Research Article
Print
Research Article
Molecular phylogeny and morphology reveal four new species in Hymenochaetales and one new species in Cantharellales from Southwestern China
expand article infoJianling Zhang, Zirui Gu, Chunqin Zhou§, Hongmin Zhou
‡ Southwest Forestry University, Kunming, China
§ Yunnan Wumeng Mountains National Nature Reserve, Zhaotong, China
Open Access

Abstract

Wood-decaying fungi represent a vital group of higher fungi that drive the cycling of matter and energy in forest ecosystems, and they have been the focus of thorough investigation. In this study, five new species, viz. Botryobasidium daweishanense, Inonotus subglobisporum, Kneiffiella bubalina, Xylodon granulanoides, and X. granulans from China, are described and illustrated based on the morphological characteristics and molecular phylogenetic analyses, in which the sequences of ITS+nLSU genes were used for the phylogenetic analyses by maximum likelihood and Bayesian inference methods. The phylogeny revealed that the Botryobasidium daweishanense groups with three taxa, viz., B. intertextum, B. leptocystidiatum, and B. subcoronatum. Inonotus subglobisporum is closely related to I. radiatus. Kneiffiella bubalina clustered sister to K. subalutacea. Xylodon granulanoides and X. granulans have a close relationship with X. bambusinus, X. fissuratus, X. subclavatus, X. montanus, and X. wenshanensis. Additionally, Xylodon granulanoides and X. granulans clustered together. Botryobasidium daweishanense is characterized by an araneose hymenial surface, fusiform, and cyanophilous basidiospores (6.1–7.3 × 3.3–3.9 μm). Inonotus subglobisporum is characterized by perennial basidiomata with lateral stipes, polygon pores measuring 4–6 per mm, and subglobose, cyanophilous basidiospores (3.6–4.3 × 2.8–3.5 μm). Kneiffiella bubalina is characterized by cream basidiomata and cylindrical to slightly allantoid basidiospores (8.0–8.9 × 1.8–2.3 μm). Xylodon granulanoides is characterized by grandinioid hymenial surfaces, various cystidia, and broadly ellipsoid, thick-walled basidiospores (4.7–5.3 × 3.6–4.1 μm). Xylodon granulans is characterized by grandinioid hymenial surfaces, capitate and clavate cystidia, and broadly ellipsoid basidiospores (3.8–4.2 × 2.9–3.3 μm). Phylogenetic analysis based on internal transcribed spacer (ITS) and nuclear large subunit RNA (nLSU) shows that the four species are members of Hymenochaetales, and one belongs to Cantharellales. All five new species are compared with morphologically and phylogenetically closely related species. The present study contributes to understanding the species diversity, taxonomy, and phylogeny of macrofungi in Southwestern China.

Key words:

Biodiversity, Cantharellales, Hymenochaetales, new taxa, wood-inhabiting fungi

Introduction

Wood-inhabiting fungi thrive on various types of wood, including vigorous wood, dead wood, and fallen branches. They play a crucial role in degrading the lignin, cellulose, or hemicellulose present in wood, making them an important group of higher fungi (M’Barek et al. 2020; Runnel et al. 2021; Dong et al. 2023, 2024a). These fungi are the cornerstones of matter cycles and energy flows in forest ecosystems and play a vital ecological role in the regulation of carbon storage (Phookamsak et al. 2019; Ponce et al. 2023). A robust understanding of wood-fungi diversity is required to explain their rise to forest dominance; however, the classification of some taxa remains unknown.

The genus Botryobasidium Donk belongs to the family Botryobasidiaceae Jülich (Cantharellales, Basidiomycota) and is typified by Botryobasidium subcoronatum (Höhn. & Litsch.) Donk. Species of the corticioid Botryobasidium are saprobic fungi that cause white rot in forested areas (Langer et al. 2000b; Bondartseva and Zmitrovich 2023). They are commonly found on a range of hosts or substrates, from litter and fallen trunks to the stems of living trees, including macrophanerophytes (Langer et al. 2000a, 2000b; Hjortstam et al. 2005; Zhou et al. 2024a). Fungi in this genus have resupinate, smooth to grandinioid basidiomata; branched right-angled hyphae with or without clamp connections; short, cylindrical or subcylindrical to suburniform basidia with 2–8 sterigmata generally arranged in clusters; and narrow to globose, smooth to tuberculate or laciniate, and inamyloid basidiospores (Langer et al. 2000a; Bernicchia et al. 2010). According to the Index Fungorum (www.indexfungorum.org; accessed on 26 January 2025), the genus Botryobasidium has 116 specific registered names, with 101 species accepted worldwide (Dong et al. 2024b; Liu et al. 2024; Zhou et al. 2024a; Zhou et al. 2024b). Based on ITS data analysis, we demonstrated that the genus Botryobasidium formed a well-supported monophyletic group, as previously demonstrated by its micromorphological and ultrastructural characteristics (Langer and Langer 1998; Moncalvo et al. 2006; Zhou et al. 2024b).

Frey et al. (1977) established the order Hymenochaetales Oberw., using Hymenochaetaceae Donk as the type family (He et al. 2024). Hymenochaetales is a large order of Agaricomycetes with 14 families, 83 genera, and 1205 species, including wood-inhabiting and ectomycorrhizal fungi. These fungi have different kinds of basidiomata, such as polyporoid, stereoid, corticioid, hydnoid, coralloid, and agaricoid (Hibbett et al. 2014; He et al. 2024). Hymenochaetaceae includes species with brownish basidiomata and generative hyphae without clamp connections. This family includes six genera, namely, Coltricia Gray, Cyclomyces Kunze ex Fr., Hydnochaete Bres., Hymenochaete Lév., Inonotus P. Karst, and Phellinus Quél, laying the foundational framework for the classification of Hymenochaetaceae (Hibbett et al. 2014; Wijayawardene et al. 2022; He et al. 2024). However, the phylogeny of Hymenochaete is not well understood, and researchers have investigated the phylogenetic relationships of these genera (Wagner and Fischer 2002). Phylogenetic analyses of Hymenochaete and its allied genera have been performed, and the results have been verified by mycologists (Larsson et al. 2006; Dai 2010). Furthermore, a series of studies indicated that certain species have a high degree of host specificity (Dai 2010; Purahong et al. 2018; Wang et al. 2021, 2022; Wu et al. 2022; Zhao et al. 2023a; Zhou et al. 2023). The diversity of Hymenochaete fungi and the number of species recorded in China have also been extensively studied (Korotkin et al. 2018; Wu et al. 2022; Zhao et al. 2023a, 2024).

Inonotus, one of the largest genera within the Hymenochaetaceae family, is typified by Inonotus hispidus (Bull.) P. Karst; it is primarily found as parasites or saprophytes on various types of wood (Wagner and Fischer 2002; Zhou et al. 2015). Fungi of this genus have annual to perennial, resupinate, effused reflexed or pileate, yellowish to brown, hispid, velutinate to rough or glabrous pilei; a brown pore surface; homogeneous, brown, corky context basidiomata; a monomitic hyphal system; and generative hyphae with simple septa. Hymenial setae may be present or absent; hyphoid setae are found in some species and are ellipsoid, hyaline to brownish, thick-walled basidiospores. Previous phylogenetic analyses indicated that Inonotus sensu lato had polyphyletic origins, and four more narrowly defined genera, namely Inocutis Fiasson & Niemelä, Inonotopsis Parmasto, Mensularia Lázaro Ibiza, and Onnia P. Karst., were segregated from Inonotus (Wagner and Fischer 2002; Dai 2010). Meanwhile, two new genera were proposed (Zhou et al. 2016): Sanghuangporus Sheng H. Wu, L.W. Zhou & Y.C. Dai, and Tropicoporus L.W. Zhou, Y.C. Dai & Sheng H. Wu. Inonotus is a well-known species commonly used in traditional medicine to treat various ailments (Delgersaikhan et al. 2024; Yu et al. 2024). The genus produces white rot and exhibits a worldwide distribution (Wagner and Fischer 2002; Dai 2010), with 289 specific registered names and 128 species accepted worldwide (www.indexfungorum.org; accessed on 26 January 2025) (Wagner and Fischer 2002; Dai 2010; Zhou et al. 2016; Wu et al. 2022).

The genus Kneiffiella P. Karst belongs to the family Chaetoporellaceae Jülich (Hymenochaetales, Basidiomycota) and is typified by Kneiffiella barba-jovis (Bull.) P. Karst. Fungi of this genus prefer dark microhabitats that slowly dry on tree trunks, leading to particularly severe wood decay, such as on hollow areas and undersides (Běťák et al. 2021). They have resupinate, smooth to grandinioid, coralloid, or irpicoid basidiomata; a white to brown or ochraceous hymenial surface; a monomitic to pseudodimitic hyphal system; generative hyphae with clamp connections; tubular and clavate cystidia; cylindrical to utriform, or barrel-like, basidia with four sterigmata; and cylindrical to ellipsoid or allantoid, inamyloid, and acyanophilous basidiospores (Wang et al. 2021). According to the Index Fungorum (www.indexfungorum.org; accessed on 26 January 2025), the genus Kneiffiella has 84 specific registered names, with 40 species accepted worldwide (Běťák et al. 2021; Wang et al. 2021; Viner et al. 2024).

