Research Article
Print
Research Article
Morpho-phylogenetic evidence reveals Pseudolomaantha thailandica gen. et sp. nov. and Submultiguttulispora multiseptata gen. et sp. nov. in Chaetosphaeriaceae
expand article infoJing-Yi Zhang§, Kevin D. Hyde§|, Jian Ma, Na Wu§#, Fatimah Al-Otibi|, Li-Juan Zhang§, Yong-Zhong Lu
‡ Guizhou Institute of Technology, Guiyang, China
§ Mae Fah Luang University, Chiang Rai, Thailand
| King Saud University, Riyadh, Saudi Arabia
¶ Guizhou Industry Polytechnic College, Guiyang, China
# University of Electronic Science and Technology of China, Chengdu, China
Open Access

Abstract

Anamorphic chaetosphaeriaceous fungi exhibit high morphological variability and are distributed worldwide across terrestrial and aquatic habitats. During an ongoing taxonomic study of microfungi, two intriguing chaetosphaeriaceous hyphomycetes were collected from dead wood and dead bamboo stems in China and Thailand. A polyphasic approach, combining morphological characteristics and phylogenetic analysis of LSU and ITS sequence data, revealed that these fungi represent two new genera within Chaetosphaeriaceae. Pseudolomaantha and Submultiguttulispora are proposed for these new genera, and they exhibit non-phialidic and phialidic asexual morphs, respectively. Pseudolomaantha thailandica gen. et sp. nov. is characterized by a sporidesmium-like asexual morph with macronematous, mononematous conidiophores; monoblastic conidiogenous cells, and pyriform to obclavate, rostrate conidia bearing an apical appendage. Submultiguttulispora multiseptata gen. et sp. nov. is distinguished by macronematous, mononematous conidiophores, mono- to polyphialidic conidiogenous cells, and fusiform or ellipsoidal-fusiform, pale brown to olive green to brown conidia with filiform, hyaline appendages at both ends. Detailed descriptions, illustrations, and notes on the new collections are provided, along with a key to non-phialidic hyphomycetous genera in Chaetosphaeriaceae.

Key words

4 new taxa, asexual morph, Sordariomycetes, sporidesmium-like fungus, taxonomy

Introduction

Chaetosphaeriales was established by Huhndorf et al. (2004) to accommodate the family Chaetosphaeriaceae based on morphological characteristics and phylogenetic analysis of LSU sequence data. Currently, four families, viz., Chaetosphaeriaceae, Helminthosphaeriaceae, Leptosporellaceae, and Linocarpaceae are recognized within this order (Hyde et al. 2020; Wijayawardene et al. 2022). The estimated stem age of Chaetosphaeriales is approximately 158 MYA, based on divergence time analysis (Hyde et al. 2020).

Chaetosphaeriaceae was invalidly introduced by Locquin (1984) without a formal description but was later validly re-established by Réblová et al. (1999) to accommodate Chaetosphaeria and its relatives. Since its re-establishment, the family has shown remarkable diversity with a significant increase in the number of genera and species described in recent years (Lin et al. 2019; Yang et al. 2019; Réblová et al. 2020, 2021a, b, c, d, e, 2022, 2024; Wijayawardene et al. 2022; Wu and Diao 2022, 2023; Réblová and Nekvindová 2023; Yang et al. 2023; Hyde et al. 2024a). Wu and Diao (2022) conducted a comprehensive study of the anamorphic Chaetosphaeriaceae, which included 89 genera, establishing the family as one of the largest within Sordariomycetes (Wijayawardene et al. 2022). Their study also provided identification keys for most genera (Wu and Diao 2022). Following this, Réblová et al. (2022) and Réblová and Nekvindová (2023) carried out systematic reviews of chloridium-like morphotypes, resulting in the addition of seven new genera to Chaetosphaeriaceae. In subsequent years, five more new genera, viz., Gongromerizella, Neocirrenalia, Paragongromeriza, Pseudophialocephala and Pseudostriatosphaeria, were introduced based on morphology and phylogeny (Manawasinghe et al. 2022; Yang et al. 2023; Wu and Diao 2023; Tian et al. 2024; Zhang et al. 2024). Réblová et al. (2024) re-evaluated species in genera Exserticlava, Phaeostalagmus, Phialocephala, and several chalara- and stanjehughesia-like fungi, which led to the establishment of three new genera in Chaetosphaeriaceae. On the other hand, Ellisembia was removed from Chaetosphaeriaceae and reclassified under Sporidesmiaceae (Delgado et al. 2024; Hyde et al. 2024a). Hyde et al. (2024a) accepted 107 genera in Chaetosphaeriaceae.

The sexual morph of Chaetosphaeriaceae is characterized by perithecial, papillate, globose to subglobose, setose, dark brown to black ascomata; unitunicate, clavate to cylindrical asci with a J-, apical ring; and 0–3-septate, fusiform, cylindrical to ellipsoid, hyaline to brown ascospores, often with guttules, a sheath, or appendages (Réblová et al. 1999; Réblová and Gams 2000; Hyde et al. 2020; Wu and Diao 2022). The asexual morphs of Chaetosphaeriaceae include both hyphomycetes and coelomycetes. Coelomycetous morphs are characterized by stromatic, cupuliform or globose, unilocular, setose conidiomata; numerous, septate, ovoid to cylindrical setae; 4–6-septate, unbranched, pigmented conidiophores; integrated, holoblastic or enteroblastic, phialidic conidiogenous cells with conspicuous periclinal thickening at an attenuated apex; and aseptate, hyaline to brown conidia with tubular appendages at the ends (Hashimoto et al. 2015; Hyde et al. 2020; Li et al. 2020). Hyphomycetous morphs are further divided into phialidic and non-phialidic anamorphs. Phialidic anamorphs exhibit macronematous, mononematous, septate, pigmented conidiophores; mono- or polyphialidic conidiogenous cells that proliferate percurrently or sympodially, often with funnel-shaped collarettes; and aggregated, fusiform, allantoid, cylindrical or doliiform conidia, which are mostly hyaline but sometimes pigmented, and often possess filiform appendages (Réblová 2004; Fernández and Huhndorf 2005; Liu et al. 2016; Lin et al. 2019; Luo et al. 2019; Yang et al. 2019; Réblová et al. 2020, 2021a, b, d). Non-phialidic fungi in Chaetosphaeriaceae are predominantly characterized by sporidesmium-like asexual morphs (Ellis 1971, 1976; Wu and Zhuang 2005; Wu and Diao 2022; Yang et al. 2023; Delgado et al. 2024). These taxa are primarily saprobic, occurring on various plant substrates in both terrestrial and aquatic habitats, with some species also found in soil or as fungicolous taxa (Hughes and Kendrick 1968; Perera et al. 2016; Hyde et al. 2018; Réblová et al. 2020, 2021d; Wu and Diao 2022; Zhang et al. 2022; Calabon et al. 2023; Yang et al. 2024; Zhang et al. 2024).

In this study, we aim to introduce two new genera, Pseudolomaantha and Submultiguttulispora, to accommodate two new species, P. thailandica and S. multiseptata, respectively. Evidence from morphology and phylogenetic analysis of a combined LSU and ITS sequence dataset supports the establishment of these two new genera (Pseudolomaantha and Submultiguttulispora) within Chaetosphaeriaceae, Chaetosphaeriales, Sordariomycetes.

