Research Article |
Corresponding author: Chitrabhanu S. Bhunjun ( chitrabhanu.bhu@mfu.ac.th ) Academic editor: Danushka Sandaruwan Tennakoon
© 2025 Chayanard Phukhamsakda, Kevin D. Hyde, Milan C. Samarakoon, Johnny Louangphan, Kedsara Navasit, Fatimah Al-Otibi, Chitrabhanu S. Bhunjun.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Phukhamsakda C, Hyde KD, Samarakoon MC, Louangphan J, Navasit K, Al-Otibi F, Bhunjun CS (2025) Unveiling Sordariomycetes taxa associated with woody litter in Northern Thailand. MycoKeys 115: 155-185. https://doi.org/10.3897/mycokeys.115.145330
|
Sordariomycetes species are abundant in woody litter samples. In this study, we introduce two novel species, Diaporthe thailandica (Diaporthaceae) and Occultitheca chiangraiensis (Xylariaceae), from woody litter materials. We also describe a new host record of D. tulliensis and a new geographical record for D. melonis. All collections were identified based on morphology and phylogenetic analyses of combined datasets. The morphologies of the taxa fit the generic concepts of Diaporthe and Occultitheca, respectively. Diaporthe thailandica formed a sister clade with D. raonikayaporum but differs from D. raonikayaporum in the sizes of conidiomata, conidiogenous cells, and beta conidia. Diaporthe thailandica also differs from D. raonikayaporum by the absence of gamma conidia. Occultitheca chiangraiensis differs from the sister taxon O. rosae in having smaller ascomata and a thicker mucilaginous sheath. We also provide a synopsis of Occultitheca species with details on their morphology, host, and country. These findings provide valuable insights into the diversity and ecological roles of Sordariomycetes, emphasising the need for continued exploration of fungal biodiversity in various environments.
2 new records, 2 new taxa, anthostomella-like taxa, phylogeny, saprobes, taxonomy
Plant litter plays an important role in shaping ecological processes and supporting biodiversity, which represents a major source of organic carbon and nutrient cycling (
Diaporthe (Diaporthaceae, Diaporthales, Sordariomycetes, Ascomycota) was established by
Occultitheca (Xylariaceae, Xylariales) is characterised by immersed ascomata, short pedicellate asci with J+ apical ring, brown ascospores with hyaline dwarf cells, and a straight germ slit (
Chiang Rai and Chiang Mai are located in the northern part of Thailand and are considered biodiversity hotspots (
Woody litter samples were collected from forest areas in Chiang Mai and Chiang Rai Provinces, Thailand. The area is covered with a canopy of tall trees, such as dipterocarp species and Bambusa species. The specimens were maintained in paper bags for transport to the laboratory. The fungal structures were observed using a Leica EZ4 stereomicroscope (Leica Microsystems (SEA) Pte Ltd, Singapore). and photographed using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) equipped with a Nikon DS-Ri2 camera. Tarosoft (R) Image Frame Work version 3.9.3.74 was used for measurements, and Adobe Photoshop CS6 software was used for the photo plates.
Single spore isolation was conducted to obtain pure culture on potato dextrose agar (PDA) as described in
Fresh mycelium was scraped from a 4-week-old culture on PDA, and DNA was extracted using the E.Z.N.A. Forensic DNA Kit (BIO-TEK) according to the manufacturer’s instructions. The polymerase chain reaction (PCR) was used to amplify the ITS region (ITS5/ITS4) (
GenBank accession numbers of the taxa used in the phylogenetic analyses of Diaporthe section sojae.
Species | Strain | ITS | tef1 | tub2 | cal | his3 |
---|---|---|---|---|---|---|
Diaporthe acaciarum | CBS 138862T | KP004460 | N/A | KP004509 | N/A | KP004504 |
D. amaranthophila | MAFF 246900T | LC459575 | LC459577 | LC459579 | LC459583 | LC459581 |
D. amaranthophila | MAFF 246901 | LC459576 | LC459578 | LC459580 | LC459584 | LC459582 |
D. ambigua | CBS 114015T | MH862953 | KC343736 | KC343978 | KC343252 | KC343494 |
D. ambigua | CBS 117167 | KC343011 | KC343737 | KC343979 | KC343253 | KC343495 |
D. angelicae | CBS 111592T | KC343027 | KC343753 | KC343995 | KC343269 | KC343511 |
D. angelicae | CBS 100871 | KC343025 | KC343751 | KC343993 | KC343267 | KC343509 |
D. arctii | CBS 139280T | KJ590736 | KJ590776 | KJ610891 | KJ612133 | KJ659218 |
D. arezzoensis |
|
MT185503 | MT454019 | MT454055 | N/A | N/A |
D. batatas | CBS 122.21T | KC343040 | KC343766 | KC344008 | KC343282 | KC343524 |
D. beilharziae | BRIP 54792T | JX862529 | JX862535 | KF170921 | N/A | N/A |
