNext Ultra II DNA Library Preparation Kit for Illumina (New England Biolabs, Ipswich, MA, USA). Whole genome sequencing was performed using the NovaSeq 6000 platform with a 150 bp pair-end sequencing strategy. This option was selected as being more cost-effective for obtaining draft genome sequences compared to third-generation sequencing. All procedures were performed at the Genome Quebec Innovation Centre (Montreal, Canada). The raw reads were quality-filtered using Trimmomatic v. 0.38.1 (
Gene prediction from assemblies of the strains EI-19(A) and EI-20 was performed using Augustus v. 3.4.0 (
The single-copy orthogroups (SCOs) within all species included in the analysis were identified with Orthofinder v. 2.5.4 (
The ML and BP analyses of the combined ITS, act, rpb2, tef1-α, and tub2 sequence data produced phylogenetic trees with highly similar topologies. The best-scoring ML tree with a log-likelihood value of −63932.107826 is shown in Fig.
Phylogram of the RAxML tree generated based on the analysis of combined ITS, act, rpb2, tef1-α, and tub2 sequence data of the Cytospora genus. Bootstrap support values for ML ≥ 50% and BP ≥ 0.90 are shown as ML/BP above or below the nodes. Ex-type strains are in bold. Strains obtained in this study are in blue. The tree is rooted to Diaporthe vaccinii (CBS 160.32).
Cytosporaceae Fr., Systema Orbis Vegetabilis 1: 118 (1825)
Cytospora Ehrenb., Sylvae mycologicae Berolinenses: 28 (1818)
Sexual morph : not observed. Asexual morph: Conidiomata pycnidial, immersed in bark, erumpent, ostiolated, with multiple irregularly arranged circular or ovoid locules, 1,050–1,400 μm in diam. Conceptacle absent, ostiole conspicuous, circular, dark gray, at the same level as the disc. Conidiophores semimacronematous, hyaline, filamentous, mainly unbranched or branched at base, elongated, smooth, thin-walled, (16.0–)17.7–22.2(–23.5) μm. Conidiogenous cells enteroblastic, polyphialidic. Conidia abundant, single, hyaline, aseptate, curved, allantoid, thin-walled (5.0–)5.4–6.1(–6.5) × (1.0–)1.2–1.5 μm.
Colonies on MEA initially white, becoming beige with dense aerial mycelium, slow-growing (17 mm in diameter) after 7 days of incubation. Hyphae hyaline, smooth, branched, and septate.
Canada • Ontario, Lincoln, 43°06'38.2"N, 79°19'17.5"W, branches of Picea glauca (Moench) Voss, pycnidia (conidiomata) formed on cankered branches and twigs, April 2020, E. Ilyukhin (BILAS 51883,
Morphologically, two isolates of C. piceae are very similar, but EI-19(A) has slightly longer conidiophores and conidia than CFCC 52841. Originally, C. piceae was described as a pathogen associated with the canker disease of Picea crassifolia in China (
The name refers to the host genus, Picea, from which the fungus was first isolated.
Asexual morph of C. piceicola A isolation source (cankered branches of P. glauca) B adverse and reverse view of seven-day-old culture on MEA C pycnidia (with locules) on the surface of the colony after 25 days of incubation D conidiogenous cells E conidia. Scale bars: 1 mm (C); 5 μm (D, E).
Canada • Ontario, Lincoln, 43°06'39.0"N, 79°19'15.4"W, isolated from cankered wood (branches) of Picea glauca, April 2020, E. Ilyukhin (holotype BILAS 51884, ex-holotype living culture BILAS 51886=EI-20, isotype
Sexual morph : not observed in culture. Asexual morph: Conidiomata appearing after 25 days of incubation on MEA, rare, pycnidial, solitary, globose to subglobose, dark grey to black when dry, with few ovoid locules, (610–)824–1071(–1380) μm diam. Conidiophores micronematous, hyaline, smooth-walled, reduced to unbranched conidiogenous cells. Conidiogenous cells enteroblastic, phialidic, lageniform, or ampulliform (7.5–)8.8–10.6(–13.0) × (1.0–)1.3–1.7(–2.0) μm. Conidia abundant, relatively small, single, hyaline, aseptate, slightly curved, allantoid, thin-walled (3.5–)3.8–4.9(–5.5) × (1.0–)0.8–1.3(–1.5) μm.
