Research Article
Print
Research Article
Unveiling Sordariomycetes taxa associated with woody litter in Northern Thailand
expand article infoChayanard Phukhamsakda, Kevin D. Hyde§|, Milan C. Samarakoon, Johnny Louangphan§, Kedsara Navasit, Fatimah Al-Otibi|, Chitrabhanu S. Bhunjun
‡ Mae Fah Luang University, Chiang Rai, Thailand
§ Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| King Saud University, Riyadh, Saudi Arabia
¶ Chiang Mai University, Chiang Mai, Thailand
Open Access

Abstract

Sordariomycetes species are abundant in woody litter samples. In this study, we introduce two novel species, Diaporthe thailandica (Diaporthaceae) and Occultitheca chiangraiensis (Xylariaceae), from woody litter materials. We also describe a new host record of D. tulliensis and a new geographical record for D. melonis. All collections were identified based on morphology and phylogenetic analyses of combined datasets. The morphologies of the taxa fit the generic concepts of Diaporthe and Occultitheca, respectively. Diaporthe thailandica formed a sister clade with D. raonikayaporum but differs from D. raonikayaporum in the sizes of conidiomata, conidiogenous cells, and beta conidia. Diaporthe thailandica also differs from D. raonikayaporum by the absence of gamma conidia. Occultitheca chiangraiensis differs from the sister taxon O. rosae in having smaller ascomata and a thicker mucilaginous sheath. We also provide a synopsis of Occultitheca species with details on their morphology, host, and country. These findings provide valuable insights into the diversity and ecological roles of Sordariomycetes, emphasising the need for continued exploration of fungal biodiversity in various environments.

Key words:

2 new records, 2 new taxa, anthostomella-like taxa, phylogeny, saprobes, taxonomy

Introduction

Plant litter plays an important role in shaping ecological processes and supporting biodiversity, which represents a major source of organic carbon and nutrient cycling (Zhang et al. 2023). As natural decomposers, fungi hold a significant role in the breakdown of woody litter by degrading complex organic compounds efficiently (Dashtban et al. 2010; Hyde et al. 2019; Mapook et al. 2022). Although woody litter harbours various groups of fungi, comprehensive studies are limited (Hyde et al. 2020a; Phukhamsakda et al. 2022; Wanasinghe and Mortimer 2022; Xu et al. 2022; Madagammana et al. 2023).

Diaporthe (Diaporthaceae, Diaporthales, Sordariomycetes, Ascomycota) was established by Fuckel (1867) with D. alnea as the type species. Diaporthe is an important plant pathogen that also comprises endophytes and saprobes on a wide range of hosts (Dissanayake et al. 2017; Hyde et al. 2020b; Phukhamsakda et al. 2020; Bhunjun et al. 2022). As pathogens, Diaporthe cause diebacks, cankers, leaf spots, blights, melanoses, stem-end rots, and gummosis on economically and ecologically important plants (Gomes et al. 2013; Manawasinghe et al. 2021; Bhunjun et al. 2024a). The sexual morph of Diaporthe is characterised by immersed ascomata, erumpent pseudostroma with elongated perithecial necks, and unitunicate asci that produce hyaline ascospores (Udayanga et al. 2011; Hongsanan et al. 2023). The asexual morph has ostiolate conidiomata, cylindrical phialides, and aseptate and hyaline conidia (alpha, beta, and gamma) (Udayanga et al. 2011; Gomes et al. 2013). Molecular approaches are essential for accurate identification due to overlapping morphological characters among distinct species (Bhunjun et al. 2022; Norphanphoun et al. 2022). The taxonomy of Diaporthe species has been the subject of several studies (Gomes et al. 2013; Udayanga et al. 2014; Gao et al. 2017; Sun et al. 2021; Norphanphoun et al. 2022). The genus has recently been revised, and 31 species were synonymised based on multi-gene phylogeny, GCPSR (Genealogical Concordance Phylogenetic Species Recognition), as well as coalescence-based analyses of ITS, tef1, tub2, cal, and his3 sequences (Dissanayake et al. 2024). Pereira and Phillips (2024) further reduced 53 species to synonymy and introduced a new species, D. pygmaeae, based on several molecular approaches.

Occultitheca (Xylariaceae, Xylariales) is characterised by immersed ascomata, short pedicellate asci with J+ apical ring, brown ascospores with hyaline dwarf cells, and a straight germ slit (Rogers and Ju 2003; Samarakoon et al. 2022). The genus is notable for having the uppermost ascospore distant from the ascus apex (Rogers and Ju 2003; Samarakoon et al. 2022). The second species, O. rosae, was described almost two decades later from a dead branch of Rosa species in Guizhou, China (Samarakoon et al. 2022). Tian et al. (2024) introduced O. ananasi from dead pineapple leaves from Chiang Rai, Thailand, based on morphological and molecular analyses.

Chiang Rai and Chiang Mai are located in the northern part of Thailand and are considered biodiversity hotspots (Hyde et al. 2018). During the study of woody litter microfungi in northern Thailand, two novel species and two new records were discovered based on morphology and multigene phylogeny. This underscores a critical gap in our understanding of fungal biodiversity and its ecological significance in the area, thus highlighting the need for further research (Hyde et al. 2024).

Materials and methods

Fungal collection, isolation, and observation

Woody litter samples were collected from forest areas in Chiang Mai and Chiang Rai Provinces, Thailand. The area is covered with a canopy of tall trees, such as dipterocarp species and Bambusa species. The specimens were maintained in paper bags for transport to the laboratory. The fungal structures were observed using a Leica EZ4 stereomicroscope (Leica Microsystems (SEA) Pte Ltd, Singapore). and photographed using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) equipped with a Nikon DS-Ri2 camera. Tarosoft (R) Image Frame Work version 3.9.3.74 was used for measurements, and Adobe Photoshop CS6 software was used for the photo plates.

Single spore isolation was conducted to obtain pure culture on potato dextrose agar (PDA) as described in Senanayake et al. (2020). The culture plates were incubated at room temperature (25 ± 5 °C) for 4 weeks. Herbarium materials were deposited in the Mae Fah Luang University Fungarium (MFLU), and ex-type living cultures were deposited in the Mae Fah Luang University Culture Collection (MFLUCC) in Chiang Rai, Thailand. Index Fungorum (Index Fungorum 2024) and Facesoffungi numbers (FoF) (Jayasiri et al. 2015) were obtained. The data of the novel species will also be uploaded to the Fungalpedia website (Hyde et al. 2023).

DNA extraction, amplification, and sequencing

Fresh mycelium was scraped from a 4-week-old culture on PDA, and DNA was extracted using the E.Z.N.A. Forensic DNA Kit (BIO-TEK) according to the manufacturer’s instructions. The polymerase chain reaction (PCR) was used to amplify the ITS region (ITS5/ITS4) (White et al. 1990), cal (CAL228F/CAL737R) (Carbone and Kohn 1999), his3 (CYLH3F/H3-1b) (Glass and Donaldson 1995), LSU (LR0R/LR5) (Vilgalys and Hester 1990), rpb2 (fRPB25f/fRPB2-7cR) (Liu et al. 1999), tef1 (EF-728F/EF-986R) (Carbone and Kohn 1999), and tub2 (T1/T22 and BT2a/BT2b) genes (Glass and Donaldson 1995; O’Donnell and Cigelnik 1997). The PCR conditions for each primer were set up following Samarakoon et al. (2022) and Dissanayake et al. (2024). A PCR reaction was carried out in a 25 μL reaction volume containing 12.5 µL of 2 × PCR MasterMix, 9.5 µL of double-distilled water, 1 µL of 20 µmol for each forward and reverse primer, and 1 µL of 30 ng of DNA template. The PCR products were visualised on 1% agarose gels with 6 μl of 4S green dye per 100 mL. Successful PCR products were purified and sequenced by Biogenomed Co., Ltd., South Korea. The newly generated sequences were deposited in GenBank (Tables 1, 2).

Table 1.

GenBank accession numbers of the taxa used in the phylogenetic analyses of Diaporthe section sojae.