The genus Xylodon (Pers.) Gray belongs to the family Schizoporaceae Jülich (Hymenochaetales, Basidiomycota) and is typified by Xylodon quercinus (Pers.) Gray (Bernicchia and Gorjón 2010). Xylodon is a large genus of corticioid fungi with a cosmopolitan distribution (Guan et al. 2023; Yurchenko et al. 2024; Zhang et al. 2024a). Species of Xylodon inhabit dead wood of various sizes, ranging from twigs of several millimeters in diameter to large fallen trunks, and they cause white rot (Greslebin and Rajchenberg 2000; Kotiranta and Saarenoksa 2000; Girometta et al. 2020; Guan et al. 2023). In some cases, basidiomata of Xylodon species appear on the living parts of trees (Yurchenko 2008) and non-woody plant remains, such as fern rachises (Kotiranta and Saarenoksa 2000), herb stems, fallen leaves (Viner et al. 2018), and dead polypore basidiomata (Viner et al. 2023). Fungi in this genus have resupinate or effuse, smooth basidiomata; a tuberculate, grandinioid, odontioid, coralloid, irpicoid, or poroid hymenial surface; a monomitic or dimitic hyphal system that is generative with clamp connections; different types of cystidia; utriform or suburniform basidia; and cylindrical to ellipsoid to globose basidiospores (Gray 1821; Bernicchia and Gorjón 2010; Zhang et al. 2024a). According to the Index Fungorum (www.indexfungorum.org; accessed on 26 January 2025), the genus Xylodon has 241 specific registered names, with 157 species accepted worldwide. Remarkably, new species have been described in this genus at an accelerated pace owing to advances in morphological taxonomy and molecular phylogeny (Luo et al. 2022; Qu et al. 2022; Guan et al. 2023; Yurchenko et al. 2024; Zhang et al. 2024a).

In addition, host specificity is essential for determining the taxonomy and phylogeny of Hymenochaetales, with various types identified in a series of studies, including angiosperms, gymnosperms, both angiosperms and gymnosperms, and bryophytes (Dai 2010; Zhao et al. 2024). Most species in Hymenochaetales are polyporous and corticioid fungi, whereas certain species, such as Blasiphalia Redhead, Contumyces Redhead, and Rickenella Raithelh, basidiomata in those taxa are agarics. Beyond morphological diversity, various trophic modes, including saprotrophs, parasites, and symbiotes (with both trees and moss), also exist within Hymenochaetales (Wang and Zhou 2024). Many new Hymenochaetales taxa have recently been described due to research on the diversity of wood-inhabiting fungi in Yunnan Province (Chen and Zhao 2020; Luo et al. 2021; Qu et al. 2022; Guan et al. 2023; Yuan and Zhao 2024; Zhang et al. 2024a). These studies provide an important foundation for further exploration of species diversity and taxonomic status within Hymenochaetales.

This study collected five new species of wood-inhabiting fungi from Yunnan Province, China. To clarify the taxonomic placement of these species, morphological and phylogenetic analyses based on the ITS and nLSU sequences were conducted to identify them as new species of Botryobasidium, Inonotus, Kneiffiella, and Xylodon. This study provides full descriptions, color photographs, detailed comparisons with closely related taxa, and phylogenetic placements of the five new species. New data have been added to the biodiversity research on the genera Botryobasidium, Inonotus, Kneiffiella, and Xylodon, further affirming the rich biodiversity of southwestern China.

Materials and methods

Sample collection and herbarium specimen preparation

The fresh basidiomata were collected on the fallen angiosperm branches from Yunnan Province, China, and collection information was recorded (Rathnayaka et al. 2024). The samples were photographed in situ, and fresh macroscopic details were recorded. Photographs were taken by a Nikon D7100 camera. All the photos were focus-stacked using Helicon Focus software. Macroscopic details were recorded, and the fruit bodies were transported to a field station where they were dried in an electric food dryer at 45 °C (Hu et al. 2022). Once dried, the specimens were sealed in an envelope and zip-lock plastic bags and labeled (Zhang et al. 2024b). The dried specimens were deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China.

Morphological studies

The macro-morphology was based on the fresh specimens, while the micro-morphology was studied based on dried specimens. The color terms in the description followed Anonymous (1969) and Petersen (1996). Micro-morphology was studied at magnifications of 1000 ×, using a Nikon Eclipse 80i microscope with phase contrast illumination. Melzer’s reagent (IKI), Cotton Blue (CB), and 5% potassium hydroxide (KOH) were used. Drawings were made with the aid of a drawing tube. In the text, further abbreviations were used: IKI− = non-dextrinoid and non-amyloid, IKI+ = amyloid, CB− = acyanophilous, CB+ = cyanophilous, L = mean basidiospore length (arithmetic average of all basidiospores), W = mean basidiospore width (arithmetic average of all basidiospores), Q = variation in the L/W ratios, n = the number of basidiospores measured.

DNA Extraction, polymerase chain reaction, and sequencing genomic

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing) was used to obtain DNA from dried specimens. PCR was performed according to the manufacturer’s instructions with some modifications (Yang et al. 2023). The nuclear ribosomal ITS region was amplified with the primers ITS5 and ITS4 (White et al. 1990). The nuclear ribosomal nLSU gene was amplified with the primers LR0R and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 54 °C for 45 s, and 72 °C for 1 min; and a final extension at 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 50 °C for 1 min, and 72 °C for 1.5 min; and a final extension at 72 °C for 10 min (Zhou et al. 2024c). All newly generated sequences were submitted to GenBank and are listed in Table 1.

Table 1.

Names, sample numbers, locations, references, and corresponding GenBank accession numbers of the taxa used in this study. [New species are shown in bold; * is shown as type material, holotype; — indicates sequence unavailability].

