Research Article
Print
Research Article
Morphological characteristics and phylogenetic analyses reveal five new species of Hymenochaetales (Agaricomycetes, Basidiomycota) from southwestern China
expand article infoYunfei Dai, Qi Yuan, Xin Yang, Rui Liu§, Defu Liu|, Haisheng Yuan, Changlin Zhao
‡ Southwest Forestry University, Kunming, China
§ Kunming Municipal Capital Construction Archives, Kunming, China
| Zhaotong University, Zhaotong, China
¶ Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
Open Access

Abstract

Wood-inhabiting fungi can decompose wood materials and play a crucial role in the natural world by maintaining the equilibrium of the Earth’s ecosystems. In the present study, five new wood-inhabiting fungal species belonging to the order Hymenochaetales, Hymenochaete weishanensis, Lyomyces albofarinaceus, Lyomyces albomarginatus, Tubulicrinis albobadius and Xylodon musicola, collected from southern China, are proposed based on a combination of morphological features and molecular evidence. Hymenochaete weishanensis is characterized by a coriaceous, tuberculate hymenial surface, a monomitic hyphal system with simple-septate generative hyphae, and ellipsoid to narrow ellipsoid basidiospores (4.0–5.0 × 2.0–3.0 µm); Lyomyces albofarinaceus is characterized by pruinose hymenial surface, a monomitic hyphal system with clamped generative hyphae, and broadly ellipsoid basidiospores (6.0–7.0 × 5.0–6.0 µm); Lyomyces albomarginatus is characterized by the cracked hymenial surface, clamped generative hyphae, and elliposoid basidiospores (4.0–5.5 × 2.7–3.5 µm); Tubulicrinis albobadius is characterized by an arachnoid hymenial surface, a monomitic hyphal system with clamped generative hyphae and cylindrical to allantoid basidiospores (4.0–6.0 × 1.5–2.2 µm) and Xylodon musicola is characterized by an arachnoid hymenial surface, a monomitic hyphal system with clamped generative hyphae and broadly ellipsoid to globe basidiospores (4.0–5.5 × 3.5–5.0 µm). Sequences of the internal transcribed spacers (ITS) and the large subunit (nrLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phylogenetic analyses were performed using maximum likelihood, maximum parsimony, and Bayesian inference methods. Full descriptions, illustrations, and phylogenetic analysis results for the five new species are provided.

Key words:

Biodiversity, Classification, Molecular systematics, New taxa, Wood-inhabiting fungi, Yunnan Province

Introduction

Fungi are well-known as a diverse group of microorganisms that play important roles in forest ecosystems (Phookamsak et al. 2019). Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of fungi (Varga et al. 2019). Wood-inhabiting fungi are essential to natural ecosystems for nutrient cycling and maintaining plant diversity (Drinkwater et al. 2017; Horwath 2017; Hyde et al. 2018; Wu et al. 2022; Guan et al. 2023; Yuan et al. 2023; Deng et al. 2024a, b; Dong et al. 2024; Yuan and Zhao 2024; Zhang et al. 2024). The order Hymenochaetales was described as a monotypic order to accommodate Hymenochaetaceae (Frey et al. 1977; Wu et al. 2022). Hymenochaetales is globally distributed in forest ecosystems, and it comprises 15 families and 84 genera, of which 19 genera have no certain position at the family level (Wu et al. 2022; Wang et al. 2023; Wang and Zhou 2024). Most of the species in Hymenochaetales are polypores and corticioid fungi, which show high morphological diversity and various trophic modes, including saprotrophs, parasites, and symbionts (Wang and Zhou 2024).

The genus Hymenochaete Lév. was erected in 1846 and typified by H. rubiginosa (Dicks.) Lév. Hymenochaete is characterized by annual to perennial, resupinate, effused-reflexed to pileate basidioma with smooth, tuberculate, lamellate, poroid or hydnoid hymenophores; a monomitic or dimitic hyphal system; presence of setae, and hyaline, thin-walled, narrowly cylindrical to globose basidiospores (Léger 1998; Parmasto 2001; He and Dai 2012; Li et al. 2024a). Léger (1998) wrote a worldwide monograph on Hymenochaete, providing a key to this genus. According to Index Fungorum (www.indexfungorum.org; accessed on 4 February 2025), the genus Hymenochaete has 362 registered names with 235 accepted species worldwide (Léger 1998; Parmasto 2001; Parmasto and Gilbertson 2005; He and Dai 2012; Parmasto 2012; He et al. 2017; Nie et al. 2017; Pacheco et al. 2018; Miettinen et al. 2019; Du et al. 2021a, b; Li et al. 2024a).

The genus Lyomyces P. Karst. was introduced by Karsten (1881) and is typified by L. sambuci (Pers.) P. Karst. Lyomyces comprises corticioid fungi characterized by thin, effused, membranaceous basidiomata that appear fragile in a dry state and show hymenial surface predominantly white or whitish. The hyphal system is monomitic, subicular hyphae thin- or somewhat thick-walled, while the cystidia are thin-walled with tapering, cylindrical, sub-capitate, or capitate apical parts. Basidia are utriform, and the basidiospores are colorless with thin to thick, smooth, or occasionally minutely warted walls (Yurchenko et al. 2024a). The members of Lyomyces grow on dead, still-attached, or fallen branches of angiosperms, on dead, wooden, or herbaceous stems, and occasionally on gymnosperm wood (Yurchenko et al. 2017; Chen and Zhao 2020). Molecular studies on Lyomyces and related genera have been carried out recently (Riebesehl and Langer 2017; Yurchenko et al. 2017; Viner et al. 2018; Riebesehl et al. 2019; Chen and Zhao 2020; Yuan et al. 2024). Riebesehl and Langer (2017) indicate that Hyphodontia s.l. should be divided into several genera as Hastodontia (Parmasto) Hjortstam & Ryvarden, Hyphodontia J. Erikss, Kneiffiella (Pers.) Gray, Lagarobasidium Jülich, Lyomyces and Xylodon (Pers.) Gray and thus thirty-five new combinations were proposed, including fourteen Lyomyces species (Dong et al. 2024). The Lyomyces sambuci complex was clarified based on ITS and 28S sequences analyses and four new species of Lyomyces were described (Yurchenko et al. 2017; Dong et al. 2024). Viner et al. (2018) studied the taxonomy of Lagarobasidium and Xylodon and indicated that twelve species clustered into the Lyomyces clade and then grouped with the Xylodon clade. Phylogenetic and morphological studies on Lyomyces showed that Lyomyces grouped with Hastodontia, Hyphodontia, Kneiffiella, and Xylodon, in which the Lyomyces type species L. sambuci was sister to L. crustosus (Pers.) P. Karst. formed a single lineage with high support (Riebesehl et al. 2019).

The genus Tubulicrinis Donk, typified by T. glebulosus (Fr.) Donk (Donk 1956), was a member of the corticioid fungi. They are characterized by resupinate basidiomata, firmly adnate, smooth, pruinose toporulose hymenophore, a monomitic hyphal system with clamped connections on generative hyphae and conspicuous, projecting, amyloid cystidia and small basidia, and cylindrical to allantoid or globose to ellipsoid, thin-walled, smooth, IKI– (both inamyloid and indextrinoid), acyanophilous basidiospores (Donk 1956; Bernicchia and Gorjón 2010; Dong et al. 2024). So far about 46 species have been accepted in the genus worldwide (Donk 1956; Eriksson 1958; Cunningham 1963; Oberwinkler 1966; Hayashi 1974; Ryvarden 1975; Hjortstam 1981; Hjortstam et al. 1988; Rajchenberg 2002; Sharma et al. 2015; Crous et al. 2016; Gruhn et al. 2016; He et al. 2021; Dong et al. 2024). Molecular studies in the genus Tubulicrinis have been carried out by Larsson et al. (2006); Dai (2011); Crous et al. (2016); and Dong et al. (2024) and indicated that two Tubulicrinis species, T. gracillimu (Ellis & Everh. ex D.P. Rogers & H.S. Jacks.) G. Cunn. and T. subulatus (Bourdot & Galzin) Donk, formed a monophyletic lineage and then grouped with Coltricia clade in Hymenochaetaceae (Larsson et al. 2006). A revised checklist of corticioid and hydnoid fungi showed that six species of Tubulicrinis were recorded (Dai 2011); they were nested into the Tubulicrinaceae clade, which belongs to the order Hymenochaetales (Crous et al. 2016; Dong et al. 2024). Based on morphological and molecular analysis of Tubulicrinis, two new species were described as T. xantha C.L. Zhao and T. yunnanensis C.L. Zhao (He et al. 2021).

The genus Xylodon (Pers.) Gray is typified by X. quercinus (Pers.) Gray (Bernicchia and Gorjón 2010; Yuan and Zhao 2024). The taxa of this genus grow on rotten gymnosperm or angiosperm trunks and stumps, bamboo, and ferns (Greslebin and Rajchenberg 2000; Kotiranta and Saarenoksa 2000; Girometta et al. 2021; Guan et al. 2023; Yuan and Zhao 2024). This genus is characterized by the resupinate or effused basidiomata with a smooth, tuberculate, grandinioid, odontioid, coralloid, irpicoid, or poroid hymenophore; a monomitic or dimitic hyphal system with clamped generative hyphae; the presence of different types of cystidia; utriform or suburniform basidia; and cylindrical to ellipsoid to globose basidiospores (Gray 1821; Bernicchia and Gorjón 2010; Zhang et al. 2024; Yuan and Zhao 2024). Based on the MycoBank database (http://www.mycobank.org, accessed on 4 February 2025 and the Index Fungorum (http://www.indexfungorum.org, accessed on 4 February 2025, 241 specific and infraspecific names are registered for Xylodon, of which, 134 are accepted species (Chevallier 1826; Kuntze 1898; Wu 1990, 2000, 2001, 2006; Hjortstam and Ryvarden 2007, 2009; Xiong et al. 2009, 2010; Bernicchia and Gorjón 2010; Tura et al. 2011; Dai 2012; Lee and Langer 2012; Yurchenko and Wu 2014; Zhao et al. 2014; Chen et al. 2016; Kan et al. 2017a, b; Wang and Chen 2017; Viner et al. 2018, 2021; Riebesehl et al. 2019; Shi et al. 2019; Dai et al. 2021; Luo et al. 2021a, 2022; Qu and Zhao 2022; Qu et al. 2022; Guan et al. 2023; Dong et al. 2024; Yuan et al. 2024; Yurchenko et al. 2024b; Zhang et al. 2024).

The present work describes five new species of Hymenochaetales from southwest China, based on the morphology and phylogeny. To clarify the placement and relationships of these new species, we carried out a phylogenetic and taxonomic study based on the combined ITS+nLSU and ITS only sequences analyses. Full descriptions, illustrations, and comparison of five new species with closely related taxa and phylogenetic trees showing the placement of five new species within the order Hymenochaetales are provided.

Materials and methods

Sample collection and herbarium specimen preparation

The fresh fruiting bodies were collected on the fallen angiosperm branches which came from Dali, Zhaotong, and Qujing of Yunnan Province, China, and the important collection information was noted (Rathnayaka et al. 2024). The samples were photographed in situ, and fresh macroscopic details were recorded. Photographs were recorded by a Nikon D7100 camera. All the photos were focus-stacked using Helicon Focus software, and macroscopic details were recorded. Specimens were dried in an electric food dehydrator at 40 °C (Hu et al. 2022; Dong et al. 2024). Once dried, the specimens were sealed in an envelope and zip-lock plastic bags and labeled (Dong et al. 2024). The dried specimens were deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China.

Morphology

The macromorphological descriptions were based on field notes and photos captured in the field and lab. The color terminology follows Petersen (1996). The micromorphological data were obtained from the dried specimens after observation under a light microscope with a magnification of 10 × 100 (Zhao et al. 2023; Dong et al. 2024). Sections were mounted in 5% KOH and 2% phloxine B dye (C20H2Br4Cl4Na2O5), and we also used other reagents, including Cotton Blue and Melzer’s reagent to observe micromorphology following (Dong et al. 2024). To show the variation in spore sizes, 5% of measurements were excluded from each end of the range and shown in parentheses. At least thirty basidiospores from each specimen were measured. Stalks were excluded from basidia measurements, and the hilar appendage was excluded from basidiospores measurements. The following abbreviations are used: KOH = 5% potassium hydroxide water solution, CB– = acyanophilous, IKI– = both inamyloid and non-dextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from given number (b) of specimens).