Material and methods

Collections, isolation and conservation

Samples of dead bamboo stems and wood were collected from Thailand and China. The collection information of the samples was noted (Rathnayaka et al. 2024), and the samples were taken to the laboratory in zip-lock plastic bags and subsequently examined using the methods described in Senanayake et al. (2020). Morphological observations of the fungal colonies on natural substrates were conducted using a stereomicroscope (Leica EZ4 Microsystems (Schweiz) AG, Singapore). A detailed examination of fungal structures was carried out using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) and photographed with a Nikon DS-Ri2 digital camera attached to the microscope. Measurements of fungal structures were made using Tarosoft® Image Frame Work, and images used in figures were processed and assembled with Adobe Illustrator CS6 (Adobe Systems, San Jose, CA, USA).

Single-spore isolations were performed on water agar (WA), and germinated spores were transferred to potato dextrose agar (PDA) to obtain pure cultures (Chomnunti et al. 2014). Dried specimens were deposited in the Herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand, and the Herbarium of Cryptogams, Kunming Institute of Botany, Academia Sinica (HKAS), Kunming, China, and the Herbarium of Guizhou Academy of Agricultural Sciences (GZAAS), Guiyang, China. Pure cultures were deposited in the Mae Fah Luang University Culture Collection (MFLUCC) and the Kunming Institute of Botany Culture Collection (KUNCC). Faces of Fungi and Index Fungorum numbers were registered following the guidelines of Jayasiri et al. (2015) and Index Fungorum (http://www.indexfungorum.org/Names/Names.asp; accessed on 15 November 2024)

DNA extraction, PCR amplification and sequencing

Pure cultures were incubated at 25 °C–28 °C for one month. Fresh fungal mycelia were scraped from the surface of the colonies and transferred to a 1.5 mL microcentrifuge tube using a sterilized scalpel for genomic DNA extraction. Genomic DNA was extracted using the Biospin Fungus Genomic DNA Extraction Kit (Biospin Fungus Genomic DNA Extraction Kit, BioFlux®, Shanghai, China) following the manufacturer’s instructions. The large subunit of ribosomal DNA (LSU) and the internal transcribed spacer (ITS) gene regions were amplified using primers LR0R and LR5 (Vilgalys and Hester 1990) and ITS5 and ITS4 (White et al. 1990), respectively. Polymerase chain reaction (PCR) was performed in a 50 µL reaction mixture containing 2 µL of DNA template, 2 µL of each forward and reverse primer (10 µM), 25 µL of 2 × Taq PCR Master Mix with blue dye (Sangon Biotech, China), and 19 µL of distilled–deionized water. Amplification conditions for the LSU and ITS regions followed the protocol described by Zhang et al. (2022). The quality of PCR products was assessed using 1% agarose gel electrophoresis stained with ethidium bromide. Purification and sequencing of PCR products were performed by Beijing Qingke Biotechnology Co., Ltd.

Phylogenetic analyses

Original sequences were verified using BioEdit v. 7.1.3.0 (Hall 1999), and were assembled using SeqMan v. 7.0.0 (DNASTAR, Madison, WI, USA). The newly generated sequences were subjected to BLAST searches in GenBank to determine closely related taxa. Taxa used in the phylogenetic analysis for Chaetosphaeriaceae were selected and obtained from previous studies and GenBank (Wu and Diao 2022; Zhang et al. 2022; Réblová and Nekvindová 2023; Réblová et al. 2024). Sequence alignments for each locus were aligned using the online multiple alignment program MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/, accessed September 2024; Katoh et al. 2019). The alignments were visually checked and manually improved where necessary using BioEdit v. 7.1.3.0 (Hall 1999). LSU and ITS sequences were combined using SequenceMatrix 1.7.8 (Vaidya et al. 2011). Sequences generated in this study were deposited in GenBank (Table 1).

Table 1.

Chaetosphaeriaceae taxa used in the phylogenetic analysis, and their corresponding GenBank accession numbers.