Species Sample No. GenBank No. Country References
ITS nLSU
Alloclavaria purpurea H6047663 MF319055 MF318905 Finland Cho et al. 2024
Alloclavaria purpurea M. Korhonen 10305 MF319044 MF318895 Finland Cho et al. 2024
Antrodia subserpens Dai 13233 KP715309 KT968830 China Chen and Cui 2015
Atheloderma mirabile TAA 169235 DQ873592 DQ873592 Estonia Larsson et al. 2006
Basidioradulum radula LWZ 20201017-62 ON063684 ON063884 China Wang et al. 2023
Blasiphalia pseudogrisella P. Hoijer 4118 MF319047 MF318898 Finland Cho et al. 2024
Blasiphalia pseudogrisella P. Hoijer 4393 MF319048 MF318899 Estonia Cho et al. 2024
Botryobasidium acanthosporum Yuan18083* PP229512 PP218361 China Zhou et al. 2024c
Botryobasidium acanthosporum Yuan16326 PP229497 China Zhou et al. 2024c
Botryobasidium asperulum RAS552 OR471090 OR470959 USA Swenie et al. 2023
Botryobasidium asperulum FP102150 OR471075 OR47094 USA Swenie et al. 2023
Botryobasidium aureum GEL 2910 AJ389783 Germany Langer et al. 2000b
Botryobasidium bambusinum CLZhao29916 PQ539057 PQ539060 China Dong et al. 2024b
Botryobasidium bambusinum CLZhao29936* PQ539058 PQ539061 China Dong et al. 2024b
Botryobasidium botryosum KHL11081 AY463387 AY586638 Sweden Larsson et al. 2004
Botryobasidium botryosum AFTOL-ID 604 DQ267124 USA Zhou et al. 2024c
Botryobasidium candicans UC2022891 KP814227 USA Vu et al. 2018
Botryobasidium candicans UC2022944 KP814546 USA Vu et al. 2018
Botryobasidium candicans UC2022893 KP814200 USA Vu et al. 2018
Botryobasidium coniferarum LWZ20171016-15 OR557262 China Dong et al. 2024b
Botryobasidium coniferarum LWZ20210928-3* OR557259 China Dong et al. 2024b
Botryobasidium conspersum AFTOL-ID 1766 DQ911612 DQ521414 USA Cao et al. 2021
Botryobasidium daweishanense CLZhao40061 PQ373983 China Present study
Botryobasidium daweishanense CLZhao40061 PQ373983 China Present study
Botryobasidium daweishanense CLZhao40062* PQ373984 PQ373977 China Present study
Botryobasidium gossypirubiginosum CLZhao 26052* OR668924 OR708665 China Zhou et al. 2024b
Botryobasidium incanum CLZhao 26697* OR668923 OR708664 China Zhou et al. 2024b
Botryobasidium indicum NFCCI4480 NR171230 India Zhou et al. 2024b
Botryobasidium indicum AMH:10054 MK391496 India Zhou et al. 2024b
Botryobasidium indicum hr5326 OP806032 China Zhou et al. 2024b
Botryobasidium indicum CLZhao21791 ON406471 China Zhou et al. 2024b
Botryobasidium indicum AMH:10054 MK391496 MK391493 India Zhou et al. 2024b
Botryobasidium intertextum UC2022959 KP814540 North American Zhou et al. 2024b
Botryobasidium laeve RAS762 OR471128 USA Swenie et al. 2023
Botryobasidium leptocystidiatum Yuan17548 PP209211 China Zhou et al. 2024c
Botryobasidium leptocystidiatum Yuan17708* PP209197 China Zhou et al. 2024c
Botryobasidium robustius CBS:945.69 MH859491 MH871272 Czech Republic Fukami et al. 2010
Botryobasidium simile RAS793 OR471146 USA Swenie et al. 2023
Botryobasidium simile RAS794 OR471147 USA Swenie et al. 2023
Botryobasidium simile GEL2348 KP171641 DQ898730 Canada Cao et al. 2021
Botryobasidium subcoronatum RAS620 SV1 OR471110 USA Swenie et al. 2023
Botryobasidium subcoronatum RAS789 OR471144 USA Swenie et al. 2023
Botryobasidium subcoronatum FP101015 OR471077 USA Swenie et al. 2023
Botryobasidium subcoronatum FP151108 OR471078 USA Swenie et al. 2023
Botryobasidium subcoronatum AFTOL-ID 614 DQ200924 AY647212 USA Cao et al. 2021
Botryobasidium subovalibasidium Yuan18179* PP209196 China Zhou et al. 2024c
Botryobasidium subovalibasidium Yuan16439 PP209199 China Zhou et al. 2024c
Botryobasidium tubulicystidium DK14139 OL436769 USA Zhou et al. 2024b
Botryobasidium yunnanense CLZhao24877* OR668925 China Zhou et al. 2024b
Bridgeoporus sinensis Cui 10013 KY131832 KY131891 China Cho et al. 2024
Bryoclavula phycophila TNS F-79667 NR169921 LC508118 Japan Masumoto and Degawa 2020
Bryoclavula phycophila S-287-FB3 LC544109 LC544110 Japan Masumoto and Degawa 2020
Bryopistillaria sagittiformis IO.14.164 MT232349 MT232303 Sweden Olariaga et al. 2020
Burgella lutea Etayo 27623 KC336076 KC336075 Bolivia Diederich et al. 2014
Burgoa verzuoliana CBS 131.38 NR145334 NG058614 Japan Cao et al. 2021
Cantharellopsis prescotii H6059300 MF319051 MF318903 Finland Cho et al. 2024
Cantharellus albidolutescens BB 08.070* KF981365 KF294646 Madagascar Cao et al. 2021
Cantharellus alborufescens AH44223 KR677493 KR677531 Spain Olariaga et al. 2015
Cantharellus alborufescens BB 12.075 KX907209 KX929161 Switzerland Olariaga et al. 2017
Cantharellus ambohitantelyensis BB 08.336* KF981366 KF294656 Madagascar Cao et al. 2021
Cantharellus amethysteus BB 07.284 JN944020 KF294639 Slovakia Olariaga et al. 2017
Cantharellus amethysteus AH44796* KR677512 KR677550 Spain Olariaga et al. 2015
Cantharellus anzutake TNS-F-61925* LC085359 LC085415 Japan Cao et al. 2021
Cantharellus californicus OSC 122878 * KX828768 KX828795 USA Olariaga et al. 2017
Cantharellus cascadensis OSC 75908 AY041181 AY041160 USA Olariaga et al. 2015
Cantharellus chicagoensis PRL8916 KP639201 KP639218 USA Leacock et al. 2016
Cantharellus chicagoensis PRL8332 KP639200 KP639214 USA Leacock et al. 2016
Cantharellus cibarius BIO-Fungi 10986* KR677501 KR677539 Sweden Olariaga et al. 2015
Cantharellus cyphelloides TNS:F-61721* NR154853 NG059027 Japan Suhara and Kurogi 2015
Cantharellus decolorans 469/BB 08.278 NR154788 KF294654 Madagascar Olariaga et al. 2017
Cantharellus ferruginascens BIO-Fungi 11700 KR677486 KR677524 Spain Olariaga et al. 2015
Cantharellus hygrophorus BB 08.196* KF981368 KF294650 Madagascar Cao et al. 2021
Cantharellus lewisii BB 07.003* JN944021 JN940597 USA Olariaga et al. 2015
Cantharellus pallens BB 09.409 KX929162 KX907215 Italy Olariaga et al. 2017
Cantharellus romagnesianus AH44218 KX828784 KX828807 Spain Olariaga et al. 2017
Cantharellus roseocanus DAOM220723 KX828787 KX828810 Canada Olariaga et al. 2017
Cantharellus sebosus BB 08.234* NR154789 KF294652 Madagascar Cao et al. 2021
Cantharellus sebosus BB 08.162 KF981371 KF294649 Madagascar Cao et al. 2021
Cantharellus subalbidus OSC 75937 AY041179 AY041149 USA Dunham et al 2003
Cantharellus subincarnatus BB 06.096 KF981372 KF294602 Madagascar Cao et al. 2021
Cantharellus subminor Yuan 13917* MW980545 MW979522 China Cao et al. 2021
Cantharellus subminor Yuan 13925 MW980546 MW979523 China Cao et al. 2021
Cantharellus subminor Yuan 13926 MW980547 MW979524 China Cao et al. 2021
Cantharellus tabernensis BB 07.064 JN944012 JN940608 USA Olariaga et al. 2015
Cantharellus tabernensis BB 07.040 JN944013 JN940609 USA Olariaga et al. 2015
Cantharellus tenuithrix BB 07.125* JN944017 JN940600 USA Olariaga et al. 2017
Cantharellus vaginatus HKAS55730* HQ416692 HM594681 China Cao et al. 2021
Cantharellus yunnanensis Yuan 14539 MW980541 MW979514 China Cao et al. 2021
Cantharellus yunnanensis Yuan 14636 MW980542 MW979515 China Cao et al. 2021