Species Strain ITS tef1 tub2 cal his3
Diaporthe acaciarum CBS 138862T KP004460 N/A KP004509 N/A KP004504
D. amaranthophila MAFF 246900T LC459575 LC459577 LC459579 LC459583 LC459581
D. amaranthophila MAFF 246901 LC459576 LC459578 LC459580 LC459584 LC459582
D. ambigua CBS 114015T MH862953 KC343736 KC343978 KC343252 KC343494
D. ambigua CBS 117167 KC343011 KC343737 KC343979 KC343253 KC343495
D. angelicae CBS 111592T KC343027 KC343753 KC343995 KC343269 KC343511
D. angelicae CBS 100871 KC343025 KC343751 KC343993 KC343267 KC343509
D. arctii CBS 139280T KJ590736 KJ590776 KJ610891 KJ612133 KJ659218
D. arezzoensis MFLU 19-2880T MT185503 MT454019 MT454055 N/A N/A
D. batatas CBS 122.21T KC343040 KC343766 KC344008 KC343282 KC343524
D. beilharziae BRIP 54792T JX862529 JX862535 KF170921 N/A N/A
D. biguttulata CFCC 52584T MH121519 MH121561 MH121598 MH121437 MH121477
D. biguttulata CFCC 52585 MH121520 MH121562 MH121599 MH121438 MH121478
D. brasiliensis CBS 133183T KC343042 KC343768 KC344010 KC343284 KC343526
D. brasiliensis LGMF926 KC343043 KC343769 KC344011 KC343285 KC343527
D. breyniae CBS 148910T ON400846 ON409188 ON409186 ON409189 ON409187
D. caatingaensis URM7485T KY085927 KY115604 KY115601 KY115598 KY115605
D. caatingaensis URM7484 KY085928 N/A KY115602 KY115599 KY115606
D. caryae CFCC 52563T MH121498 MH121540 MH121580 MH121422 MH121458
D. caryae CFCC 52564 MH121499 MH121541 MH121581 MH121423 MH121459
D. chimonanthi SCHM 3614T AY622993 N/A N/A N/A N/A
D. chimonanthi SCHM 3603 AY620820 N/A N/A N/A N/A
D. cichorii MFLUCC 17-1023T KY964220 KY964176 KY964104 KY964133 N/A
D. cinnamomi CFCC 52569T MH121504 MH121546 MH121586 N/A MH121464
D. cinnamomi CFCC 52570 MH121505 MH121547 MH121587 N/A MH121465
D. citriasiana ZJUD30T JQ954645 JQ954663 KC357459 KC357491 N/A
D. citriasiana ZJUD81 KJ490616 KJ490495 KJ490437 N/A KJ490558
D. convolvuli CBS 124654T KC343054 KC343780 KC344022 KC343296 KC343538
D. convolvuli FAU649 KJ590721 KJ590765 N/A KJ612130 KJ659210
D. coracoralinae URM 8912T PP192078 PP430449 PP402241 PP408214 PP421133
D. coracoralinae FCCUFG 39 PP192079 N/A PP402242 PP408215 PP421134
D. cucurbitae DAOM 42078T KM453210 KM453211 KP118848 N/A KM453212
D. cucurbitae CBS 136.25 KC343031 KC343757 KC343999 KC343273 KC343515
D. cuppatea CBS 117499T KC343057 KC343783 KC344025 KC343299 KC343541
D. cyatheae YMJ-1364T JX570889 KC465406 KC465403 KC465410 N/A
D. discoidispora ZJUD89T KJ490624 KJ490503 KJ490445 N/A KJ490566
D. discoidispora GZCC 22-0065 OP056659 OP150498 OP150576 OP150655 OP150730
D. eleutharrhenae 01T* OK017069 OK017070 OK017071 N/A N/A
D. eleutharrhenae 02* OK648457 OK648458 OK648459 N/A N/A
D. fici-septicae NCYUCC 19-0108T MW114349 MW192212 MW148269 N/A N/A
D. fici-septicae MFLU 20-20178 MW114348 MW192211 MW148268 N/A N/A
D. foliorum CMRP 1321T MT576688 MT584310 MT584327 MT584341 MT584338
D. foliorum CMRP 1330 MT576671 MT584309 MT584328 MT584342 MT584340
D. ganjae CBS 180.91T KC343112 KC343838 KC344080 KC343354 KC343596
D. ganjae PSCG489 MK626955 MK654897 MK691287 MK691202 MK726204
D. goulteri BRIP 55657aT KJ197290 KJ197252 KJ197270 N/A N/A
D. gulyae BRIP 54025T JF431299 JN645803 N/A N/A N/A
D. gulyae BRIP 53158 JF431284 JN645799 N/A N/A N/A
D. guttulata CGMCC3.20100T MT385950 MT424685 MT424705 MW022470 MW022491
D. guttulata GZCC 19-0371 MT797178 MT793021 MT793032 MW022471 MW022492
D. helianthi CBS 592.81T KC343115 KC343841 KC344083 KC343357 KC343599
D. helianthi CBS 344.94 KC343114 KC343840 KC344082 KC343356 KC343598
D. hordei CBS 481.92T KC343120 KC343846 KC344088 KC343362 KC343604
D. infecunda CBS 133812T KC343126 KC343852 KC344094 KC343368 KC343610
D. infertilis CBS 230.52T KC343052 KC343778 KC344020 KC343294 KC343536
D. infertilis CPC 20322 KC343053 KC343779 KC344021 KC343295 KC343537
D. juglandigena GUCC 422.16T OP581229 OP688534 OP688559 N/A N/A
D. juglandigena GUCC 422.161 OP581230 OP688535 OP688560 N/A N/A
D. kyushuensis STE-U2675T AF230749 N/A N/A N/A N/A
D. kyushuensis ch-D-1 AB302250 N/A N/A N/A N/A
D. leucospermi CBS 111980T N/A KY435632 KY435673 KY435663 KY435653
D. leucospermi CAA763 MK792291 MK828064 MK837915 MK883823 MK871433
D. longicolla FAU599T KJ590728 KJ590767 KJ610883 KJ612124 KJ659188
D. longicolla CBS 100.87 KC343196 KC343922 KC344164 KC343438 KC343680
D. longispora CBS 194.36T KC343135 KC343861 KC344103 KC343377 KC343619
D. lusitanicae CBS 123213T KC343137 KC343863 KC344105 KC343379 KC343621
D. lusitanicae CBS 123212 KC343136 KC343862 KC344104 KC343378 KC343620
D. machilii SAUCC194.111T MT822639 MT855951 MT855836 MT855718 MT855606
D. mayteni CBS 133185T KC343139 KC343865 KC344107 KC343381 KC343623
D. megalospora CBS 143.27T KC343140 KC343866 KC344108 KC343382 KC343624
D. melonis CBS 507.78T KC343142 KC343868 KC344110 KC343384 KC343626
D. melonis FAU640 KJ590702 KJ590741 KJ610858 KJ612099 KJ659184
D. melonis ZHKUCC 20-0014 MT355684 MT409338 MT409292 MT409314 N/A
D. melonis MFLUCC 24-0522 OR936658 PQ774278 PQ774285 N/A PQ774293
D. melonis MFLUCC 23–0300 PQ777476 PQ774277 PQ774284 PQ774290 N/A
D. middletonii BRIP 54884eT KJ197286 KJ197248 KJ197266 N/A N/A
D. middletonii BRIP 57329 KJ197285 KJ197247 KJ197265 N/A N/A
D. minusculata CGMCC3.20098T MT385957 MT424692 MT424712 MW022475 MW022499
D. minusculata GZCC 19-0345 MT797184 MT793027 MT793038 MW022476 MW022500
D. monetii MF Ha18-048T MW008493 MW008515 MW008504 MZ671938 MZ671964
D. monetii MF Ha18-049 MW008494 MW008516 MW008505 MZ671939 MZ671965
D. morindendophytica ZHKUCC 22-0069T ON322897 ON315053 ON315087 N/A ON315027
D. morindendophytica ZHKUCC 22-0070 ON322898 ON315054 ON315088 N/A ON315028
D. myracrodruonis URM 7972T MK205289 MK213408 MK205291 MK205290 N/A
D. neoarctii CBS 109490T KC343145 KC343871 KC344113 KC343387 KC343629
D. novem CBS 127270T KC343156 KC343882 KC344124 KC343398 KC343640
D. novem CBS 127271 KC343157 KC343883 KC344125 KC343399 KC343641
D. novem PL42 JQ697843 JQ697856 N/A N/A N/A
D. orixae KUNCC 21-10714T OK283041 N/A N/A OK484485 OK484486
D. orixae GZCC 21-1085 OL889852 OL944724 OL944726 N/A N/A
D. ovalispora CGMCC3.17256T KJ490628 KJ490507 KJ490449 N/A KJ490570
D. oxe CBS 133186T KC343164 KC343890 KC344132 KC343406 KC343648
D. oxe CBS 133187 KC343165 KC343891 KC344133 KC343407 KC343649
D. pachirae CDA 728T MG559537 MG559539 MG559541 MG559535 N/A
D. pachirae CDA 730 MG559538 MG559540 MG559542 MG559536 N/A
D. paranensis CBS 133184T KC343171 KC343897 KC344139 KC343413 KC343655
D. paranensis LMICRO417 KY461115 KY461116 N/A N/A N/A
D. passiflorae CBS 132527T JX069860 N/A N/A N/A KY435654
D. passiflorae CAA953 MN190308 MT309430 MT309456 MT309447 MT309439
D. pedratalhadensis URM 8304T PP192073 PP430438 PP402232 N/A PP421129
D. pedratalhadensis FCCUFG 49 PP192075 N/A N/A PP408217 PP421131
D. phaseolorum AR4203T KJ590738 KJ590739 KJ610893 KJ612135 KJ659220
D. pseudobauhiniae MFLUCC 17-1669T MF190119 MF377598 N/A N/A N/A
D. pseudobauhiniae MFLUCC 17-1670 MF190118 MF377599 N/A N/A N/A
D. quercicola CSUFTCC104T ON076567 ON081659 N/A ON081670 ON081667
D. quercicola CSUFTCC105 ON076568 ON081660 N/A ON081671 ON081668
D. racemosae CBS 143770T MG600223 MG600225 MG600227 MG600219 MG600221
D. raonikayaporum CBS 133182T KC343188 KC343914 KC344156 KC343430 KC343672
D. raonikayaporum MFLUCC 14-1133 KU712448 KU749368 KU743987 KU749355 N/A
D. raonikayaporum MFLUCC 14-1136 KU712449 KU749369 KU743988 KU749356 N/A
D. rosae MFLUCC 17-2658T MG828894 N/A MG843878 MG829273 N/A
D. rosae MFLUCC 17-2574 MG906793 MG968954 MG968952 N/A N/A
D. rosiphthora COAD 2914T N/A QOI91674 N/A QOI91672 N/A
D. sackstonii BRIP 54669bT KJ197287 KJ197249 KJ197267 N/A N/A
D. schini CBS 133181T KC343191 KC343917 KC344159 KC343433 KC343675
D. schini LGMF 910 KC343192 KC343918 KC344160 KC343434 KC343676
D. schoeni MFLU 15-1279T KY964226 KY964182 KY964109 KY964139 N/A
D. schoeni MFLU 15-2609 KY964229 KY964185 KY964112 KY964141 N/A
D. sclerotioides CBS 296.67T MH858974 KC343919 KC344161 KC343435 KC343677
D. sclerotioides CBS 710.76 KC343194 KC343920 KC344162 KC343436 KC343678
D. serafiniae BRIP 55665aT KJ197274 KJ197236 KJ197254 N/A N/A
D. serafiniae BRIP 54136 KJ197273 KJ197235 KJ197253 N/A N/A
D. siamensis MFLUCC 10-0573aT JQ619879 JX275393 JX275429 JX197423 N/A
D. siamensis MFLUCC 12-0300 KT459417 KT459451 KT459435 KT459467 N/A
D. sojae FAU635T KJ590719 KJ590762 KJ610875 KJ612116 KJ659208
D. sojae CBS 116019 KC343175 KC343901 KC344143 KC343417 KC343659
D. stewartii CBS 193.36 MH867279 GQ250324 JX275421 JX197415 N/A
D. stewartii MN1 KX668416 KX852355 N/A N/A N/A
D. submersa CGMCC3.24297T OP056717 OP150556 OP150633 OP150710 OP150786
D. submersa GZCC 22-0007 OP056718 OP150557 OP150634 OP150711 OP150787
D. subordinaria CBS 464.90T KC343214 KC343940 KC344182 KC343456 KC343698
D. subordinaria CBS 101711 KC343213 KC343939 KC344181 KC343455 KC343697
D. tarchonanthi CBS 146073T MT223794 N/A MT223733 N/A MT223759
D. tecomae CBS 100547T KC343215 KC343941 KC344183 KC343457 KC343699
D. tectoendophytica MFLUCC 13-0471T KU712439 KU749367 KU743986 KU749354 N/A
D. tectonendophytica LC8115 KY491550 KY491560 KY491570 N/A N/A
D. terebinthifolii CBS 133180T KC343216 KC343942 KC344184 KC343458 KC343700
D. terebinthifolii LGMF907 KC343217 KC343943 KC344185 KC343459 KC343701
D. thailandica MFLUCC 24-0523 T OR946374 PQ774276 PQ774283 N/A PQ774292
D. thailandica MFLUCC 23–0299 PQ777475 PQ774275 PQ774282 PQ774289 N/A
D. thunbergiicola MFLUCC 12-0033T KP715097 KP715098 N/A N/A N/A
D. tulliensis BRIP 62248aT KR936130 KR936133 KR936132 N/A N/A
D. tulliensis JZB320128 MK335814 MK523573 MK500152 MK500240 N/A
D. tulliensis MFLUCC 14-1139 KU712438 KU749366 KU743985 KU749353 N/A
D. tulliensis MFLUCC 24-0524 PQ777478 PQ774280 PQ774287 N/A PQ774294
D. tulliensis MFLUCC 23–0301 PQ777477 PQ774279 PQ774286 PQ774291 N/A
D. ueckerae FAU656T KJ590726 KJ590747 KJ610881 KJ612122 KJ659215
D. ueckerae BRIP 54736j KJ197282 KJ197244 KJ197262 N/A N/A
D. unshiuensis ZJUD50T KJ490585 KJ490464 KJ490406 N/A KJ490527
D. unshiuensis PSCG339 MK626928 MK654879 MK691300 MK691181 MK726188
D. vangoghii MF Ha18-045T MW008491 MW008513 MW008502 MZ671936 MZ671962
D. vangoghii MF Ha18-046 MW008492 MW008514 MW008503 MZ671937 MZ671963
D. vargemgrandensis URM 8784T PP192069 PP430456 PP421092 PP421068 PP421135
D. vexans CBS 127.14 KC343229 KC343955 KC344197 KC343471 KC343713
D. vexans FAU597 KJ590734 KJ590774 KJ610889 KJ612131 KJ659216
D. vochysiae LGMF1583T MG976391 MK007526 MK007527 MK007528 MK033323
D. yunnanensis CGMCC3.18289T KX986796 KX999188 KX999228 KX999290 KX999267
D. yunnanensis LC8107 KY491542 KY491552 KY491562 KY491572 N/A
Table 2.