Taxon Strain Status ITS LSU
Achrochaeta rivulata CBS 148186 OR286508 OR286551
Achrochaeta talbotii ICMP 15161 MT454480 MT454495
Aciculadictyochaeta luquillensis SMH 2973 N/A AF466074
Adautomilanezia caesalpiniae CC-LAMIC 102/12 T KX821777 KU170671
Anacacumisporium appendiculatum HMAS 245593 T KP347129 KT001553
Anacraspedodidymum submerum YMF1.4176 T MK165445 MK165443
Arcuatospora novae-zelandiae CBS 109474 MW984569 MW984552
Arcuatospora seorsa CBS 147510 T MW984572 MW984555
Aunstrupia nodipes NN043149 OL627566 OL655011
Brachydictyochaeta antillana NN058987 OL627951 OL655147
Brachydictyochaeta bulliformis NN076027 OL628023 OL655155
Brunneodinemasporium brasiliense CBS 112007 T JQ889272 JQ889288
Brunneodinemasporium jonesii GZCC 16–0050 T KY026058 KY026055
Cacumisporium acutatum CBS 101312 AF178553 AF178553
Cacumisporium acutatum CBS 101315 T OR134682 OR134626
Cacumisporium capitulatum CBS 101313 OR134683 OR134627
Caliciastrum bicolor ICMP 15136 T OR134689 OR134633
Caliciastrum bicolor PRA-21507 T N/A OR134634
Caligospora dilabens CBS 734.83 T OR134691 OR134636
Caligospora dilabens CBS 735.83 T MH861684 N/A
Caligospora pannosa CBS 551.89 T OR134692 OR134637
Calvolachnella guaviyunis CBS 134695 T KJ834524 KJ834525
Capillisphaeria crustacea CBS 144665 OR134695 OR134640
Capillisphaeria crustacea ICMP 15139 OR134696 OR134641
Catenularia angulospora MFLUCC 18–1331 MK828638 MK835840
Catenularia catenulata DLUCC 0891 T MK828637 MK835838
Catenularia minor PRM 900544 T MW987827 MW987822
Chaetosphaeria guttulata MFLUCC 17–1703 T MK828636 MK835837
Chaetosphaeria innumera M.R. 3775 OR134699 OR134644
Chaetosphaeria innumera CBS 145639 OP455358 OP455464
Chaetosphaeria mangrovei MCD 069 T MG813821 MG813820
Chaetosphaeria polygonalis GZCC 20–0438 T OP377861 OP377946
Chalarodes obpyramidata PDD 119364 MW987828 MW987823
Chloridium bellum CBS 709.73A T OP455360 OP455466
Chloridium caesium CBS 145633 OP455367 OP455474
Chloridium gamsii CBS 667.75 T OP455415 OP455522
Chloridium virescens CBS 145481 OP455439 OP455547
Codinaea assamica CBS 139907 T OL654077 OL654134
Codinaea fertilis IMI 233824 OL654080 OL654137
Codinaea paniculata CBS 145098 T MT118230 MT118201
Codinaeella lambertiae CBS 143419 T OL654084 OL654141
Codinaeella minuta CBS 280.59 OL654090 OL654147
Codinaeella parvilobata CBS 144536 T OL654100 OL654157
Conicomyces pseudotransvaalensis HHUF 29956 T LC001710 LC001708
Craspedodidymum elatum NN042874 OL627547 OL655004
Cryptophiale udagawae GZCC 18–0047 MN104608 MN104619
Cryptophialoidea fasciculata MFLU 18–1499 MH758195 MH758208
Curvichaeta curvispora ICMP 15115 T OR134705 OR134650
Curvichaeta curvispora ICMP 15118 OR134706 OR134651
Dendrophoma cytisporoides CBS 144107 MT118234 MT118205
Dictyochaeta callimorpha ICMP 15130 MT454483 MT454498
Dictyochaeta fuegiana ICMP 15153 T MT454487 EF063574
Dictyochaeta querna CBS 145503 MT454489 MT454503
Dinemasporium cruciferum HHUF 30001 AB900895 AB934039
Dinemasporium pseudoindicum CBS 127402 T JQ889277 JQ889293
Ericiosphaeria spinosa S.M.H. 2754 T MW984575 AF466079
Eucalyptostroma eucalypti CBS 142074 T KY173408 KY173500
Eucalyptostroma hongluosiense NN076613 OL628127 OL655185
Eucalyptostromiella beijingensis NN078016 OL628501 OL655251
Exserticlava vasiformis TAMA 450 N/A AB753846
Exserticlavopsis chlorotunicata S.M.H. 1565 T N/A AF466064
Falholtia kaohsiungensis NCYU108K3-1-1 T MT939301 MT939304
Falholtia kaohsiungensis NN050711 OL627699 OL655083
Flectospora laminata CBS 112964 T MW984576 MW984558
Fuscocatenula submersa MFLUCC 18–1342 T MK828634 MK835835
Fuscocatenula variegata NN055332 OL627817 OL655124
Fusichloridium cylindrosporum CBS 101429 T OR134709 OR134653
Fusichloridium cylindrosporum CBS 101430 OR134710 OR134654
Geniculoseta preussii CBS 263.75 OR134713 OR134657
Geniculoseta preussii CBS 145478 OR134714 OR134658
Gongromeriza myriocarpa CBS 264.76 AF178552 AF178552
Gongromeriza myriocarpa CBS 141.53 T OP455456 OP455564
Gongromeriza pygmaea IMI 506815 OR134724 OR134668
Gongromerizella pachytrachela CBS 645.75 T OP455461 OP455569
Gongromerizella pini CBS 146011 T MT223787 MT223882
Gongromerizella silvana CBS 171.76 T OR134729 OR134673
Infundibulomyces cupulatus BCC 11929 T EF113976 EF113979
Infundibulomyces oblongisporus BCC 13400 T EF113977 EF113980
Kionochaeta microspora GZCC 18–0036 T MN104607 MN104618
Kionochaeta ramifera MUCL 39164 MW144421 MW144404
Kionochaetiella ivoriensis CBS 374.76 T MH860988 MH872758
Kylindrochaeta lignomollis S.M.H. 3015 T EU037896 AF466073
Leptosporella arengae MFLUCC 15–0330 T MG272255 MG272246
Leptosporella bambusae MFLUCC 12–0846 T KU940134 KU863122
Linkosia multiseptum CGMCC 3.20786 T OL627557 OL655008
Linkosia rostrata CGMCC 3.20790 T OL627662 OL655059
Lomaantha aquirostrata GZCC 20–0503 T OP377802 OP377901
Lomaantha aurantiaca CBS 126743 T HM241692 HM241692
Lomaantha aurea CBS 144403 T MH836375 MH836376
Lunatochaeta shenzhenensis CGMCC 3.20757 T OL628577 OL655258
Menispora caesia CBS 145022 OL654107 OL654164
Menispora ciliata CBS 122131 T EU488736 OL654165
Menispora tortuosa CBS 117553 OL654111 OL654169
Menisporopsis pirozynskii MUCL 47217 MW984579 MW984561
Menisporopsis theobromae MUCL 41079 MW984580 MW984562
Morrisiella indica NN042908 OL627551 OL655005
Morrisiella indica NN044710 OL627629 OL655037
Multiguttulispora dimorpha CBS 140002 MW984582 MW984564
Multiguttulispora triseptata IMI 353690 MW984584 MW984566
Nawawia filiformis MFLUCC 17–2394 MH758196 MH758209
Neonawawia malaysiana CPC 16757 T GU229886 GU229887
Neopseudolachnella acutispora MAFF 244358 T AB934065 AB934041
Neopseudolachnella magnispora MAFF 244359 T AB934066 AB934042
Neocirrenalia nigrospora MFLUCC 18–0418 OP377888 OP377974
Nimesporella capillacea IMI 358908 T OL654114 OL654171
Paliphora intermedia CBS 896.97 I MH862682 EF204501
Papillospora hebetiseta CBS 102340 T AF178549 AF178549
Paraceratocladiella polysetosa NN044119 OL627605 OL655027
Paraceratocladium silvestre NN055375 OL627830 OL655132
Paracryptophiale pirozynskii CGMCC 3.20706 T OL627641 OL655047
Paragaeumannomyces panamensis S.M.H. 3596 T AY906948 MT118218
Paragaeumannomyces rubicundus S.M.H. 3221 T MT118242 MT118224
Phaeodischloridium aquaticum MFLUCC 18–1341 T MK828639 MK835841
Phialoarthrobotryum triseptatum CBS 120.84 T MH861706 MH873417
Phialogeniculata guadalcanalensis MFLUCC 18–0260 T MK828625 MK835825
Phialogeniculata guadalcanalensis NN044662 OL627622 OL655032
Phialosporostilbe scutiformis MFLUCC 17–0227 T MH758194 MH758207
Phialosporostilbe scutiformis MFLUCC 22–0053 ON678180 ON678145
Phialoturbella calva ICMP 23826 T MW984585 MW984567
Phialoturbella lunata MFLUCC 18–0642 T MK828624 MK835824
Polynema podocarpi CBS 144415 T MH327797 MH327833
Pseudodinemasporium fabiforme CBS 140010 KR611889 KR611906
Pseudolachnea fraxini CBS 113701 T JQ889287 JQ889301
Pseudolachnea hispidula MAFF 244365 AB934072 AB934048
Pseudolachnella asymmetrica MAFF 244366 T AB934073 AB934049
Pseudolachnella scolecospora MAFF 244379 AB934086 AB934062
Pseudolomaantha thailandica MFLUCC 24–0521 T PQ625465 PQ625467
Pseudothozetella lunata CGMCC 3.20661 T OL628034 OL655157
Psilobotrys minutus CBS 877.73 OR134733 OR134677
Psilobotrys minutus CBS 145632 OR134734 OR134678
Rattania setulifera GUFCC 15501 T GU191794 HM171322
Riisgaardia longispora CGMCC 3.20794 T OL627701 OL655085
Riisgaardia obclavata CGMCC 3.20787 T OL627568 OL655013
Riisgaardia vermiculata NN042952 OL627555 OL655007
Spadicocephala fusca CBS 301.85 AF486122 MH873571
Spadicocephala fusca CBS 300.85 MH861882 MH873570
Spicatispora fennica CBS 101641 OR134735 OR134679
Sporendocladia beijingensis CGMCC 3.20738 T OL628290 OL655217
Sporendocladia fumosa NN047731 OL627669 OL655065
Sporoschisma hemipsilum MUCL 56487 MW987829 MW987824
Sporoschisma mirabile CBS 144794 MW987830 MW987825
Stanjehughesia hormiscioides S.M.H.2794 N/A AF466060
Stilbochaeta malaysiana IMI 312436 T OL654121 OL654178
Stilbochaeta ramulosetula IMI 313452 T OL654124 OL654181
Striatosphaeria castanea CBS 145352 T MT118244 MT118229
Striatosphaeria codinaeophora M.R. 1230 AF178546 AF178546
Submultiguttulispora multiseptata KUNCC 23–14145 T PQ625466 PQ625468
Tainosphaeria cecropiae CBS 101687 T MW984586 MW984568
Tainosphaeria crassiparies S.M.H. 1934 T MW984587 AF466089
Tainosphaeriella aquatica MFLUCC 17–2370 T MZ161197 MZ161195
Tainosphaeriella thailandense MFLUCC 18–1282 T MZ161198 MZ161196
Thozetella cristata CBS 101112 OL654126 OL654183
Thozetella tocklaiensis CBS 378.58 T OL654128 OL654185
Verhulstia biformis NN077655 OL628434 OL655237
Verhulstia trisororum CBS 143234 T MG022181 MG022160
Zanclospora novae-zelandiae ICMP 15781 T MW144429 MW144411
Zanclospora ramifera ICMP 22738 T MW144433 MW144415
Zanclospora iberica CBS 130426 T KY853480 KY853544
Zanclosporiella minuta S.M.H. 3396 N/A AF466075