D. biguttulata | CFCC 52584T | MH121519 | MH121561 | MH121598 | MH121437 | MH121477 |
D. biguttulata | CFCC 52585 | MH121520 | MH121562 | MH121599 | MH121438 | MH121478 |
D. brasiliensis | CBS 133183T | KC343042 | KC343768 | KC344010 | KC343284 | KC343526 |
D. brasiliensis | LGMF926 | KC343043 | KC343769 | KC344011 | KC343285 | KC343527 |
D. breyniae | CBS 148910T | ON400846 | ON409188 | ON409186 | ON409189 | ON409187 |
D. caatingaensis | URM7485T | KY085927 | KY115604 | KY115601 | KY115598 | KY115605 |
D. caatingaensis | URM7484 | KY085928 | N/A | KY115602 | KY115599 | KY115606 |
D. caryae | CFCC 52563T | MH121498 | MH121540 | MH121580 | MH121422 | MH121458 |
D. caryae | CFCC 52564 | MH121499 | MH121541 | MH121581 | MH121423 | MH121459 |
D. chimonanthi | SCHM 3614T | AY622993 | N/A | N/A | N/A | N/A |
D. chimonanthi | SCHM 3603 | AY620820 | N/A | N/A | N/A | N/A |
D. cichorii |
|
KY964220 | KY964176 | KY964104 | KY964133 | N/A |
D. cinnamomi | CFCC 52569T | MH121504 | MH121546 | MH121586 | N/A | MH121464 |
D. cinnamomi | CFCC 52570 | MH121505 | MH121547 | MH121587 | N/A | MH121465 |
D. citriasiana | ZJUD30T | JQ954645 | JQ954663 | KC357459 | KC357491 | N/A |
D. citriasiana | ZJUD81 | KJ490616 | KJ490495 | KJ490437 | N/A | KJ490558 |
D. convolvuli | CBS 124654T | KC343054 | KC343780 | KC344022 | KC343296 | KC343538 |
D. convolvuli | FAU649 | KJ590721 | KJ590765 | N/A | KJ612130 | KJ659210 |
D. coracoralinae | URM 8912T | PP192078 | PP430449 | PP402241 | PP408214 | PP421133 |
D. coracoralinae | FCCUFG 39 | PP192079 | N/A | PP402242 | PP408215 | PP421134 |
D. cucurbitae | DAOM 42078T | KM453210 | KM453211 | KP118848 | N/A | KM453212 |
D. cucurbitae | CBS 136.25 | KC343031 | KC343757 | KC343999 | KC343273 | KC343515 |
D. cuppatea | CBS 117499T | KC343057 | KC343783 | KC344025 | KC343299 | KC343541 |
D. cyatheae | YMJ-1364T | JX570889 | KC465406 | KC465403 | KC465410 | N/A |
D. discoidispora | ZJUD89T | KJ490624 | KJ490503 | KJ490445 | N/A | KJ490566 |
D. discoidispora | GZCC 22-0065 | OP056659 | OP150498 | OP150576 | OP150655 | OP150730 |
D. eleutharrhenae | 01T* | OK017069 | OK017070 | OK017071 | N/A | N/A |
D. eleutharrhenae | 02* | OK648457 | OK648458 | OK648459 | N/A | N/A |
D. fici-septicae | NCYUCC 19-0108T | MW114349 | MW192212 | MW148269 | N/A | N/A |
D. fici-septicae |
|
MW114348 | MW192211 | MW148268 | N/A | N/A |
D. foliorum | CMRP 1321T | MT576688 | MT584310 | MT584327 | MT584341 | MT584338 |
D. foliorum | CMRP 1330 | MT576671 | MT584309 | MT584328 | MT584342 | MT584340 |
D. ganjae | CBS 180.91T | KC343112 | KC343838 | KC344080 | KC343354 | KC343596 |
D. ganjae | PSCG489 | MK626955 | MK654897 | MK691287 | MK691202 | MK726204 |
D. goulteri | BRIP 55657aT | KJ197290 | KJ197252 | KJ197270 | N/A | N/A |
D. gulyae | BRIP 54025T | JF431299 | JN645803 | N/A | N/A | N/A |
D. gulyae | BRIP 53158 | JF431284 | JN645799 | N/A | N/A | N/A |
D. guttulata | CGMCC3.20100T | MT385950 | MT424685 | MT424705 | MW022470 | MW022491 |
D. guttulata | GZCC 19-0371 | MT797178 | MT793021 | MT793032 | MW022471 | MW022492 |
D. helianthi | CBS 592.81T | KC343115 | KC343841 | KC344083 | KC343357 | KC343599 |
D. helianthi | CBS 344.94 | KC343114 | KC343840 | KC344082 | KC343356 | KC343598 |
D. hordei | CBS 481.92T | KC343120 | KC343846 | KC344088 | KC343362 | KC343604 |
D. infecunda | CBS 133812T | KC343126 | KC343852 | KC344094 | KC343368 | KC343610 |
D. infertilis | CBS 230.52T | KC343052 | KC343778 | KC344020 | KC343294 | KC343536 |
D. infertilis | CPC 20322 | KC343053 | KC343779 | KC344021 | KC343295 | KC343537 |
D. juglandigena | GUCC 422.16T | OP581229 | OP688534 | OP688559 | N/A | N/A |
D. juglandigena | GUCC 422.161 | OP581230 | OP688535 | OP688560 | N/A | N/A |
D. kyushuensis | STE-U2675T | AF230749 | N/A | N/A | N/A | N/A |
D. kyushuensis | ch-D-1 | AB302250 | N/A | N/A | N/A | N/A |
D. leucospermi | CBS 111980T | N/A | KY435632 | KY435673 | KY435663 | KY435653 |
D. leucospermi | CAA763 | MK792291 | MK828064 | MK837915 | MK883823 | MK871433 |
D. longicolla | FAU599T | KJ590728 | KJ590767 | KJ610883 | KJ612124 | KJ659188 |
D. longicolla | CBS 100.87 | KC343196 | KC343922 | KC344164 | KC343438 | KC343680 |
D. longispora | CBS 194.36T | KC343135 | KC343861 | KC344103 | KC343377 | KC343619 |
D. lusitanicae | CBS 123213T | KC343137 | KC343863 | KC344105 | KC343379 | KC343621 |
D. lusitanicae | CBS 123212 | KC343136 | KC343862 | KC344104 | KC343378 | KC343620 |
D. machilii | SAUCC194.111T | MT822639 | MT855951 | MT855836 | MT855718 | MT855606 |
D. mayteni | CBS 133185T | KC343139 | KC343865 | KC344107 | KC343381 | KC343623 |