GenBank accession numbers of the taxa used in the phylogenetic analyses of Xylariales.

Species Strain ITS LSU rpb2 tub2
Albicollum vincensii CBS 147286T ON869297 ON869297 ON808475 ON808519
Amphirosellinia nigrospora HAST 91092308T GU322457 N/A GQ848340 GQ495951
Anthostomella helicofissa MFLUCC 14-0173T MW240653 MW240583 KP340534 KP406617
Anthostomella lamiacearum MFLU18-0101T MW240669 MW240599 MW658648 N/A
Anthostomelloides brabeji CBS 110128 EU552098 EU552098 N/A N/A
Anthostomelloides krabiensis MFLUCC 15-0678T KX305927 KX305928 KX305929 N/A
Anthostomelloides leucospermi CBS 110126T EU552100 EU552100 N/A N/A
Barrmaelia macrospora CBS 142768T KC774566 KC774566 MF488995 MF489014
Biscogniauxia nummularia MUCL 51395T KY610382 KY610427 KY624236 KX271241
Chaetomium elatum CBS 374.66 KC109758 KC109758 KF001820 KC109776
Circinotrichum circinatum CBS 148326 ON400743 ON400796 ON399328 N/A
Circinotrichum maculiforme CBS 140016T KR611874 KR611895 ON399338 N/A
Clypeosphaeria mamillana CBS 140735T KT949897 KT949897 MF489001 MH704637
Clypeosphaeria mamillana WU 33599 KT949898 KT949898 N/A N/A
Clypeosphaeria oleae CPC 36779 MN562130 MN567637 N/A N/A
Coniocessia maxima CBS 593.74T GU553332 MH878275 N/A N/A
Coniocessia nodulisporioides CBS 281.77T MH861061 MH872831 N/A N/A
Dematophora bunodes CBS 124028 MN984619 MN984625 N/A MN987245
Didymobotryum rigidum JCM 8837T LC228650 LC228707 N/A N/A
Digitodochium amoenum CBS 147285T ON869303 ON869303 ON808481 ON808525
Digitodochium rhodoleucum NBRC 32296 LC146732 LC146732 N/A N/A
Emarcea castanopsidicola CBS 117105 AY603496 MK762717 MK791285 MK776962
Emarcea eucalyptigena CBS 139908 KR476733 MK762718 MK791286 MK776963
Entalbostroma erumpens ICMP 21152T KX258206 N/A KX258204 KX258205
Entoleuca mammata JDR 100 GU300072 N/A GQ844782 GQ470230
Entosordaria perfidiosa CBS 142773T MF488993 MF488993 MF489003 MF489021
Fasciatispora arengae MFLUCC 15-0326aT MK120275 MK120300 MK890794 MK890793
Fasciatispora cocoes MFLUCC 18-1445T MN482680 MN482675 MN481517 MN505154
Graphostroma platystomum CBS 270.87T JX658535 DQ836906 KY624296 HG934108
Gyrothrix verticillata CBS 148806 ON400759 ON400813 ON399318 N/A
Halorosellinia krabiensis MFLU 17-2596T MN047119 MN017883 N/A MN431493
Hansfordia pruni CBS 194.56T MK442585 MH869122 KU684307 N/A
Hansfordia pulvinata CBS 144422 MK442587 MK442527 N/A N/A
Helicogermslita clypeata MFLU 18-0852T MW240666 MW240596 MW658647 MW775614
Hypocopra rostrata NRRL 66178 KM067909 KM067909 N/A N/A
Hypocopra zeae MFLU 18-0809T MW240671 MW240601 MW658650 MW775616
Hypocreodendron sanguineum J.D.R.169T GU322433 N/A GQ844819 GQ487710
Hypomontagnella monticulosa MFLUCC 18-0362 MN337231 MN336235.2 MN366246 MN509783
Muscodor thailandicus MFLUCC 17-2669 MK762707 MK762714 MK791283 MK776960
Muscodor ziziphi MFLUCC 17-2662 MK762705 MK762712 MK791281 MK776958
Jackrogersella multiformis CBS 119016T KC477234 KY610473 KY624290 KX271262
Kretzschmaria deusta CBS 163.93 KC477237 KY610458 KY624227 KX271251
Kretzschmariella culmorum JDR 88 KX430043 N/A KX430045 KX430046
Linosporopsis ischnotheca CBS 145761T MN818952 MN818952 MN820708 MN820715
Magnostiolata mucida MFLU 19-2133T MW240673 MW240603 MW658652 MW775618
Melanographium phoenicis MFLUCC 18-1481T MN482677 MN482678 N/A N/A
Melanographium smilacis MFLU 21-0075T MZ538514 MZ538548 N/A N/A
Nemania serpens HAST 235 GU292820 N/A GQ844773 GQ470223
Neoanthostomella fici MFLU 19-2765T MW114390 MW114445 MW177711 N/A
Neoxylaria juruensis HAST 92042501 GU322439 N/A GQ844825 GQ495932
Nigropunctata bambusicola MFLU 19-2145T MW240664 MW240594 MW658646 N/A
Nigropunctata nigrocircularis MFLU 19-2130T MW240661 MW240591 N/A MW775612
Occultitheca ananasi MFLU 23-0251T OR438426 OR438886 N/A N/A
Occultitheca ananasi MFLUCC 23-0120 OR438427 OR438887 OR634962 OR538094
Occultitheca chiangraiensis MFLU 24-0414 T PQ777479 PQ778042 PQ774295 PQ774288
Occultitheca rosae HKAS 102393T MW240672 MW240602 MW658651 MW775617
Podosordaria mexicana WSP 176 GU324762 N/A GQ853039 GQ844840
Poronia punctata CBS 656.78T KT281904 KY610496 KY624278 KX271281
Pseudoanthostomella pini-nigrae MFLUCC 16-0478T KX533453 KX533454 KX789492 N/A
Pseudoceratocladium polysetosum FMR 10750T KY853430 KY853490 ON399348 N/A
Rosellinia chiangmaiensis MFLUCC 15-0015T KU246226 KU246227 N/A N/A
Rosellinia lamprostoma HAST 89112602 EF026118 N/A GQ844778 EF025604
Sarcoxylon compunctum CBS 359.61 KT281903 KT281898 KY624230 KX271255
Sordaria fimicola CBS 723.96 MH862606 MH874231 DQ368647 N/A
Spiririma gaudefroyi CBS 147284T ON869320 ON869320 ON808497 ON808541
Spirodecospora melnikii MAFF 247746T LC731937 LC731946 LC731955 N/A
Spirodecospora paulospiralis MAFF 247749T LC731940 LC731949 LC731957 N/A
Stromatoneurospora phoenix BCC 82040 MT703666 MT735133 MT742605 MT700438
Vamsapriya indica MFLUCC 12-0544 KM462839 KM462840 KM462841 KM462838
Xenoanthostomella chromolaenae MFLUCC 17-1484T MN638863 MN638848 MN648729 N/A
Xenoanthostomella cycadis CBS 137969T KJ869121 KJ869178 ON399350 N/A
Xylaria acuminatilongissima HAST 95060506T EU178738 N/A GQ853028 GQ502711
Xylaria arbuscula CBS 126415 KY610394 KY610463 KY624287 KX271257
Xylaria botuliformis HAST 89091627 MN089652 N/A MN095399 MN095400
Xylaria brunneovinosa HAST 720T EU179862 N/A GQ853023 GQ502706
Xylaria ellisii DAOM 628556T MN218820 MN218817 MN216186 N/A
Xylaria eucalypti CPC 36723 MN562127 MN567634 N/A N/A
Xylaria hypoxylon CBS 122620T AM993141 KM186301 KM186302 KM186300