The fasta files were converted to formats required for the AliView program (Larsson 2014), PHYLIP for maximum likelihood analysis (ML), and NEXUS for Bayesian inference (BI). Phylogenetic analyses were performed through the CIPRES science Gateway CIPRES science Gateway V. 3.3 (https://www.phylo.org/portal2/home.action; Miller et al. 2010). Maximum likelihood analysis was performed using RAxML-HPC v.8 tool with rapid bootstrap analysis, followed by 1000 bootstrap replicates (Miller et al. 2010; Stamatakis 2014). The final tree was selected from the suboptimal trees of each run by comparing likelihood scores under the GTRGAMMA substitution model. Bayesian analysis was performed in MrBayes 3.2.7a (Ronquist et al. 2012). The best-fit substitution model GRT + I + G was decided for all two genes by MrModeltest 2.3 under the Akaike Information Criterion (AIC) (Nylander 2004). The Markov Chain Monte Carlo (MCMC) sampling approach was used to calculate posterior probabilities (PP) (Rannala and Yang 1996; Huelsenbeck 2001; Zhaxybayeva and Gogarten 2002). Four simultaneous Markov chains were run for 1 million generations, with trees sampled every 100 generations, resulting in 10,000 trees. The first 2,000 trees, representing the burn-in phase of the analyses, were discarded, and the remaining trees were used for calculating posterior probabilities (PPs) in the majority rule consensus tree (Larget and Simon 1999).

Phylogenetic trees were visualized using FigTree v.1.4.4 (Rambaut 2014), and the layouts were reorganized using the methods described by Xie et al. (2023) and finalized with Adobe Illustrator CS6 software (Adobe Systems, USA). Sequences generated from our collections were deposited in GenBank and are listed in Table 1. Decisions regarding the discovery of new species or records were made following the guidelines of Maharachchikumbura et al. (2021).

Phylogenetic analysis results

The partial LSU-ITS nucleotide sequences were used to determine the phylogenetic position of the new taxa within the family Chaetosphaeriaceae. The concatenated sequence matrix comprises 157 ingroup taxa of Chaetosphaeriaceae and two outgroup taxa, Leptosporella arengae (MFLUCC 15–0330) and L. bambusae (MFLUCC 12–0846). After alignment, the dataset contained 1,450 characters (LSU: 861 bp, ITS: 589 bp), including 853 distinct alignment patterns, with 11.93% comprising undetermined characters or gaps. Base frequencies were as follows: A = 0.224314, C = 0.274605, G = 0.307808, and T = 0.193272. Substitution rates were AC = 1.327038, AG = 1.998330, AT = 1.575283, CG = 0.648947, CT = 6.385392, and GT = 1.000000, with a tree length of 12.245369. The distribution shape parameter (α) was calculated as 0.317788. The ML and BI trees displayed similar topologies with no significant differences. The best-scoring RAxML tree is shown in Fig. 1, with a final likelihood value of -31034.684968.

Figure 1. 

The phylogenetic tree generated from ML analysis is based on a concatenated LSU-ITS dataset for the Chaetosphaeriaceae family. Bootstrap support values for ML equal to or greater than 75% and Bayesian posterior probabilities (PPs) equal to or greater than 0.95 were indicated above or below the nodes as ML/PP. Leptosporella arengae (MFLUCC 15–0330) and L. bambusae (MFLUCC 12–0846) were selected as the outgroup taxa. The newly obtained sequences are indicated in red.

Our two isolates were identified as Pseudolomaantha thailandica gen. et sp. nov. and Submultiguttulispora multiseptata gen. et sp. nov. in Chaetosphaeriaceae. Pseudolomaantha shares a sister relationship with a clade comprising Caliciastrum, Caligospora, and Craspedodidymum, while Submultiguttulispora forms a separate clade within Chaetosphaeriaceae that is close to Multiguttulispora. Both genera represent distinct, independent lineages and do not belong to any existing genera within Chaetosphaeriaceae.

Taxonomy

Pseudolomaantha J.Y. Zhang, Y.Z. Lu & K.D. Hyde, gen. nov.

Etymology

The name refers to the new genus’s similarity to the genus “Lomaantha”.

Type species

Pseudolomaantha thailandica J.Y. Zhang, Y.Z. Lu & K.D. Hyde

Description

Saprobic on dead stems of bamboo in terrestrial habitats. Sexual morph Undetermined. Asexual morph Colonies on natural substrate, effuse, scattered, hairy, dark brown, glistening. Mycelium partly immersed, composed of brown hyphae. Conidiophores macronematous, mononematous, cylindrical, straight or slightly flexuous, septate, dark brown to pale brown. Conidiogenous cells integrated, terminal, holoblastic, monoblastic, cylindrical, brown or pale brown at the apex. Conidia acrogenous, solitary, rostrate, tapering to the round apex, truncate at base, straight or slightly curved, septate, with distoseptate, pale brown to dark brown; with a gold and glistening sheath near the apex.

Pseudolomaantha thailandica J.Y. Zhang, Y.Z. Lu & K.D. Hyde, sp. nov.

Fig. 2

Etymology

The name refers to the country “Thailand” from where the holotype was collected.

Holotype

MFLU 24-0394.

Description

Saprobic on dead stems of bamboo in a terrestrial habitat. Sexual morph Undetermined. Asexual morph Hyphomycetous. Colonies on natural substrate superficial, effuse, scattered, hairy, dark brown, with gold glistening on the apex of conidia. Mycelium partly immersed, partly superficial, composed of septate, mostly unbranched, smooth, brown hyphae. Conidiophores 176–275 × 6–9(–11) µm (x̄ = 219.6 × 7.5 µm, n = 20), macronematous, mononematous, solitary, cylindrical, straight or slightly flexuous, septate, black at the base, paler to light brown or brown towards the apex. Conidiogenous cells 12–22 × 5.5–7 µm (x̄ = 16.4 × 6.1 µm, n = 20), integrated, terminal, holoblastic, monoblastic, cylindrical, brown or pale brown at the apex. Conidia (92.5–)95–112.5 × 12.5–15.5 µm (x̄ = 105.8 × 13.8 µm, n = 25), acrogenous, solitary, dry, pyriform to obclavate, rostrate, tapering to the round apex, truncate at base, basal cell conical-truncate, straight or slightly curved, up to 12-septate, with distoseptate, not constricted or slightly constricted at septum, guttulate, brown, two upper cells subhyaline to hyaline, with gold and glistening appendages around the apex of the conidia.

Figure 2. 