Colonies on MEA white to light brown with short aerial mycelium tufts in the center, becoming darker with age, relatively slow-growing (28 mm in diameter) after 7 days of incubation. Hyphae hyaline, smooth, branched, and septate.
Based on ITS sequence data, C. piceicola is 99% similar to C. globosa MFLU:16-2054 (554/559, 3 gaps) and C. pinastri CBS 113.81 (540/545, 0 gaps). But combined multi-gene phylogenetic analysis clearly distinguished C. piceicola from these two species (ML/BI = 95/-). The new species, C. piceicola, differs from C. globosa (4–6.5 × 1–2 µm) and C. pinastri (4–7 × 1–1.3 μm) by having shorter conidia and clearly lageniform or ampulliform conidiogenous cells (
Synteny analysis employed in comparative genomics is crucial to understanding molecular-level similarities and differences in species diversity and genome evolution (
Genome assembly statistics of C. piceae EI-19(A), C. piceae CFCC 52841, and C. piceicola EI-20.
Assembly Features | C. piceae EI-19(A) | C. piceae CFCC 52841 | C. piceicola EI-20 |
---|---|---|---|
Genome size | 39.7 | 39.2 | 43.8 |
Genome coverage (×) | 217 | 200 | 195 |
Scaffolds (>1000 bp) | 105 | 21 | 130 |
Scaffold N50 (Mb) | 1.22 | 2.94 | 0.81 |
GC content (%) | 51.37 | 51.79 | 49.11 |
N of genes predicted | 10,862 | 10,835 | 10,742 |
Repeat rate (%) | 2.29 | 2.62* | 3.15 |
tRNAs | 203 | 176 | 207 |
BUSCO estimates (%) | 97.6 | 97.4* | 98.1 |
Another study reported similar BUSCO estimates (97.8%–99.2%) for a set of the eleven Diaporthe species assemblies obtained with both the second and third-generation sequencing technologies (
CWDEs are enzymes involved in carbohydrate synthesis or breakdown (
The number of secreted CWDEs in Diaporthales species included in the analysis ranged from 177 (C. leucostoma CXYLt) to 439 (D. vochysiae LGMF1583) (Fig.
The genus Diaporthe had diverse sets of CWDEs across the species, from 325 for D. helianthi 7–96 to 439 for D. vochysiae LGMF1583. Interestingly, the former was well studied as a causal agent of sunflower stem canker (
Secondary metabolites (SM) consist of low-molecular-weight compounds that can play an important role in species pathogenesis. Nonribosomal peptides (NRP), polyketides (PKS), terpenes, and hybrid metabolites are synthesized by BSGC pathways (
The Diaporthaceae species (incl., Melanconium sp. and Stenocarpella maydis) had the richest complement of SMs (from 77 (D. ampelina DA912) to 122 (D. nobilis DJY16A 5-1)) compared to Schizoparmaceae (from 36 (Co. lustricola B22-T-1) to 42 (Co. vitis QNYT13637)) (Fig.
A phylogenetic tree with estimated divergence times inferred based on the set of 1,706 SCOs is depicted in Fig.
An ML tree showing phylogenomic relationships of C. piceae EI-19(A), C. piceicola EI-20, and other species of Diaporthales. Bootstrap support for all clades is 100. Blue and red numbers on nodes indicate the number of expanded and contracted gene families, respectively. Circles represent the number of expanded and contracted gene families for the top eight COG categories. Abbreviations: Q—Quaternary, N—Neogene, PG—Paleogene, K—Cretaceous, MYA—Million Years Ago.