Alignments and phylogenetic analyses

Consensus sequences were assembled using Geneious Prime 2025 (Biomatters Ltd., Auckland, New Zealand) and were used for BLASTn search against the NCBI nucleotide non-redundant database (Sayers et al. 2022). For Diaporthe, sequences were downloaded from GenBank (Table 1) following the classification in Dissanayake et al. (2024). For Xylariales, related sequences were downloaded from GenBank (Table 2) based on recent publications (Samarakoon et al. 2022; Sugita et al. 2022; Voglmayr et al. 2022). The sequences were aligned using MAFFT version 7 (Katoh et al. 2019) with minimal adjustment of any ambiguous nucleotides using AliView version 1.26 (Larsson 2014). The alignments were concatenated using SequenceMatrix version 1.8 (Vaidya et al. 2011).

Maximum likelihood analyses (ML), including 1000 bootstrap pseudoreplicates, were performed at the CIPRES web portal (Miller et al. 2017) using RAxML version 8.2.12 (Stamatakis 2014). The general time reversible (GTR) model with a discrete gamma distribution plus invariant site (GTR + I + G) was used as the nucleotide substitution model. The best model for each gene was determined in JModelTest version 2.1.10 (Darriba et al. 2012) for the Bayesian analysis. The Bayesian inference posterior probabilities (BPP) distribution (Zhaxybayeva and Gogarten 2002) was estimated by Markov Chain Monte Carlo sampling (MCMC) in MrBayes version 3.2.2 on XSEDE (Ronquist et al. 2012) with four runs of MCMC for 1,000,000 generations, sampling trees every 100th generation. The first 25% of trees were excluded as burn-in, and the remaining trees were used to calculate posterior probabilities (BPP). The trees were visualised using FigTree version 1.4.4 (Rambaut 2012) and edited using Adobe Illustrator® CS6 (Adobe Systems, USA).

Genealogical concordance phylogenetic species recognition analysis

The closely related strains were further analysed using the genetic distances by performing a pairwise homoplasy index test (Φw) (Taylor et al. 2000; Bruen et al. 2006). A pairwise homoplasy index (PHI) test was performed in SplitsTree (CE 6.0.0) using Kimura’s two-parameter (K2P) models for low genetic distance datasets (Huson and Bryant 2024). LogDet transformation was applied for the average of nucleotide frequencies and splits decomposition graph options (Gu and Li 1996a, b; Taylor et al. 2000; Bruen et al. 2006; Huson and Bryant 2006; Gioan and Paul 2012; Nishimaki and Sato 2019). The standard deviation of split frequencies PHI test result (Φw) < 0.05 indicates significant recombination within the dataset.

Results

Phylogenetic analyses of section sojae

The phylogeny represents taxa from section sojae based on the concatenated dataset of ITS, tef1, tub2, cal, and his3 sequences. The combined sequence alignment comprised 159 taxa with 3279 characters, including gaps (ITS: 1–587, tef1: 588–1131, tub2: 1132–2067, cal: 2068–2682, his3: 2683–3279). The ML and BI analyses showed similar topologies (Fig. 1). The best scoring ML tree had a final likelihood value of -47785.673. The matrix had 1463 constant sites, 1408 parsimony informative sites, and 2202 distinct site patterns. Estimated base frequencies were as follows: A = 0.213, C = 0.325, G = 0.239, T = 0.224, substitution rates: AC = 1.16629, AG = 3.42597, AT = 1.16629, CG = 1.00000, CT = 4.44139, GT = 1.000, gamma distribution shape parameter = 0.954, and tree length = 7.506.

Figure 1. 

Phylogram of the Diaporthe sojae species complex generated from a maximum likelihood analysis based on the combined ITS, tef1, tub2, cal, and his3 sequence data. Diaporthella corylina (CBS 121124) was used as the outgroup. Bootstrap support values ≥ 60% ML/≥0.90 BPP are given at the nodes. The newly generated taxa are indicated in red. The holotype/ex-type strains are denoted with T.

Sordariomycetes O.E. Erikss. & Winka

Diaporthales Nannf.

Diaporthaceae Höhn. ex Wehm.

Diaporthe melonis Beraha & M.J. O’Brien, Phytopath. Z. 94(3): 205 (1979)

Fig. 2

Description.

Saprobic on dead unidentified branch. Sexual morph: not observed. Asexual morph: Conidiomata 148–374 × 128–338 µm high (x̄ = 250 × 225 µm, n = 15), pycnidial, mostly scattered, immersed, slightly erumpent through the host surface, discoid or subglobose, with a solitary undivided locule. Conidiophores reduced to conidiogenous cells. Alpha conidiogenous cells 5.7–25 × 1.1–2.5 µm (x̄ = 15.6 × 1.7 µm, n = 50), hyaline, rarely branched, mostly aseptate, densely aggregated, cylindrical, straight to slightly curved and smooth. Alpha conidia 5–7.3 × 1.9–2.7 µm (x̄ = 6.3 × 2.3 µm, n = 40), unicellular, fusiform to ellipsoidal, apex and base rounded, hyaline, smooth, bi-guttulate. Beta conidiogenous cells 6.2–16 × 1.6–2.6 µm (x̄ = 9.4 × 2.1 µm, n = 40), phialidic, subcylindrical, tapering towards the apex, hyaline. Beta conidia 19–27 × 1–2 µm (x̄ = 23 × 1.5 µm, n = 40), filiform, aseptate, hyaline, smooth-walled, straight from base, and curve at apex. Gamma conidia not observed.

Culture characteristics.

Colonies on PDA, reaching 20 mm diam., after 3 weeks at 25 °C, initially white, turning beige after 7–10 days, flat, felty with a thick texture at the centre and marginal area, lacking aerial mycelium; reverse, glossy grey, radiating outwardly.

Material examined.

Thailand, Chiang Rai Province, Muang District, on a dead unidentified dicot branch, 16 January 2023, J. Louangphan, CR1-02 (MFLU 23–0474); living culture MFLUCC 24–0522 = MFLUCC 23–0300.

Hosts.

Annona squamosa (Annonaceae), Berberis aristata (Berberidaceae), Carapa guianensis (Meliaceae), Citrus grandis cv. Tomentosa (Rutaceae), Cucumis melo (Cucurbitaceae), Glottidium sp. (Fabaceae), Glycine max, G. soja (Fabaceae), unidentified branch (Dong et al. 2021a, b; Hongsanan et al. 2023; This study).

Figure 2. 

Diaporthe melonis (MFLU 23–0474) a host substrate b conidiomata on substrate c transverse section of conidioma d, e vertical section through conidiomata f, g conidiophores and conidiogenous cells h, i beta conidia j alpha conidia k a germinated conidium l front and reverse view of the colony on PDA. Scale bars: 200 μm (b–d); 100 μm (e); 20 μm (f, k); 10 μm (g, h–j).

Distribution.

China, Myanmar, India, Indonesia, Japan, Thailand, the United States (Dong et al. 2021a, b; Hongsanan et al. 2023; this study).

Notes.

Our isolates (MFLUCC 23–0300 and MFLUCC 24–0522) clustered with D. melonis isolates (CBS 507.78, FAU640, and ZHKUCC 20-0014) with 100% ML/1.00 BPP support (Fig. 1). Our isolate has a similar morphology to D. melonis but differs in having smaller conidiomata (148–374 µm vs. 100–500 µm diam.) and smaller alpha conidia (6.3 × 2.3 µm vs. 8.3 × 2.6 µm) (Beraha and O’Brien 1979). Our isolate has a beige culture compared to the brown culture of D. melonis (Beraha and O’Brien 1979). Our isolate also differs from D. melonis (D. guangdongensis ZHKUCC 20-0014) in the size of conidiomata (128–338 × 148–374 µm vs. 130–515 × 100–390 µm), alpha conidia (5–7.3 × 1.9–2.7 µm vs. 6–8 × 2–4 µm), and beta conidia (19–27 × 1–2 µm vs. 14–35 × 1–2 µm) (Dong et al. 2021a, b). Therefore, we report our isolate as a new geographical record of D. melonis from Thailand.

Diaporthe thailandica Louangphan, Phukhams., K.D. Hyde & Bhunjun, sp. nov.

Figs 3, 4

Etymology.

The name refers to the country where the holotype was collected.

Holotype.

MFLU 23–0473.

Description.