Pseudolomaantha thailandica (MFLU 24–0394, holotype) a the host substrate b, c colonies on the host substrate d–g conidiophores with conidiogenous cells h–k conidia l, m conidial appendage n, o pure culture from front and reverse. Scale bars: 200 µm (b); 100 µm (c); 50 µm (d–k); 20 µm (l, m).

Culture characteristics

Conidia germinating on WA within 15 h and germ tube produced from the ends of conidia. Colonies growing on PDA, reaching 22–26 mm in 20 days at 26 °C, circular, edge entire, umbonate with a knobby protuberance, white from above; zonate, yellowish orange in the center, grayish olive to yellowish towards to margin from below.

Material examined

Thailand • Chiangmai Province, Mushroom Research Center (MRC), on dead stems of bamboo, 11 September 2020, H.W. Shen, Y205-1 (MFLU 24–0394, holotype), ex-type living culture, MFLUCC 24–0521.

Notes

BLAST results for the ITS and LSU sequence data of Pseudolomaantha thailandica show 88.39% similarities with Caligospora dilabens (CBS 735.83) and 97.81% similarities with Craspedodidymum elatum (NN042874), respectively. Phylogenetic analysis shows that Pseudolomaantha thailandica forms a distinct lineage basal to Caliciastrum, Caligospora, and Craspedodidymum with statistical support (79% ML/0.97 PP, Fig. 1). Members of Caliciastrum, Caligospora, and Craspedodidymum are characterized by phialidic conidiogenous cells with open, vase-shaped collarettes, and brown or hyaline conidia. In contrast, our new species has a sporidesmium-like asexual morph with non-phialidic conidiogenous cells (Figueroa et al. 2018; Wu and Diao 2022; Réblová and Nekvindová 2023). Morphologically, Pseudolomaantha resembles Lomaantha in having macronematous, mononematous conidiophores, integrated holoblastic conidiogenous cells, and acrogenous, obclavate, rostrate, distoseptate, pale brown to brown conidia (Wu and Zhuang 2005; Wu and Diao 2022; Réblová and Nekvindová 2023). However, the two genera are phylogenetically distinct. Additionally, Lomaantha species have conidiogenous cells that are determinate or extend percurrently a few times, as well as conidia that lack or bear filiform, extended, simple or branched apical appendages and distinct septal pores (Wu and Zhuang 2005; Wu and Diao 2022; Réblová and Nekvindová 2023). In contrast, Pseudolomaantha has determinate conidiogenous cells, conidia with golden, glistening appendages at the conidial apex, and lack distinct pores in the distosepta. Based on the combination of morphological and phylogenetic evidence, Pseudolomaantha is introduced as a new genus to accommodate P. thailandica within Chaetosphaeriaceae.

Submultiguttulispora J.Y. Zhang, Y.Z. Lu & K.D. Hyde, gen. nov.

Etymology

The name refers to the new genus’s close affinity with the genus “Multiguttulispora”.

Type species

Submultiguttulispora multiseptatum J.Y. Zhang, Y.Z. Lu & K.D. Hyde.

Description

Saprobic on dead wood. Sexual morph Undetermined. Asexual morph Colonies on natural substrate, effuse, single, or gregarious, brown to black. Mycelium partly immersed, composed of brown hyphae. Conidiophores macronematous, mononematous, single or in small groups, septate, dark brown at the base becoming light brown towards the apex. Conidiogenous cells integrated, mono- to polyphialidic, terminal to lateral, with funnel-shaped collarettes, cylindrical to cylindrical-lageniform, brown to pale brown to subhyaline towards the apex. Conidia acropleurogenous, septate, pale brown to olive green to brown, with subhyaline cells at both ends of the conidia, fusiform, or ellipsoidal-fusiform, with a filiform appendage at each end.

Submultiguttulispora multiseptata J.Y. Zhang, K.D. Hyde & Y.Z. Lu, sp. nov.

Fig. 3

Etymology

The name refers to the multi-septate conidia of the new species.

Holotype

HKAS 129868.

Description

Saprobic on a dead wood log by a stream. Sexual morph undetermined. Asexual morph Hyphomycetous. Colonies on natural substrate superficial, effuse, single, or gregarious, arise in groups from knots of hyphal cells, brown to black. Mycelium partly superficial, partly immersed, composed of septate, pale brown to brown, smooth-walled hyphae. Conidiophores 285–385(–533) µm long × 5–7 µm wide at the base (x̄ = 341 × 6 µm, n = 15), macronematous, mononematous, single or clustered in groups, erect, straight or flexible, unbranched, septate, smooth, guttulate, dark brown or black at the base, becoming pale brown towards the apex. Conidiogenous cells 64.5–100 × 4.3–6.1 µm (x̄ = 80.2 × 5.2 µm, n = 15), mono- to polyphialidic, with discrete, terminal to lateral phialides, integrated, terminal, with lateral openings formed by successive sympodial elongation, cylindrical to cylindrical–lageniform, with funnel-shaped collarettes, smooth-walled, guttulate, brown at the base and becoming pale brown to subhyaline towards the apex. Conidia 33–40 × 7.5–9 µm (x̄ = 36.6 × 8.3 µm, n = 20), acropleurogenous, 5(–6)-septate, not constricted at the septum, pale brown to olive green to brown, with subhyaline cells at both ends, straight, sometimes slightly curved, occasionally guttulate, fusiform, or ellipsoidal-fusiform, with a filiform, short and hyaline appendage at each end.

Figure 3. 

Submultiguttulispora multiseptata (HKAS 129868, holotype) a colonies on the host substratum b, c conidiophores d–g conidiogenous cells (arrows showing conidiogenous loci) h–p conidia q pure culture from front and reverse. Scale bars: 100 µm (b, c); 20 µm (d–p).

Culture characteristics

Conidia germinating on WA within 15 h and germ tube produced from conidia. Colonies growing on PDA, reaching 35–40 mm diameter in 15 days at 26 °C, circular with slightly irregular edge, flat with a protuberance in the center, dry, velvety, zonate, tephrosiousto to grey from center to margin; dark brown or black from below.

Material examined

China • Hainan Province, Wuzhishan City, Wuzhishan Tropical Rainforest Scenic Area, on a dead wood log by a stream, 15 August 2021, J.Y. Zhang, WZ44-1 (HKAS 129868, holotype; GZAAS 23–0763, isotype); ex-type living cultures, KUNCC 23–14145.

Notes

Based on a BLASTn search in GenBank, the ITS and LSU sequences of our new collection show 91.92% and 95.35% similarity to Phialogeniculata guadalcanalensis (NN044662) and Multiguttulispora triseptata (IMI 353690), respectively. The phylogenetic tree indicates that our new isolate forms a distinct lineage closely related to Multiguttulispora, without statistical support. This lack of support may be attributed to the absence of molecular sequences of many close phylogenetic relatives, which remain undiscovered (Hyde et al. 2024c). Submultiguttulispora shares similarities with Multiguttulispora in the absence of setae and the presence of macronematous conidiophores with polyphialidic conidiogenous cells that exhibit sympodial extension. Both genera produce septate conidia with a filiform, hyaline appendage at each end. However, Submultiguttulispora is distinguished from Multiguttulispora by its fusiform or ellipsoidal-fusiform, dematiaceous conidia, whereas the conidia of Multiguttulispora are cylindrical, oblong, and hyaline. Based on these morphological and phylogenetic differences, a new genus, Submultiguttulispora, is introduced to accommodate our new isolate, S. multiseptata.