D. megalospora | CBS 143.27T | KC343140 | KC343866 | KC344108 | KC343382 | KC343624 |
D. melonis | CBS 507.78T | KC343142 | KC343868 | KC344110 | KC343384 | KC343626 |
D. melonis | FAU640 | KJ590702 | KJ590741 | KJ610858 | KJ612099 | KJ659184 |
D. melonis | ZHKUCC 20-0014 | MT355684 | MT409338 | MT409292 | MT409314 | N/A |
D. melonis |
|
OR936658 | PQ774278 | PQ774285 | N/A | PQ774293 |
D. melonis |
|
PQ777476 | PQ774277 | PQ774284 | PQ774290 | N/A |
D. middletonii | BRIP 54884eT | KJ197286 | KJ197248 | KJ197266 | N/A | N/A |
D. middletonii | BRIP 57329 | KJ197285 | KJ197247 | KJ197265 | N/A | N/A |
D. minusculata | CGMCC3.20098T | MT385957 | MT424692 | MT424712 | MW022475 | MW022499 |
D. minusculata | GZCC 19-0345 | MT797184 | MT793027 | MT793038 | MW022476 | MW022500 |
D. monetii | MF Ha18-048T | MW008493 | MW008515 | MW008504 | MZ671938 | MZ671964 |
D. monetii | MF Ha18-049 | MW008494 | MW008516 | MW008505 | MZ671939 | MZ671965 |
D. morindendophytica | ZHKUCC 22-0069T | ON322897 | ON315053 | ON315087 | N/A | ON315027 |
D. morindendophytica | ZHKUCC 22-0070 | ON322898 | ON315054 | ON315088 | N/A | ON315028 |
D. myracrodruonis | URM 7972T | MK205289 | MK213408 | MK205291 | MK205290 | N/A |
D. neoarctii | CBS 109490T | KC343145 | KC343871 | KC344113 | KC343387 | KC343629 |
D. novem | CBS 127270T | KC343156 | KC343882 | KC344124 | KC343398 | KC343640 |
D. novem | CBS 127271 | KC343157 | KC343883 | KC344125 | KC343399 | KC343641 |
D. novem | PL42 | JQ697843 | JQ697856 | N/A | N/A | N/A |
D. orixae | KUNCC 21-10714T | OK283041 | N/A | N/A | OK484485 | OK484486 |
D. orixae | GZCC 21-1085 | OL889852 | OL944724 | OL944726 | N/A | N/A |
D. ovalispora | CGMCC3.17256T | KJ490628 | KJ490507 | KJ490449 | N/A | KJ490570 |
D. oxe | CBS 133186T | KC343164 | KC343890 | KC344132 | KC343406 | KC343648 |
D. oxe | CBS 133187 | KC343165 | KC343891 | KC344133 | KC343407 | KC343649 |
D. pachirae | CDA 728T | MG559537 | MG559539 | MG559541 | MG559535 | N/A |
D. pachirae | CDA 730 | MG559538 | MG559540 | MG559542 | MG559536 | N/A |
D. paranensis | CBS 133184T | KC343171 | KC343897 | KC344139 | KC343413 | KC343655 |
D. paranensis | LMICRO417 | KY461115 | KY461116 | N/A | N/A | N/A |
D. passiflorae | CBS 132527T | JX069860 | N/A | N/A | N/A | KY435654 |
D. passiflorae | CAA953 | MN190308 | MT309430 | MT309456 | MT309447 | MT309439 |
D. pedratalhadensis | URM 8304T | PP192073 | PP430438 | PP402232 | N/A | PP421129 |
D. pedratalhadensis | FCCUFG 49 | PP192075 | N/A | N/A | PP408217 | PP421131 |
D. phaseolorum | AR4203T | KJ590738 | KJ590739 | KJ610893 | KJ612135 | KJ659220 |
D. pseudobauhiniae |
|
MF190119 | MF377598 | N/A | N/A | N/A |
D. pseudobauhiniae |
|
MF190118 | MF377599 | N/A | N/A | N/A |
D. quercicola | CSUFTCC104T | ON076567 | ON081659 | N/A | ON081670 | ON081667 |
D. quercicola | CSUFTCC105 | ON076568 | ON081660 | N/A | ON081671 | ON081668 |
D. racemosae | CBS 143770T | MG600223 | MG600225 | MG600227 | MG600219 | MG600221 |
D. raonikayaporum | CBS 133182T | KC343188 | KC343914 | KC344156 | KC343430 | KC343672 |
D. raonikayaporum |
|
KU712448 | KU749368 | KU743987 | KU749355 | N/A |
D. raonikayaporum |
|
KU712449 | KU749369 | KU743988 | KU749356 | N/A |
D. rosae |
|
MG828894 | N/A | MG843878 | MG829273 | N/A |
D. rosae |
|
MG906793 | MG968954 | MG968952 | N/A | N/A |
D. rosiphthora | COAD 2914T | N/A | QOI91674 | N/A | QOI91672 | N/A |
D. sackstonii | BRIP 54669bT | KJ197287 | KJ197249 | KJ197267 | N/A | N/A |
D. schini | CBS 133181T | KC343191 | KC343917 | KC344159 | KC343433 | KC343675 |
D. schini | LGMF 910 | KC343192 | KC343918 | KC344160 | KC343434 | KC343676 |
D. schoeni |
|
KY964226 | KY964182 | KY964109 | KY964139 | N/A |
D. schoeni |
|
KY964229 | KY964185 | KY964112 | KY964141 | N/A |
D. sclerotioides | CBS 296.67T | MH858974 | KC343919 | KC344161 | KC343435 | KC343677 |
D. sclerotioides | CBS 710.76 | KC343194 | KC343920 | KC344162 | KC343436 | KC343678 |
D. serafiniae | BRIP 55665aT | KJ197274 | KJ197236 | KJ197254 | N/A | N/A |
D. serafiniae | BRIP 54136 | KJ197273 | KJ197235 | KJ197253 | N/A | N/A |
D. siamensis |
|
JQ619879 | JX275393 | JX275429 | JX197423 | N/A |
D. siamensis |
|
KT459417 | KT459451 | KT459435 | KT459467 | N/A |
D. sojae | FAU635T | KJ590719 | KJ590762 | KJ610875 | KJ612116 | KJ659208 |
D. sojae | CBS 116019 | KC343175 | KC343901 | KC344143 | KC343417 | KC343659 |
D. stewartii | CBS 193.36 | MH867279 | GQ250324 | JX275421 | JX197415 | N/A |
D. stewartii | MN1 | KX668416 | KX852355 | N/A | N/A | N/A |
D. submersa | CGMCC3.24297T | OP056717 | OP150556 | OP150633 | OP150710 | OP150786 |