Saprobic on decaying dicot, visible as black necks immerging through the host surface. Sexual morph: Ascomata 328–495 × 303–371 µm (x̄ = 400 × 343 µm, n = 10), immersed in the host epidermis, globose to sub-globose, solitary or occur in clusters, black, ostiolate, papillate. Ostiole neck 220 × 86 µm, long, filled with periphysate. Peridium 20–50 µm wide, composed of several layers of cells of textura angularis, outer layers dark brown and inner layers hyaline to brown, thin-walled. Paraphyses 3.2–6.6 µm (n = 20), thin-walled, 2–4-septate, hyaline, wide at base, tapering towards the apex. Asci 45–58.9 × 8.6–12.7 µm (x̄ = 51.5 × 10.5 µm, n = 40), unitunicate, 8-spored, clavate to subclavate, straight to slightly curved, sessile, with a J-, apical ring. Ascospores 11–15.5 × 3.9–5.6 µm (x̄ = 13.5 × 4.7 µm, n = 40) L/W = 2.8, overlapping uniseriate to biseriate, 1-septate, constricted at the septum, ellipsoidal, smooth-walled, 2–4-guttulate, straight, hyaline, without appendages or a mucilaginous sheath. Asexual morph on PDA: Conidiomata 500–700 × 300–600 µm (x̄ = 580 × 480 µm, n = 10), pycnidial, scattered or aggregated, globose or variable in shape, ostiolate with prominent neck, dark brown to black, pycnidal wall brown, consisting of thick-walled cells of textura angularis, conidial mass globose, initially hyaline to yellowish, becoming white to cream, conidial droplets exuding from central ostioles. Conidiophores 10–29.5 × 1.3–2.5 μm (x̄ = 16.9 × 1.9 µm, n = 40), ampulliform to subcylindrical, filiform, branched to unbranched, 1–3-septate, hyaline, smooth, straight or slightly curved, wider at base, tapering towards the apex. Conidiogenous cells 2.1–8.1 × 1–2.3 μm (x̄ = 4.2 × 1.5 µm, n = 40), subcylindrical, filiform, straight to curved, tapering towards the apex, collarette not flared, hyaline. Alpha conidia 5.3–8.8 × 2.3–3.5 μm (x̄ = 7.3 × 2.9 μm, n = 40), ellipsoid, apex bluntly rounded, base obtuse to subtruncate, smooth, hyaline, bi- to multi-guttulate. Beta conidia 8.5–18.5 × 1.2–2 μm (x̄ = 13.3 × 1.7 μm, n = 40), filiform, flexible to slightly curved, hyaline, base subtruncate, and aseptate. Gamma conidia not observed.

Figure 3. 

Diaporthe thailandica (MFLU 23–0473, holotype) a host substrate b, c ascomata on host substrate d vertical section through ascoma e peridium f ostiole g hamathecium h–j asci k–n ascospores o a germinated ascospore p front and reverse view of the colony on PDA. Scale bars: 200 μm (b); 100 μm (c, d); 20 μm (e–j); 10 μm (k–o).

Figure 4. 

Diaporthe thailandica (Asexual morph, MFLUCC 24–0523) a culture on pda b, c conidiomata sporulating on pda d, e conidiogenous cells giving rise to conidia f alpha conidia g beta conidia h alpha and beta conidia. Scale bars: 500 µm (b, c); 10 µm (d–h).

Culture characteristics.

Colonies on PDA, reaching 40 mm diam., after 2 weeks at 25 °C, initially white, turning pale brown after 7–10 days, radiating to the edge, margin undulate, medium dense, flat or umbonate; reverse, cream, radiating white outwardly with grey patches.

Material examined.

Thailand, Chiang Rai Province, Muang District, on a dead unidentified dicot, 16 January 2023, J. Louangphan, CR1-09 (MFLU 23–0473, holotype); ex-type MFLUCC 24–0523 = MFLUCC 23–0299.

Host.

Unidentified branch (this study).

Distribution.

Thailand (this study).

Notes.

Diaporthe thailandica (MFLUCC 23-0299 and MFLUCC 24–0523) formed a sister clade with isolates of D. raonikayaporum (CBS 133182, MFLUCC 14–1133, and MFLUCC 14–1136) with 100% ML/1.00 BPP support (Fig. 1). Diaporthe thailandica differs from D. raonikayaporum in its conidiomata (500–700 × 300–600 µm vs. 110–200 × 50–130 μm), conidiophores (10–29.5 × 1.3–2.5 μm vs. 16–26 × 2–3 μm), conidiogenous cells (2.1–8.1 × 1–2.3 μm vs. 5–10 × 2–3 μm), and beta conidia (8.5–18.5 vs. 7–13 μm) (Gomes et al. 2013). Diaporthe thailandica differs from D. raonikayaporum (=D. neoraonikayaporum MFLUCC 14–1133) in its conidiomata (500–700 × 300–600 µm vs. 690–1190 × 805–1285 μm), conidiophores (10–29.5 μm vs. 15–23 μm), alpha conidia (5.3–8.8 × 2.3–3.5 μm vs. 4–6 × 2–3 μm), and beta conidia (8.5–18.5 μm vs. 13–21 μm) (Doilom et al. 2017). Gamma conidia was observed in D. raonikayaporum (= D. neoraonikayaporum) but not in D. thailandica (Doilom et al. 2017). Diaporthe thailandica further differs from D. raonikayaporum, which has only been reported as an asexual morph (Gomes et al. 2013; Doilom et al. 2017). Our strain differs significantly (> 2.5%) compared to the sequence data of D. raonikayaporum (Table 3). However, our isolate does not have cal sequence data, while his3 sequence data is not available for D. raonikayaporum (MFLUCC 14–1133 and MFLUCC 14–1136). A pairwise homoplasy index showed Φw = 1.0 when a genealogical correlation model was applied between Diaporthe thailandica and D. raonikayaporum (Fig. 5). Thus, Diaporthe thailandica is reported as a new species based on morphology and molecular evidence.

Figure 5. 

The splits graph from the pairwise homoplasy index (PHI) test generated from the combined ITS, tef1, tub2, cal, and his3 sequence data of Diaporthe thailandica (indicated in red) and closely related taxa using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset.

Table 3.

Pairwise comparison of the sequences of Diaporthe thailandica and D. raonikayaporum isolates (excluding gaps).

Sequences D. raonikayaporum (CBS 133182) D. raonikayaporum (MFLUCC 14-1133) D. raonikayaporum (MFLUCC 14-1136)
ITS 3.4% (18/529) 2.6% (14/529) 3.0% (16/529)
tef1 6.5% (21/323) 7.4% (24/323) 8.4% (27/323)
tub2 4.3% (18/415) 6.5% (27/415) 7.7% (32/415)
cal
his3 3.7% (17/450)

Diaporthe tulliensis R.G. Shivas, Vawdrey & Y.P. Tan, Persoonia 35: 301 (2015)

Fig. 6

Description.

Saprobic on decaying Bambusa. Sexual morph: Undetermined. Asexual morph: Conidiomata 91–148 × 311–974 μm (x̄ = 120 × 583 μm, n = 20), pycnidial, scattered or aggregated, embedded in host surface, slightly erumpent through host surface, 1–3-locular conidioma, nearly flat, elongated, discoid, or variable in shape, black, consisting of hyaline, thin-walled cells of textura angularis, outer layer thick walled. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 4–16 × 1.2–2.6 μm (x̄ = 7.5 × 1.8 μm, n = 40), cylindrical, unbranched, aseptate, smooth, straight or slightly curved, tapering towards the apex, wider at base, hyaline. Alpha conidia 4.1–7.8 × 1.7–3.1 μm (x̄ = 5.8 × 2.5 μm, n = 40), apex bluntly rounded, 1–2-guttulate, mostly bi-guttulate, oval or oblong to ellipsoid, hyaline, smooth, base obtuse to subtruncate. Beta and Gamma conidia not observed.

Figure 6. 

Diaporthe tulliensis (MFLU 23–0475) a, b conidiomata on host c longitudinal section through conidioma d, e transverse section of conidioma f, g conidiogenous cells giving rise to conidia h, i alpha conidia j, k germinated conidia l front and reverse view of the colony on PDA. Scale bars: 200 µm (b–d); 20 µm (e); 10 µm (f–k).

Culture characteristics.

Colonies on PDA, reaching 40 mm diam., after 2 weeks at 25 °C, initially white, turning olivaceous grey after 7–10 days, darker at the centre and marginal area, lacking aerial mycelium; reverse, olivaceous grey bordered by dark margins.

Material examined.

Thailand, Chiang Mai Province, Mae Taeng District, on dead terrestrial stem of Bambusa (Poaceae), 19 November 2022, J. Louangphan, MJ11 (MFLU 23–0475); living culture, MFLUCC 24–0524 = MFLUCC 23–0301.

Hosts.

Actinidia spp. (Actinidiaceae), Alangium kurzii (Cornaceae), Bambusa sp. (Poaceae), Bougainvillea glabra (Nyctaginaceae), Celtis formosana (Ulmaceae), Morinda officinalis (Rutaceae), Tectona grandis (Lamiaceae), Theobroma cacao (Malvaceae), Soil, Vitis vinifera (Vitaceae) (Chang et al. 2005; Crous et al. 2015; Bai et al. 2017; Doilom et al. 2017; Yang et al. 2018; Manawasinghe et al. 2019; Tennakoon et al. 2021; Luo et al. 2022; this study).

Distribution.

Australia, China, Korea, Thailand (Chang et al. 2005; Crous et al. 2015; Bai et al. 2017; Doilom et al. 2017; Yang et al. 2018; Manawasinghe et al. 2019; Tennakoon et al. 2021; Luo et al. 2022; this study).

Notes.