Discussion

In this study, Pseudolomaantha thailandica gen. et sp. nov. and Submultiguttulispora multiseptata gen. et sp. nov. were introduced based on morphological characteristics and phylogenetic analyses. These two species exhibit non-phialidic and phialidic asexual morphs, respectively. The introduction of these new taxa further highlights the richness and diversity of anamorphic chaetosphaeriaceous fungi (Réblová et al. 2021a, b, c, d, e; Wu and Diao 2022).

The characteristics of conidiophores, conidiogenous cells, and conidia are particularly important for delimiting asexual genera in Chaetosphaeriaceae, along with the presence or absence of appendages (Réblová et al. 1999, 2021b, c, d; Lin et al. 2019; Zheng et al. 2020; Wu and Diao 2022). A significant number of anamorphic chaetosphaeriaceous genera produce hyaline or subhyaline conidia in various shapes, often with filiform, hyaline setulae at the ends, as seen in genera like Arcuatospora, Codinaea, and Kinochaeta (Hughes and Kendrick 1968; Réblová et al. 2020, 2021b, c; Wu and Diao 2022; Hyde et al. 2024b). In contrast, many hyphomycetous genera with dematiaceous conidia lack setulae, such as Catenularia, Phaeodischloridium and Sporoschisma (Goh et al. 1997; Yang et al. 2016; Réblová et al. 2021e; Wu and Diao 2022). Submultiguttulispora multiseptata gen. et sp. nov. resembles other anamorphic chaetosphaeriaceous genera in having phialidic conidiogenous cells and conidia with filiform, hyaline setulae at both ends (Réblová and Gams 2000; Liu et al. 2016; Lin et al. 2019; Wu and Diao 2022). However, it is distinct in its well-developed conidiophores, polyphialidic conidiogenous cells, and pale brown to olive green to brown, septate conidia with hyaline setulae at each end. The latest key to phialidic asexual genera in Chaetosphaeriaceae was provided by Wu and Diao (2022).

Wu and Diao (2022) recognized ten hyphomycetous genera with non-phialidic anamorphs in Chaetosphaeriaceae, viz., Aunstrupia, Ellisembia, Falholtia, Linkosia, Lomaantha, Morrisiella, Paliphora, Riisgaardia, Stanjehughesia, and Zanclospora. Subsequently, a new non-phialidic genus, Neocirrenalia, characterized by dark brown or black helicoid conidia, was added to this family (Meyers and Moore 1960; Somrithipol et al. 2002; Yang et al. 2023). Recently, Delgado et al. (2024) reclassified Ellisembia into Sporidesmiaceae (Sordariomycetes) based on analyses of a newly collected type species, E. coronata, and expanded and emended Lomaantha to include related ellisembia-like taxa within a monophyletic lineage in Chaetosphaeriaceae. Currently, Chaetosphaeriaceae comprises 10 non-phialidic hyphomycetous genera. Most of these genera are sporidesmium-like, with exceptions such as Neocirrenalia (a helicosporous genus) and Paliphora, which is characterized by setiform conidiophores, polytretic conidiogenous cells, and subfusiform to subacerose, hyaline conidia (Gusmão et al. 2008; Shenoy et al. 2010; Goh et al. 2014; Malosso et al. 2017; Wu and Diao 2022; Yang et al. 2023; Ma et al. 2024). In this study, we introduced a new genus, Pseudolomaantha, which also exhibits a sporidesmium-like asexual morph, characterized by well-developed, solitary or clustered conidiophores and pyriform to obclavate conidia with a glistening gold appendage around the apex, but is phylogenetically distinct. A key to hyphomycetous genera with non-phialidic anamorphs is provided herein.

Key to hyphomycetous genera with non-phialidic anamorphs

1 Sporidesmium-like genera 2
Not sporidesmium-like genera 3
2 Conidiophores absent (reduced to conidiogenous cells), or solitary or in a small group 4
Conidiophores in synnemata 5
3 Conidiogenous cells polytretic; conidia hyaline, subfusiform to subacerose Paliphora
Conidiogenous cells monoblastic; conidia black, helicoid Neocirrenalia
4 Conidia with appendage at the apex 6
Conidia without appendage 7
5 Conidia euseptate Falholtia
Conidia distoseptate Morrisiella
6 Conidiophores absent or well-developed, conidia cylindrical, obclavate or narrowly fusiform, often with filamentous, hyaline apical appendages and typically bearing distinct pores in the distosepta Lomaantha
Conidiophores well-developed, conidia pyriform to obclavate, with a gold and glistening appendage around the apex, and distinct pores are not observed Pseudolomaantha
7 Synanamorph of Zanclospora with phialides Zanclospora
Not synanamorph of Zanclospora 8
8 Conidiophores absent; conidia euseptate 9
Conidiophores absent, conidia distoseptate Linkosia
9 Conidia obclavate, obclavate-rostrate, subcylindrical Riisgaardia
Conidia cylindrical, clavate, or obclavate Stanjehughesia

Acknowledgments

We would like to thank Shaun Pennycook (Manaaki Whenua Landcare Research, New Zealand) for advising on the new fungal names. Jing-Yi Zhang thanks Mae Fah Luang University for granting her the tuition fee scholarship and the dissertation writing grant (Grant number: 7702(6)/842 (no.0320)). Jing-Yi Zhang also thanks Hong-Wei Shen for the sample collection. The authors also extend their appreciation to the Researchers Supporting Project number (RSP2025R114), King Saud University, Riyadh, Saudi Arabia.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was funded by the National Natural Science Foundation of China (NSFC 32060013) and the Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education (QJHKYZ [2022]345).

Author contributions

Morphological data, photo plates, and phylogenetic analyses were completed by Jing-Yi Zhang. The original draft was written by Jing-Yi Zhang, and Kevin D. Hyde, Jian Ma, Na Wu, Fatimah Al-Otibi & Yong-Zhong Lu revised the paper. Financial support was provided by Li-Juan Zhang and Yong-Zhong Lu.