Ceratobasidium globisporum CBS 569.83 DQ278942 MH873365 Australia Cao et al. 2021
Ceratobasidium sp. CAG6 AF354083 AF354083 USA Gonzalez et al. 2001
Ceratorhiza hydrophila E14504F MT381956 MT381951 Ecuador Adaku et al. 2020
Cerioporus squamosus Cui 10595 KU189778 KU189809 China Zhou et al. 2016
Clavulina cerebriformis MCA4022* NR121504 JN228222 Guyana Cao et al. 2021
Clavulina cf. cristata MES426 JN228225 JN228225 China Cho et al. 2024
Clavulina cinereoglebosa TH8561 JN228218 JN228232 Guyana Cho et al. 2024
Clavulina cristata JKU8 JN228227 JN228227 USA Cho et al. 2024
Clavulina sp. MB03-034 DQ202266 AY745694 USA Cao et al. 2021
Coltricia abieticola Cui 10321 KX364785 China Unpublished
Coniferiporia qilianensis Yuan 6424 NR_158318 NG_060411 China Wu et al. 2022
Coniferiporia weirii FP-134599-SP MT420695 MT416461 China Cho et al. 2024
Contumyces rosellus MGW1462 MF319059 MF318912 USA Cho et al. 2024
Cotylidia fbrae FM639 NR_176148 NG_088193 China Cho et al. 2024
Cotylidia sp. AFTOL-700 AY854079 AY629317 USA Cho et al. 2024
Craterellus atratoides TH8473 JQ915103 JQ915129 Guyana Wilson et al. 2012
Craterellus atratoides TH9232* JQ915111 NG042660 Guyana Wilson et al. 2012
Craterellus atratus MCA1070 JQ915092 JQ915118 Guyana Wilson et al. 2012
Craterellus atratus MCA990 JQ915100 JQ915126 Guyana Wilson et al. 2012
Craterellus atrobrunneolus Yuan 13878 MN902353 MN894058 China Wilson et al. 2012
Craterellus badiogriseus Yuan 14776* MW980548 MW979532 China Cao et al. 2021
Craterellus badiogriseus Yuan 14779 MW980549 MW979533 China Cao et al. 2021
Craterellus cinereofimbriatus TH8999 JQ915104 JQ915130 Guyana Wilson et al. 2012
Craterellus cinereofimbriatus TH9075* JQ915105 JQ915131 Guyana Wilson et al. 2012
Craterellus croceialbus Yuan 14623* MW980572 MW979529 China Cao et al. 2021
Craterellus croceialbus Yuan 14647 MW980573 MW979530 China Cao et al. 2021
Craterellus excelsus TH7515 JQ915101 JQ915127 Guyana Wilson et al. 2012
Craterellus excelsus TH8235* JQ915102 JQ915128 Guyana Wilson et al. 2012
Craterellus fallax AFTOL-ID 286 DQ205680 AY700188 USA Cao et al. 2021
Craterellus indicus PUN 3884* NR119831 NG060387 India Kumari et al. 2012
Craterellus luteus GDGM48105* MG727896 MG701171 China Zhong et al. 2018
Craterellus luteus GDGM46432 MG727897 MG727898 China Zhong et al. 2018
Craterellus macrosporus Yuan 14782 MW980574 MW979531 China Cao et al. 2021
Craterellus olivaceoluteus MCA3186 JQ915098 JQ915124 Guyana Wilson et al. 2012
Craterellus olivaceoluteus TH9205* JQ915109 JQ915135 Guyana Wilson et al. 2012
Craterellus parvogriseus CAL 1533* MF421099 MF421098 India Cao et al. 2021
Craterellus pleurotoides MCA3124 JQ915097 JQ915123 Guyana Wilson et al. 2012
Craterellus pleurotoides TH9220 JQ915110 JQ915136 Guyana Wilson et al. 2012
Craterellus strigosus MCA1750 JQ915094 JQ915120 Guyana Wilson et al. 2012
Craterellus strigosus TH9204* JQ915108 JQ915134 Guyana Wilson et al. 2012
Cylindrosporus flavidus Dai 13213 KP875564 KP875561 China Wu et al. 2022
Dacrymyces australis CBS:196.63 MH858261 MH869866 USA Cao et al. 2021
Fasciodontia brasiliensis MSK-F 7245a* MK575201 MK598734 Brazil Yurchenko et al. 2020a
Fasciodontia bugellensis KAS-FD 10705a MK575203 MK598735 France Yurchenko et al. 2020a
Fasciodontia yunnanensis CLZhao 6280 MK811275 MZ146327 China Luo and Zhao 2021
Fibrodontia gossypina AFTOL-ID 599 DQ249274 USA Unpublished
Flaviporellus splitgerberi JV 1908/6 MZ484525 MZ437386 French Guiana Wu et al. 2022
Fomitiporella inermis JV 0509/57K KX181305 KX181346 USA Ji et al. 2018
Fomitiporella subinermis Dai 15114 KX181308 KX181344 China Ji et al. 2018
Fomitiporella vietnamensis Dai 18377* NR_158436 NG_060441 Vietnam Ji et al. 2018
Fomitiporia langloisii MUCL 46375 EF429242 EF429225 USA Decock et al. 2007
Fomitopsis pinicola AFTOL 770 AY854083 AY684164 USA Unpublisheded
Fulvifomes indicus Yuan 5932 KC879261 JX866777 China Wu et al. 2022
Fuscoporia ferruginosa JV0408/28 KX961103 KY189103 China Chen and Yuan 2017
Globulicium hiemale Hjm 19007 DQ873595 DQ873595 Sweden Larsson et al. 2006
Gyroflexus brevibasidiatus IO.14.230 MT232351 MT232305 Sweden Olariaga et al. 2020
Hastodontia halonata HHB-17058 MK575207 MK598738 Mexico Yurchenko et al. 2020a
Heterobasidion annosum 06129/6 KJ583211 KJ583225 China Chen et al. 2014
Hirschioporus abietinus Cui 2667 OQ449096 OQ449033 China Cho et al. 2024
Hirschioporus abietinus Dai 23760 OQ449039 OQ449034 China Cho et al. 2024
Hirschioporus acontextus Dai 19097 OQ449140 OQ449199 China Cho et al. 2024
Hirschioporus acontextus Dai 23793* OQ449141 OQ449200 China Cho et al. 2024
Hirschioporus beijingensis Dai 18907 OQ449142 OQ449201 China Cho et al. 2024
Hirschioporus beijingensis Dai 23704* OQ449143 OQ449202 China Cho et al. 2024
Hirschioporus chinensis Dai 20264 OQ449101 OQ449204 China Cho et al. 2024
Hirschioporus chinensis Dai 23048 OQ437349 OQ438002 China Cho et al. 2024
Hirschioporus fuscoviolaceus Dai 20988 OQ437357 OQ438006 Belarus Cho et al. 2024
Hirschioporus fuscoviolaceus Cui 10439 OQ437361 OQ438010 China Cho et al. 2024
Hirschioporus fuscoviolaceus KUC20131001-03 KJ668436 KJ668288 South Korea Jang et al. 2015
Hirschioporus pubescens Dai 17064* OQ437377 OQ438019 China Cho et al. 2024
Hirschioporus pubescens Dai 23710 OQ512026 OQ449059 China Cho et al. 2024
Hirschioporus tianschanicus Dai 19067* OQ448960 OQ449067 China Cho et al. 2024
Hirschioporus tianschanicus Dai 19064 OQ437386 OQ449066 China Cho et al. 2024
Holtermanniella wattica CBS 9496* NR138371 NG058307 Antarctica Cao et al. 2021
Hydnoporia olivacea Dai 12789 KT828678 KT828679 USA Yang et al. 2016
Hydnoporia tabacina LWZ 20210924-26a ON063651 ON063851 China Wang et al. 2023
Hydnum albomagnum AFTOL-ID 471 DQ218305 AY700199 USA Cao et al. 2021
Hydnum albomagnum Wei 10194 MW980550 MW979536 China Cao et al. 2021
Hydnum albomagnum Wei 10247 MW980551 MW979537 China Cao et al. 2021
Hydnum berkeleyanum CAL 1656* NR158533 NG070500 India Cao et al. 2021
Hydnum berkeleyanum HKAS77834 KU612525 KU612667 China Cao et al. 2021
Hydnum berkeleyanum Wei 10375 MW980552 MW979538 China Cao et al. 2021
Hydnum brevispinum Wei 10214* MW980578 MW979559 China Cao et al. 2021
Hydnum cremeoalbum HKAS92345 KU612619 KU612676 China Cao et al. 2021
Hydnum ellipsosporum FD3281 KX086215 KX086217 Switzer Cao et al. 2021
Hydnum flabellatum Yuan 14708* MW980575 MW979556 China Cao et al. 2021
Hydnum flavidocanum Yuan 13903a* MW980559 MW979545 China Cao et al. 2021
Hydnum flavidocanum Yuan 13900a MW980560 MW979546 China Cao et al. 2021
Hydnum jussii Yuan 14008 MW980553 MW979539 China Cao et al. 2021
Hydnum jussii Yuan 14009 MW980554 MW979540 China Cao et al. 2021
Hydnum longibasidium Wei 10383* MW980556 MW979541 China Cao et al. 2021
Hydnum longibasidium Wei 10367 MW980555 MW979542 China Cao et al. 2021