In the phylogenetic analysis, our isolates (MFLUCC 23–0301 and MFLUCC 24–0524) clustered with D. tulliensis isolates (MFLUCC 14–1139, JZB320128, and BRIP 62248a) with 100% ML/1.00 BPP support (Fig. 1). Our isolate has a similar morphology to D. tulliensis isolates but differs from D. tulliensis in the size of conidiomata (up to 500 µm (= D. celtidis and D. tulliensis) vs. up to 510 µm (= D. hubeiensis) vs. 135–330 μm (= D. alangii) vs. 50–380 μm (= D. morindae) vs. 725–820 μm diam. (= D. tectonae)) (Crous et al. 2015; Doilom et al. 2017; Yang et al. 2018; Manawasinghe et al. 2019; Luo et al. 2022). Our isolate also differs due to the absence of beta conidia, which has been reported in some D. tulliensis isolates (Chang et al. 2005; Crous et al. 2015; Doilom et al. 2017; Manawasinghe et al. 2019). Therefore, we report our isolate as a new host record of D. tulliensis.

Phylogenetic analyses of Xylariales

The phylogeny represents selected taxa in Xylariales based on the concatenated dataset of ITS, LSU, rpb2, and tub2 sequences. The combined sequence alignment comprised 78 strains with 3624 characters, including gaps (ITS: 1–578, LSU: 579–1432, rpb2: 1433–2573, tub2: 2574–3624). The ML and BI analyses of single and multi-gene showed similar topologies. The best scoring ML tree with a final likelihood value of -54607.950 (Fig. 7). The matrix had 1992 constant sites, 1349 parsimony informative sites, and 2026 distinct site patterns. Estimated base frequencies were as follows: A = 0.2405, C = 0.2618, G = 0.2637, T = 0.2337, substitution rates: AC = 1.4137, AG = 3.9195, AT = 1.4543, CG = 1.1208, CT = 7.4615, GT = 1.000, gamma distribution shape parameter = 0.759631, and tree length = 7.506.

Figure 7. 

Phylogram generated from maximum likelihood analyses based on combined ITS-LSU-rpb2-tub2 datasets. The tree is rooted with Chaetomium elatum (CBS 374.66) and Sordaria fimicola (CBS 723.96) as the outgroup taxa. Bootstrap support values ≥ 60% ML/≥0.90 BPP are given at the nodes. The newly generated taxa are indicated in red. The holotype/ex-type strains are denoted with T.

Xylariales Nannf.

Xylariaceae Tul. & C. Tul.

Occultitheca J.D. Rogers & Y.M. Ju

Occultitheca chiangraiensis Louangphan, Phukhams., K.D. Hyde & Bhunjun, sp. nov.

Fig. 8

Etymology.

The name refers to the province where the holotype was collected.

Holotype.

MFLU 24–0414.

Description.

Saprobic on early decaying branch. Sexual morph: Ascomata 220–342 × 228–395 μm (x̄ = 290 × 324 μm, n = 15), immersed, solitary, scattered, globose to subglobose, erumpent through host surface, visible as black dot of ostiole, surrounded by a whitish halo. Clypeus carbonaceous, rudimentary, thick-walled, the ostiolar opening surrounded with black cells. Ostioles centric, ostiolar canal periphysate. Peridium 17–30 μm (x̄ = 23 μm, n = 20) wide, tightly attached to the host tissue, with two cell layers, outer layer thick-walled, comprising yellowish brown cells of textura angularis, inner layer thin, composed of hyaline cells of textura angularis. Paraphyses 3.7–7.6 μm (x̄ = 5.4 μm, n = 25) wide, wider at the base, longer than the asci, filamentous, septate, constricted at the septa, embedded in gelatinous matrix. Asci 112–158 × 8.5–13.7 μm (x̄ = 131 × 11 μm, n = 25), 8-spored, unitunicate, cylindrical, short pedicellate, apically rounded, with 3.9–5.6 × 2.5–3.7 μm (x̄ = 5 × 3 μm, n = 18), rectangular to slightly obconic, apical ring, J+ in Melzer’s reagent. Ascospores 14.5–17.6 × 6–7.4 μm (x̄ = 16.3 × 6.7 μm, n = 30), L/W 2.4, oblong to ellipsoidal, uniseriate, brown, inequilaterally unicellular, apical cell 13–15.5 μm (x̄ = 14.5 μm, n = 30) long, usually with large guttules, brown cell with a mucilaginous sheath covering most of the spore length when mature, with a small, hyaline, rounded, basal cell, 1.3–2.3 μm (x̄ = 1.8 μm, n = 30), lack of germ slit. Asexual morph: Undetermined.

Figure 8. 

Occultitheca chiangraiensis (MFLU 24–0414, holotype) a host substrate b ascomata in host surface c, d horizontal and vertical section of ascoma e section through ascoma f peridium g ostiole h apical ring stained with melzer’s reagent i paraphyses j–m immature and mature asci n–r ascospores (r ascospores show mucilaginous sheath in indian ink) s a germinated spore t front and reverse view of the colony on PDA. Scale bars: 200 μm (b); 100 μm (c–e); 20 μm (f, g, i); 10 μm (h, n–s); 50 μm (j–m).

Culture characteristics.

Colonies on PDA, reaching 40 mm diam., after 21 days at 25 °C, circular, entire edge, smooth surface, flat, slightly woolly, smooth margin, above ash white from the centre to white at the edge with concentric rings of woolly; from below: light brown at the centre, white at the margin, with ash white mycelium.

Material examined.

Thailand, Chiang Rai, Mae Fah Luang District, Mae Salong Nok, on a dead unidentified dicot branch, 16 January 2023, J. Louangphan, CR1–19 (MFLU 24–0414, holotype); ex-type MFLUCC 25–0158.

Host.

Unidentified branch (this study).

Distribution.

Thailand (this study).

Notes.

Based on multi-gene phylogenetic analyses of ITS, LSU, rpb2, and tub2 sequences, Occultitheca chiangraiensis (MFLU 24–0414) clustered with O. rosae (HKAS 102393) and Clypeosphaeria oleae (CPC 36779) with 100% ML and 1.00 BPP support (Fig. 7). Clypeosphaeria oleae was reported only from the asexual morph (Crous et al. 2019); thus, we could not compare the morphology between the species as we could not obtain the asexual morph of our strain, and therefore the link between them cannot be confirmed. Furthermore, C. oleae lacks rpb2 and tub2 data, which is important to confirm its phylogenetic placement. Morphologically, Occultitheca chiangraiensis fits the generic concept of Occultitheca in having immersed ascomata, short pedicellate asci with a J+, apical ring, a long distance between the ascus apex and the uppermost ascospore, and hyaline basal cells attached to brown ascospores (Rogers and Ju 2003; Samarakoon et al. 2022). Our isolate was compared to Occultitheca species as detailed in Table 4. Occultitheca chiangraiensis differs from O. rosae by having smaller ascomata (x̄ = 290 × 324 μm vs. 370 × 385 μm), a lack of a germ slit, and possesses a thicker mucilaginous sheath compared to O. rosae (Samarakoon et al. 2022). Our strain differs from O. ananasi, which has uniseriate, olive-greenish ascospores becoming 2-seriate in the middle and thin mucilaginous sheath (Tian et al. 2024). Occultitheca chiangraiensis was also compared to the type species O. costaricensis as it lacks molecular data. Occultitheca chiangraiensis differs by having 1–2 individual ascomata and ascospores with a mucilaginous sheath, while O. costaricensis has 2–12 ascomata in a cluster and ascospores without a sheath (Rogers and Ju 2003). Additionally, some Anthostomella species have similar characteristics in terms of ascoma, asci, and ascospores with draft cells and lack germ slits, such as A. clypeata and A. clypeoides, but differ in a short space of the top ascospore and the ascus apex and shape of the sheath compared to Occultitheca species (Lu and Hyde 2000; Rogers and Ju 2003). Our strain differs by 6% in the ITS region (30/482, 4 gaps), 2% in LSU (14/745, 4 gaps), 15% in rpb2 (117/798, no gap), 16% in tub2 (120/754, 22 gap), and 3% in tef1 (31/915, 1 gap) sequences compared to O. rosae (HKAS 102393). Thus, Occultitheca chiangraiensis is reported as a new species based on morphology and phylogenetic evidence.

Table 4.

Synopsis of Occultitheca species.

Species O. costaricensis O. rosae O. ananasi O. chiangraiensis
Host Unidentified decaying wood Rosa sp. Ananas comosus Unidentified decaying wood
Country Costa Rica China Thailand Thailand
Ascomata (μm) 400–600 360–385 × 350–420 190–230 × 160–260 220–342 × 228–395
Peridium (μm) 18–25 15–20 17–30
Paraphyses (μm) 3–6.5 3–5 3.7–7.6
Asci (μm) 185–190 × 10–10.5 90–140 × 11–13 70–90 × 5–10 112–158 × 8.5–13.7
Apical ring (μm) 6 × 3 3.5–4.5 × 2.8–3.2 3.9–5.6 × 2.5–3.7
Ascospores (μm) 14.5–23.5 × 7–10.5 16.5–20 × 6.5–8
L/W 2.6
10–12.5 × 3.5–4.5 L/W 2.9 14.5–17.6 × 6–7.4 L/W 2.4
Basal cell (μm) 1.5–4.5 1.5–2.2 1.3–2.3
Spore sheath No Thin Thin One side thick
Germ slit Straight Straight Straight No
References Rogers and Ju (2003) Samarakoon et al. (2022) Tian et al. (2024) This study

Discussion

In this study, two novel species, Diaporthe thailandica and Occultitheca chiangraiensis, along with a new host record of D. tulliensis and a new geographical record of D. melonis, are introduced based on morphology and molecular data. This study expands the known diversity of these taxa and highlights the importance of saprobic microfungi in ecological systems.