Author ORCIDs

Jing-Yi Zhang https://orcid.org/0000-0003-0606-6169

Kevin D. Hyde https://orcid.org/0000-0002-2191-0762

Jian Ma https://orcid.org/0009-0008-1291-640X

Na Wu https://orcid.org/0000-0002-4837-9019

Fatimah Al-Otibi https://orcid.org/0000-0003-3629-5755

Li-Juan Zhang https://orcid.org/0000-0002-3234-6757

Yong-Zhong Lu https://orcid.org/0000-0002-1033-5782

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Calabon MS, Hyde KD, Jones EBG, Bao DF, Bhunjun CS, Phukhamsakda C, Shen HW, Gentekaki E, Al Sharie AH, Barros J, Chandrasiri KSU, Hu DM, Hurdeal VG, Rossi W, Valle LG, Zhang H, Figueroa M, Raja HA, Seena S, Song HY, Dong W, El-Elimat T, Leonardi M, Li Y, Li YJ, Luo ZL, Ritter CD, Strongman DB, Wei MJ, Balasuriya A (2023) Freshwater Fungal Biology. Mycosphere 14(1): 195–413. https://doi.org/10.5943/mycosphere/14/1/4
  • Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5
  • Delgado G, Koukol O, Maciá-Vicente JG, Colbert W, Piepenbring M (2024) Redefining Ellisembia sensu stricto with a reassessment of related taxa in Sordariomycetes. Mycological Progress 23(1): 1–25. https://doi.org/10.1007/s11557-024-01967-z
  • Fernández FA, Huhndorf SM (2005) New species of Chaetosphaeria, Melanopsammella and Tainosphaeria gen. nov. from the Americas. Fungal Diversity 18: 15–57.
  • Figueroa R, Bran M, Morales O, Morataya E, Minter DW, Castañeda-Ruiz RF (2018) Craspedodidymum guatemalense sp. nov. from Guatemala. Mycotaxon 133(2): 315–322. https://doi.org/10.5248/133.315
  • Goh T, Ho W, Hyde K, Umali T (1997) New records and species of Sporoschisma and Sporoschismopsis from submerged wood in the tropics. Mycological Research 101(11): 1295–1307. https://doi.org/10.1017/S0953756297003973
  • Goh T-K, Lau W-Y, Teo K-C (2014) Paliphora curviapicis sp. nov. from Malaysia, and a synopsis of the genus. Mycotaxon 127(1): 145–153. https://doi.org/10.5248/127.145
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95–98.
  • Hashimoto A, Sato G, Matsuda T, Matsumura M, Hatakeyama S, Harada Y, Ikeda H, Tanaka K (2015) Taxonomic revision of Pseudolachnea and Pseudolachnella and establishment of Neopseudolachnella and Pseudodinemasporium gen. nov. Mycologia 107(2): 383–408. https://doi.org/10.3852/14-171
  • Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S, Camporesi E, Chethana KWT, Dayarathne MC, De Silva NI, Dissanayake AJ, Ekanayaka AH (2018) Mycosphere notes 169–224. Mycosphere 9(2): 271–430. https://doi.org/10.5943/mycosphere/9/2/8
  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere 11(1): 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
  • Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, Wijesinghe SN, Armand A, Biketova AY, Chethana KWT, Erdoğdu M, Ge ZW, Groenewald JZ, Hongsanan S, Kušan I, Leontyev DV, Li DW, Lin CG, Liu NG, Maharachchikumbura SSN, Matočec N, May TW, McKenzie EHC, Mešić A, Perera RH, Phukhamsakda C, Piątek M, Samarakoon MC, Selcuk F, Senanayake IC, Tanney JB, Tian Q, Vizzini A et al. (2024a) The 2024 Outline of Fungi and fungus-like taxa. Mycosphere 15(1): 5146–6239. https://doi.org/10.5943/mycosphere/15/1/25
  • Hyde KD, Wijesinghe SN, Afshari N, Aumentado HD, Bhunjun CS, Boonmee S, Camporesi E, Chethana KWT, Doilom M, Dong W, Du TY, Farias ARG, Gao Y, Jayawardena RS, Karimi O, Karunarathna SC, Kularathnage ND, Lestari AS, Li CJY, Li YX, Liao CF, Liu XF, Lu L, Lu YZ, Luo ZL, Ma J, Mamarabadi M, Manawasinghe IS, Mapook A, Mi LX, Niranjan M, Senanayake IC, Shen HW, Su HL, Tibpromma S, Xu RJ, Yan JY, Yang YH, Yang YY, Yu FQ, Kang JC, Zhang JY (2024b) Mycosphere Notes 469–520. Mycosphere 15(1): 1294–1454. https://doi.org/10.5943/mycosphere/15/1/11
  • Hyde KD, Saleh A, Aumentado HDR, Boekhout T, Bera I, Khyaju S, Bhunjun CS, Chethana KWT, Phukhamsakda C, Doilom M, Thiyagaraja V, Mortimer PE, Maharachchikumbura SSN, Hongsanan S, Jayawardena RS, Dong W, Jeewon R, Al-Otibi F, Wijesinghe SN, Wanasinghe DN (2024c) Fungal numbers: Global needs for a realistic assessment. Fungal Diversity 128(1): 191–225. https://doi.org/10.1007/s13225-024-00545-8
  • Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu J-K, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo J-M, Ghobad-Nejhad M, Nilsson H, Pang K-L, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen T-C, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li W-J, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao R-L, Zhao Q, Kang J-C, Promputtha I (2015) The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74(1): 3–18. https://doi.org/10.1007/s13225-015-0351-8
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Li WJ, McKenzie EHC, Liu J-KJ, Bhat DJ, Dai DQ, Camporesi E, Tian Q, Maharachchikumbura SSN, Luo ZL, Shang QJ, Zhang J-F, Tangthirasunun N, Karunarathna SC, Xu J-C, Hyde KD (2020) Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Diversity 100(1): 279–801. https://doi.org/10.1007/s13225-020-00440-y
  • Lin CG, McKenzie EHC, Liu JK, Jones EBG, Hyde KD (2019) Hyaline-spored chaetosphaeriaceous hyphomycetes from Thailand and China, with a review of the family Chaetosphaeriaceae. Mycosphere 10(1): 655–700. https://doi.org/10.5943/mycosphere/10/1/14
  • Liu JK, Yang J, Maharachchikumbura SSN, McKenzie EHC, Jones EG, Hyde KD, Liu ZY (2016) Novel chaetosphaeriaceous hyphomycetes from aquatic habitats. Mycological Progress 15(10): 1157–1167. https://doi.org/10.1007/s11557-016-1237–1
  • Locquin M (1984) Mycologie générale et structurale. Masson, Paris, 551.
  • Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu N-G, Lu Y-Z, Jayawardena RS, Li J-F, Su H-Y (2019) Freshwater Sordariomycetes. Fungal Diversity 99(1): 451–660. https://doi.org/10.1007/s13225-019-00438-1
  • Ma J, Hyde KD, Tibpromma S, Gomdola D, Liu N-G, Norphanphoun C, Bao D-F, Boonmee S, Xiao X-J, Zhang L-J, Luo Z-L, Zhao Q, Suwannarach N, Karunarathna SC, Liu J-K, Lu Y-Z (2024) Taxonomy and systematics of lignicolous helicosporous hyphomycetes. Fungal Diversity 129(1): 365–653. https://doi.org/10.1007/s13225-024-00544-9
  • Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD, Haelewaters D, Perera RH, Samarakoon MC, Wanasinghe DN, Bustamante DE, Liu J-K, Lawrence DP, Cheewangkoon R, Stadler M (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109(1): 155–179. https://doi.org/10.1007/s13225-021-00486-6
  • Malosso E, Costa PM, Barbosa MA, Silva G, Castañeda-Ruiz RF (2017) Paliphora bicolorata sp. nov. from the Brazilian Atlantic Forest. Mycotaxon 132(4): 903–907. https://doi.org/10.5248/132.903
  • Manawasinghe IS, Calabon MS, Jones EBG, Zhang YX, Liao CF, Xiong Y, Chaiwan N, Kularathnage ND, Liu NG, Tang SM, Sysouphanthong P, Du TY, Luo M, Pasouvang P, Pem D, Phonemany M, Ishaq M, Chen JW, Karunarathna SC, Mai ZL, Rathnayaka AR, Samarakoon MC, Tennakoon DS, Wijesinghe SN, Yang YH, Zhao HJ, Fiaz M, Doilom M, Dutta AK, Khalid AN, Liu JW, Thongklang N, Senanayake IC, Tibpromma S, You LQ, Camporesi E, Gafforov YS, Hyde KD (2022) Mycosphere notes 345–386. Mycosphere 13(1): 454–557. https://doi.org/10.5943/mycosphere/13/1/3