Hydnum magnorufescens voucher 161209 KU612549 KU612669 China Cao et al. 2021
Hydnum minum N.K.Zeng2819 KY407533 KY407528 China An et al. 2017
Hydnum minum Wei 10252 MW980557 MW979543 China Cao et al. 2021
Hydnum minum Wei 10260 MW980558 MW979544 China Cao et al. 2021
Hydnum pallidocroceum Yuan 14023* MW980568 MW979554 China Cao et al. 2021
Hydnum pallidocroceum Yuan 14017 MW980569 MW979555 China Cao et al. 2021
Hydnum pallidomarginatum Yuan 13928a* MW980566 MW979552 China Cao et al. 2021
Hydnum pallidomarginatum Yuan 13940a MW980567 MW979553 China Cao et al. 2021
Hydnum repandum H 6003710* KX388650 Finland Dong et al. 2024b
Hydnum sphaericum Wei 10243* MW980563 MW979549 China Cao et al. 2021
Hydnum subolympicum F1188765 KU612599 KU612653 USA Cao et al. 2021
Hydnum subrufescens F1188749 KU612535 KU612663 USA Cao et al. 2021
Hydnum tangerinum Wei 10245* MW980580 MW979561 China Cao et al. 2021
Hydnum tenuistipitum Wei 10410* MW980576 MW979557 China Cao et al. 2021
Hydnum ventricosum Yuan 14536* MW980561 MW979547 China Cao et al. 2021
Hymenochaete rubiginosa He 1049 JQ716407 JQ279667 China He and Li 2012
Hyphodontia abieticola GEL2924 DQ340332 Germany Unpublished
Hyphodontia abieticola KHL 12498 DQ873601 Sweden Unpublished
Hyphodontia alutaria GEL3183 DQ340318 Germany Zhang et al. 2024a
Hyphodontia alutaria KHL 11889 DQ873603 Sweden Unpublished
Hyphodontia alutaria KHL 11978 EU118631 Norway Unpublished
Hyphodontia argut Wu 0806-44 JN571548 China Unpublished
Hyphodontia arguta KHL11938 EU118632 Sweden Larsson 2007
Hyphodontia borbonica FR-0219441* KR349240 France Unpublished
Hyphodontia borbonica FR-0219444 KR349241 France Unpublished
Hyphodontia curvispora 1591a DQ873615 Finland Unpublished
Hyphodontia hastata GEL2143 DQ340323 Germany Unpublished
Hyphodontia hastata GEL3124 DQ340311 Germany Unpublished
Hyphodontia mongolica Cui 13240 KY290985 China Unpublished
Hyphodontia mongolica Cui 13239* KY290984 China Unpublished
Hyphodontia pachyspora LWZ20180905-6 MT319425 China Wang et al. 2021
Hyphodontia pachyspora LWZ 20170908-5* MT319426 MT319160 China Wang et al. 2021
Hyphodontia pallidula KAS-GEL2097 DQ340317 Germany Zhang et al. 2024a
Hyphodontia sp. LWZ20180511-2 MT319418 China Wang et al. 2021
Hyphodontia sp. LWZ20170814-15 MT319417 China Wang et al. 2021
Hyphodontia subdetritica TU114869 OP620786 France Viner et al. 2023
Hyphodontia subdetritica FR-0261087 KY081794 France Unpublished
Hyphodontia subdetritica FR-0261085 KY081793 France Unpublished
Hyphodontia tropica ICMP 13835 AF145586 China Viner et al. 2023
Hyphodontia tropica ICMP 13837 AF145587 China Unpublished
Hyphodontia wongiae LWZ20180417-16 MT319416 China Wang et al. 2021
Hyphodontia wongiae LWZ20180417-8 MT319415 China Wang et al. 2021
Hyphodontia wongiae LWZ20180414-16* MT319414 China Wang et al. 2021
Hyphodontia zhixiangii LWZ 20170818-13 MT319420 MT319151 China Wang et al. 2021
Hyphodontia zhixiangii LWZ20180903-5 MT319423 China Luo et al. 2022
Hyphodontia zhixiangii LWZ20170820-31 MT319422 China Wang et al. 2021
Hyphodontia zhixiangii LWZ20170820-27 MT319421 China Wang et al. 2021
Hyphodontia zhixiangii LWZ20180903-9 MT319424 China Wang et al. 2021
Hyphodontia zhixiangii LWZ 20160909-8 KY440397 China Wang et al. 2021
Hyphodontia zhixiangii LWZ 20160909-4* KY440396 China Wang et al. 2021
Hyphodontia zhixiangii LWZ 20160909-9 KY440398 China Wang et al. 2021
Hyphodontia zhixiangii LWZ20180904-12 MT319419 China Wang et al. 2021
Inonotopsis subiculosa Dai 14799 KU598212 KU598217 China Unpublished
Inonotus andersonii SFCC 50025 AY558599 AY558599 South Korea Unpublished
Inonotus andersonii JV 1209/66 KF446594 China Unpublished
Inonotus andersonii CS-65-92-14-B OQ539568 Indiana Unpublished
Inonotus boninensis Dai 18868 MZ484601 Australia Wu et al. 2022
Inonotus costaricensis JV 1511/171J MZ484602 USA Wu et al. 2022
Inonotus cuticularis JV 0609/22 MN318442 MN318442 Czech Republic Wu et al. 2022
Inonotus dentiporus MUCL 4227 MZ484608 Brazil Wu et al. 2022
Inonotus griseus LWZ 20130810-20* KM434333 China Zhou and Wang 2015
Inonotus henanensis Dai 13157* KP030783 KX832918 China Zhou and Wang 2015
Inonotus henanensis Dai 12220 MZ484603 China Wu et al. 2022
Inonotus henanensis Dai 13157 KX674581 China Wu et al. 2022
Inonotus hispidus Cui 11932 MZ484604 China Wu et al. 2022
Inonotus hispidus S45 EU282482 Spain Wu et al. 2022
Inonotus krawtzewii JV 8709/35 KF446598 China Wu et al. 2022
Inonotus krawtzewii PRM 607951 KF446600 China Wu et al. 2022
Inonotus latemarginatus Dai 9758* KP030784 China Zhou and Wang 2015
Inonotus micantissimus URM90186 MG576057 Brazil Wu et al. 2022
Inonotus nidus-pici JV01076 MN318440 Czech Republic Wu et al. 2022
Inonotus niveomarginatus Dai 12318* KC456245 China Yu et al. 2013
Inonotus obliquus JV 0408/36 KF446605 China Wu et al. 2022
Inonotus obliquus Dai 10715 MZ484606 Finland Wu et al. 2022
Inonotus plorans Yang 52 MZ484607 China Wu et al. 2022
Inonotus portoricensis JV 1504/121 MN318447 MN318447 Costa Rica Unpublished
Inonotus pseudoglomeratus JV1707/15J MN318437 Costa Rica Wu et al. 2022
Inonotus quercustris 193 AY072026 Argentina Gottlieb et al. 2002
Inonotus radiatus SAT-10-240-02 MT955156 MT955156 USA Unpublished
Inonotus radiatus HBAU15722 MW862276 China Unpublished
Inonotus radiatus HMAS 292289 OR237100 China Unpublished
Inonotus radiatus HMAS 281802 OR236984 China Unpublished
Inonotus radiatus MQ18R132-QFB30648 MN992228 Canada Unpublished
Inonotus radiatus DM1160 MT644872 Denmark Unpublished
Inonotus radiatus Cui 10321 KX364785 China Unpublished
Inonotus rickii Dai 12996 KC479128 China Wu et al. 2022
Inonotus rickii JV 1612/21J MZ484609 China Wu et al. 2022
Inonotus setulosocroceus STE-U7801 KP279294 South Korea Wu et al. 2022
Inonotus subglobisporum CLZhao 8331 PQ373985 China Present study
Inonotus subglobisporum CLZhao 8387 PQ373986 PQ373978 China Present study
Inonotus subglobisporum CLZhao 8433 PQ373987 PQ373979 China Present study
Inonotus subglobisporum CLZhao 8453 PQ373988 China Present study
Inonotus subglobisporum CLZhao 8500 PQ373989 PQ373980 China Present study
Inonotus subglobisporum CLZhao 8678 PQ373990 China Present study
Inonotus subglobisporum CLZhao 8737 PQ373991 China Present study
Inonotus subglobisporum CLZhao 8765* PQ373992 China Present study
Inonotus subglobisporum CLZhao 8789 PQ373993 China Present study
Inonotus subradiatus Dai 20201* MZ484610 China Wu et al. 2022
Inonotus tenuicontextus Yuan 5526* NR_119969 China Zhou and Qin 2011
Inonotus ulmicola H 6012614 KF446606 China Wu et al. 2022
Inonotus ungulatus Dai 18864 MZ484611 Australia Wu et al. 2022
Inonotus vieinamensis Dai 18310 MZ484613 Viet Nam Wu et al. 2022
Inonotus vieinamensis Dai 18288* MZ484612 Viet Nam Zhou and Qin 2011
Inonotus vitis OC 1* MN108118 MN113944 USA Brown et al .2019
Kneiffiella barba-jovis KHL 11730 DQ873609 DQ873610 Sweden Unpublished