D. submersa | GZCC 22-0007 | OP056718 | OP150557 | OP150634 | OP150711 | OP150787 |
D. subordinaria | CBS 464.90T | KC343214 | KC343940 | KC344182 | KC343456 | KC343698 |
D. subordinaria | CBS 101711 | KC343213 | KC343939 | KC344181 | KC343455 | KC343697 |
D. tarchonanthi | CBS 146073T | MT223794 | N/A | MT223733 | N/A | MT223759 |
D. tecomae | CBS 100547T | KC343215 | KC343941 | KC344183 | KC343457 | KC343699 |
D. tectoendophytica |
|
KU712439 | KU749367 | KU743986 | KU749354 | N/A |
D. tectonendophytica | LC8115 | KY491550 | KY491560 | KY491570 | N/A | N/A |
D. terebinthifolii | CBS 133180T | KC343216 | KC343942 | KC344184 | KC343458 | KC343700 |
D. terebinthifolii | LGMF907 | KC343217 | KC343943 | KC344185 | KC343459 | KC343701 |
D. thailandica |
|
OR946374 | PQ774276 | PQ774283 | N/A | PQ774292 |
D. thailandica |
|
PQ777475 | PQ774275 | PQ774282 | PQ774289 | N/A |
D. thunbergiicola |
|
KP715097 | KP715098 | N/A | N/A | N/A |
D. tulliensis | BRIP 62248aT | KR936130 | KR936133 | KR936132 | N/A | N/A |
D. tulliensis | JZB320128 | MK335814 | MK523573 | MK500152 | MK500240 | N/A |
D. tulliensis |
|
KU712438 | KU749366 | KU743985 | KU749353 | N/A |
D. tulliensis |
|
PQ777478 | PQ774280 | PQ774287 | N/A | PQ774294 |
D. tulliensis |
|
PQ777477 | PQ774279 | PQ774286 | PQ774291 | N/A |
D. ueckerae | FAU656T | KJ590726 | KJ590747 | KJ610881 | KJ612122 | KJ659215 |
D. ueckerae | BRIP 54736j | KJ197282 | KJ197244 | KJ197262 | N/A | N/A |
D. unshiuensis | ZJUD50T | KJ490585 | KJ490464 | KJ490406 | N/A | KJ490527 |
D. unshiuensis | PSCG339 | MK626928 | MK654879 | MK691300 | MK691181 | MK726188 |
D. vangoghii | MF Ha18-045T | MW008491 | MW008513 | MW008502 | MZ671936 | MZ671962 |
D. vangoghii | MF Ha18-046 | MW008492 | MW008514 | MW008503 | MZ671937 | MZ671963 |
D. vargemgrandensis | URM 8784T | PP192069 | PP430456 | PP421092 | PP421068 | PP421135 |
D. vexans | CBS 127.14 | KC343229 | KC343955 | KC344197 | KC343471 | KC343713 |
D. vexans | FAU597 | KJ590734 | KJ590774 | KJ610889 | KJ612131 | KJ659216 |
D. vochysiae | LGMF1583T | MG976391 | MK007526 | MK007527 | MK007528 | MK033323 |
D. yunnanensis | CGMCC3.18289T | KX986796 | KX999188 | KX999228 | KX999290 | KX999267 |
D. yunnanensis | LC8107 | KY491542 | KY491552 | KY491562 | KY491572 | N/A |
GenBank accession numbers of the taxa used in the phylogenetic analyses of Xylariales.
Species | Strain | ITS | LSU | rpb2 | tub2 |
---|---|---|---|---|---|
Albicollum vincensii | CBS 147286T | ON869297 | ON869297 | ON808475 | ON808519 |
Amphirosellinia nigrospora | HAST 91092308T | GU322457 | N/A | GQ848340 | GQ495951 |
Anthostomella helicofissa |
|
MW240653 | MW240583 | KP340534 | KP406617 |
Anthostomella lamiacearum | MFLU18-0101T | MW240669 | MW240599 | MW658648 | N/A |
Anthostomelloides brabeji | CBS 110128 | EU552098 | EU552098 | N/A | N/A |
Anthostomelloides krabiensis |
|
KX305927 | KX305928 | KX305929 | N/A |
Anthostomelloides leucospermi | CBS 110126T | EU552100 | EU552100 | N/A | N/A |
Barrmaelia macrospora | CBS 142768T | KC774566 | KC774566 | MF488995 | MF489014 |
Biscogniauxia nummularia | MUCL 51395T | KY610382 | KY610427 | KY624236 | KX271241 |
Chaetomium elatum | CBS 374.66 | KC109758 | KC109758 | KF001820 | KC109776 |
Circinotrichum circinatum | CBS 148326 | ON400743 | ON400796 | ON399328 | N/A |
Circinotrichum maculiforme | CBS 140016T | KR611874 | KR611895 | ON399338 | N/A |
Clypeosphaeria mamillana | CBS 140735T | KT949897 | KT949897 | MF489001 | MH704637 |
Clypeosphaeria mamillana | WU 33599 | KT949898 | KT949898 | N/A | N/A |
Clypeosphaeria oleae | CPC 36779 | MN562130 | MN567637 | N/A | N/A |
Coniocessia maxima | CBS 593.74T | GU553332 | MH878275 | N/A | N/A |
Coniocessia nodulisporioides | CBS 281.77T | MH861061 | MH872831 | N/A | N/A |
Dematophora bunodes | CBS 124028 | MN984619 | MN984625 | N/A | MN987245 |
Didymobotryum rigidum | JCM 8837T | LC228650 | LC228707 | N/A | N/A |
Digitodochium amoenum | CBS 147285T | ON869303 | ON869303 | ON808481 | ON808525 |
Digitodochium rhodoleucum | NBRC 32296 | LC146732 | LC146732 | N/A | N/A |
Emarcea castanopsidicola | CBS 117105 | AY603496 | MK762717 | MK791285 | MK776962 |
Emarcea eucalyptigena | CBS 139908 | KR476733 | MK762718 | MK791286 | MK776963 |
Entalbostroma erumpens | ICMP 21152T | KX258206 | N/A | KX258204 | KX258205 |
Entoleuca mammata | JDR 100 | GU300072 | N/A | GQ844782 | GQ470230 |
Entosordaria perfidiosa | CBS 142773T | MF488993 | MF488993 | MF489003 | MF489021 |
Fasciatispora arengae |
|
MK120275 | MK120300 | MK890794 | MK890793 |
Fasciatispora cocoes |