  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 gateway computing environments workshop (GCE), IEEE, 8 pp. https://doi.org/10.1109/GCE.2010.5676129
  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author.Evolutionary Biology Centre, Uppsala University. ampignons de l’Équateur (Pugillus IV). Bull l’Herbier Boissier 3: 53–74.
  • Perera R, Maharachchikumbura S, Bhat J, Al-Sadi A, Liu J, Hyde K, Liu ZY (2016) New species of Thozetella and Chaetosphaeria and new records of Chaetosphaeria and Tainosphaeria from Thailand. Mycosphere 7(9): 1301–1321. https://doi.org/10.5943/mycosphere/7/9/5
  • Rambaut A (2014) FigTree 1.4. 2 software. Institute of Evolutionary Biology, Univ Edinburgh.
  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43(3): 304–311. https://doi.org/10.1007/BF02338839
  • Rathnayaka AR, Tennakoon DS, Jones GE, Wanasinghe DN, Bhat DJ, Priyashantha AH, Stephenson SL, Tibpromma S, Karunarathna SC (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany 1–28. https://doi.org/10.1080/0028825X.2024.2381734
  • Réblová M (2004) Four new species of Chaetosphaeria from New Zealand and redescription of Dictyochaeta fuegiana. Studies in Mycology 50: 171–186.
  • Réblová M, Gams W (2000) Life-history of Ascomycetes: Two new species of Chaetosphaeria with Chloridium and Chloridium-Dictyochaeta anamorphs. Mycoscience 41(2): 129–138. https://doi.org/10.1007/BF02464321
  • Réblová M, Nekvindová J (2023) New genera and species with chloridium-like morphotype in the Chaetosphaeriales and Vermiculariopsiellales. Studies in Mycology 106(1): 199–258. https://doi.org/10.3114/sim.2023.106.04
  • Réblová M, Barr ME, Samuels GJ (1999) Chaetosphaeriaceae, a new family for Chaetosphaeria and its relatives. Sydowia 51: 49–70.
  • Réblová M, Nekvindová J, Fournier J, Miller AN (2020) Delimitation, new species and teleomorph-anamorph relationships in Codinaea, Dendrophoma, Paragaeumannomyces and Striatosphaeria (Chaetosphaeriaceae). MycoKeys 74: 17–74. https://doi.org/10.3897/mycokeys.74.57824
  • Réblová M, Kolarik M, Nekvindova J, Réblová K, Sklenar F, Miller AN, Hernández-Restrepo M (2021b) Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi. Journal of Fungi 7(12): 1097. https://doi.org/10.3390/jof7121097
  • Réblová M, Nekvindova J, Hernández-Restrepo M (2021c) Reflections on Menisporopsis, Multiguttulispora and Tainosphaeria Using Molecular and Morphological Data. Journal of Fungi 7(6): 438. https://doi.org/10.3390/jof7060438
  • Réblová M, Nekvindová J, Kolařík M, Hernández-Restrepo M (2021d) Delimitation and phylogeny of Dictyochaeta, and introduction of Achrochaeta and Tubulicolla, genera nova. Mycologia 113(2): 390–433. https://doi.org/10.1080/00275514.2020.1822095
  • Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022) Consolidation of Chloridium: New classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103(1): 87–212. https://doi.org/10.3114/sim.2022.103.04
  • Réblová M, Nekvindová J, Miller AN, Hernández-Restrepo M (2024) Re-evaluation of Exserticlava and other genera in Chaetosphaeriaceae with chalara-, phaeostalagmus-, phialocephala- and stanjehughesia-like morphotypes. Persoonia 53: 62–99. https://doi.org/10.3767/persoonia.2024.53.03
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  • Senanayake IC, Rathnayake AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D, Nguyen TT, Goonasekara ID, Abeywickrama PD, Bhunjun CS, Jayawardena RS, Wanasinghe DN, Jeewon R, Bhat DJ, Xiang MM (2020) Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11(1): 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  • Shenoy BD, Jeewon R, Wang H, Amandeep K, Ho WH, Bhat DJ, Crous PW, Hyde KD (2010) Sequence data reveals phylogenetic affinities of fungal anamorphs Bahusutrabeeja, Diplococcium, Natarajania, Paliphora, Polyschema, Rattania and Spadicoides. Fungal Diversity 44(1): 161–169. https://doi.org/10.1007/s13225-010-0059-8
  • Tian XG, Bao DF, Karunarathna SC, Jayawardena RS, Hyde KD, Bhat DJ, Luo ZL, Elgorban AM, Hongsanan S, Rajeshkumar K, Maharachchikumbura SSN, Suwannarach N, Dawoud TM, Lu YZ, Han JJ, Xiao YP, Du TY, Lu L, Xu RF, Dai DQ, Liu XF, Liu C, Tibpromma S (2024) Taxonomy and phylogeny of ascomycetes associated with selected economically important monocotyledons in China and Thailand. Mycosphere 15(1): 1–274. https://doi.org/10.5943/mycosphere/15/1/1
  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena R, Erdoğdu M, Selçuk F, Rajeshkumar KC, Aptroot A, Błaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska J, Pem D, Pfliegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez-Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2022) Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13(1): 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  • Wu WP, Zhuang WY (2005) Sporidesmium, Endophragmiella and related genera from China. Fungal Diversity Research Series 15: 1–351.
  • Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H (2023) Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51(W1): W587–W592. https://doi.org/10.1093/nar/gkad359
  • Yang J, Liu J-K, Hyde KD, Bhat DJ, Jones BG, Liu Z-Y (2016) New species of Sporoschisma (Chaetosphaeriaceae) from aquatic habitats in Thailand. Phytotaxa 289(2): 147–157. https://doi.org/10.11646/phytotaxa.289.2.4
  • Yang J, Liu NG, Liu JK, Hyde KD, Jones EG, Liu ZY (2019) Phylogenetic placement of Cryptophiale, Cryptophialoidea, Nawawia, Neonawawia gen. nov. and Phialosporostilbe. Mycosphere 9(6): 1132–1150. https://doi.org/10.5943/mycosphere/9/6/5
  • Yang J, Liu LL, Jones EG, Hyde KD, Liu ZY, Bao DF, Liu NG, Li WL, Shen HW, Yu XD, Liu J-K (2023) Freshwater fungi from karst landscapes in China and Thailand. Fungal Diversity 119(1): 1–212. https://doi.org/10.1007/s13225-023-00514-7
  • Yang CL, Xu XL, Zeng Q, Liu LJ, Liu F, Deng Y, Wang FH, Sun QR, Jeewon R, Hyde KD, Jayawardena RS, Mckenzie EHC, Wanasinghe DN, Liu YG, Xiao QG, Han S, Yang H, Li SJ, Liu L, Xie JL (2024) Bambusicolous mycopathogens in China with an update on taxonomic diversity, novel species, pathogenicity, and new insights. Mycosphere 15(1): 4788–4918. https://doi.org/10.5943/mycosphere/15/1/21
  • Zhang JY, Ma J, Xiao YP, Boonmee S, Kang JC, Lu YZ (2022) Morphological and phylogenetic analyses reveal five new species in Chaetosphaeriaceae. Journal of Fungi 8(6): 643. https://doi.org/10.3390/jof8060643
  • Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genomics 3(1): 1–15. https://doi.org/10.1186/1471-2164-3-4
  • Zheng H, Wan Y, Li J, Castañeda-Ruiz RF, Yu Z (2020) Phialolunulospora vermispora (Chaetosphaeriaceae, Sordariomycetes), a novel asexual genus and species from freshwater in southern China. MycoKeys 76: 17–30. https://doi.org/10.3897/mycokeys.76.57410
login to comment