Diaporthe is a species-rich genus with a diverse host range and global distribution (Dissanayake et al. 2017; Phukhamsakda et al. 2020; Hongsanan et al. 2023; Bhunjun et al. 2024b). The species have overlapping morphological traits. There are more than 1200 epithets under Diaporthe in Index Fungorum (2024); thus, the boundaries of the species/species complexes within the genus have been revised by several studies. Diaporthe was recently restructured into seven sections and 15 species complexes based on molecular analyses. Several Diaporthe species have been synonymised under D. tulliensis (D. alangii, D. celtidis, D. glabrae, D. hubeiensis, D. morindae, and D. tectonae), and these taxa formed a clade in our trees (including in the backbone tree with 226 taxa; data not shown), similar to Dissanayake et al. (2024). Diaporthe melonis (= D. guangdongensis) also formed a clade in our trees (including in the backbone tree; data not shown), similar to Dissanayake et al. (2024). The implementation of the markers (ITS, tef-1, and tub) proved to be phylogenetically informative in this study, resulting in a similar topology as previous studies based on five-marker combinations. The GCPSR analysis was also used to support the novelty of the Diaporthe species in this study. Therefore, molecular data and morphological evidence are needed for accurate species identification, thus reinforcing the importance of integrative approaches.

Morphologically, Occultitheca is considered an inconspicuous xylarialean and treated as anthostomella-like taxa in terms of having immersed, clypeate ascomata, asci with a J+, apical ring, ascospores with a large brown cell, and a basal hyaline dwarf cell (Daranagama et al. 2018; Samarakoon et al. 2022). Anthostomella-like taxa have now been split into five genera as suspected by Daranagama et al. (2015). These include Anthocanalis, Astrocystis, Brunneiperidium, Lunatiannulus, and Pyriformiascoma, and they differ in terms of ascomata and asexual morph characters. Occultitheca has a distinctive ostiole surrounded by a whitish halo and apiosporous ascospores with a small hyaline dwarf cell at one end and a dark brown, larger cell. There are only three species in Occultitheca, and all of them were found as saprobes as sexual morphs from terrestrial ecosystems. Occultitheca has a limited distribution and a narrow range of hosts, as only one species was found in Costa Rica (Rogers and Ju 2003), one in China, and one in Thailand (Samarakoon et al. 2022; Tian et al. 2024). Here, we provide a new addition to Occultitheca from unidentified decaying wood in Chiang Rai, Thailand. Occultitheca chiangraiensis was reported only as a sexual morph due to failure to obtain the asexual morphs from cultures. Thus, the link between the sexual and asexual morphs of this genus remains unknown. Due to the uncertainty of asexual and sexual morphologies and the low number of collections, Occultitheca has been placed under Xylariales genera incertae sedis (Samarakoon et al. 2022; Tian et al. 2024) and has also been considered to be part of Xylariaceae based on phylogenetic analyses (Voglmayr et al. 2022; this study). Expanding the sample collection will improve the representativeness of the genus.

This study provides a vital contribution to our understanding of Sordariomycetes diversity. Introducing new taxa is significant as they contribute to the broader understanding of fungal evolution, taxonomy, and ecology. It also contributes to the growing knowledge about the diversity of fungi associated with woody litter. It emphasises the necessity for continued exploration of fungal biodiversity across various habitats. As global ecosystems undergo rapid changes due to climate shifts and habitat destruction, understanding these dynamics will be crucial for conservation efforts and ecosystem management. Therefore, this study encourages further exploration in understudied substrates and regions, which could unveil additional species and enrich our comprehension of fungal ecology and taxonomy.

Acknowledgements

Chayanard Phukhamsakda would like to thank the Basic Research Fund (Fundamental Fund) supported by the National Science, Research, and Innovation Fund under Grant No. 672A16008 for financial support. The authors thank Dr. Shaun Pennycook from Manaaki Whenua, Landcare Research, New Zealand. Chitrabhanu S. Bhunjun would like to thank Thailand Science Research and Innovation (TSRI) and the National Science Research and Innovation Fund (NSRF) (Fundamental Fund: Grant no. 662A16047) entitled “Biodiversity, ecology, and applications of plant litter-inhabiting fungi for waste degradation.” Kevin David Hyde would like to thank the National Research Council of Thailand (NRCT) grant “Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity, and biotechnology” (grant no. N42A650547). The authors extend their appreciation to the Researchers Supporting Project number (RSP2025R114), King Saud University, Riyadh, Saudi Arabia.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was funded by the Basic Research Fund (Fundamental Fund) supported by the National Science, Research, and Innovation Fund under Grant No. 672A16008, Thailand Science Research and Innovation (TSRI) and the National Science Research and Innovation Fund (NSRF) (Fundamental Fund: Grant no. 662A16047) entitled “Biodiversity, ecology, and applications of plant litter-inhabiting fungi for waste degradation”.

Author contributions

The authors confirm contributions to the paper as follows: Fungal specimen collection and isolation, fungal specimen deposition, and manuscript writing: Chayanard Phukhamsakda, Johnny Louangphan, Kedsara Navasit, Chitrabhanu S. Bhunjun; fungal identification and contributed to the revision of the manuscript: Chayanard Phukhamsakda, Kevin D. Hyde, Milan C. Samarakoon, Fatimah O. Alotibi, Chitrabhanu S. Bhunjun. All authors have read and agreed to the published version of the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Author ORCIDs