Molecular phylogeny

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain genomic DNA from the dried specimens according to the manufacturer’s instructions. The ITS region was amplified with ITS5 and ITS4 primers (White et al. 1990). The nLSU region was amplified with the LR0R and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s, and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min, and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Limited Company (Yunnan Province, P.R. China). The newly generated sequences were deposited in NCBI GenBank (Table 1).

The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using AliView version 1.27 (Larsson 2014). A sequence of Thelephora ganbajun obtained from GenBank was used as an outgroup to root trees in the ITS+nLSU analysis (Fig. 1) in the order Hymenochaetales (Wang and Zhou 2024) (TreeBASE WEB submission ID 31958). Sequence of Hydnoporia tabacina (Sowerby) Spirin, Miettinen & K.H. Larss. obtained from GenBank was used as an outgroup to root trees in the ITS analysis in the genus Hymenochaete (Fig. 2) (TreeBASE WEB submission ID 31959). Sequences of Xylodon quercinus (Pers.) Gray and Xylodon ramicida Spirin & Miettinen obtained from GenBank were used as outgroups to root trees in the ITS analysis in the genus Lyomyces (Fig. 3) (TreeBASE WEB submission ID 31960). A sequence of Gyroporus castaneus (Bull.) Quél. obtained from GenBank was used as an outgroup to root trees in the ITS analysis in the genus Tubulicrinis (Fig. 4) (TreeBASE WEB submission ID 31961). A sequence of Lyomyces sambuci (Pers.) P. Karst. obtained from GenBank was used as an outgroup to root trees in the ITS analysis in the genus Xylodon (Fig. 5) (TreeBASE WEB submission ID 31962).

Figure 1. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the order Hymenochaetales based on ITS+nLSU sequences. Branches are labelled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 2. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the one new species and related species in the genus Hymenochaete based on ITS sequences. Branches are labelled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 3. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the new species and related species in the genus Lyomyces based on ITS sequences. Branches are labelled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 4. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the new species and related species in the genus Tubulicrinis based on ITS sequences. Branches are labelled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Figure 5. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the new species and related species in the genus Xylodon based on ITS sequences. Branches are labelled with maximum likelihood bootstrap value ≥ 70%, parsimony bootstrap value ≥ 50%, and Bayesian posterior probabilities ≥ 0.95.

Table 1.

List of species, specimens, and GenBank accession number of sequences used in this study. [New species is shown in bold; * type material; – is shown data without used].