|
MN482680 | MN482675 | MN481517 | MN505154 |
Graphostroma platystomum | CBS 270.87T | JX658535 | DQ836906 | KY624296 | HG934108 |
Gyrothrix verticillata | CBS 148806 | ON400759 | ON400813 | ON399318 | N/A |
Halorosellinia krabiensis |
|
MN047119 | MN017883 | N/A | MN431493 |
Hansfordia pruni | CBS 194.56T | MK442585 | MH869122 | KU684307 | N/A |
Hansfordia pulvinata | CBS 144422 | MK442587 | MK442527 | N/A | N/A |
Helicogermslita clypeata |
|
MW240666 | MW240596 | MW658647 | MW775614 |
Hypocopra rostrata | NRRL 66178 | KM067909 | KM067909 | N/A | N/A |
Hypocopra zeae |
|
MW240671 | MW240601 | MW658650 | MW775616 |
Hypocreodendron sanguineum | J.D.R.169T | GU322433 | N/A | GQ844819 | GQ487710 |
Hypomontagnella monticulosa |
|
MN337231 | MN336235.2 | MN366246 | MN509783 |
Muscodor thailandicus |
|
MK762707 | MK762714 | MK791283 | MK776960 |
Muscodor ziziphi |
|
MK762705 | MK762712 | MK791281 | MK776958 |
Jackrogersella multiformis | CBS 119016T | KC477234 | KY610473 | KY624290 | KX271262 |
Kretzschmaria deusta | CBS 163.93 | KC477237 | KY610458 | KY624227 | KX271251 |
Kretzschmariella culmorum | JDR 88 | KX430043 | N/A | KX430045 | KX430046 |
Linosporopsis ischnotheca | CBS 145761T | MN818952 | MN818952 | MN820708 | MN820715 |
Magnostiolata mucida |
|
MW240673 | MW240603 | MW658652 | MW775618 |
Melanographium phoenicis |
|
MN482677 | MN482678 | N/A | N/A |
Melanographium smilacis |
|
MZ538514 | MZ538548 | N/A | N/A |
Nemania serpens | HAST 235 | GU292820 | N/A | GQ844773 | GQ470223 |
Neoanthostomella fici |
|
MW114390 | MW114445 | MW177711 | N/A |
Neoxylaria juruensis | HAST 92042501 | GU322439 | N/A | GQ844825 | GQ495932 |
Nigropunctata bambusicola |
|
MW240664 | MW240594 | MW658646 | N/A |
Nigropunctata nigrocircularis |
|
MW240661 | MW240591 | N/A | MW775612 |
Occultitheca ananasi |
|
OR438426 | OR438886 | N/A | N/A |
Occultitheca ananasi |
|
OR438427 | OR438887 | OR634962 | OR538094 |
Occultitheca chiangraiensis |
|
PQ777479 | PQ778042 | PQ774295 | PQ774288 |
Occultitheca rosae | HKAS 102393T | MW240672 | MW240602 | MW658651 | MW775617 |
Podosordaria mexicana | WSP 176 | GU324762 | N/A | GQ853039 | GQ844840 |
Poronia punctata | CBS 656.78T | KT281904 | KY610496 | KY624278 | KX271281 |
Pseudoanthostomella pini-nigrae |
|
KX533453 | KX533454 | KX789492 | N/A |
Pseudoceratocladium polysetosum | FMR 10750T | KY853430 | KY853490 | ON399348 | N/A |
Rosellinia chiangmaiensis |
|
KU246226 | KU246227 | N/A | N/A |
Rosellinia lamprostoma | HAST 89112602 | EF026118 | N/A | GQ844778 | EF025604 |
Sarcoxylon compunctum | CBS 359.61 | KT281903 | KT281898 | KY624230 | KX271255 |
Sordaria fimicola | CBS 723.96 | MH862606 | MH874231 | DQ368647 | N/A |
Spiririma gaudefroyi | CBS 147284T | ON869320 | ON869320 | ON808497 | ON808541 |
Spirodecospora melnikii | MAFF 247746T | LC731937 | LC731946 | LC731955 | N/A |
Spirodecospora paulospiralis | MAFF 247749T | LC731940 | LC731949 | LC731957 | N/A |
Stromatoneurospora phoenix | BCC 82040 | MT703666 | MT735133 | MT742605 | MT700438 |
Vamsapriya indica |
|
KM462839 | KM462840 | KM462841 | KM462838 |
Xenoanthostomella chromolaenae |
|
MN638863 | MN638848 | MN648729 | N/A |
Xenoanthostomella cycadis | CBS 137969T | KJ869121 | KJ869178 | ON399350 | N/A |
Xylaria acuminatilongissima | HAST 95060506T | EU178738 | N/A | GQ853028 | GQ502711 |
Xylaria arbuscula | CBS 126415 | KY610394 | KY610463 | KY624287 | KX271257 |
Xylaria botuliformis | HAST 89091627 | MN089652 | N/A | MN095399 | MN095400 |
Xylaria brunneovinosa | HAST 720T | EU179862 | N/A | GQ853023 | GQ502706 |
Xylaria ellisii | DAOM 628556T | MN218820 | MN218817 | MN216186 | N/A |
Xylaria eucalypti | CPC 36723 | MN562127 | MN567634 | N/A | N/A |
Xylaria hypoxylon | CBS 122620T | AM993141 | KM186301 | KM186302 | KM186300 |
Consensus sequences were assembled using Geneious Prime 2025 (Biomatters Ltd., Auckland, New Zealand) and were used for BLASTn search against the NCBI nucleotide non-redundant database (
Maximum likelihood analyses (ML), including 1000 bootstrap pseudoreplicates, were performed at the CIPRES web portal (
The closely related strains were further analysed using the genetic distances by performing a pairwise homoplasy index test (Φw) (
The phylogeny represents taxa from section sojae based on the concatenated dataset of ITS, tef1, tub2, cal, and his3 sequences. The combined sequence alignment comprised 159 taxa with 3279 characters, including gaps (ITS: 1–587, tef1: 588–1131, tub2: 1132–2067, cal: 2068–2682, his3: 2683–3279). The ML and BI analyses showed similar topologies (Fig.