Kneiffiella subglobosa LWZ 20180416-6 MT319413 MT319145 China Wang et al. 2021
Kneiffiella abdita Miettinen 22165 ON188809 ON188809 Finland Viner et al. 2024
Kneiffiella abieticola KHL 12498 (GB) DQ873601 Sweden Larsson et al. 2006
Kneiffiella alienata CBS 127219 MH864327 USA Vu et al. 2018
Kneiffiella altaica PRM 956491 OM971678 Czech Republic Langer et al. 2022
Kneiffiella altaica PRM 956489 OM971676 Czech Republic Langer et al. 2022
Kneiffiella altaica PRM 956490 OM971677 Czech Republic Langer et al. 2022
Kneiffiella altaica PRM 953309 OM971675 Czech Republic Langer et al. 2022
Kneiffiella alutacea KAS-GEL 2284 DQ340340 Germany Yurchenko et al. 2020a
Kneiffiella alutacea Miettinen 21701 ON188808 ON188808 Finland Viner et al. 2024
Kneiffiella barba-jovis KHL 11730 DQ873609 Sweden Larsson et al. 2006
Kneiffiella bubalina CLZhao 15708* PQ373994 China Present study
Kneiffiella cineracea KAS-GEL 4958 DQ340336 Germany Yurchenko et al. 2020a
Kneiffiella curvispora PRM 954540 MW345630 Slovakia Běťák et al. 2021
Kneiffiella curvispora Pennanen 4040 OP620787 OP620787 Finland Viner et al. 2024
Kneiffiella decorticans SP 415980 KY081795 Argentina Riebesehl and Langer 2017
Kneiffiella efibulata GB-0151167, KY081796 Sweden Riebesehl and Langer 2017
Kneiffiella eucalypticola LWZ20180515-9 MT319411 Australia Luo et al. 2022
Kneiffiella eucalypticola LWZ 20180509-11* MT319410 MT319142 China Wang et al. 2021
Kneiffiella floccosa UC 2022902 KP814441 USA Rosenthal et al. 2017
Kneiffiella microspora Miettinen 11418 OP620788 OP620788 Indonesia Viner et al. 2024
Kneiffiella palmae FR 7 KP689185 China Wang et al. 2016
Kneiffiella palmae KAS-GEL 3456 DQ340333 China Yurchenko et al. 2020a
Kneiffiella pilaecystidiata MSK-F 4723 MK575208 Belarus Yurchenko et al. 2020a
Kneiffiella pilaecystidiata Helo 1517 OP620789 OP620789 Finland Viner et al. 2024
Kneiffiella pseudoabdita LWZ 20210624-6b* OQ540894 China Liu et al. 2024
Kneiffiella pseudoalutacea LWZ 20210625-5b* OQ540895 China Liu et al. 2024
Kneiffiella stereicola Blackwell 2141* KY081797 USA Riebesehl and Langer 2017
Kneiffiella subaltaica HHB-20039* OM971679 USA Langer et al. 2022
Kneiffiella subalutacea KAS-GEL 2196 DQ340341 Norway Yurchenko et al. 2020a
Kneiffiella subalutacea KAS-GEL2196 DQ340341 Norway Yurchenko et al. 2020a
Kneiffiella subefibulata Dai 10803 KT989971 China Chen et al. 2016
Kneiffiella subglobosa Wu 890805-2 KY081798 Taiwan Riebesehl and Langer 2017
Lawrynomyces capitatus KHL 8464 DQ677491 DQ677491 Sweden Cho et al. 2024
Leifia brevispora LWZ 20170820-48 MK343470 MK343474 China Liu et al. 2019
Leucophellinus hobsonii Cui 6468 KT203288 KT203309 China Cho et al. 2024
Leucophellinus irpicoides Yuan 2690 KT203289 KT203310 China Cho et al. 2024
Lyomyces allantosporus FR 0249548* KY800397 KY795963 Reunion Yurchenko et al. 2017
Lyomyces bambusinus CLZhao 4831* MN945968 MW264919 China Chen and Zhao 2020
Lyomyces fimbriatus Wu 911204-4 MK575210 MK598740 China Yurchenko et al. 2020a
Lyomyces mascarensis KASGEL 4833* KY800399 KY795964 Reunion Yurchenko et al. 2020a
Lyomyces niveus CLZhao 6431 MZ262541 MZ262526 China Unpublished
Lyomyces niveus CLZhao 6442 MZ262542 MZ262527 China Unpublished
Lyomyces ochraceoalbus CLZhao 4385 MZ262535 MZ262521 China Unpublished
Lyomyces ochraceoalbus CLZhao 4725 MZ262536 MZ262522 China Unpublished
Lyomyces orientalis LWZ 20170909-7 MT319436 MT319170 China Luo et al. 2022
Lyomyces sambuci KASJR 7 KY800402 KY795966 Germany Yurchenko et al. 2017
Meganotus everhartii JV 0108/30 MZ484529 MZ437388 USA Unpublished
Minimedusa obcoronata CBS 120605 GQ303278 GQ303309 Thailand Cheewangkoon et al. 2009
Minimedusa polyspora CBS 113.16* MH854646 MH866167 USA Cao et al. 2021
Multiclavula corynoides Lutzoni 930804-2 U66440 U66440 USA Cao et al. 2021
Multiclavula mucida TUB 011734 EU909345 EU909345 Germany Cao et al. 2021
Multiclavula petricola 356 ex* LC516464 LC516465 Japan Cao et al. 2021
Multiclavula vernalis Lutzoni 930806-1 U66439 U66439 USA Cao et al. 2021
Muscinupta laevis V. Haikonen 19745 MF319066 MF318921 Finland Cho et al. 2024
Neoburgoa freyi LF1256* KX423756 KX423756 Switzerland Lawrey et al. 2016
Neoburgoa freyi JL596-16 KX423754 KX423755 Switzerland Lawrey et al. 2016
Neomensularia duplicata LWZ 20150529-4 KX078217 KX078221 China Wu et al. 2016
Neophellinus uncisetus MUCL 47061 GU461972 GU462000 Argentina Amalfi et al. 2010
Nigrohirschioporus durus Dai 20642 OL470321 OL462835 China Cho et al. 2024
Nigrohirschioporus durus He 20120724-11 OQ448973 OQ449076 China Cho et al. 2024
Nigrohirschioporus griseofuscus B3942 OQ448975 OQ438022 Brazil Cho et al. 2024
Nigrohirschioporus griseofuscus JV 1909/ 6 OQ437343 OQ438024 French Guiana Cho et al. 2024
Nigrohirschioporus sector AS 2707 OQ437344 OQ438025 Brazil Cho et al. 2024
Nigrohirschioporus trimiticus B696* OQ453308 OQ453535 Brazil Cho et al. 2024
Nothophellinus andinopatagonicus JV 1911/20 MZ484532 MZ437391 Chile Wu et al. 2022
Oliveonia subfibrillosa TH 2018074 MT235650 MT235618 Finland Cao et al. 2021
Oliveonia subfibrillosa TH 2018179 MT235649 MT235617 Finland Cao et al. 2021
Oliveonia subfibrillosa VS 9048 MT235647 MT235615 Russia Cao et al. 2021
Oliveonia subfibrillosa VS 9053 MT235645 MT235614 Russia Cao et al. 2021
Onnia tomentosa Dai 22935 OL473604 OL473617 China Cho et al. 2024
Onnia tomentosa Niemela 9079 MF319075 MF318931 Finland Wu et al. 2022
Pachynotus punctatus Dai 17803* MZ484535 MZ437394 Singapore Wu et al. 2022
Pallidohirschioporus biformis Dai 12746 OQ453311 OQ453538 USA Cho et al. 2024
Pallidohirschioporus biformis Dai 19466 OQ453223 OQ453548 China Cho et al. 2024
Pallidohirschioporus brastagii Dai 22919 OQ453371 OQ453297 China Cho et al. 2024
Pallidohirschioporus polycystidiatus Dai 19100 OQ453378 OQ453301 China Cho et al. 2024
Pallidohirschioporus versicolor Dai 19331 OQ453386 OQ474951 China Cho et al. 2024
Peniophorella aspersa CLZhao 17063 OM985730 OM985771 China Cho et al. 2024
Peniophorella aspersa F24809* NR_172775 NG_073750 China Yurchenko et al. 2020b
Peniophorella crystallifera F23666* NR_171802 NG_073751 China Yurchenko et al. 2020b
Peniophorella crystallifera LWZ 20210626-4a ON063685 ON063885 China Wang et al. 2023
Peniophorella fissurata CLZhao 9421* NR177497 NG154027 China Guan et al. 2020
Peniophorella odontiiformis CLZhao 9862 MT247004 OM985779 China Cho et al. 2024
Peniophorella odontiiformis SFC20150108-37 OQ996168 OQ996199 South Korea Cho et al. 2024
Peniophorella pallida CLZhao 3017 OM985738 OM985780 China Cho et al. 2024
Peniophorella praetermissa AFTOL-ID 518 AY854081 AY700185 USA Cho et al. 2024
Peniophorella praetermissa LWZ 20180903-14 ON063686 ON063886 China Wang et al. 2023
Peniophorella pubera LWZ 20210624-16b ON063687 ON063887 China Wang et al. 2023
Peniophorella reticulata F22559* NR172776 NG073752 China Yurchenko et al. 2020b