Order/Family Species Name Sample No. GenBank Accession No. References
ITS nLSU
Boletales/Gyroporaceae Gyroporus castaneus JMP 0028 EU819468 USA Palmer et al. (2008)
Hymenochaetales/ Chaetoporellaceae Echinoporia hydnophora LWZ 20150802-9 ON063639 ON063838 China Wang et al. (2023)
Kneiffiella eucalypticola LWZ 20180509-11 MT319410 MT319142 China Wang et al. (2021b)
Kneiffiella subglobosa LWZ 20180416-6 MT319413 MT319145 China Wang et al. (2021b)
-/Hymenochaetaceae Basidioradulum mayi LWZ 20180510-18 MN017785 MN017792 Australia Wang et al. (2021a)
Basidioradulum radula LWZ 20201017-62 ON063684 ON063884 China Wang et al. (2023)
Coltricia abieticola Cui 10321 KX364785 KX364804 China Bian and Dai (2017)
Fulvoderma australe LWZ 20190809-39b ON063644 ON063843 China Wang et al. (2023)
Fulvoderma yunnanense CLZhao 10651 OL619278 OL619278 China Direct Submission
Fuscoporia gilva MSU653 JF461327 JF461327 Thailand Insumran et al. (2012)
Fuscoporia sinica LWZ 20190816-19a ON063649 ON427358 China Wang et al. (2023)
Hydnoporia tabacina LWZ 20210924-26a ON063651 ON063851 China Wang et al. (2023)
Hydnoporia tabacina He 390 JQ279610 China He et al.(2017)
Hymenochaete acerosa He 338 JQ279543 China He et al.(2017)
Hymenochaete adusta He 207 JQ279523 China He et al.(2017)
Hymenochaete angustispora Dai 17045 MF370592 China He et al.(2017)
Hymenochaete angustispora Dai 17049 MF370593 China He et al.(2017)
Hymenochaete anomala He 592 JQ279566 China He et al.(2017)
Hymenochaete asetosa Dai 10756 JQ279559 China He et al.(2017)
Hymenochaete attenuata He 28 JQ279526 China He et al.(2017)
Hymenochaete bambusicola He 4116 KY425674 China He et al.(2017)
Hymenochaete berteroi He 1488 KU975459 China He et al.(2017)
Hymenochaete biformisetosa He 1445 KF908247 China Yang and He (2014)
Hymenochaete boddingii MEH 66068 MN030343 India Du et al.(2021a)
Hymenochaete boddingii MEH 69996 MN030341 India Du et al.(2021a)
Hymenochaete boddingii MEH 66150 MN030344 India Du et al.(2021a)
Hymenochaete borbonica CBS 731.86 MH862026 Netherlands Du et al.(2021a)
Hymenochaete cana He 1305 KF438169 China He et al.(2017)
Hymenochaete cinnamomea He 755 JQ279548 China He et al.(2017)
Hymenochaete colliculosa Dai 16427 MF370595 China He et al.(2017)
Hymenochaete colliculosa Dai 16428 MF370596 China He et al.(2017)
Hymenochaete colliculosa Dai 16429 MF370597 China He et al.(2017)
Hymenochaete conchata MEH 70144 MF373838 India Du et al.(2021a)
Hymenochaete contiformis He 1166 KU975461 China He et al.(2017)
Hymenochaete cruenta He 766 JQ279595 China He et al.(2017)
Hymenochaete cyclolamellata Cui 7393 JQ279513 China He et al.(2017)
Hymenochaete damicornis URM 84261 KC348466 Brazil Du et al.(2021a)
Hymenochaete damicornis URM 84263 KC348467 Brazil Du et al.(2021a)
Hymenochaete denticulata He 1271 KF438171 China He et al. (2017)
Hymenochaete dracaenicola Dai 22090 MW559797 China Du et al. (2021a)
Hymenochaete dracaenicola Dai 22096 MW559798 China Du et al. (2021a)
Hymenochaete duportii AFTOL ID666 DQ404386 USA He et al.(2017)
-/Hymenochaetaceae Hymenochaete epichlora He 525 JQ279549 China He and Dai (2012)
Hymenochaete floridea He 536 JQ279597 China He and Dai (2012)
Hymenochaete fuliginosa He 1188 KU975465 China Du et al.(2021a)
Hymenochaete fulva He 640 JQ279565 China He and Dai (2012)
Hymenochaete huangshanensis He 432 JQ279533 China He and Dai (2012)
Hymenochaete japonica He 245 JQ279590 China He and Dai (2012)
Hymenochaete innexa He 555 JQ279584 China He and Dai (2012)
Hymenochaete legeri He 960 KU975469 China He et al.(2017)
Hymenochaete longispora He 217 JQ279537 China He and Dai (2012)
Hymenochaete luteobadia He 8 JQ279569 China He and Dai (2012)
Hymenochaete macrochloae ARAN-Fungi 7079 MF990738 Spain Du et al.(2021a)
Hymenochaete megaspora He 302 JQ279553 China He and Dai (2012)
Hymenochaete minor He 933 JQ279555 China He and Dai (2012)
Hymenochaete minuscula He 253 JQ279546 China He and Dai (2012)
Hymenochaete muroiana He 405 JQ279542 China Du et al.(2021a)
Hymenochaete nanospora He 475 JQ279531 China He and Dai (2012)
Hymenochaete ochromarginata He 47 JQ279579 China He and Dai (2012)
Hymenochaete tabacina Dai 11635 JQ279563 China He and Dai (2012)
Hymenochaete orientalis He 4601 KY425677 China He et al.(2017)
Hymenochaete parmastoi He 867 JQ780063 China He et al.(2017)
Hymenochaete paucisetigera Cui 7845 JQ279560 China He and Dai (2012)
Hymenochaete quercicola He 373 KU975474 China He et al.(2017)
Hymenochaete rhabarbarina He 280 JQ279574 China He and Dai (2012)
Hymenochaete rheicolor Cui 8317 JQ279529 China Du et al.(2021a)
Hymenochaete rhododendricola He 389 JQ279577 China He and Dai (2012)
Hymenochaete rubiginosa He 1049 JQ716407 China Yang et al.(2016)
Hymenochaete rufomarginata He 1489 KU975477 China He et al.(2017)
Hymenochaete sharmae CAL 1535 KY929017 India Du et al.(2021a)
Hymenochaete sharmae 66088 MK588753 India Du et al.(2021a)
Hymenochaete sinensis CLZhao 26040 OR659001 China Li et al. (2024a)
Hymenochaete sinensis CLZhao 26652 PQ060540 China Li et al. (2024a)
Hymenochaete separabilis He 460 JQ279572 China He and Dai (2012)
Hymenochaete spathulata He 685 JQ279591 China He et al.(2017)
Hymenochaete sphaericola He 303 JQ279599 China He and Dai (2012)
Hymenochaete sphaerospora He 715 JQ279594 China He et al.(2017)
Hymenochaete subferruginea Cui 8122 JQ279521 China Du et al.(2021a)
Hymenochaete subferruginea He 1598 KU975481 China Du et al.(2021a)
Hymenochaete tasmanica He 449 JQ279582 China He et al.(2017)
Hymenochaete tenuis He 779 JQ279538 China Du et al.(2021a)
Hymenochaete tongbiguanensis He 1552 KF908248 China He et al.(2017)
Hymenochaete tropica He 574 JQ279587 China He et al.(2017)
Hymenochaete ulmicola He 864 JQ780065 China He et al.(2017)
Hymenochaete unicolor He 468a JQ279551 China He et al.(2017)
-/Hymenochaetaceae Hymenochaete verruculosa Dai 17052 MF370594 China He et al.(2017)
Hymenochaete villosa He 537 JQ279528 China He et al.(2017)
Hymenochaete weishanensis CLZhao 22615* PQ523357 PQ523363 China Present study
Hymenochaete xerantica LWZ 20190814-13b ON063657 ON063856 China Wang et al. (2023)
Hymenochaete yunnanensis He 1447 KU975486 China He et al.(2017)
Inonotus hispidus LWZ 20180703-1 ON063659 ON063858 China Wang et al. (2023)
Phellinus piceicola LWZ 20190921-5 ON063662 ON063862 China Wang et al. (2023)
Phylloporia oreophila LWZ 20190811-27a ON063665 ON063865 China Wang et al. (2023)
Porodaedalea laricis LWZ 20190724-9 ON063668 ON063868 China Wang et al. (2023)
Sanghuangporus weigelae LWZ 20210623-2a ON063671 ON063870 China Wang et al. (2023)
Trichaptum biforme LWZ 20210919-32a ON063701 ON063901 China Wang et al. (2023)
Trichaptum fuscoviolaceum LWZ 20210918-5b ON063703 ON063903 China Wang et al. (2023)
Hyphodontia arguta 3216b DQ873605 DQ873605 Sweden Larsson et al. (2006)
Hyphodontia borbonica FR 0219441 KR349240 KR349240 Reunion Riebesehl and Langer (2017)
Hyphodontia pachyspora LWZ 20170908-5 MT319426 MT319160 China Wang et al. (2021b)
Hyphodontia pallidula Kotiranta_18839 OP620785 OP620785 Finland Viner et al. (2023)
Hyphodontia zhixiangii LWZ 20170818-13 MT319420 MT319151 China Wang et al. (2021b)
-/Odonticiaceae Leifia brevispora LWZ 20170820-48 MK343470 MK343474 China Liu et al. (2019)
Leifia flabelliradiata KG Nilsson 36270 DQ873635 DQ873635 Sweden Larsson et al. (2006)
Odonticium romellii KHL s. n. DQ873639 DQ873639 Norway Larsson et al. (2006)
-/Peniophorellaceae Peniophorella praetermissa LWZ 20180903-14 ON063686 ON063886 China Wang et al. (2023)
Peniophorella pubera LWZ 20210624-16b ON063687 ON063887 China Wang et al. (2023)
Peniophorella rude LWZ 20171026-7 ON063688 ON063888 China Wang et al. (2023)
Peniophorella subpraetermissa LWZ 20190816-3b ON063689 ON063889 China Wang et al. (2023)
-/Repetobasidiaceae Repetobasidium conicum KHL 12338 DQ873647 DQ873647 USA Larsson et al. (2006)
Repetobasidium mirificum FP-133558-sp AY293208 USA Binder et al. (2005)
-/Resiniciaceae Resinicium austroasianum LWZ 20191208-11 ON063691 ON063891 China Wang et al. (2023)
Resinicium bicolor AFTOL-810 DQ218310 AY586709 USA Larsson et al. (2004)
Resinicium friabile LWZ 20210923-23a ON063692 ON427362 China Wang et al. (2023)
-/Rickenellaceae Rickenella danxiashanensis GDGM45513 MF326424 China Zhang et al. (2018)
Rickenella fibula PBM 2503 DQ241782 MF318953 USA Lutzoni et al. (2004)
-/Rigidoporaceae Leucophellinus hobsonii Cui 6468 KT203288 KT203309 China Direct Submission
Leucophellinus irpicoides Yuan 2690 KT203289 KT203310 China Direct Submission
Rigidoporus cirratus LWZ 20170818-16 ON427472 ON427355 China Wang et al. (2023)
Rigidoporus populinus LWZ 20190811-39a ON063674 ON063874 China Wang et al. (2023)
-/Schizocorticiaceae Schizocorticium lenis LWZ 20180922-61 ON063698 ON063898 China Wang et al. (2023)
Schizocorticium magnosporum Wu 1510-34 MK405351 MK405337 China Wu et al. (2021)
Schizocorticium mediosporum LWZ 20180921-7 ON063696 ON063896 China Wang et al. (2023)
Schizocorticium mediosporum Chen 2456 MK405359 MK405345 China Wu et al. (2021)
Schizocorticium parvisporum GC 1508-127 MK405361 MK405347 China Wu et al. (2021)
-/Schizoporaceae Fasciodontia brasiliensis MSK-F 7245a MK575201 MK598734 Brazil Yurchenko et al. (2020)
-/Schizoporaceae Fasciodontia yunnanensis LWZ 20190811-50a ON063675 ON427360 China Wang et al. (2023)
Lyomyces albofarinaceus CLZhao 33479* PQ523359 China Present study
Lyomyces albofarinaceus CLZhao 26661 PQ523360 China Present study
Lyomyces albopulverulentus CLZhao 21478 OP730712 China Guan et al (2023)
Lyomyces allantosporus KAS-GEL4933 KY800401 France Yurchenko et al. (2017)
Lyomyces allantosporus FR-0249548 KY800397 France Yurchenko et al. (2017)
Lyomyces austro-occidentalis LWZ 20190816-40a MZ262538 China Liu et al. (2024)
Lyomyces bambusinus CLZhao 4831 MN945968 China Chen and Zhao (2020)
Lyomyces bambusinus CLZhao 4808 MN945970 China Chen and Zhao (2020)
Lyomyces boquetensis EYu 190727-12 PP471797 Panama Yurchenko et al. (2024a)
Lyomyces cremeus CLZhao 4138 MN945974 China Chen and Zhao (2020)
Lyomyces cremeus CLZhao 8295 MN945972 China Chen and Zhao (2020)
Lyomyces crustosus TASM:YG G39 MF382993 Uzbekistan Gafforov et al. (2017)
Lyomyces crustosus LWZ 20170815-23 MT319465 MT319201 China Wang et al. (2021b)
Lyomyces crystallina LWZ 20190810-6b OQ540901 China Liu et al. (2024)
Lyomyces daweishanensis CLZhao 18344 OR094474 China Dong et al. (2024)
Lyomyces densiusculus Ryvarden 44818 OK273853 Uganda Viner et al. (2021)
Lyomyces denudatus Ryvarden 19256 ON980759 Argentina Viner and Miettinen (2022)
Lyomyces denudatus Ryvarden 19436 ON980760 Argentina Viner and Miettinen (2022)
Lyomyces elaeidicola LWZ20180411-20 MT319458 China Wang et al. (2021b)
Lyomyces elaeidicola LWZ20180411-19 MT319457 China Wang et al. (2021b)
Lyomyces erastii TASM:YG 022 MF382992 Uzbekistan Gafforov et al. (2017)
Lyomyces erastii 23cSAMHYP JX857800 Spain Unpublished
Lyomyces fimbriatus Wu910620-7 MK575209 China Yurchenko et al. (2020)
Lyomyces fimbriatus Wu911204-4 MK575210 China Yurchenko et al. (2020)
Lyomyces albomarginatus CLZhao 22551* PQ644120 PQ644121 China Present study
Lyomyces fissuratus CLZhao 4352 MW713742 China Luo et al. (2021b)
Lyomyces fissuratus CLZhao 4291 MW713738 China Luo et al. (2021b)
Lyomyces fumosus CLZhao 8188 MW713744 China Luo et al. (2021b)
Lyomyces gatesiae LWZ20180515-3 MT319447 China Wang et al. (2021b)
Lyomyces gatesiae LWZ20180515-32 MT319448 China Wang et al. (2021b)
Lyomyces granulosus KAS-GEL1662 PP471799 Costa Rica Yurchenko et al. (2024a)
Lyomyces griseliniae KHL 12971 (GB) DQ873651 Costa Rica Larsson et al. (2006)
Lyomyces griseliniae CBS:126042 MH864057 New Zealand Vu et al. (2018)
Lyomyces guttulatus LWZ 20200921-29a OQ540899 China Liu et al. (2024)
Lyomyces guttulatus LWZ 20190810-20b OQ540898 China Liu et al. (2024)
-/Schizoporaceae Lyomyces hengduanensis CLZhao 20627 OR793233 China Yuan and Zhao (2024)
Lyomyces hengduanensis CLZhao 25551 OR658999 China Yuan and Zhao (2024)
Lyomyces incanus CLZhao 22813 OR094480 China Dong et al. (2024)
Lyomyces incanus CLZhao 22900 OR094481 China Dong et al. (2024)
Lyomyces juniperi FR-0261086 KY081799 France Riebesehl and Langer (2017)
Lyomyces leptocystidiatus LWZ 20170814-14 MT319429 MT319163 China Wang et al. (2021b)
Lyomyces leptocystidiatus LWZ 20170818-1 MT326514 China Wang et al. (2021b)
Lyomyces leptocystidiatus LWZ 20170818-2 MT326513 China Wang et al. (2021b)
Lyomyces lincangensis CLZhao 22966 OR094487 China Dong et al. (2024)
Lyomyces luteoalbus CLZhao 18211 OR094485 China Dong et al. (2024)
Lyomyces luteoalbus CLZhao 18347 OR094486 China Dong et al. (2024)
Lyomyces macrosporus CLZhao 4516 MN945977 China Chen and Zhao (2020)
Lyomyces mascarensis KAS-GEL4833 KY800399 France Yurchenko et al. (2020)
Lyomyces mascarensis KAS-GEL4908 KY800400 France Yurchenko et al. (2020)
Lyomyces microfasciculatus CLZhao 5109 MN954311 China Chen and Zhao (2020)
Lyomyces napoensis EYu 190720-18 PP471800 Ecuador Yurchenko et al. (2024a)
Lyomyces neocrustosus EYu 190728-14 PP471801 Panama Yurchenko et al. (2024a)
Lyomyces niveomarginatus CLZhao 16360 PP537949 China Yuan and Zhao (2024)
Lyomyces niveus CLZhao 6431 MZ262541 China Luo et al. (2021b)
Lyomyces niveus CLZhao 6442 MZ262542 China Luo et al. (2021b)
Lyomyces ochraceoalbus CLZhao 4385 MZ262535 China Luo et al. (2021b)
Lyomyces ochraceoalbus CLZhao 4725 MZ262536 China Luo et al. (2021b)