A total of 7,579 expanded and 13,984 contracted gene families were identified in the species of Diaporthales included in the analysis. The studied species harbored notably different numbers of expanded and contracted gene families (C. piceae (+46/-109), C. piceicola (+108/-319)), implying a moderate rate of gene contraction (+45/-82) (Fig.
The gene families with unknown function (S) were most frequently observed among the analyzed taxa of Diaporthales. Almost all the species experienced gene contraction of this category with some exceptions (e.g., D. caulivora D57 (+121/-95) or Cr. nitschkei CBS 109776 (+36/-7). The studied species showed moderate contraction of the S-categorized gene families (C. piceae EI-19(A) (+18/-53), C. piceicola EI-20 (+37/-154) than the other members of Cytosporaceae (C. leucostoma (+41/-269) or Diaporthaceae (D. helianthi 7–96 (+36/-349)). The secondary structure (Q) and carbohydrate metabolism and transport (G) gene families were also found to be contracted in C. piceae EI-19(A) and C. piceicola EI-20. But the latter underwent a notable loss (+7/-37) of the G category gene families compared to the former (+3/-8). A minor expansion (+9/-5) of the Q-categorized genes was observed for the strain C. piceae CFCC52841. This funding points out that the closely related species or different strains of the same species may differently affect corresponding hosts in terms of pathogenicity and virulence.
Fungal plant pathogens secrete various proteins and metabolites to facilitate host infection. Among them are effectors secreted to reprogram host cells and modulate plant immunity (
Proteomes, secretomes, and effectomes of C. piceae EI-19(A), C. piceicola EI-20, and other Diaporthales species.
Family/Order | Strain | Accession number | Proteome | S/P (%) | E/P(%) |
---|---|---|---|---|---|
Cryphonectriaceae | Celoporthe dispersa CMW9976 | GCA_016584495 | 11,185 | 3.79 | 1.02 |
Cryphonectriaceae | Chrysoporthe austroafricana CMW 2113 | GCA_001051155 | 12,161 | 3.6 | 0.96 |
Cryphonectriaceae | Ch. cubensis GJS 09-446 | GCA_004802525 | 11,658 | 3.65 | 1.01 |
Cryphonectriaceae | Ch. deuterocubensis CMW 8650 | GCA_001513825 | 12,430 | 3.61 | 1.03 |
Cryphonectriaceae | Cryphonectria carpinicola M9290 | GCA_014849695 | 10,827 | 4.1 | 1.22 |
Cryphonectriaceae | Cr. japonica M9249 | GCA_014851275 | 10,290 | 4.19 | 1.24 |
Cryphonectriaceae | Cr. macrospora CBS 109764 | GCA_004802535 | 10,300 | 4.24 | 1.24 |
Cryphonectriaceae | Cr. naterciae M3656 | GCA_014850565 | 10,548 | 4.25 | 1.23 |
Cryphonectriaceae | Cr. nitschkei CBS 109776 | GCA_004802565 | 10,761 | 4.05 | 1.16 |
Cryphonectriaceae | Cr. parasitica ES15 | GCA_018104285 | 10,779 | 4.23 | 1.15 |
Cryphonectriaceae | Cr. radicalis AR3913 | GCA_002179595 | 10,989 | 4.13 | 1.25 |
Cryphonectriaceae | Immersiporthe knoxdaviesiana CMW 37318 | GCA_021117315 | 10,442 | 3.88 | 1.15 |
Cytosporaceae | Cytospora chrysosperma CFL2056 | NA* | 10,304 | 3.52 | 0.96 |