Peniophorella rude F30649 MN062105 MN062153 China Yurchenko et al. 2020b
Peniophorella rude LWZ 20171026-7 ON063688 ON063888 China Wang et al. 2023
Peniophorella subpraetermissa LWZ 20190816-3b ON063689 ON063889 China Wang et al. 2023
Perennihirschioporus variabilis B856 OQ474942 OQ474957 Brazil Cho et al. 2024
Perenninotus shoreicola Dai 13614 KJ575522 KT749416 Thailand Wu et al. 2022
Phellinidium ferrugineofuscum Cui 10042 KC782527 KC782529 China Wu et al. 2022
Phellinopsis conchata L-7601 KU139188 KU139257 USA Brazee 2015
Phylloporia gabonensis MUCL 55571 NR_154331 NG_059641 Gabon Unpublished
Phylloporia nodostipitata FLOR 51173* KJ639055 KJ631412 Brazil Wu et al. 2022
Phylloporia perangusta Dai 18139 MH151169 MG738803 China Wu et al. 2022
Porodaedalea pini No-6170-T JX110037 JX110081 Porrugal Brazee and Lindner 2013
Pseudoinonotus dryadeus JV 1907/7 MZ484540 MZ437400 Czechia Wu et al. 2022
Pyrrhoderma adamantinum Dai 13832 MF860790 MF860736 China Wu et al. 2022
Resinicium austroasianum LWZ 20180417-5* NR173962 NG088188 China Yu et al. 2021
Resinicium austroasianum LWZ 20191208-11 ON063691 ON063891 China Wang et al. 2023
Resinicium bicolor AFTOL-810 DQ218310 AF393061 USA Cho et al. 2024
Resinicium lateastrocystidium LWZ 20180414-15* NR173963 MW414455 China Yu et al. 2021
Resinicium lateastrocystidium LWZ 20180416-10 MW414510 MW414456 China Yu et al. 2021
Resinicium monticola FP-150360* NR_111226 DQ863697 Jamaica Cho et al. 2024
Resinicium mutabile FP-102989* NR_119612 DQ863699 Puerto Rico Cho et al. 2024
Resinicium rimulosum KUC20131022-12 KJ668464 KJ668315 South Korea Jang et al. 2016
Rhizoctonia solani BRS17 MK481078 MN078809 India Cao et al. 2021
Rickenella fibula HBK013 MF319081 MF318941 USA Cho et al. 2024
Rickenella fibula SFC20230704-06 OR758634 OR758646 South Korea Cho et al. 2024
Rickenella fibula RAS051 MF319094 MF318972 USA Cho et al. 2024
Rickenella fibula HBK016 MF319084 MF318944 USA Cho et al. 2024
Rickenella fibula HBK014 MF319082 MF318942 USA Cho et al. 2024
Rickenella indica SFC20140626-39 OQ996172 OQ996203 South Korea Cho et al. 2024
Rickenella mellea CBS 579.87 MH862106 MH873795 France Vu et al. 2018
Rickenella mellea CBS 581.87 MH862107 MH873796 France Vu et al. 2018
Rickenella minuta MES1950 MF319097 MF318964 Argentina Cho et al. 2024
Rickenella minuta MES1892 MF318966 MF288881 Argentina Cho et al. 2024
Rickenella minuta MES1965 MF319105 MF318963 Argentina Cho et al. 2024
Rickenella umbelliformis SFC20150701-65* OQ996173 OQ996204 South Korea Cho et al. 2024
Rickenella umbelliformis SFC20160713-77 OQ996175 OQ996205 South Korea Cho et al. 2024
Rickenella umbelliformis SFC20180704-81 OQ996176 OQ996206 South Korea Cho et al. 2024
Rigidoporus corticola KUC20130718-79 KJ668502 KJ668354 South Korea Jang et al. 2016
Rigidoporus corticola LWZ 20190819-3b ON063673 ON063872 China Wang et al. 2023
Rigidoporus corticola SFC20230816-48 OR758635 OR758647 South Korea Cho et al. 2024
Rigidoporus cuneatus Cui 10855 OQ930254 OQ924530 South Korea Cho et al. 2024
Rigidoporus cuneatus Dai 7339 KT203294 KT203315 China Cho et al. 2024
Rigidoporus ginkgonis Cui 5555 KT203295 KT203316 China Cho et al. 2024
Rigidoporus ginkgonis SFC20230630-23 OR758636 OR758648 South Korea Cho et al. 2024
Rigidoporus juniperinus YG 1070 MK433641 MK433643 Uzbekistan Cho et al. 2024
Rigidoporus juniperinus Dai 17100 OQ930261 OQ924537 Uzbekistan Cho et al. 2024
Rogersiomyces malaysianus LE-BIN 3507-10 KT779285 KU820986 Vietnam Cao et al. 2021
Sanghuangporus weigelae LWZ 20210623-2a ON063671 ON063870 China Wang et al. 2023
Sanghuangporus zonatus Dai 10841 OP962417 KP030775 China Wu et al. 2022
Schizocorticium lenis LWZ 20180921-7* MW414521 MW414467 China Yu et al. 2021
Schizocorticium magnosporum Wu 1510-34* MK405351 MK405337 China Wang and Zhou 2024
Schizocorticium mediosporum Chen 2456* MK405359 MK405345 China Wang and Zhou 2024
Schizocorticium parvosporum GC 1508-127* MK405361 MK405347 China Wang and Zhou 2024
Sidera minutipora Cui 16720 MN621349 MN621348 Australia Wang and Zhou 2024
Sidera minutissima Dai 19529 MN621352 MN621350 Sri Lanka Du et al. 2020
Sidera parallela Dai 22038 MW477793 MW474964 China Cho et al. 2024
Sidera srilankensis Dai 19654* NR_172780 NG_075310 Sri Lanka Cho et al. 2024
Sidera tenuis Dai 18697* NR_171833 NG_075283 Singapore Cho et al. 2024
Sidera tibetica SFC20230317-17 OQ996177 OQ996207 South Korea Cho et al. 2024
Sidera tibetica Dai 23648* NR_177641 OM974245 China Liu et al. 2022
Sidera vesiculosa BJFC 025377* NR164588 NG066418 Singapore Cho et al. 2024
Sidera vulgaris Dai 21057 MW198484 MW192009 Singapore Liu et al. 2021
Sistotrema confluens FCUG298 DQ267125 AY647214 USA Cao et al. 2021
Sistotrema confluens PV174 AY463466 AY586712 Czechia Larsson et al. 2004
Sistotrema subconfluens Dai 12577 JX076812 JX076810 China Zhou and Qin 2013
Sistotremella perpusilla CBS 126048 MH864061 MH875516 USA Cao et al. 2021
Skvortzovia dabieshanensis LWZ 20201012-22* NR_173964 NG_088189 China Yu et al. 2021
Skvortzovia dabieshanensis LWZ 20210918-15b ON063694 ON063894 China Yu et al. 2021
Skvortzovia pinicola LWZ 20210623-18b ON063695 ON063895 China Wang et al. 2023
Skvortzovia qilianensis LWZ 20180904-16* NR173965 NG088190 China Yu et al. 2021
Skvortzovia qilianensis LWZ 20180904–20 MW414520 MW414466 China Yu et al. 2021
Skvortzovia yunnanensis CLZhao 16084 MW472754 MW473473 China Dong et al. 2021
Trichaptum byssogenum Dai 15555 OQ449085 OQ449026 China Cho et al. 2024
Trichaptum perrottetii JV 1908/ 45 OQ449092 OQ449031 French Guiana Cho et al. 2024
Trichosporon insectorum CBS 10422* KF036603 KY109953 Panama Cao et al. 2021
Tubulicrinis accedens MICH:352299 OL756001 OL742444 USA Cho et al. 2024
Tubulicrinis calothrix LWZ 20210919-1b ON063704 ON063904 China Wang et al. 2023
Tubulicrinis glebulosus LWZ 20180903-13 ON063705 ON063905 China Wang et al. 2023
Tubulicrinis subulatus LWZ 20190914-7 ON063706 ON063906 China Wang et al. 2023
Tubulicrinis xantha CLZhao 2869 MT153875 MT153882 China He et al. 2020
Tulasnella asymmetrica AFTOL-ID 1678 DQ520101 DQ520101 Germany Cao et al. 2021
Tulasnella irregularis CBS 574.83 NR160166 NG057720 Australia Cao et al. 2021
Tulasnella pruinosa DAOM 17641 DQ457642 AF518662 USA Cao et al. 2021
Tulasnella violea AFTOL-ID 1879 DQ520097 DQ520097 Germany Cao et al. 2021
Xylodon acuminatus Larsson 16029 ON197552 Brazil Viner et al. 2023
Xylodon acystidiatus LWZ 20180514-9* MT319474 MT319211 Australia Luo et al. 2022
Xylodon afromontanus H 7006811* OQ645463 Rwanda Yurchenko et al. 2024
Xylodon angustisporus Ryvarden 50691b* OK273831 Cameroon Viner et al. 2021
Xylodon apacheriensis Wu 0910-58 KX857797 KX857822 China Chen et al. 2017
Xylodon apacheriensis Canfield 180 KY081800 USA Wang et al. 2021
Xylodon asiaticus CLZhao 2282 OM959481 OM967416 China Zhang et al. 2024a