Lyomyces oleifer KAS-Ec47 PP471802 Ecuador Yurchenko et al. (2024a)
Lyomyces orarius EYu 190724-1 PP471805 Ecuador Yurchenko et al. (2024a)
Lyomyces organensis MSK7247 KY800403 Brazil Yurchenko et al. (2017)
Lyomyces orientalis GEL3376 DQ340325 Germany Yurchenko et al. (2017)
Lyomyces pantropicus EYu 190727-23b PP471808 Panama Yurchenko et al. (2024a)
Lyomyces parvus KAS-GEL1599 PP471810 Costa Rica Yurchenko et al. (2024a)
Lyomyces pruni GEL2327 DQ340312 Germany Larsson et al. (2006)
Lyomyces pruni Ryberg 021018 (GB) DQ873624 Sweden Larsson et al. (2006)
Lyomyces punctatomarginatus CLZhao 22699 OR844492 China Li et al. (2024b)
Lyomyces punctatomarginatus CLZhao 11629 OR844491 China Li et al. (2024b)
Lyomyces qujingensis CLZhao 27462 OR167768 China Dong et al. (2024)
Lyomyces sambuci KAS-JR7 KY800402 Germany Yurchenko et al. (2017)
-/Schizoporaceae Lyomyces sambuci 83SAMHYP JX857721 Sweden Yurchenko et al. (2017)
Lyomyces sambuci LWZ 20180905-1 MT319444 MT319178 China Wang et al. (2021b)
Lyomyces sceptrifer KAS-Ec661 PP471811 Ecuador Yurchenko et al. (2024a)
Lyomyces sinensis CLZhao 27391 OR167769 China Dong et al. (2024)
Lyomyces sinensis CLZhao 27464 OR167770 China Dong et al. (2024)
Lyomyces subcylindricus EYu 190727-25 PP471817 Panama Yurchenko et al. (2024a)
Lyomyces tasmanicus LWZ 20180515–17 OQ540900 China Liu et al. (2024)
Lyomyces vietnamensis TNM F9073 JX175044 China Yurchenko et al. (2017)
Lyomyces wuliangshanensis CLZhao 4108 MN945980 China Chen and Zhao (2020)
Lyomyces wuliangshanensis CLZhao 4167 MN945979 China Chen and Zhao (2020)
Lyomyces wumengshanensis CLZhao 29374 OR803021 China Yuan and Zhao (2024)
Lyomyces wumengshanensis CLZhao 31486 OR899208 China Yuan and Zhao (2024)
Lyomyces yunnanensis CLZhao 9375 OP730710 China Guan et al. (2023)
Lyomyces yunnanensis CLZhao 10041 OP730709 China Guan et al. (2023)
Lyomyces zhaotongensis CLZhao 32878 PP537950 China Yuan et al. (2024)
Xylodon acuminatus Larsson 16029 ON197552 Brazil Viner et al. (2023)
Xylodon acystidiatus LWZ 20180514-9 MT319474 China Wang et al. (2021b)
Xylodon afromontanus O-F-904012 OQ645463 Rwanda Yurchenko et al. (2024a)
Xylodon angustisporus Ryvarden 50691b OK273831 Cameroon Viner et al. (2021)
Xylodon apacheriensis Canfield 180 KY081800 USA Wang et al. (2021b)
Xylodon asiaticus CLZhao 10368 OM959479 China Unpublished
Xylodon asper Spirin 11923 OK273838 Russia Viner et al. (2021)
Xylodon astrocystidiatus TNM F24764 NR154054 USA Yurchenko and Wu (2014)
Xylodon attenuatus Spirin 8775 MH324476 Russia Wang et al. (2021b)
Xylodon australis LWZ 20180509-8 MT319503 China Wang et al. (2021b)
Xylodon bambusinus CLZhao 9174 MW394657 China Ma and Zhao (2021)
Xylodon bamburesupinus CLZhao 23088 OR167773 China Dong et al. (2024)
Xylodon borealis JS 26064 AY463429 Sweden Larsson et al. (2004)
Xylodon brevisetus JS 17863 AY463428 Sweden Larsson et al. (2004)
Xylodon cremeoparinaceus CLZhao 23388 PP537951 China Yuan and Zhao (2024)
Xylodon crystalliger KUN 2312 NR166242 USA Viner et al. (2018)
Xylodon cymosus Miettinen 19606 ON197554 Finland Viner et al. (2023)
Xylodon cystidiatus FR-0249200 MH880195 Germany Wang et al. (2021b)
Xylodon damansaraensis LWZ 20180417-23 MT319499 China Wang et al. (2021b)
Xylodon daweishanensis CLZhao 18357 OP730715 China Guan et al. (2023)
Xylodon detriticus Zíbarová 30.10.17 MH320793 Russia Wang et al. (2021b)
Xylodon dissiliens Ryvarden 44817 OK273856 Finland Viner et al. (2021)
-/Schizoporaceae Xylodon echinatus OM 18237 OQ645464 Germany Yurchenko et al. (2024a)
Xylodon filicinus MSK-F 12869 MH880199 Germany Wang et al. (2021b)
Xylodon fissilis CLZhao 18740 OR096211 China Dong et al. (2024)
Xylodon fissuratus CLZhao 9407 OP730714 China Guan et al. (2023)
Xylodon flaviporus FR-0249797 MH880201 Germany Wang et al. (2021b)
Xylodon flocculosus CLZhao 18342 MW980776 China Unpublished
Xylodon follis FR-0249814 MH880204 Germany Wang et al. (2021b)
Xylodon gloeocystidiifer BLS M-5232 OQ645467 Germany Yurchenko et al. (2024a)
Xylodon gossypinus CLZhao 8375 MZ663804 China Luo et al. (2021a)
Xylodon grandineus CLZhao 6425 OM338090 China Luo et al. (2022)
Xylodon hastifer K(M) 172400 NR166558 USA Riebesehl and Langer (2017)
Xylodon heterocystidiatus Wei 17-314 MT731753 China Wu et al. (2021)
Xylodon hjortstamii Gorjon 3187 ON188816 Finland Direct Submission
Xylodon hydnoides CLZhao 17991 OR096203 China Dong et al. (2024)
Xylodon hyphodontinus KAS-GEL9222 MH880205 Germany Riebesehl et al. (2019)
Xylodon jacobaeus MA-Fungi 91340 MH430073 Spain Wang et al. (2021b)
Xylodon kunmingensis TUB-FO 42565 MH880198 Germany Wang et al. (2021b)
Xylodon laceratus CLZhao 9892 OL619258 China Qu et al. (2022)
Xylodon lagenicystidiatus LWZ 20180515-14 MT319633 China Wang et al. (2021b)
Xylodon lagenicystidiatus LWZ 20180513-16 MT319634 China Wang et al. (2021b)
Xylodon lanatus CFMR FP-101864-A OQ645474 Germany Yurchenko et al. (2024a)
Xylodon laxiusculus Ryvarden 44877 OK273827 Finland Viner et al. (2021)
Xylodon lenis Wu 890714-3 KY081802 Germany Yurchenko et al. (2024a)
Xylodon luteodontioides CLZhao 3207 MH114740 China Yuan and Zhao (2024)
Xylodon luteodontioides CLZhao 18494 PP505422 China Yuan and Zhao (2024)
Xylodon macrosporus CLZhao 10226 MZ663809 China Luo et al. (2021a)
Xylodon magallanesii MA: Fungi:90397 MT158729 Spain Fernandez-Lopez et al. (2020)
Xylodon mantiqueirensis MV 529 OQ645478 Germany Yurchenko et al. (2024a)
Xylodon mollissimus LWZ 20160318-3 KY007517 China Kan et al. (2017b)
Xylodon montanus CLZhao 8179 OL619260 China Qu et al. (2022)
Xylodon muchuanensis LWZ 20200819-3a OQ540903 China Liu et al. (2024)
Xylodon musicola CLZhao 35567* PQ523358 China Present study
Xylodon neotropicus MV 580 OQ645479 Germany Yurchenko et al. (2024a)
Xylodon nesporii LWZ 20180921-35 MT319655 China Wang et al. (2021b)
Xylodon nesporii LWZ 20190814-17a ON063679 ON063879 China Wang et al. (2023)
Xylodon niemelaei CLZhao 3746 MK269038 China Unpublished
Xylodon nongravis GC 1412-22 KX857801 China Chen et al. (2017)
Xylodon nothofagi ICMP 13842 AF145583 Sweden Wang et al. (2021b)
Xylodon olivaceobubalinus CLZhao 25174 OR167772 China Dong et al. (2024)
-/Schizoporaceae Xylodon ovisporus LWZ 20170815-31 MT319666 China Wang et al. (2021b)
Xylodon ovisporus LWZ 20190817-6b ON063680 ON063880 China Wang et al. (2023)
Xylodon papillosus CBS 114.71 MH860026 Germany Vu et al. (2018)
Xylodon paradoxus Dai 14983 MT319519 China Wang et al. (2021b)
Xylodon patagonicus ICMP 13832 AF145581 Sweden Wang et al. (2021b)
Xylodon pingbianensis CLZhao 19029 OR096208 China Dong et al. (2024)
Xylodon poroides CLZhao 17845 PP505420 China Yuan and Zhao (2024)
Xylodon pruinosus Spirin 2877 MH332700 Russia Wang et al. (2021b)
Xylodon pruniaceus Ryvarden 11251 OK273828 Finland Viner et al. (2021)
Xylodon pseudolanatus FP-150922 MH880220 Germany Wang et al. (2021b)
Xylodon pseudotropicus Dai 10768 KF917543 China Wang et al. (2021b)
Xylodon puerensis CLZhao 8142 OP730720 China Guan et al. (2023)
Xylodon punctus CLZhao 17691 OM338092 China Luo et al. (2022)
Xylodon punctus CLZhao 17908 OM338093 China Luo et al. (2022)
Xylodon punctus CLZhao 17916 OM338094 China Luo et al. (2022)
Xylodon quercinus Spirin 12030 OK273841 Finland Viner et al. (2021)
Xylodon raduloides FCUG 2433 AF145570 Sweden Wang et al. (2021b)
Xylodon ramicida Spirin 7664 NR138013 Russia Direct Submission
Xylodon reticulatus Wu 1109-178 KX857805 China Wang et al. (2021b)
Xylodon reticulatus GC 1512-1 KX857808 China Wang et al. (2021b)
Xylodon rimosissimus LWZ 20180904-28 ON063682 ON063882 China Wang et al. (2023)
Xylodon rhizomorphus Dai 12367 NR154067 China Zhao et al. (2014)
Xylodon rhododendricola LWZ 20180513-9 MT319621 China Wang et al. (2021b)
Xylodon serpentiformis LWZ 20190816-12a ON063683 ON063883 China Wang et al. (2023)
Xylodon sinensis CLZhao 9197 MZ663810 China Luo et al. (2021a)
Xylodon sinensis CLZhao 11120 MZ663811 China Luo et al. (2021a)
Xylodon spathulatus LWZ 20180804-10 MT319646 China Wang et al. (2021b)
Xylodon subclavatus FO 42167 MH880232 China Wang et al. (2021b)
Xylodon subflaviporus TNM F29958 NR184880 USA Chen et al. (2017)
Xylodon submucronatus Renvall 1602 OK273830 Finland Viner et al. (2021)
Xylodon subserpentiformis LWZ 20180512-16 MT319486 China Wang et al. (2021b)
Xylodon subtilissimus Spirin 12228 ON188818 Finland Direct Submission
Xylodon subtropicus LWZ 20180510-24 MT319541 China Wang et al. (2021b)
Xylodon taiwanianus CBS 125875 MH864080 New Zealand Vu et al. (2018)
Xylodon tropicus CLZhao 3351 OL619261 China Qu et al. (2022)
Xylodon ussuriensis KUN 1989 NR166241 Russia Direct Submission
Xylodon verecundus KHL 12261 DQ873642 USA Wang et al. (2021b)
Xylodon victoriensis LWZ 20180510-29 MT319487 China Wang et al. (2021b)
Xylodon wenshanensis CLZhao 15729 OM338097 China Luo et al. (2022)
Xylodon wumengshanensis CLZhao 32517 PP645439 China Yuan and Zhao (2024)
Xylodon xinpingensis CLZhao 9174 MW394657 China Ma and Zhao (2021)
Xylodon yarraensis LWZ 20180510-5 MT319639 China Wang et al. (2021b)
Xylodon yunnanensis LWZ 20180922-47 MT319660 China Wang et al. (2021b)
-/Sideraceae Sidera lenis Miettinen 11036 FN907914 FN907914 Finland Miettinen and Larsson (2011)
Sidera minutipora Cui 16720 MN621349 MN621348 Australia Du et al. (2020b)
Sidera srilankensis Dai 19654 MN621344 MN621346 Sri Lanka Du et al. (2020b)
Sidera tenuis Dai 18697 MK331865 MK331867 Singapore Liu et al. (2022)
Sidera tibetica Dai 21057 MW198484 MW192009 Belarus Liu et al. (2022)
-/Skvortzoviaceae Skvortzovia dabieshanensis LWZ 20210918-15b ON063694 ON063894 China Wang et al. (2023)
Skvortzovia pinicola LWZ 20210623-18b ON063695 ON063895 China Wang et al. (2023)
Skvortzovia qilianensis LWZ 20180904-20 ON063693 ON063893 China Wang et al. (2023)
Skvortzovia yunnanensis CLZhao 16084 MW472754 MW473473 China Dong et al. (2021)
-/Tubulicrinaceae Tubulicrinis accedens ACD0414 OL756001 USA Unpublished
Tubulicrinis albobadius CLZhao 26202* PQ523361 PQ523364 China Present study
Tubulicrinis albobadius CLZhao 26330 PQ523362 PQ523365 China Present study
Tubulicrinis australis MA Fungi:88838 KX017591 Spain Unpublished
Tubulicrinis australis MA Fungi:88839 KX017593 Chile Unpublished
Tubulicrinis borealis DK14_93 OL436811 USA Unpublished
Tubulicrinis calothrix LWZ 20210919-1b ON063704 China Wang et al. (2023)
Tubulicrinis chaetophorus Spirin 12616 (H) ON188814 Slovenia Direct Submission
Tubulicrinis chaetophorus UC2023055 KP814255 USA Rosenthal et al. (2017)
Tubulicrinis chaetophorus UC2023059 KP814233 USA Rosenthal et al. (2017)
Tubulicrinis glebulosus LWZ 20180903-13 ON063705 ON063905 China Wang et al. (2023)
Tubulicrinis glebulosus DK16_14 OL436905 USA Unpublished
Tubulicrinis glebulosus UC2023229 KP814463 Canada Rosenthal et al. (2017)
Tubulicrinis globisporus KHL 12133 (GB) DQ873655 Sweden Larsson et al. (2006)
Tubulicrinis gracillimus PDD 95851 HQ533047 New Zealand Unpublished
Tubulicrinis hirtellus KHL 11717 (GB) DQ873657 Sweden Larsson et al. (2006)
Tubulicrinis inornatus KHL 11763 (GB) DQ873659 Sweden Larsson et al. (2006)
Tubulicrinis inornatus OTU782 MT596347 Japan Unpublished
Tubulicrinis martinicensis GG-MAR12-206 NR_163282 France Unpublished
Tubulicrinis pini CLZhao 6881 OR096210 China Dong et al. (2024)
Tubulicrinis subulatus UC2023072 KP814430 USA Rosenthal et al. (2017)
Tubulicrinis subulatus LWZ 20190914-7 ON063706 ON063906 China Wang et al. (2023)
Tubulicrinis xantha CLZhao 2868 MT153874 China He et al. (2020)
Tubulicrinis xantha CLZhao 2869 MT153875 China He et al. (2020)
Tubulicrinis yunnanensis CLZhao 3418 MT153879 China He et al. (2020)
Tubulicrinis yunnanensis CLZhao 9717 MT153880 China He et al. (2020)
-/Umbellaceae Umbellus sinensis LWZ 20190615-27 OR242616 OR236212 China Wang and Zhou (2024)
Umbellus sinensis LWZ 20190615-39 OR242617 OR236213 China Wang and Zhou (2024)
-/Incertae sedis Alloclavaria purpurea M. Korhonen 10305 MF319044 MF318895 Finland Unpublished
Atheloderma mirabile TAA 169235 DQ873592 DQ873592 Estonia Larsson et al. (2006)
-/Incertae sedis Blasiphalia pseudogrisella P. Joijer 4118 MF319047 MF318898 Finland Unpublished
Bryopistillaria sagittiformis IO.14.164 MT232349 MT232303 Sweden Olariaga et al. (2020)
Cantharellopsis prescotii H6059300 MF319051 MF318903 Finland Unpublished
Contumyces vesuvianus 203608 MF318913 Italy Unpublished
Ginnsia viticola Wu 0010-29 MN123802 GQ470670 China Wu et al. (2021)
Globulicium hiemale Hjm 19007 DQ873595 DQ873595 Sweden Larsson et al. (2006)
Gyroflexus brevibasidiata IO.14.230 MT232351 MT232305 Sweden Olariaga et al. (2020)
Hastodontia halonata HHB-17058 MK575207 MK598738 Mexico Yurchenko et al. (2020)
Hastodontia hastata KHL 14646 MH638232 MH638232 Norway Larsson (2007)
Lawrynomyces capitatus KHL 8464 DQ677491 DQ677491 Sweden Larsson (2007)
Loreleia marchantiae Lutzoni 930826-1 U66432 U66432 USA Lutzoni F (1997)
Lyoathelia laxa Spirin 8810a MT305998 MT305998 USA Sulistyo et al. (2021)
Muscinupta laevis V. Haikonen 19745 MF319066 MF318921 Finland Unpublished
Sphaerobasidium minutum KHL 11714 DQ873652 DQ873653 Finland Larsson et al. (2006)
Tsugacorticium kenaicum CFMR HHB17347 JN368221 USA Nakasone (2012)
Polyporales/ Fomitopsidaceae Fomitopsis pinicola AFTOL 770 AY854083 AY684164 USA Lutzoni et al. (2004)
-/Grifolaceae Grifola frondosa AFTOL 701 AY854084 AY629318 USA Lutzoni et al. (2004)
-/Thelephoraceae Thelephora ganbajun ZRL20151295 LT716082 KY418908 China Zhao et al. (2017)