Cytosporaceae | C. leucostoma CXYLt | GCA_003795295 | 10,045 | 3.45 | 0.82 |
Cytosporaceae | C. mali 03-8 | GCA_000818155 | 10,564 | 3.73 | 0.98 |
Cytosporaceae | C. mali var. pyri SXYL134 | GCA_000813385 | 10,248 | 3.78 | 1.16 |
Cytosporaceae | C. malicola 03-1 | GCA_003795315 | 10,345 | 3.48 | 0.97 |
Cytosporaceae | C. piceae CFCC 52841 | GCA_016508685 | 10,911 | 3.46 | 1.03 |
Cytosporaceae | C. piceae EI-19(A) | GCA_023375665 | 10,862 | 3.63 | 1.01 |
Cytosporaceae | C. piceicola EI-20 | GCA_023375675 | 10,742 | 3.68 | 1.02 |
Diaporthaceae | Diaporthe ampelina DA912 | GCA_001006365 | 13,155 | 4.9 | 1.55 |
Diaporthaceae | D. amygdali DUCC20226 | GCA_021655905 | 14,520 | 5.39 | 1.74 |
Diaporthaceae | D. aspalathi MS-SSC91 | GCA_001447215 | 14,023 | 4.98 | 1.32 |
Diaporthaceae | D. batatas CRI 302-4 | GCF_019321695 | 14,366 | 5.18 | 1.5 |
Diaporthaceae | D. capsici GY-Z16 | GCA_013364905 | 16,219 | 5.44 | 1.72 |
Diaporthaceae | D. caulivora D57 | GCA_023703485 | 15,612 | 4.83 | 1.48 |
Diaporthaceae | D. citri NFHF-8-4 | GCF_014595645 | 15,950 | 4.97 | 1.4 |
Diaporthaceae | D. citriasiana ZJUD30 | GCA_014872975 | 14,345 | 5.07 | 1.67 |
Diaporthaceae | D. citrichinensis ZJUD34 | GCA_014872995 | 16,322 | 5.48 | 1.73 |
Diaporthaceae | D. destruens CRI305-2 | GCA_016859255 | 13,948 | 5.2 | 1.48 |
Diaporthaceae | D. eres CBS 160.32 | GCA_024867555 | 15,503 | 5.14 | 1.64 |
Diaporthaceae | D. helianthi 7-96 | GCA_001702395 | 12,718 | 4.8 | 1.31 |
Diaporthaceae | D. ilicicola FPH2015-502 | GCA_023242295 | 14,231 | 4.66 | 1.36 |
Diaporthaceae | D. longicolla TWH P74 | GCA_000800745 | 16,334 | 5.25 | 1.6 |
Diaporthaceae | D. nobilis DJY16A 5-1 | GCA_023078575 | 16,460 | 5.42 | 1.68 |
Diaporthaceae | D. vexans PV 4 | GCA_021188095 | 16,603 | 5.39 | 1.62 |
Diaporthaceae | D. vochysiae LGMF1583 | NA* | 17,434 | 5.32 | 1.66 |
Gnomoniaceae | Cryptodiaporthe populea CFL2025 | NA* | 12,384 | 4.24 | 1.24 |
Gnomoniaceae | Gnomoniopsis castanea Behrend | NA* | 11,294 | 5.4 | 1.67 |
Gnomoniaceae | Op. clavigignenti-juglandacearum ATCC 36624 | GCA_003671545 | 13,194 | 5.55 | 1.58 |
Incertae sedis | Stenocarpella maydis A1-1 | GCA_002270565 | 12,795 | 4.29 | 1.23 |
Juglanconidaceae | Juglanconis juglandina CBS 121083 | GCA_003012975 | 12,328 | 4.13 | 1.22 |
Juglanconidaceae | J. oblonga AR4414 | GCA_003012965 | 12,012 | 4.37 | 1.22 |
Melanconidaceae | Melanconium sp. NRRL 54901 | NA* | 14,018 | 4.32 | 1.33 |
Schizoparmaceae | Coniella lustricola B22-T-1 | GCA_003019895 | 9,148 | 3.95 | 0.94 |
Schizoparmaceae | Co. vitis QNYT13637 | GCA_011317545 | 9,650 | 3.68 | 0.96 |
Incertae sedis | Stenocarpella maydis A1-1 | GCA_002270565 | 12,795 | 4.29 | 1.23 |
C. piceae EI-19(A) and C. piceicola EI-20 harbored very similar secretomes and effectomes, accounting for 3.63% (1.01%) and 3.68% (1.02%), respectively. It is worth noting that the strain C. piceae CFCC 52841 carried a smaller secretome (3.46%) with a higher number of effectors (1.03), which separated it from the studied strains (Fig.