Phylogram of the Diaporthe sojae species complex generated from a maximum likelihood analysis based on the combined ITS, tef1, tub2, cal, and his3 sequence data. Diaporthella corylina (CBS 121124) was used as the outgroup. Bootstrap support values ≥ 60% ML/≥0.90 BPP are given at the nodes. The newly generated taxa are indicated in red. The holotype/ex-type strains are denoted with T.
Diaporthales Nannf.
Diaporthaceae Höhn. ex Wehm.
Saprobic on dead unidentified branch. Sexual morph: not observed. Asexual morph: Conidiomata 148–374 × 128–338 µm high (x̄ = 250 × 225 µm, n = 15), pycnidial, mostly scattered, immersed, slightly erumpent through the host surface, discoid or subglobose, with a solitary undivided locule. Conidiophores reduced to conidiogenous cells. Alpha conidiogenous cells 5.7–25 × 1.1–2.5 µm (x̄ = 15.6 × 1.7 µm, n = 50), hyaline, rarely branched, mostly aseptate, densely aggregated, cylindrical, straight to slightly curved and smooth. Alpha conidia 5–7.3 × 1.9–2.7 µm (x̄ = 6.3 × 2.3 µm, n = 40), unicellular, fusiform to ellipsoidal, apex and base rounded, hyaline, smooth, bi-guttulate. Beta conidiogenous cells 6.2–16 × 1.6–2.6 µm (x̄ = 9.4 × 2.1 µm, n = 40), phialidic, subcylindrical, tapering towards the apex, hyaline. Beta conidia 19–27 × 1–2 µm (x̄ = 23 × 1.5 µm, n = 40), filiform, aseptate, hyaline, smooth-walled, straight from base, and curve at apex. Gamma conidia not observed.
Colonies on PDA, reaching 20 mm diam., after 3 weeks at 25 °C, initially white, turning beige after 7–10 days, flat, felty with a thick texture at the centre and marginal area, lacking aerial mycelium; reverse, glossy grey, radiating outwardly.
Thailand, Chiang Rai Province, Muang District, on a dead unidentified dicot branch, 16 January 2023, J. Louangphan, CR1-02 (
Annona squamosa (Annonaceae), Berberis aristata (Berberidaceae), Carapa guianensis (Meliaceae), Citrus grandis cv. Tomentosa (Rutaceae), Cucumis melo (Cucurbitaceae), Glottidium sp. (Fabaceae), Glycine max, G. soja (Fabaceae), unidentified branch (
Diaporthe melonis (
China, Myanmar, India, Indonesia, Japan, Thailand, the United States (
Our isolates (
The name refers to the country where the holotype was collected.
Saprobic on decaying dicot, visible as black necks immerging through the host surface. Sexual morph: Ascomata 328–495 × 303–371 µm (x̄ = 400 × 343 µm, n = 10), immersed in the host epidermis, globose to sub-globose, solitary or occur in clusters, black, ostiolate, papillate. Ostiole neck 220 × 86 µm, long, filled with periphysate. Peridium 20–50 µm wide, composed of several layers of cells of textura angularis, outer layers dark brown and inner layers hyaline to brown, thin-walled. Paraphyses 3.2–6.6 µm (n = 20), thin-walled, 2–4-septate, hyaline, wide at base, tapering towards the apex. Asci 45–58.9 × 8.6–12.7 µm (x̄ = 51.5 × 10.5 µm, n = 40), unitunicate, 8-spored, clavate to subclavate, straight to slightly curved, sessile, with a J-, apical ring. Ascospores 11–15.5 × 3.9–5.6 µm (x̄ = 13.5 × 4.7 µm, n = 40) L/W = 2.8, overlapping uniseriate to biseriate, 1-septate, constricted at the septum, ellipsoidal, smooth-walled, 2–4-guttulate, straight, hyaline, without appendages or a mucilaginous sheath. Asexual morph on PDA: Conidiomata 500–700 × 300–600 µm (x̄ = 580 × 480 µm, n = 10), pycnidial, scattered or aggregated, globose or variable in shape, ostiolate with prominent neck, dark brown to black, pycnidal wall brown, consisting of thick-walled cells of textura angularis, conidial mass globose, initially hyaline to yellowish, becoming white to cream, conidial droplets exuding from central ostioles. Conidiophores 10–29.5 × 1.3–2.5 μm (x̄ = 16.9 × 1.9 µm, n = 40), ampulliform to subcylindrical, filiform, branched to unbranched, 1–3-septate, hyaline, smooth, straight or slightly curved, wider at base, tapering towards the apex. Conidiogenous cells 2.1–8.1 × 1–2.3 μm (x̄ = 4.2 × 1.5 µm, n = 40), subcylindrical, filiform, straight to curved, tapering towards the apex, collarette not flared, hyaline. Alpha conidia 5.3–8.8 × 2.3–3.5 μm (x̄ = 7.3 × 2.9 μm, n = 40), ellipsoid, apex bluntly rounded, base obtuse to subtruncate, smooth, hyaline, bi- to multi-guttulate. Beta conidia 8.5–18.5 × 1.2–2 μm (x̄ = 13.3 × 1.7 μm, n = 40), filiform, flexible to slightly curved, hyaline, base subtruncate, and aseptate. Gamma conidia not observed.