Maximum parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses were applied to the combined three datasets following a previous study (Zhao and Wu 2017), and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All of the characters were equally weighted, and gaps were treated as missing data. Using the heuristic search option with TBR branch swapping and 1,000 random sequence additions, trees were inferred. Max trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics, tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated. The multiple sequence alignments were also analyzed using maximum likelihood (ML) in RAxML-HPC2 on XSEDE v 8.2.8 with default parameters (Miller et al 2012). Branch support (BS) for ML analysis was determined by 1,000 bootstrap replicates.

jModelTest v2 (Darriba et al. 2012) was used to determine the best-fit evolution model for each dataset for the purposes of Bayesian inference (BI), Bayesian inference was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al. 2012). The first one-fourth of all the generations were discarded as burn-ins. The majority-rule consensus tree of all the remaining trees was calculated. Branches were considered significantly supported if they received a maximum likelihood bootstrap value (BS) of ≥ 70%, a maximum parsimony bootstrap value (BT) of ≥ 70%, or Bayesian posterior probabilities (BPP) of ≥ 0.95.

Results

Sequence similarity search

The ITS+nLSU dataset (Fig. 1) comprised 80 specimens representing 77 species of the phylogeny of the order Hymenochaetales. The dataset had an aligned length of 2,548 characters, of which 1,018 characters are constant, 476 are variable and parsimony uninformative, and 1,054 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious tree (TL = 10768, CI = 0.2612, HI = 0.7388, RI = 0.4087, and RC = 0.1068). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.044070 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 645.

The ITS dataset (Fig. 2) comprised 78 specimens representing 69 species of the one new species and related species in the genus Hymenochaete. The dataset had an aligned length of 470 characters, of which 209 characters are constant, 35 are variable and parsimony uninformative, and 226 are parsimony informative. Maximum parsimony analysis yielded 68 equally parsimonious trees (TL = 1574, CI = 0.3018, HI = 0.6982, RI = 0.6876, and RC = 0.2075). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.012875 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 269.5.

The ITS dataset (Fig. 3) comprised 81 specimens representing 56 species of two new species and related taxa in the genus Lyomyces. The dataset had an aligned length of 470 characters, of which 209 characters are constant, 35 are variable and parsimony uninformative, and 226 are parsimony informative. Maximum parsimony analysis yielded 6 equally parsimonious trees (TL = 1574, CI = 0.3018, HI = 0.6982, RI = 0.6876, and RC = 0.2075). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.012875 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 269.5.

The ITS dataset (Fig. 4) comprised 28 specimens representing 17 species of new species and related taxa in the genus Tubulicrinis. The dataset had an aligned length of 772 characters, of which 284 characters are constant, 152 are variable and parsimony uninformative, and 336 are parsimony informative. Maximum parsimony analysis yielded 2 equally parsimonious trees (TL = 1409, CI = 0.5777, HI = 0.4223, RI = 0.6248, and RC = 0.3610). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.006683 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 633.

The ITS dataset (Fig. 5) comprised 104 specimens representing 97 species of the new species and related taxa in the genus Xylodon. The dataset had an aligned length of 673 characters, of which 233 characters are constant, 81 are variable and parsimony uninformative, and 359 are parsimony informative. Maximum parsimony analysis yielded 5,000 equally parsimonious trees (TL = 3842, CI = 0.2140, HI = 0.7860, RI = 0.4337, and RC = 0.0928). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.022556 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double of the average ESS (avg ESS) = 1143.5.

The phylogram based on the combined ITS+nLSU sequences (Fig. 1) analysis showed that five new species Hymenochaete weishanensis, Lyomyces albofarinaceus, Lyomyces albomarginatus, Tubulicrinis albobadius and Xylodon musicola were assigned to the genera Hymenochaete, Lyomyces, Tubulicrinis and Xylodon within the order Hymenochaetales, individually. The phylogenetic tree based on ITS sequences (Fig. 2), revealed that H. weishanensis was retrieved as a sister to H. luteobadia. The taxon based on the ITS sequences (Fig. 3) revealed that L. albofarinaceus was grouped with L. albopulverulentus and L. qujingensis. L. albomarginatus was sister to L. crustosus. The topology based on the ITS sequences (Fig. 4), revealed that T. albobadius was grouped with T. australis and T. inornatus. The phylogenetic tree, based on ITS sequences (Fig. 5), revealed that X. musicola grouped with three taxa: X. gloeocystidiifer, X. hydnoides, and X. neotropicus.

Taxonomy

Hymenochaete weishanensis Y.F. Dai & C.L. Zhao, sp. nov.

MycoBank No: 856316
Figs 6, 7

Holotype.

China • Yunnan Province, Dali, Weishan County, Leqiu Town, Zhongyao Village, GPS coordinates 25°02′N, 100°16′E, evel. 1910 m a.s.l., on a fallen branch of angiosperm, leg. C.L. Zhao, 19 July 2022, CLZhao 22615 (SWFC).

Figure 6. 

Basidiomata of Hymenochaete weishanensis in general and detailed views (CLZhao 22615, holotype). Scale bars: 1cm (A); 1mm (B).

Etymology.

weishanensis (Lat.), refers to the locality (Weishan) of the holotype.

Figure 7. 

Microscopic structures of Hymenochaete weishanensis (holotype, CLZhao 22615). A Basidiospores B basidia and basidioles C tapering cystidia D setae E part of the vertical section of hymenium. Scale bars: 10 µm (A–E).

Basidiomata.

Annual, effused-reflexed, thin, coriaceous, without odor or taste when fresh, up to 5 cm long, 2.5 cm wide, and 150 µm thick. Pileal surface dark brown upon drying. Hymenial surface tuberculate, lightly brown when fresh, turning to gray brown upon drying. Sterile margin narrow, slightly gray-brown, up to 1 mm wide.

Hyphal system.

Monomitic, generative hyphae with simple-septa, colorless, thin to slightly thick-walled, frequently branched, interwoven, 2.0–2.8 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium.

Cystidia tapering, thin-walled, smooth, 9.5–20.5 × 2.0–3.5 µm; cystidioles absent. Hymenial setae abundant, subulate, reddish brown, thick-walled, smooth, 33.0–61.5 × 5.0–8.5 µm, projecting above the hymenium. Basidia subclavate, colorless, thin-walled, simple-septum, with four sterigmata, 6.5–24.0 × 2.5–4.0 µm; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores.

Elipsoid to narrow ellipsoid, colorless, thin-walled, smooth, with one or two guttate, IKI–, CB–, 4.0–5.0(–5.5) × 2.0–3.0 µm, L = 4.76 µm, W = 2.52 µm, Q = 1.86–1.92 (n = 60/2).

Additional specimens examined (Paratype).

China • Yunnan Province, Dali, Weishan County, Leqiu Town, Zhongyao Village, on a fallen angiosperm branch, 19 July 2022, CLZhao 40297 (SWFC).

Lyomyces albofarinaceus Y.F. Dai & C.L. Zhao, sp. nov.

MycoBank No: 856317
Figs 8, 9

Holotype.

China • Yunnan Province, Zhaotong, Wumengshan National Nature Reserve, GPS coordinates 28°05′N, 104°20′E, evel. 1600 m a.s.l., on a fallen branch of angiosperm, leg. C.L. Zhao, 20 September 2023, CLZhao 33479 (SWFC).

Figure 8. 

Basidiomata of Lyomyces albofarinaceus in general and detailed views (CLZhao 33479, holotype). Scale bars: 1cm (A); 1mm (B).

Etymology.

albofarinaceus (Lat.), refers to the white and pruinose hymenophore surface.

Figure 9. 

Microscopic structures of Lyomyces albofarinaceus (holotype, CLZhao 33479). A Basidiospores B basidia and basidioles C tapering cystidia D Capitate cystidia E part of the vertical section of hymenium. Scale bars: 10 µm (A–E).

Basidiomata.

Annual, resupinate, adnate, without odor or taste when fresh, up to 8 cm long, 3.5 cm wide, and 150 µm thick. Hymenial surface pruinose, smooth, white when fresh, to white to cream upon drying. Sterile margin narrow, white, up to 1 mm wide.

Hyphal system.

Monomitic, generative hyphae with clamp connections, colorless, thin to slightly thick-walled, frequently branched, interwoven, 2.0–3.0 µm in diameter, IKI–, CB–; tissues unchanged in KOH, subhymenial hyphae densely covered by crystals.

Hymenium.

Cystidia of two types: (1) tapering, thin-walled, smooth to be covered by crystals, 11.5–44.0 × 4.5–7.5 µm; (2) capitate, thin-walled, smooth to be covered by crystals, slightly constricted at the neck, with a globose tip, 23.5–40.0 × 3.5–5.5 µm; cystidioles absent. Basidia clavate, colorless, thin-walled, with four sterigmata, 15.0–27.0 × 5.0–9.5 µm; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores.

Broadly ellipsoid, colorless, thin-walled, smooth, with one guttate, IKI–, CB–, (5.5–)6.0–7.0(–7.5) × (4.5–)5.0–6.0(–6.5) µm, L = 6.46 µm, W = 5.62 µm, Q = 1.07–1.15 (n = 60/2).

Additional specimens examined (Paratype).

China • Yunnan Province, Qujing, Qilin District, Cuishan Forestry Park, on a fallen angiosperm branch, 5 November 2022, CLZhao 26661 (SWFC).

Lyomyces albomarginatus Y.F. Dai & C.L. Zhao, sp. nov.

MycoBank No: 856737
Figs 10, 11

Holotype.

China • Yunnan Province, Dali, Weishan County, QinghuaTown, Green Peacock Reserve, Jiangzui Village, GPS coordinates 25°01′N, 100°11′E, evel. 1500 m a.s.l., on a fallen branch of angiosperm, leg. C.L. Zhao, 18 July 2022, CLZhao 22551 (SWFC).

Figure 10. 

Basidiomata of Lyomyces albomarginatus in general and detailed views (CLZhao 22551, holotype). Scale bars: 1cm (A); 1mm (B).

Etymology.

albomarginatus (Lat.), refers to the white margin of the basidiomata.

Figure 11. 

Microscopic structures of Lyomyces albomarginatus (holotype, CLZhao 22551). A Basidiospores B basidia and basidioles C tapering cystidia D part of the vertical section of hymenium. Scale bars: 10 µm (A–D).