Chayanard Phukhamsakda https://orcid.org/0000-0002-1033-937X

Kevin D. Hyde https://orcid.org/0000-0002-2191-0762

Milan C. Samarakoon https://orcid.org/0000-0002-4815-125X

Johnny Louangphan https://orcid.org/0000-0003-3845-6145

Kedsara Navasit https://orcid.org/0009-0004-8167-0600

Fatimah Al-Otibi https://orcid.org/0000-0003-3629-5755

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Bai Q, Wang GP, Hong N, Guo YS, Fu M (2017) First report of Diaporthe tulliensis and Diaporthe actinidiae causing kiwifruit stem canker in Hubei and Anhui provinces, China. Plant Disease 101(3): 508–509. https://doi.org/10.1094/PDIS-10-16-1445-PDN
  • Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, McKenzie EHC, Maharachchikumbura SSN, Buyck B, Zhao CL, Fan YG, Zhang JY, Dissanayake AJ, Marasinghe DS, Jayawardena RS, Kumla J, Padamsee M, Chen YY, Liimatainen K, Ammirati JF, Lumyong S, Phukhamsakda C, Liu JK, Phonrob W, Randrianjohany É, Hongsanan S, Cheewangkoon R, Bundhun D, Khuna S, Yu WJ, Deng LS, Lu YZ, Hyde KD (2022) The numbers of fungi: Are the most speciose genera truly diverse? Fungal Diversity 114(1): 387–462. https://doi.org/10.1007/s13225-022-00501-4
  • Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024a) What are the 100 most cited fungal genera? Studies in Mycology 108(1): 1–412. https://doi.org/10.3114/sim.2024.108.01
  • Chang C, Yinghui C, Meimei X, Zide J, Peikun C (2005) New species of Phomopsis on woody plants in Fujian Province. Junwu Xuebao 24(1): 6–11.
  • Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T, Barnes CM, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, de Jesús Yáñez-Morales M, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG (2015) Fungal Planet description sheets: 371–399. Persoonia 35(1): 264–327. https://doi.org/10.3767/003158515X690269
  • Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsaard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, De la Peña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Caboň M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, de Castro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massola NS Jr, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, De Souza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951-1041. Persoonia 43(1): 223–425. https://doi.org/10.3767/persoonia.2019.43.06
  • Daranagama DA, Camporesi E, Tian Q, Liu X, Chamyuang S, Stadler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Diversity 73(1): 203–238. https://doi.org/10.1007/s13225-015-0329-6
  • Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, McKenzie EH, Jayasiri SC, Tibpromma S, Bhat JD, Liu X, Stadler M (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Diversity 88(1): 1–165. https://doi.org/10.1007/s13225-017-0388-y
  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and high-performance computing. Nature Methods 9(8): 772. https://doi.org/10.1038/nmeth.2109
  • Dissanayake AJ, Zhu JT, Chen YY, Maharachchikumbura SS, Hyde KD, Liu JK (2024) A re-evaluation of Diaporthe: Refining the boundaries of species and species complexes. Fungal Diversity 126(1): 1–25. https://doi.org/10.1007/s13225-024-00538-7
  • Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu JK, Bhat DJ, Taylor JE, Bahkali AH, McKenzie EH, Hyde KD (2017) Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Diversity 82(1): 107–182. https://doi.org/10.1007/s13225-016-0368-7
  • Dong H, Mu TC, Zhang ZX, Zhang XG, Xia JW (2021a) Molecular phylogenetic analysis reveals two new species of Diaporthe from Yunnan Province, southwestern China. Junwu Xuebao 40(3): 436–446.
  • Dong Z, Manawasinghe IS, Huang Y, Shu Y, Phillips AJ, Dissanayake AJ, Hyde KD, Xiang M, Luo M (2021b) Endophytic Diaporthe associated with Citrus grandis cv. Tomentosa in China. Frontiers in Microbiology 11: 609387. https://doi.org/10.3389/fmicb.2020.609387
  • Fuckel L (1867) Fungi rhenani cent. 18 (1), no 1702–1764. Hedwigia 6: 174–175.
  • Gioan E, Paul C (2012) Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Applied Mathematics 160(6): 708–733. https://doi.org/10.1016/j.dam.2011.05.007
  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31(1): 1–41. https://doi.org/10.3767/003158513X666844
  • Gu X, Li WH (1996a) A general additive distance with time-reversibility and rate variation among nucleotide sites. Proceedings of the National Academy of Sciences of the United States of America 93(10): 4671–4676. https://doi.org/10.1073/pnas.93.10.4671
  • Gu X, Li WH (1996b) Bias-corrected paralinear and LogDet distances and tests of molecular clocks and phylogenies under nonstationary nucleotide frequencies. Molecular Biology and Evolution 13(10): 1375–1383. https://doi.org/10.1093/oxfordjournals.molbev.a025584
  • Hongsanan S, Norphanphoun C, Senanayake IC, Jayawardena RS, Manawasinghe IS, Abeywickrama PD, Khuna S, Suwannarach N, Senwanna C, Monkai J, Hyde KD, Gentekaki E, Bhunjun CS (2023) Annotated notes on Diaporthe species. Mycosphere 14(1): 918–1189. https://doi.org/10.5943/mycosphere/14/1/12
  • Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, Hongsanan S, Jayawardena RS, Jeewon R, Perera RH, Thongbai B, Wanasinghe DN, Wisitrassameewong K, Tibpromma S, Stadler M (2018) Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93(1): 215–239. https://doi.org/10.1007/s13225-018-0415-7
  • Hyde KD, Xu JC, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei DP, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97(1): 1–36. https://doi.org/10.1007/s13225-019-00430-9
  • Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Jones EBG, Lumyong S (2020a) The numbers of fungi: Is the descriptive curve flattening? Fungal Diversity 103(1): 219–271. https://doi.org/10.1007/s13225-020-00458-2
  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020b) Refined families of Sordariomycetes. Mycosphere 11(1): 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
  • Hyde KD, Amuhenage TB, Apurillo CCS, Asghari R, Aumentado HD, Bahkali AH, Bera I, Bhunjun CS, Calabon MS, Chandrasiri S, Chethana KWT, Doilom M, Dong W, Fallahi M, Gajanayake AJ, Gomdola D, Gunarathne A, Hongsanan S, Huanraluek N, Jayawardena RS, Kapov SA, Khyaju S, Le L Li CJY, Li QR, Li YX, Lin CG, Linn MM, Liu JK, Liu NG, Luangharn T, Madagammana AD, Manawasinghe IS, Marasinghe DS, McKenzie EHC, Meakala N, Meng QF, Mukhopadhyay S, Norphanphoun C, Pem D, Phukhamsakda C, Sarma VV, Selcuk F, Senanayake IC, Shah S, Shu YX, Silva HVS, Su HL, Tavakol M, Thakshila SAD, Thiyagaraja V, Thongklang N, Tian Q, Tibpromma S, Tun ZL, Ulukapi M, Wang Y, Wannasawang N, Wijayawardene NN, Wimalasena SDMK, Xiao Y, Xiong YR, Yasanthika WAE, Li Q, Dai DQ (2023) Fungalpedia, an illustrated compendium of the fungi and fungus-like taxa. Mycosphere 14(1): 1835–1959. https://doi.org/10.5943/mycosphere/14/1/22
  • Hyde KD, Saleh A, Aumentado HD, Boekhout T, Bera I, Khyaju S, Bhunjun CS, Chethana KW, Phukhamsakda C, Doilom M, Thiyagaraja V, Mortimer PE, Maharachchikumbura SSN, Hongsanan S, Jayawardena RS, Dong W, Jeewon R, Al-Otibi F, Wijesinghe SN, Wanasinghe DN (2024) Fungal numbers: Global needs for a realistic assessment. Fungal Diversity 7: 1–35. https://doi.org/10.1007/s13225-023-00532-5
  • Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejhad M, Nilsson H, Pang KL, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74(1): 3–18. https://doi.org/10.1007/s13225-015-0351-8
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Lu B, Hyde KD (2000) A world monograph of Anthostomella. HKU Fungal Diversity Press, Fungal Diversity Research Series.
  • Luo M, Guo W, Zhao M, Manawasinghe IS, Guarnaccia V, Liu J, Hyde KD, Dong Z, You C (2022) Endophytic Diaporthe associated with Morinda officinalis in China. Journal of Fungi 8(8): 806. https://doi.org/10.3390/jof8080806
  • Madagammana AD, Samarakoon MC, Phukhamsakda C, Bhunjun CS, Huanraluek N, Liu JK, Hyde KD (2023) Unveiling the holomorph and novel host records of Shearia formosa (Longiostiolaceae, Pleosporales) in China. New Zealand Journal of Botany 62(2-3): 123–137. https://doi.org/10.1080/0028825X.2023.2267775
  • Manawasinghe IS, Dissanayake AJ, Li X, Liu M, Wanasinghe DN, Xu J, Zhao W, Zhang W, Zhou Y, Hyde KD, Brooks S, Yan J (2019) High genetic diversity and species complexity of Diaporthe associated with grapevine dieback in China. Frontiers in Microbiology 10: 1936. https://doi.org/10.3389/fmicb.2019.01936
  • Manawasinghe IS, Jayawardena RS, Li HL, Zhou YY, Zhang W, Phillips AJL, Wanasinghe DN, Dissanayake AJ, Li XH, Li YH, Hyde KD, Yan JY (2021) Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on tea in Fujian, China. Mycosphere 12(1): 430–518. https://doi.org/10.5943/mycosphere/12/1/6
  • Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi A, Mahmoudi T, Ponts N, Studt L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M (2022) Ten decadal advances in fungal biology leading towards human well-being. Fungal Diversity 116(1): 547–614. https://doi.org/10.1007/s13225-022-00510-3
  • Miller MA, Pfeiffer W, Schwartz T (2017) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 gateway computing environments workshop (GCE), 1–8. https://doi.org/10.1109/GCE.2010.5676129
  • Norphanphoun C, Gentekaki E, Hongsanan S, Jayawardena R, Senanayake IC, Manawasinghe IS, Abeywickrama PD, Bhunjun CS, Hyde KD (2022) Diaporthe: Formalizing the species-group concept. Mycosphere 13(1): 752–819. https://doi.org/10.5943/mycosphere/13/1/9
  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7(1): 103–116. https://doi.org/10.1006/mpev.1996.0376
  • Pereira DS, Phillips AJL (2024) Diaporthe species on palms – integrative taxonomic approach for species boundaries delimitation in the genus Diaporthe, with the description of D. pygmaeae sp. nov. Studies in Mycology 109(1): 487–594. https://doi.org/10.3114/sim.2024.109.08
  • Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102(1): 1–203. https://doi.org/10.1007/s13225-020-00448-4
  • Phukhamsakda C, Nilsson RH, Bhunjun CS, de Farias ARG, Sun YR, Wijesinghe SN, Raza M, Bao D-F, Lu L, Tibpromma S, Dong W, Tennakoon DS, Tian X-G, Xiong Y-R, Karunarathna SC, Cai L, Luo Z-L, Wang Y, Manawasinghe IS, Camporesi E, Kirk PM, Promputtha I, Kuo C-H, Su H-Y, Doilom M, Li Y, Fu Y-P, Hyde KD (2022) The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity 114(1): 327–386. https://doi.org/10.1007/s13225-022-00502-3
  • Rogers JD, Ju YM (2003) Occultitheca costaricensis gen. et sp. nov. and Apiocamarops pulvinata sp. nov. from Costa Rica. Sydowia 55(2): 359–364.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Samarakoon MC, Hyde KD, Maharachchikumbura SSN, Stadler M, Gareth Jones EB, Promputtha I, Suwannarach N, Camporesi E, Bulgakov TS, Liu JK (2022) Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Diversity 112(1): 1–88. https://doi.org/10.1007/s13225-021-00495-5
  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST (2022) Database resources of the national center for biotechnology information. Nucleic Acids Research 50(D1): D20–D26. https://doi.org/10.1093/nar/gkab1112
  • Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D, Nguyen TT, Goonasekara ID, Abeywickrama PD, Bhunjun CS, Jayawardena RS, Wanasinghe DN, Jeewon R, Bhat DJ, Xiang MM (2020) Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11(1): 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  • Sugita R, Hirayama K, Shirouzu T, Tanaka K (2022) Spirodecosporaceae fam. nov. (Xylariales, Sordariomycetes) and two new species of Spirodecospora. Fungal Systematics and Evolution 10(1): 217–229. https://doi.org/10.3114/fuse.2022.10.09
  • Sun W, Huang S, Xia J, Zhang X, Li Z (2021) Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys 77: 65–95. https://doi.org/10.3897/mycokeys.77.59852
  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31(1): 21–32. https://doi.org/10.1006/fgbi.2000.1228
  • Tennakoon DS, Kuo CH, Maharachchikumbura SS, Thambugala KM, Gentekaki E, Phillips AJ, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108(1): 1–215. https://doi.org/10.1007/s13225-021-00474-w
  • Tian XG, Bao DF, Karunarathna SC, Jayawardena RS, Hyde KD, Bhat DJ, Luo ZL, Elgorban AM, Hongsanan S, Rajeshkumar KC, Maharachchikumbura SSN, Suwannarach N, Dawoud TM, Lu YZ, Han JJ, Xiao YP, Du TY, Lu L, Xu RF, Dai DQ, Liu XF, Liu C, Tibpromma S (2024) Taxonomy and phylogeny of ascomycetes associated with selected economically important monocotyledons in China and Thailand. Mycosphere 15(1): 1–274. https://doi.org/10.5943/mycosphere/15/1/1
  • Udayanga D, Liu X, McKenzie EH, Chukeatirote E, Bahkali AH, Hyde KD (2011) The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50(1): 189–225. https://doi.org/10.1007/s13225-011-0126-9
  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus Diaporthe: Phylogenetic species delimitation in the D. eres species complex. Fungal Diversity 67(1): 203–229. https://doi.org/10.1007/s13225-014-0297-2
  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Xu R, Su W, Tian S, Bhunjun CS, Tibpromma S, Hyde KD, Li Y, Phukhamsakda C (2022) Synopsis of Leptosphaeriaceae and introduction of three new taxa and one new record from China. Journal of Fungi 8(5): 416. https://doi.org/10.3390/jof8050416
  • Yang Q, Fan XL, Guarnaccia V, Tian CM (2018) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914
  • Zhang WP, Fornara D, Yang H, Yu RP, Callaway RM, Li L (2023) Plant litter strengthens positive biodiversity–ecosystem functioning relationships over time. Trends in Ecology & Evolution 38(5): 473–484. https://doi.org/10.1016/j.tree.2022.12.008
  • Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genomics 3(1): 1–5. https://doi.org/10.1186/1471-2164-3-4
login to comment