Diaporthe thailandica (
Colonies on PDA, reaching 40 mm diam., after 2 weeks at 25 °C, initially white, turning pale brown after 7–10 days, radiating to the edge, margin undulate, medium dense, flat or umbonate; reverse, cream, radiating white outwardly with grey patches.
Thailand, Chiang Rai Province, Muang District, on a dead unidentified dicot, 16 January 2023, J. Louangphan, CR1-09 (
Unidentified branch (this study).
Thailand (this study).
Diaporthe thailandica (
The splits graph from the pairwise homoplasy index (PHI) test generated from the combined ITS, tef1, tub2, cal, and his3 sequence data of Diaporthe thailandica (indicated in red) and closely related taxa using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset.
Pairwise comparison of the sequences of Diaporthe thailandica and D. raonikayaporum isolates (excluding gaps).
Sequences | D. raonikayaporum (CBS 133182) |
D. raonikayaporum ( |
D. raonikayaporum ( |
---|---|---|---|
ITS | 3.4% (18/529) | 2.6% (14/529) | 3.0% (16/529) |
tef1 | 6.5% (21/323) | 7.4% (24/323) | 8.4% (27/323) |
tub2 | 4.3% (18/415) | 6.5% (27/415) | 7.7% (32/415) |
cal | − | − | − |
his3 | 3.7% (17/450) | − | − |
Saprobic on decaying Bambusa. Sexual morph: Undetermined. Asexual morph: Conidiomata 91–148 × 311–974 μm (x̄ = 120 × 583 μm, n = 20), pycnidial, scattered or aggregated, embedded in host surface, slightly erumpent through host surface, 1–3-locular conidioma, nearly flat, elongated, discoid, or variable in shape, black, consisting of hyaline, thin-walled cells of textura angularis, outer layer thick walled. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 4–16 × 1.2–2.6 μm (x̄ = 7.5 × 1.8 μm, n = 40), cylindrical, unbranched, aseptate, smooth, straight or slightly curved, tapering towards the apex, wider at base, hyaline. Alpha conidia 4.1–7.8 × 1.7–3.1 μm (x̄ = 5.8 × 2.5 μm, n = 40), apex bluntly rounded, 1–2-guttulate, mostly bi-guttulate, oval or oblong to ellipsoid, hyaline, smooth, base obtuse to subtruncate. Beta and Gamma conidia not observed.
Diaporthe tulliensis (
Colonies on PDA, reaching 40 mm diam., after 2 weeks at 25 °C, initially white, turning olivaceous grey after 7–10 days, darker at the centre and marginal area, lacking aerial mycelium; reverse, olivaceous grey bordered by dark margins.
Thailand, Chiang Mai Province, Mae Taeng District, on dead terrestrial stem of Bambusa (Poaceae), 19 November 2022, J. Louangphan, MJ11 (
Actinidia spp. (Actinidiaceae), Alangium kurzii (Cornaceae), Bambusa sp. (Poaceae), Bougainvillea glabra (Nyctaginaceae), Celtis formosana (Ulmaceae), Morinda officinalis (Rutaceae), Tectona grandis (Lamiaceae), Theobroma cacao (Malvaceae), Soil, Vitis vinifera (Vitaceae) (
Australia, China, Korea, Thailand (
In the phylogenetic analysis, our isolates (
The phylogeny represents selected taxa in Xylariales based on the concatenated dataset of ITS, LSU, rpb2, and tub2 sequences. The combined sequence alignment comprised 78 strains with 3624 characters, including gaps (ITS: 1–578, LSU: 579–1432, rpb2: 1433–2573, tub2: 2574–3624). The ML and BI analyses of single and multi-gene showed similar topologies. The best scoring ML tree with a final likelihood value of -54607.950 (Fig.
Phylogram generated from maximum likelihood analyses based on combined ITS-LSU-rpb2-tub2 datasets. The tree is rooted with Chaetomium elatum (CBS 374.66) and Sordaria fimicola (CBS 723.96) as the outgroup taxa. Bootstrap support values ≥ 60% ML/≥0.90 BPP are given at the nodes. The newly generated taxa are indicated in red. The holotype/ex-type strains are denoted with T.
Xylariaceae Tul. & C. Tul.
Occultitheca J.D. Rogers & Y.M. Ju
The name refers to the province where the holotype was collected.
Saprobic on early decaying branch. Sexual morph: Ascomata 220–342 × 228–395 μm (x̄ = 290 × 324 μm, n = 15), immersed, solitary, scattered, globose to subglobose, erumpent through host surface, visible as black dot of ostiole, surrounded by a whitish halo. Clypeus carbonaceous, rudimentary, thick-walled, the ostiolar opening surrounded with black cells. Ostioles centric, ostiolar canal periphysate. Peridium 17–30 μm (x̄ = 23 μm, n = 20) wide, tightly attached to the host tissue, with two cell layers, outer layer thick-walled, comprising yellowish brown cells of textura angularis, inner layer thin, composed of hyaline cells of textura angularis. Paraphyses 3.7–7.6 μm (x̄ = 5.4 μm, n = 25) wide, wider at the base, longer than the asci, filamentous, septate, constricted at the septa, embedded in gelatinous matrix. Asci 112–158 × 8.5–13.7 μm (x̄ = 131 × 11 μm, n = 25), 8-spored, unitunicate, cylindrical, short pedicellate, apically rounded, with 3.9–5.6 × 2.5–3.7 μm (x̄ = 5 × 3 μm, n = 18), rectangular to slightly obconic, apical ring, J+ in Melzer’s reagent. Ascospores 14.5–17.6 × 6–7.4 μm (x̄ = 16.3 × 6.7 μm, n = 30), L/W 2.4, oblong to ellipsoidal, uniseriate, brown, inequilaterally unicellular, apical cell 13–15.5 μm (x̄ = 14.5 μm, n = 30) long, usually with large guttules, brown cell with a mucilaginous sheath covering most of the spore length when mature, with a small, hyaline, rounded, basal cell, 1.3–2.3 μm (x̄ = 1.8 μm, n = 30), lack of germ slit. Asexual morph: Undetermined.