Basidiomata.

Annual, resupinate, adnate, without odor or taste when fresh, up to 8 cm long, 3 cm wide, and 150 µm thick. Hymenial surface cracked, slightly buff when fresh, turning to buff to slightly yellowish upon drying. Sterile margin slightly buff, up to 3 mm wide.

Hyphal system.

Monomitic, generative hyphae with clamp connections, colorless, thin to slightly thick-walled, rarely branched, interwoven, 2.0–3.5 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium.

Cystidia numerous, tapering, thin-walled, smooth, 22.5–30.0 × 2.0–4.0 µm; cystidioles absent. Basidia cylindrical, colorless, thin-walled, with four sterigmata, 15.0–19.0 × 3.5–4.3 µm; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores.

Elliposoid, colorless, thin-walled, smooth, with one guttate, IKI–, CB–, (3.5–)4.0–5.5(–6.0) × (2.5–)2.7–3.5(–3.7) µm, L = 4.89 µm, W = 3.13 µm, Q = 1.56 (n = 30/1).

Tubulicrinis albobadius Y.F. Dai & C.L. Zhao, sp. nov.

MycoBank No: 856318
Figs 12, 13

Holotype.

China • Yunnan Province, Qujing, Qilin District, Cuishan Forest Park, GPS coordinates 25°32′N, 103°42′E, evel. 2250 m a.s.l., on a fallen branch of angiosperm, leg. C.L. Zhao, 5 Novermber 2022, CLZhao 26202 (SWFC).

Figure 12. 

Basidiomata of Tubulicrinis albobadius in general and detailed views (CLZhao 26202, holotype). Scale bars: 1cm (A); 1mm (B).

Etymology.

albobadius (Lat.), refers to the white basidiomata.

Figure 13. 

Microscopic structures of Tubulicrinis albobadius (holotype, CLZhao 26202). A Basidiospores B basidia and basidioles C lyocystidia D part of the vertical section of hymenium. Scale bars: 5 µm (A); 10 µm (B–D).

Basidiomata.

Annual, resupinate, thin, adnate, without odor or taste when fresh, up to 8 cm long, 1.5 cm wide, and 150 µm thick. Hymenial surface arachnoid, white when fresh and became white to gray when drying. Sterile margin narrow, white, up to 1 mm.

Hyphal system.

Monomitic, generative hyphae with clamp connections, colorless, thick-walled, branched, interwoven, 2.0–4.0 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium.

Cystidia and cystidioles absent. Lyocystidia projecting, thick-walled, with a globose tip, some of the globose tips are thin-walled, 38.0–71.0 × 8.3–10.0 µm. Basidia barred, colorless, thin-walled, with four sterigmata, 9.5–14.0 × 4.0–5.0 µm; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores.

Cylindrical to allantoid, colorless, thin-walled, smooth, with one or two guttate, IKI–, CB–, (3.5–)4.0–6.0(–6.5) × 1.5–2.2(–2.5) µm, L = 5.09 µm, W = 1.89 µm, Q = 2.55–2.77 (n = 60/2).

Additional specimens examined (Paratype).

China • Qujing, Qilin District, Cuishan Forest Park, on a fallen angiosperm branch, 5 November 2022, CLZhao 26330 (SWFC).

Xylodon musicola Y.F. Dai & C.L. Zhao, sp. nov.

MycoBank No: 856319
Figs 14, 15

Holotype.

China • Yunnan Province, Zhaotong, Yongshan County, Mugan Town, Wumengshan Nature Reserve, GPS coordinates 28°05′N, 103°58′E, evel. 2200 m a.s.l., on a fallen angiosperm branch, leg. C.L. Zhao, 7 November 2023, CLZhao 35567 (SWFC).

Figure 14. 

Basidiomata of Xylodon musicola in general and detailed views (CLZhao 35567, holotype). Scale bars: 1cm (A); 1mm (B).

Etymology.

musicola (Lat.), refers to the growth on the mosses, which is located Bryophyta.

Figure 15. 

Microscopic structures of Xylodon musicola (holotype, CLZhao 35567). A Basidiospores B basidia and basidioles C capitate cystidia D part of the vertical section of hymenium. Scale bars: 10 µm (A–D).

Basidiomata.

Annual, resupinate, adnate, very difficult to separate from substrate, without odor or taste when fresh, up to 7 cm long, 2 cm wide, and 150 µm thick. Hymenial surface arachnoid, white when fresh and becoming white to cream when drying. Sterile margin narrow, slightly cream, up to 1 mm wide. The basidiomata grow on the surface of muscus.

Hyphal system.

Monomitic, generative hyphae with clamp connections, colorless, thin to slightly thick-walled, rarely branched, interwoven, 2.5–4.0 µm in diam, IKI–, CB–; tissues unchanged in KOH.

Hymenium.

Cystidia capitate, thin-walled, smooth, slightly constricted at the neck, with a globose tip, 12.5–20.0 × 3.5–5.0 µm; cystidioles absent. Basidia clavate, colorless, thin-walled, with four sterigmata, 11.0–15.5 × 3.5–5.0 µm; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores.

Broadly ellipsoid to globe, colorless, thin-walled, smooth, with one guttate, IKI–, CB–, 4.0–5.5(–6.0) × 3.5–5.0(–5.5) µm, L = 4.77 µm, W = 4.35 µm, Q = 1.07–1.13 (n = 60/2).

Additional specimens examined (Paratype).

China • Yunnan Province, Zhaotong, Yongshan County, Mugan Town, Wumengshan Nature Reserve, on a fallen angiosperm branch, 7 November 2023, CLZhao 40298 (SWFC).

Discussion

The order Hymenochaetales comprises many representative corticioid fungal taxa, including hydnoid, corticioid, and polyporoid fungi possessing basidiomata with diverse hymenophoral and cystidial morphology (Riebesehl et al. 2019; Wu et al. 2022; Guan et al. 2023; Zhang et al. 2024). In the present study, five new species Hymenochaete weishanensis, Lyomyces albofarinaceus, L. albomarginatus, Tubulicrinis albobadius, and Xylodon musicola are described based on the phylogenetic analyses and morphological characteristics.

Based on ITS topology (Fig. 2), Hymenochaete weishanensis grouped closely with two species H. luteobadia and H. anomala. However, H. anomala can be delimited from H. weishanensis by its smooth hymenial surface and narrower basidiospores (3.5–4.5 × 1.8–2.3 µm; Parmasto 2001). Hymenochaete luteobadia differs from H. weishanensis due to its sulcate and zonate hymenial surface and wider basidia (15.0–20.0 × 4.0–5.0 µm; Parmasto 2001). Based on ITS topology (Fig. 3), the taxon Lyomyces albofarinaceus grouped closely with L. albopulverulentus and L. qujingensis. The taxon L. albomarginatus was sister to L. crustosus. However, L. qujingensis differs from L. albofarinaceus due to its longer capitate cystidia (40.0–60.0 × 4.0–7.5 µm) and by possessing clavate cystidia (16.5–18.0 × 7.5–8.5 µm; Dong et al. 2024). L. albopulverulentus can be delimited from L. albofarinaceus by its longer basidiospores (8.0–10.5 × 5.5–7.0 µm; Guan et al. 2023). Lyomyces crustosus can be delimited from L. albomarginatus due to its odontoid hymenial surface and longer basidia (20–30 × 4.0–5.0 µm; Maekawa 1994). Based on ITS topology (Fig. 4), the taxon Tubulicrinis albobadius grouped closely with T. australis and T. inornatus. However, T. inornatus differs from T. albobadius by its reticulate to porulose hymenial surface and wider basidiospores (4.0–5.0 × 2.5–3.5 µm; Maekawa 2021). Based on ITS topology (Fig. 5), the taxon Xylodon musicola grouped closely with X. gloeocystidiifer, X. hydnoides and X. neotropicus. However, morphologically, X. gloeocystidiifer differs from X. musicola by its odontioid hymenial surface and smaller basidiospores (3.5–4.0 × 2.8–3.5 µm; Yurchenko et al. 2024b), X. hydnoides differs from X. musicola by its hydnoid hymenial surface and by possessing clavate cystidia (29.5–38.5 × 3.5–4.5 µm; Dong et al. 2024). Xylodon neotropicus can be delimited from X. musicola due to its odontioid to short hydnoid hymenial surface and shorter basidiospores (3.5–4.0 × 3.3–3.7 µm; Yurchenko et al. 2024b).

Morphologically, Hymenochaete weishanensis resembles H. colliculosa (Sacc.) Parmasto, H. biformisetosa Jiao Yang & S.H. He and H. sharmae Hembrom, K. Das & A. Parihar by ellipsoid basidiospores. However, H. colliculosa differs from H. weishanensis due to its dimitic hyphal system and wider basidia (20.0–24.0 × 5.0–6.0 µm; He et al. 2017). The species H. biformisetosa differs from H. weishanensis by its smooth hymenial surface and wider basidiospores (4.3–6.0 × 3.0–4.2 µm; Yang and He 2014). The taxon H. sharmae differs from H. weishanensis by its smooth hymenial surface and wider basidia (12.0–16.0 × 4.0–6.0 µm; Wang et al. 2019)

Morphologically, Lyomyces albofarinaceus resembles L. incanus J.H. Dong & C.L. Zhao, Lyomyces lancangjiangensis Q. Li & C.L. Zhao, and L. yunnanensis C.L. Zhao by ellipsoid basidiospores. However, L. lancangjiangensis differs from L. albofarinaceus due to its membranaceous hymenial surface and narrower basidia (13.0–23.0 × 3.0–4.5 µm; Li et al. 2024b). The taxon L. incanus differs from L. albofarinaceus by its furfuraceous hymenial surface and narrower basidiospores (5.0–6.5 × 4.0–5.0 µm; Dong et al. 2024). The species L. yunnanensis differs from L. albofarinaceus by its grandinioid hymenial surface and narrower basidiospores (5.0–7.0 × 3.0–4.5 µm; Guan et al. 2023).

Morphologically, Lyomyces albomarginatus resembles L. lincangensis J.H. Dong & C.L. Zhao, L. luteoalbus J.H. Dong & C.L. Zhao and L. sinensis J.H. Dong & C.L. Zhao by ellipsoid basidiospores. However, L. lincangensis differs from L. albomarginatus due to its coriaceous hymenial surface and wider basidiospores (4.5–6.5 × 3.5–5.0 µm; Dong et al. 2024). L. luteoalbus differs from L. albomarginatus due to its membranaceous hymenial surface and shorter tapering cystidia (12.0–17.0 × 2.0–3.5 µm; Dong et al. 2024). L. sinensis differs from L. albomarginatus due to its coriaceous hymenial surface and wider basidiospores (4.5–6.0 × 3.5–4.5 µm; Dong et al. 2024).

Morphologically, Tubulicrinis albobadius resembles T. hirtellus (Bourd. & Galz.) John Erikss, T. orientalis Parmasto and T. xantha C.L. Zhao by cylindrical basidiospores. However, T. hirtellus differs from T. albobadius due to its porulose hymenial surface and longer basidiospores (7.0–8.5 × 2.0–2.5 µm; Hjortstam et al. 1988). The species T. orientalis differs from T. albobadius due to its hispidulous hymenial surface and narrower basidia (11.0–16.0 × 3.5–4.0 µm; Maekawa and Nordén 2022). The species T. xantha differs from T. albobadius by its furfuraceous hymenial surface and longer and narrower lyocystidia (78.0–192.5 × 5.8–7.5 µm; He et al. 2020).

Morphologically, Xylodon musicola resembles X. cremeoparinaceus Q. Yuan & C.L. Zhao, X. luteodontioides Q. Yuan & C.L. Zhao and X. wumengshanensis Q. Yuan & C.L. Zhao by ellipsoid basidiospores. However, X. cremeoparinaceus differs from X. musicola due to its farinaceous hymenial surface and narrower basidiospores (3.5–4.5 × 2.5–3.5 µm; Yuan and Zhao 2024). The species X. luteodontioides differs from X. musicola due to narrower basidiospores (3.5–4.5 × 2.5–3.5 µm) and by possessing schizopapillate cystidia (29.5–37.0 × 2.5–3.5 µm; Yuan and Zhao 2024). The species X. wumengshanensis differs from X. musicola due to its bigger basidia (22.5–33.0 × 5.0–5.5 µm) and by possessing fusoid cystidia (14.5–22.0 × 5.5–6.5 µm; Yuan and Zhao 2024).