A distinct separation of some Diaporthales taxa (Diaporthaceae, especially) can indicate genetic diversity variations of secreted proteins and effectors (
Virulence genes encode proteins related to counteraction of host defense mechanisms that eventually lead to pathogen spread (
Summary of predicted virulence-related genes after search against PHI-base.
Category | C. piceae EI-19(A) | C. piceae CFCC 52841 | C. piceicola EI-20 |
---|---|---|---|
Reduced Virulence | 148 | 144 | 147 |
Unaffected Pathogenicity | 50 | 47 | 50 |
Loss of Pathogenicity | 32 | 32 | 35 |
Lethal | 10 | 8 | 10 |
Increased Virulence | 8 | 7 | 5 |
Other* | 33 | 33 | 34 |
Total | 281 | 271 | 281 |
Relative Frequency (%) | 2.58 | 2.48 | 2.61 |
Host-induced gene silencing (HIGS) is a powerful alternative to traditional (e.g., chemical) treatments employed to protect plants from pathogenic organisms. The technology allows for the downregulation of the target genes in organisms associated with hosts that are not recalcitrant to genetic modifications (
The study introduces genomes of C. piceae and C. piceicola sp. nov. assembled from Illumina reads. A number of pathogenicity-related factors, such as carbohydrate enzymes, secondary metabolites, effectors, and virulence-associated genes, were identified in the genomes of both studied species. The comparative genomics analysis revealed that C. piceae EI-19(A) and C. piceicola EI-20 are able to cause severe symptoms of canker disease in Picea spp. The findings contribute to understanding the biological processes that make these Cytospora species successful hemibiotrophic or biotrophic pathogens. However, more genomic studies should be conducted. For example, the transcriptomic approach using RNA-seq data can provide additional insights into the CC pathogenesis, showing the responses of a plant host during the early stage of infection and disease progression. Functional genomics techniques (e.g., gene knockout or RNA silencing) can be employed for phenotypic validation of genes with unknown functions that play an important role in fungal pathogenesis.
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R31), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors have declared that no competing interests exist.
No ethical statement was reported.
Funded by PNURSP2025R31, Princess Nourah bint Abdulrahman University, Saudi Arabia, and A1098531023601245, University of Electronic Science and Technology of China.
Conceptualization: EI. Data curation: EI, YC, SM. Formal analysis: EI, YC. Funding acquisition: AS, SSNM: Methodology: EI, YC, SM, SSNM. Writing—original draft: EI, SSNM.
Evgeny Ilyukhin https://orcid.org/0000-0002-2358-0023
Yanpeng Chen https://orcid.org/0000-0002-2554-5272
Svetlana Markovskaja https://orcid.org/0000-0003-3111-6949
Ashwag Shami https://orcid.org/0000-0002-5336-038X
Sajeewa S. N. Maharachchikumbura https://orcid.org/0000-0001-9127-0783
This Whole Genome Shotgun project, including sequencing reads, has been deposited at DDBJ/ENA/GenBank under BioProject PRJNA796963, accession numbers JALQBB000000000 (C. piceae EI-19(A)) and JALQBC000000000 (C. piceicola EI-20).
PHI-base annotated genes identified in C. piceae CFCC52841
Data type: xlsx