Occultitheca chiangraiensis (
Colonies on PDA, reaching 40 mm diam., after 21 days at 25 °C, circular, entire edge, smooth surface, flat, slightly woolly, smooth margin, above ash white from the centre to white at the edge with concentric rings of woolly; from below: light brown at the centre, white at the margin, with ash white mycelium.
Thailand, Chiang Rai, Mae Fah Luang District, Mae Salong Nok, on a dead unidentified dicot branch, 16 January 2023, J. Louangphan, CR1–19 (
Unidentified branch (this study).
Thailand (this study).
Based on multi-gene phylogenetic analyses of ITS, LSU, rpb2, and tub2 sequences, Occultitheca chiangraiensis (
Species | O. costaricensis | O. rosae | O. ananasi | O. chiangraiensis |
---|---|---|---|---|
Host | Unidentified decaying wood | Rosa sp. | Ananas comosus | Unidentified decaying wood |
Country | Costa Rica | China | Thailand | Thailand |
Ascomata (μm) | 400–600 | 360–385 × 350–420 | 190–230 × 160–260 | 220–342 × 228–395 |
Peridium (μm) | − | 18–25 | 15–20 | 17–30 |
Paraphyses (μm) | − | 3–6.5 | 3–5 | 3.7–7.6 |
Asci (μm) | 185–190 × 10–10.5 | 90–140 × 11–13 | 70–90 × 5–10 | 112–158 × 8.5–13.7 |
Apical ring (μm) | 6 × 3 | 3.5–4.5 × 2.8–3.2 | − | 3.9–5.6 × 2.5–3.7 |
Ascospores (μm) | 14.5–23.5 × 7–10.5 | 16.5–20 × 6.5–8 L/W 2.6 |
10–12.5 × 3.5–4.5 L/W 2.9 | 14.5–17.6 × 6–7.4 L/W 2.4 |
Basal cell (μm) | 1.5–4.5 | 1.5–2.2 | − | 1.3–2.3 |
Spore sheath | No | Thin | Thin | One side thick |
Germ slit | Straight | Straight | Straight | No |
References |
|
|
|
This study |
In this study, two novel species, Diaporthe thailandica and Occultitheca chiangraiensis, along with a new host record of D. tulliensis and a new geographical record of D. melonis, are introduced based on morphology and molecular data. This study expands the known diversity of these taxa and highlights the importance of saprobic microfungi in ecological systems.
Diaporthe is a species-rich genus with a diverse host range and global distribution (
Morphologically, Occultitheca is considered an inconspicuous xylarialean and treated as anthostomella-like taxa in terms of having immersed, clypeate ascomata, asci with a J+, apical ring, ascospores with a large brown cell, and a basal hyaline dwarf cell (
This study provides a vital contribution to our understanding of Sordariomycetes diversity. Introducing new taxa is significant as they contribute to the broader understanding of fungal evolution, taxonomy, and ecology. It also contributes to the growing knowledge about the diversity of fungi associated with woody litter. It emphasises the necessity for continued exploration of fungal biodiversity across various habitats. As global ecosystems undergo rapid changes due to climate shifts and habitat destruction, understanding these dynamics will be crucial for conservation efforts and ecosystem management. Therefore, this study encourages further exploration in understudied substrates and regions, which could unveil additional species and enrich our comprehension of fungal ecology and taxonomy.
Chayanard Phukhamsakda would like to thank the Basic Research Fund (Fundamental Fund) supported by the National Science, Research, and Innovation Fund under Grant No. 672A16008 for financial support. The authors thank Dr. Shaun Pennycook from Manaaki Whenua, Landcare Research, New Zealand. Chitrabhanu S. Bhunjun would like to thank Thailand Science Research and Innovation (TSRI) and the National Science Research and Innovation Fund (NSRF) (Fundamental Fund: Grant no. 662A16047) entitled “Biodiversity, ecology, and applications of plant litter-inhabiting fungi for waste degradation.” Kevin David Hyde would like to thank the National Research Council of Thailand (NRCT) grant “Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity, and biotechnology” (grant no. N42A650547). The authors extend their appreciation to the Researchers Supporting Project number (RSP2025R114), King Saud University, Riyadh, Saudi Arabia.
The authors have declared that no competing interests exist.
No ethical statement was reported.
This work was funded by the Basic Research Fund (Fundamental Fund) supported by the National Science, Research, and Innovation Fund under Grant No. 672A16008, Thailand Science Research and Innovation (TSRI) and the National Science Research and Innovation Fund (NSRF) (Fundamental Fund: Grant no. 662A16047) entitled “Biodiversity, ecology, and applications of plant litter-inhabiting fungi for waste degradation”.
The authors confirm contributions to the paper as follows: Fungal specimen collection and isolation, fungal specimen deposition, and manuscript writing: Chayanard Phukhamsakda, Johnny Louangphan, Kedsara Navasit, Chitrabhanu S. Bhunjun; fungal identification and contributed to the revision of the manuscript: Chayanard Phukhamsakda, Kevin D. Hyde, Milan C. Samarakoon, Fatimah O. Alotibi, Chitrabhanu S. Bhunjun. All authors have read and agreed to the published version of the manuscript. All authors reviewed the results and approved the final version of the manuscript.
Chayanard Phukhamsakda https://orcid.org/0000-0002-1033-937X
Kevin D. Hyde https://orcid.org/0000-0002-2191-0762
Milan C. Samarakoon https://orcid.org/0000-0002-4815-125X
Johnny Louangphan https://orcid.org/0000-0003-3845-6145
Kedsara Navasit https://orcid.org/0009-0004-8167-0600
Fatimah Al-Otibi https://orcid.org/0000-0003-3629-5755
All of the data that support the findings of this study are available in the main text.