This discovery of five new species viz. Hymenochaete weishanensis, Lyomyces albofarinaceus, L. albomarginatus, Tubulicrinis albobadius, and Xylodon musicola enrich our knowledge of fungal diversity in the order Hymenochaetales. We anticipate that more undescribed taxa will be discovered throughout China after extensive collection combined with morphological and molecular analyses.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project Nos. 32170004, U2102220), the Yunnan Province College Students Innovation and Entrepreneurship Training Program (S202410677097, S202410677019), and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Research Project of Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology (TMKF2023A03).

Author contributions

Conceptualization, CZ; methodology, CZ, HY and YD; software, CZ, YD and QY; validation, CZ and YD; formal analysis, CZ and YD; investigation, RL, DL, CZ and YD; resources CZ, RL and HY; writing – original draft preparation, CZ, YD, QY, XY and RL; writing – review and editing, CZ, HY, and YD; visualization, CZ and YD; supervision, CZ and HY; project administration, CZ; funding acquisition, CZ and HY. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Yunfei Dai https://orcid.org/0009-0007-7734-4142

Qi Yuan https://orcid.org/0000-0002-6732-1656

Xin Yang https://orcid.org/0009-0009-7755-0581

Rui Liu https://orcid.org/0009-0009-0447-7766

Haisheng Yuan https://orcid.org/0000-0001-7056-140X

Changlin Zhao https://orcid.org/0000-0002-8668-1075

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Bernicchia A, Gorjón SP (2010) Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Alassio, Italy, 1008 pp.
  • Binder M, Hibbett D, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity 3(2): 1–45. https://doi.org/10.1017/S1477200005001623
  • Chen JZ, Zhao CL (2020) Morphological and molecular identification of four new resupinate species of Lyomyces (Hymenochaetales) from southern China. MycoKeys 65: 101–118. https://doi.org/10.3897/mycokeys.65.48660
  • Chen JJ, Zhou LW, Ji XH, Zhao CL (2016) Hyphodontia dimitica and H. subefibulata spp. nov. (Schizoporaceae, Hymenochaetales) from southern China based on morphological and molecular characters. Phytotaxa 269: 001–013. https://doi.org/10.11646/phytotaxa.269.1.1
  • Chevallier FF (1826) Flore Générale des Environs de Paris. Ferra Jeune, Paris, 674 pp.
  • Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Crane C, Barrett S, Cano-Lira JF, Roux JJL, Thangavel R, Guarro J, Stchigel AM, Martín MP, Alfredo DS, Barber PA, Barreto RW, Baseia IG, Cano-Canals J, Cheewangkoon R, Ferreira RJ, Gené J, Lechat C, Moreno G, Roets F, Shivas RG, Sousa JO, Tan YP, Wiederhold NP, Abell SE, Accioly T, Albizu JL, Alves JL, Antoniolli ZI, Aplin N, Araújo JP, Arzanlou M, Bezerra JDP, Bouchara JP, Carlavilla JP, Castillo A, Castroagudin VL, Ceresini PC, Claridge GF, Coelho G, Coimbra VRM, Costa LA, Cunha KCD, Silva SSD, Daniel R, Beer ZWD, Dueñas M, Edwards J, Enwistle P, Fiuza PO, Fournier J, García D, Gibertoni TB, Giraud S, Guevara-Suarez M, Gusmão LFP, Haituk S, Heykoop M, Hirooka Y, Hofmann TA, Houbraken J, Hughes DP, Kautmanová I, Koppel O, Koukol O, Larsson E, Latha KPD, Lee DH, Lisboa DO, Lisboa WS, López-Villalba Á, Maciel JLN, Manimohan P, Manjón JL, Marincowitz S, Marney TS, Meijer M, Miller AN, Olariaga I, Paiva LM, Piepenbring M, Poveda-Molero JC, Raj KNA, Raja HA, Rougeron A, Salcedo I, Samadi R, Santos TAB, Scarlett K, Seifert KA, Shuttleworth LA, Silva GA, Silva M, Siqueira JPZ, Souza-Motta CM, Stephenson SL, Sutton DA, Tamakaew N, Telleria MT, Valenzuela-Lopez N, Viljoen A, Visagie CM, Vizzini A, Wartchow F, Wingfield BD, Yurchenko E, Zamora JC, Groenewald JZ (2016) Fungal planet description sheets: 469e557. Persoonia 37: 218e403. https://doi.org/10.3767/003158516X694499
  • Cunningham GH (1963) The Thelephoraceae of Australia and New Zealand. Bulletin of the New Zealand Department of Industrial Research 145: 1e359.
  • Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Junwu Xuebao 40: 770–805.
  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772. https://doi.org/10.1038/nmeth.2109
  • Deng YL, Jabeen SN, Zhao CL (2024a) Species diversity and taxonomy of Vararia (Russulales, Basidiomycota) with descriptions of six species from Southwestern China. MycoKeys 103: 97–128. https://doi.org/10.3897/mycokeys.103.118980
  • Deng YL, Li JF, Zhao CL, Zhao J (2024b) Four new fungal species in forest ecological system from southwestern China. Journal of Fungi (Basel, Switzerland) 10(3): 194. https://doi.org/10.3390/jof10030194
  • Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Deng YL, Zhou HM, Muhammad A, Zhao CL (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere: Journal of Fungal Biology 15(1): 1110–1293. https://doi.org/10.5943/mycosphere/15/1/10
  • Donk MA (1956) Notes on resupinate Hymenomycetes: III. Fungus 26: 3e24.
  • Du R, Wu F, Gate GM, Dai YC, Tian X-M (2021b) Taxonomy and phylogeny of Sidera (Hymenochaetales, Basidiomycota): Four new species and keys to species of the genus. MycoKeys 68: 115–135. https://doi.org/10.3897/mycokeys.68.53561
  • Eriksson J (1958) Studies in the Heterobasidiomycetes and Homobasidiomycetes Aphyllophorales of Muddus National Park in North Sweden. Symbolae Botanicae Upsalienses 16: 1e172.
  • Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using bootstrap. Evolution; International Journal of Organic Evolution 39(4): 783–791. https://doi.org/10.2307/2408678
  • Fernández-López J, Telleria MT, Dueñas M, Laguna-Castro M (2020) Linking morphological and molecular sources to disentangle the case of Xylodon australis. Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-78399-8
  • Frey W, Hurka K, Oberwinkler F (1997) Beiträge zur Biologie der Niederen Pflanzen. Systematik, Stammesgeschichte, Ökologie. Gustav Fischer Verlag, Stuttgart/New York.
  • Gafforov Y, Riebesehl J, Ordynets A, Langer EJ, Yarasheva M, Ghobad-Nejhad M, Zhou L-W, Wang X-W, Gugliotta AM (2017) Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia. Botany 95(11): 1041–1056. https://doi.org/10.1139/cjb-2017-0115
  • Girometta CE, Bernicchia A, Baiguera RM, Bracco F, Buratti S, Cartabia M, Picco AM, Savino E (2021) An italian researchculture collection of wood decay fungi. Diversity 12(2): 58. https://doi.org/10.3390/d12020058
  • Gray SF (1821) A Natural Arrangement of British Plants. Nabu Press, London, UK, 649 pp.
  • Gruhn G, Hallenberg N, Courtecuisse R (2016) Tubulicrinis martinicensis sp. nov., a corticioid species from Martinique (French West Indies). Mycotaxon 131: 631e638. https://doi.org/10.5248/131.631
  • Hayashi Y (1974) Studies on the genus Peniophora Cke. and its allied genera in Japan. Bulletin of the Government Forest Experimental Station Meguro 260: 1e98.
  • He SH, Liu SL, Li SL, Dai YC (2017) Two new species of Hymenochaete (Hymenochaetaceae, Basidiomycota) and H. colliculosa new to China from Shanxi Province. Phytotaxa 324(2): 168–178. https://doi.org/10.11646/phytotaxa.324.2.5
  • He X, Shi ZJ, Zhao CL (2020) Morphological and molecular identification of two new species of Tubulicrinis (Hymenochaetaceae, Hymenochaetales) from southern China. Mycoscience 61(4): 184–189. https://doi.org/10.1016/j.myc.2020.03.008
  • Hjortstam K (1981) Notes on Corticiaceae (Basidiomycetes) VIII. Two new species of Tubulicrinis. Mycotaxon 13: 120e123.
  • Hjortstam K, Ryvarden L (2007) Studies in corticioid fungi from Venezuela III (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 23: 56–107.
  • Hjortstam K, Ryvarden L (2009) A checklist of names in Hyphodontia sensu stricto-sensu lato and Schizopora with new combinations in Lagarobasidium, Lyomyces, Kneiffiella, Schizopora, and Xylodon. Synopsis Fungorum 26: 33–55.
  • Hjortstam K, Larsson KH, Ryvarden L, Eriksson J (1988) The corticiaceae of North Europe (Vol. 8). Fungiflora, Oslo.
  • Horwath WR (2017) The role of the soil microbial biomass in cycling nutrients: A Paradigm Shift in terrestrial Biogeochemistry. Microbial Biomass, New Zealand, 41–66. https://doi.org/10.1142/9781786341310-0002
  • Hu Y, Karunarathna SC, Li H, Galappaththi MC, Zhao CL, Kakumyan P, Mortimer PE (2022) The impact of drying temperature on basidiospore size. Diversity 14(4): 239. https://doi.org/10.3390/d14040239
  • Insumran, Klinhom U, Pramual (2012) Variability of internal transcribed spacer ribosomal DNA sequences of Fuscoporia gilva and Fuscoporia sp. in Thailand. Czech Mycology 64(1): 55–64. https://doi.org/10.33585/cmy.64106
  • Karsten PA (1881) Enumeratio Thelephorearum Fr. et Clavariearum Fr. Fennicarum, systemate novo dispositarum. Revue Mycologique Toulouse 3: 21–23.
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kotiranta H, Saarenoksa R (2000) Three new species of Hyphodontia (Corticiaceae). Annales Botanici Fennici 37(4): 255–278.
  • Kuntze OI (1898) Revisio Generum Plantarum. A. Felix, Leipzig, 576 pp.
  • Léger JC (1998) Le genre Hymenochaete Léveillé. Bibliotheca Mycologica 171: 1–319.
  • Li Q, Luo YX, Zhao CL (2024b) Molecular systematics and taxonomy reveal three new wood-inhabiting fungal species (Basidiomycota) from Yunnan Province, southern China. Mycological Progress 23(1): 30. https://doi.org/10.1007/s11557-024-01968-y
  • Li YC, Chen ML, Xiao WY, Zhang JZ, Zhao CL (2024a) Molecular phylogeny and morphology reveal a new Hymenochaete species (Hymenochaetaceae, Basidiomycota) from China. Phytotaxa 664(3): 159–171. https://doi.org/10.11646/phytotaxa.664.3.1
  • Liu SL, Gafforov Y, Zhang XY, Wang HL, Wang X-W, Zhou L-W (2019) Reinstatement of the corticioid genus Leifia (Hymenochaetales, Basidiomycota) with a new species L. brevispora from Hubei, Central China. MycoKeys 51: 85–96. https://doi.org/10.3897/mycokeys.51.33262
  • Liu ZB, Zhou M, Wu F, Yu J (2022) Two new species of Sidera (Hymenochaetales, Basidiomycota) from southwest China. Journal of Fungi (Basel, Switzerland) 8(4): 385. https://doi.org/10.3390/jof8040385
  • Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab M, Zhang M, Tian E, Lu YZ, Zhang JY, Ma J, Dutta AK, Acharya K, Du TY, Jize X, Kim JS, Lim YW, Gerlach ADCL, Zeng NK, Han YX, Razaghi P, Raza M, Cai L, Calabon M, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashetti AC, Pawar K, Jiang SH, Zhang C, Zhang H, Qing Y, Bau T, Peng XC, Wen TC, Ramirez NA, Niveiro N, Li MX, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo CH, Silva TMD, Souza-Motta CMD, Bezerra J, He G, Ji XH, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde K, Zhou LW (2024) Fungal diversity notes 1717–1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1–216. https://doi.org/10.1007/s13225-023-00529-0
  • Luo KY, Qu MH, Zhao CL (2021a) Additions to the knowledge of Corticioid Xylodon (Schizoporaceae, Hymenochaetales): Introducing three new Xylodon species from southern China. Diversity 13(11): 581. https://doi.org/10.3390/d13110581
  • Luo X, Chen YH, Zhao CL (2021b) Lyomyces fissuratus and L. fumosus (Schizoporaceae, Hymenochaetales), new species from southern China. Annales Botanici Fennici 4(4–6): 58. https://doi.org/10.5735/085.058.0404
  • Luo KY, Chen ZY, Zhao CL (2022) Phylogenetic and taxonomic analyses of three new woodinhabiting Fungi of Xylodon (Basidiomycota) in a Forest Ecological System. Journal of Fungi (Basel, Switzerland) 8(4): 405. https://doi.org/10.3390/jof8040405
  • Lutzoni F (1997) Phylogeny of lichen- and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Systematic Biology 46(3): 373–406. https://doi.org/10.1093/sysbio/46.3.373
  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. American Journal of Botany 91(10): 1446–1480. https://doi.org/10.3732/ajb.91.10.1446
  • Maekawa N (1994) Taxonomic study of Japanese Corticiaceae (Aphyllophoraceae) II. Reports of the Tottori Mycological Institute 32: 1–123.
  • Miettinen O, Larsson KH, Spirin V (2019) Hydnoporia, an older name for Pseudochaete and Hymenochaetopsis, and typification of the genus Hymenochaete (Hymenochaetales, Basidiomycota). Fungal Systematics and Evolution 4: 77–96. https://doi.org/10.3114/fuse.(2019).04.07
  • Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond, Chicago, 39 pp. https://doi.org/10.1145/2335755.2335836
  • Nakasone KK (2012) Tsugacorticium kenaicum (Hymenochaetales, Basidiomycota), a new corticioid genus and species from Alaska. North American Fungi 7(1): 1–9. https://doi.org/10.2509/naf2012.007.001
  • Nie T, Tian Y, Liu SL, Yang J, He SH (2017) Species of Hymenochaete (Hymenochaetales, Basidiomycota) on bamboos from East Asia, with descriptions of two new species. MycoKeys 20: 51–65. https://doi.org/10.3897/mycokeys.20.11754
  • Olariaga I, Huhtinen S, Læssøe T, Petersen JH, Hansen K (2020) Phylogenetic origins and family classification of typhuloid fungi, with emphasis on Ceratellopsis, Macrotyphula and Typhula (Basidiomycota). Studies in Mycology 96: 155–184. https://doi.org/10.1016/j.simyco.(2020).05.003
  • Pacheco MC, Valenzuela R, Raymundo T, Pacheco L (2018) Hymenochaete cifuentesii, H. potosina, and H. raduloides spp. nov. from the tropical dry forest of Mexico. Mycotaxon 133(3): 499–512. https://doi.org/10.5248/133.499
  • Palmer JM, Lindner DL, Volk TJ (2008) Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza 19(1): 27–36. https://doi.org/10.1007/s00572-008-0200-7
  • Parmasto E (2001) Hymenochaetoid fungi (Basidiomycota) of North America. Mycotaxon 79: 107–176.
  • Parmasto E (2012) New taxa of Hymenochaete (Agaricomycetes, Hymenochaetales) with a note on H. caucasica. Mycotaxon 121(1): 477–484. https://doi.org/10.5248/121.477
  • Parmasto E, Gilbertson RL (2005) The genus Hymenochaete (Basidiomycota, Hymenomycetes) in the Hawaiian Islands. Mycotaxon 94: 189–214.
  • Petersen JH (1996) Farvekort. In: The Danish Mycological Society’s Colour-Chart, Foreningen til Svampekundskabens Fremme, Greve, 6 pp.
  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura S, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang G-N, Jiang H-B, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He M-Q, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang Q-J, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh S-Y, Huang S-K, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu X-D, Lu Y-Z, Lim YW, Chen Y, Tkalčec Z, Zhang Z-F, Luo Z-L, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang L-Z, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao R-L, Lumyong S, Boonmee S, Wen T-C, Mortimer PE, Xu J (2019) Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w
  • Qu MH, Wang DQ, Zhao CL (2022) A phylogenetic and taxonomic study on Xylodon (Hymenochaetales): Focusing on three new Xylodon species from southern China. Journal of Fungi (Basel, Switzerland) 8(1): 35. https://doi.org/10.3390/jof8010035
  • Rajchenberg M (2002) Corticioid and polyporoid fungi (Basidiomycota) that decay Austrocedrus chilensis in Patagonia, Argentina. Mycotaxon 81: 215e227.
  • Rathnayaka AR, Tennakoon DS, Jones GE, Wanasinghe DN, Bhat DJ, Priyashantha AH, Stephenson SL, Tibpromma S, Karunarathna SC (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany: 1–28. https://doi.org/10.1080/0028825X.2024.2381734
  • Riebesehl J, Langer E (2017) Hyphodontia s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to currently all 120 species. Mycological Progress 16(6): 637–666. https://doi.org/10.1007/s11557-017-1299-8
  • Riebesehl J, Yurchenko E, Nakasone KK, Langer E (2019) Phylogenetic and morphological studies in Xylodon (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys 47: 97–137. https://doi.org/10.3897/mycokeys.47.31130
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Rosenthal LM, Larsson KH, Branco S, Chung JA, Glassman SI, Liao H-L, Peay KG, Smith DP, Talbot JM, Taylor JW, Vellinga EC, Vilgalys R, Bruns TD (2017) Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109(7): 1–13. https://doi.org/10.1080/00275514.2017.1281677
  • Ryvarden L (1975) Studies in the Aphyllophorales of africa 2. Some new species from East africa. Norwegian Journal of Botany 22: 25e34.
  • Sulistyo BP, Larsson KH, Haelewaters D, Ryberg M (2021) Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biology 125(3): 239–255. https://doi.org/10.1016/j.funbio.2020.11.007
  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA, USA.
  • Tura DA, Zmitrovich IV, Wasser SP, Spirin WA, Nevo E (2011) Biodiversity of the Heterobasidiomycetes and Non-Gilled Hymenomycetes (Former Aphyllophorales) of Israel. ARA Gantner Verlag K-G, Ruggell, Liechtenstein, 566 pp.
  • Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3(4): 668–678. https://doi.org/10.1038/s41559-019-0834-1
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Viner I, Spirin V, Zíbarová L, Larsson KH (2018) Additions to the taxonomy of Lagarobasidium and Xylodon (Hymenochaetales, Basidiomycota). MycoKeys 41: 65–90. https://doi.org/10.3897/mycokeys.41.28987
  • Vu D, Groenewald M, Vries MD, Gehrmann T (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • Wang XW, Jiang JH, Zhou LW (2021a) Basidioradulum mayi and B. tasmanicum spp. nov. (Hymenochaetales, Basidiomycota) from both sides of Bass Strait, Australia. Scientific Reports 10(1): 102. https://doi.org/10.1038/s41598-019-57061-y
  • Wang XW, May TW, Liu SL, Zhou LW (2021b) Towards a natural classification of Hyphodontia sensu lato and the trait evolution of basidiocarps within Hymenochaetales (Basidiomycota). Journal of Fungi (Basel, Switzerland) 7(6): 478. https://doi.org/10.3390/jof7060478
  • Wang XW, Zhou LW (2024) Umbellaceae fam. nov. (Hymenochaetales, Basidiomycota) for Umbellus sinensis gen. et sp. nov. and three new combinations. Journal of Fungi (Basel, Switzerland) 10(1): 22. https://doi.org/10.3390/jof10010022
  • Wang XW, Liu SL, Zhou LW (2023) An updated taxonomic framework of Hymenochaetales (Agaricomycetes, Basidiomycota). Mycosphere: Journal of Fungal Biology 14(1): 452–496. https://doi.org/10.5943/mycosphere/14/1/6
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A guide to methods and applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wu SH (1990) The Corticiaceae (Basidiomycetes) subfamilies Phlebioideae, Phanerochaetoideae and Hyphodermoideae in Taiwan. Acta Botanica Fennica 142: 1–123.
  • Wu SH (2000) Studies on Schizopora flavipora s.l., with special emphasis on specimens from Taiwan. Mycotaxon 76: 51–66.
  • Wu SH (2006) Hyphodontia tubuliformis, a new species from Taiwan. Mycotaxon 95: 185–188.
  • Wu SH, Wei CL, Chen Y-P, Chen C-C, Chen S-Z (2021) Schizocorticium gen. nov. (Hymenochaetales, Basidiomycota) with three new species. Mycological Progress 20(6): 769–779. https://doi.org/10.1007/s11557-021-01670-3
  • Yang J, He SH (2014) Hymenochaete in China. 8. H. biformisetosa sp. nov. with a key to species with denticulate setae. Mycotaxon 128(1): 137–144. https://doi.org/10.5248/128.137
  • Yang J, Dai LD, He SH (2016) Hymenochaetopsis nom. nov. proposed to replace Pseudochaete (Hymenochaetales, Basidiomycota) with descriptions of H. laricicola sp. nov and H. gigasetosa new to China. Mycological Progress 15(2): 13. https://doi.org/10.1007/s11557-015-1153-9
  • Yuan Q, Zhao CL (2024) Morphology and multigene phylogeny revealed four new species of Xylodon (Schizoporaceae, Basidiomycota) from southern China. MycoKeys 107: 161–187. https://doi.org/10.3897/mycokeys.107.128223
  • Yuan Q, Luo KY, Zhang Y, Zhao CL (2023) Morphological characteristics and phylogenetic analyses revealed three new wood-inhabiting fungi (Agaricomycetes, Basidiomycota) in Southern China. Phytotaxa 592(2): 179–195. https://doi.org/10.11646/phytotaxa.592.3.1
  • Yuan Q, Li YC, Dai YF, Wang KY, Wang YX, Zhao CL (2024) Morphological and molecular identification for four new woodinhabiting species of Lyomyces (Basidiomycota) from China. MycoKeys 110: 67–92. https://doi.org/10.3897/mycokeys.110.133108
  • Yurchenko E, Wu SH (2014) Hyphoderma formosanum sp. nov. (Meruliaceae, Basidiomycota) from Taiwan. Sydowia 66: 19–23.
  • Yurchenko E, Riebesehl J, Langer E (2017) Clarification of Lyomyces sambuci complex with the descriptions of four new species. Mycological Progress 16(9): 865–876. https://doi.org/10.1007/s11557-017-1321-1
  • Yurchenko E, Riebesehl J, Langer E (2020) Fasciodontia gen. nov. (Hymenochaetales, Basidiomycota) and the taxonomic status of Deviodontia. Mycological Progress 19: 171–184. https://doi.org/10.1007/s11557-019-01554-7
  • Yurchenko E, Langer E, Riebesehl J (2024a) A high species diversity of Lyomyces (Basidiomycota, Hymenochaetales) in Central and South America, revealed after morphological and molecular analysis. MycoKeys 109: 131–169. https://doi.org/10.3897/mycokeys.109.127606
  • Zhang XC, Li YC, Wang YY, Xu Z, Zhao CL, Zhou HM (2024) Xylodon asiaticus (Hymenochaetales, Basidiomycota), a new species of corticioid fungus from southern China. Phytotaxa 634(1): 1–15. https://doi.org/10.11646/phytotaxa.634.1.1
  • Zhao CL, Cui BK, Dai YC (2014) Morphological and molecular identification of two new species of Hyphodontia (Schizoporaceae, Hymenochaetales) from southern China. Cryptogamie. Mycologie 35(1): 87–97. https://doi.org/10.7872/crym.v35.iss1.2014.87
  • Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023) Multi‐gene phylogeny and taxonomy of the wood‐rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi (Basel, Switzerland) 9(3): 320. https://doi.org/10.3390/jof9030320
  • Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93–100. https://doi.org/10.1007/s11557-016-1259-8
  • Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang Z-L, Wu G, Dai Y-C, He S-H, Cui B-K, Zhou J-L, Wu F, He M-Q, Moncalvo J-M, Hyde KD (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Diversity 84(1): 43–74. https://doi.org/10.1007/s13225-017-0381-5
login to comment