Xylodon asiaticus CLZhao 10368* OM959479 OM967417 China Zhang et al. 2024a
Xylodon asiaticus CLZhao 10430 OM959480 OM967418 China Zhang et al. 2024a
Xylodon asiaticus CLZhao 2282 OM959481 OM967416 China Zhang et al. 2024a
Xylodon asperus Spirin 11923 OK273838 Russia Viner et al. 2021
Xylodon astrocystidiatus TNM F24764 NR154054 China Yurchenko and Wu 2014
Xylodon astrocystidiatus Wu 9211-71* JN129972 JN129973 China Yurchenko and Wu 2014
Xylodon attenuatus Spirin 8775* MH324476 America Wang et al. 2021
Xylodon australis LWZ 20180509-8 MT319503 China Wang et al. 2021
Xylodon bambusinus CLZhao 11310* MW394660 China Ma and Zhao 2021
Xylodon bambusinus CLZhao 9174 MW394657 MW394650 China Ma and Zhao 2021
Xylodon bambusinus CLZhao 9174 MW394657 MW394650 China Ma and Zhao 2021
Xylodon borealis JS 26064 AY463429 Norway Larsson et al. 2004
Xylodon brevisetus JS 17863 AY463428 Norway Larsson et al. 2004
Xylodon crystalliger LWZ 20170816-33 MT319521 MT319269 China Luo et al. 2022
Xylodon crystalliger KUN 2312* NR166242 China Viner et al. 2018
Xylodon cymosus Miettinen 19606* ON197554 USA Viner et al. 2023
Xylodon cystidiatus FR 0249200 MH880195 MH884896 France Riebesehl et al. 2019
Xylodon damansaraensis LWZ 20180417-23 MT319499 Malaysia Wang et al. 2021
Xylodon daweishanense CLZhao 18357 OP730715 China Guan et al. 2023
Xylodon daweishanense CLZhao 18492 OP730719 China Guan et al. 2023
Xylodon detriticus Zíbarová 30.10.17 MH320793 Czech Republic Wang et al. 2021
Xylodon dissiliens Ryvarden 44817* OK273856 Uganda Viner et al. 2021
Xylodon echinatus OM 18237 OQ645464 Indonesia Yurchenko et al. 2024
Xylodon exilis TUB-FO42565* MH880198 MH884898 China Riebesehl et al. 2019
Xylodon filicinus MSKF 12869* MH880199 NG067836 China Riebesehl et al. 2019
Xylodon fissuratus CLZhao 9407* OP730714 China Guan et al. 2023
Xylodon flaviporus FR-0249797 MH880201 MH884901 Reunion Riebesehl et al. 2019
Xylodon flocculosus CLZhao 18342* MW980776 China Qu and Zhao 2022
Xylodon follis FR-0249814* MH880204 MH884902 Reunion Riebesehl et al. 2019
Xylodon gloeocystidiifer BLS M-5232* OQ645467 Ecuador Yurchenko et al. 2024
Xylodon gloeocystidiifer EYu 190720-11 OR240822 Ecuador Unpublished
Xylodon gossypinus CLZhao 4465 MZ663803 MZ663812 China Luo et al. 2021
Xylodon gossypinus CLZhao 8375* MZ663804 China Luo et al. 2021
Xylodon gossypinus CLZhao 4465 MZ663803 MZ663812 China Luo et al. 2021
Xylodon grandineus CLZhao 6425 OM338090 China Luo et al. 2022
Xylodon granulanoides CLZhao 17253* PQ373995 PQ373981 China Present study
Xylodon granulans CLZhao 17804 PQ373996 China Present study
Xylodon granulans CLZhao 17866* PQ373997 PQ373982 China Present study
Xylodon hastifer K(M) 172400* NR166558 America Riebesehl and Langer 2017
Xylodon heterocystidiatus LWZ20180921-19 MT319676 MT319266 Australia Zhang et al 2024a
Xylodon heterocystidiatus Wei 17-314 MT731753 MT731754 China Zhang et al. 2024a
Xylodon hjortstamii Gorjon 3187 ON188816 Chile Yuan and Zhao 2024
Xylodon hyphodontinus KAS-GEL9222 MH880205 Kenya Riebesehl et al. 2019
Xylodon jacobaeus MA-Fungi 91340* MH430073 Spain Wang et al. 2021
Xylodon kunmingensis TUB-FO 42565 MH880198 China Wang et al. 2021
Xylodon laceratus CLZhao 9892* OL619258 OL619266 China Qu et al. 2022
Xylodon lagenicystidiatus LWZ 20180513-16* MT319634 MT319368 Australia Luo et al. 2022
Xylodon lanatus CFMR FP-101864-A* OQ645474 USA Yurchenko et al. 2024
Xylodon lenis Wu 890714-3 KY081802 China Riebesehl et al. 2019
Xylodon macrosporus CLZhao 10226* MZ663809 MZ663817 China Luo et al. 2021
Xylodon magallanesii MA: Fungi:90397* MT158729 Chile Fernandez-Lopez et al. 2020
Xylodon mantiqueirensis MV 529 OQ645478 Brazil Yurchenko et al. 2024
Xylodon mollissimus LWZ 20160318-3* KY007517 MT319347 China Luo et al. 2022
Xylodon montanus CLZhao 8179* OL619260 OL619268 China Qu et al. 2022
Xylodon muchuanensis LWZ 20200819-3a OQ540903 China Unpublished
Xylodon muchuanensis LWZ 20200819-2b* OQ540902 China Unpublished
Xylodon neotropicus MV 580 OQ645479 Brazil Yurchenko et al. 2024
Xylodon nesporii LWZ 20180921-35 MT319655 MT319238 China Luo et al. 2022
Xylodon niemelaei LWZ 20150707-13 MT319630 MT319365 China Luo et al. 2022
Xylodon nongravis GC 1412-22* KX857801 KX857818 China Chen et al. 2017
Xylodon nothofagi ICMP 13842 AF145583 China Wang et al. 2021
Xylodon ovisporus LWZ 20170815-31 MT319666 MT319346 China Luo et al. 2022
Xylodon papillosus CBS 114.71 MH860026 Netherlands Vu et al. 2018
Xylodon paradoxus Dai 14983 MT319519 MT319267 China Luo et al. 2022
Xylodon patagonicus ICMP 13832 AF145581 Argentina Wang et al. 2021
Xylodon pruinosus Spirin 2877 MH332700 Estonia Wang et al. 2021
Xylodon pruniaceus Ryvarden 11251 OK273828 Malawi Viner et al. 2021
Xylodon pseudolanatus FP 150922* MH880220 NG067837 Belize Riebesehl et al. 2019
Xylodon pseudotropicus Dai 16167 MT319509 MT319255 China Luo et al. 2022
Xylodon pseudotropicus Dai 10768* KF917543 China Wang et al. 2021
Xylodon pseudotropicus Dai 16167 MT319509 MT319255 China Luo et al. 2022
Xylodon puerensis CLZhao 8142* OP730720 China Guan et al. 2023
Xylodon punctus CLZhao 17691* OM338092 China Luo et al. 2022
Xylodon punctus CLZhao 17908 OM338093 China Luo et al. 2022
Xylodon quercinus Otto Miettinen 15050,1 KT361632 Finland Ariyawansa et al. 2015
Xylodon quercinus Spirin 12030 OK273841 Russia Viner et al. 2021
Xylodon quercinus Otto Miettinen 15050,1 KT361632 Finland Ariyawansa et al. 2015
Xylodon quercinus KHL 11076 KT361633 AY586678 Sweden Larsson et al. 2004
Xylodon quercinus KHL 11076 KT361633 AY586678 Sweden Larsson et al. 2004
Xylodon raduloides FCUG 2433 AF145570 Russia Wang et al. 2021
Xylodon ramicida Spirin 7664* NR138013 America Yuan and Zhao 2024
Xylodon reticulatus Wu 1109-178 KX857805 China Wang et al. 2021
Xylodon reticulatus GC 1512-1 KX857808 China Wang et al. 2021
Xylodon rhizomorphus Dai 12367* NR154067 China Wang et al. 2021
Xylodon rhododendricola LWZ 20180513-9 MT319621 MT319357 Australia Luo et al. 2022
Xylodon rimosissimus Ryberg 021031 DQ873627 DQ873628 Sweden Larsson et al. 2006
Xylodon serpentiformis LWZ 20170816-15 MT319673 MT319218 China Luo et al. 2022
Xylodon sinensis CLZhao 9197 MZ663810 MZ663818 China Luo et al. 2021
Xylodon sinensis CLZhao 11120* OK560885 China Luo et al. 2021
Xylodon spathulatus LWZ 20180804-10 MT319646 MT319354 China Luo et al. 2022
Xylodon subclavatus FO 42167 MH880232 China Wang et al. 2021
Xylodon subflaviporus Wu 0809-76 KX857803 KX857815 China Chen et al. 2017
Xylodon subflaviporus TNM F29958* NR184880 China Chen et al. 2017
Xylodon subpunctus CLZhao 6165 PP537958 China Unpublished
Xylodon subpunctus CLZhao 31242* PP537957 China Unpublished
Xylodon subserpentiformis LWZ 20180512-16 MT319486 MT319226 Australia Luo et al. 2022
Xylodon subtilissimus Spirin 12228 ON188818 Russia Yuan and Zhao 2024
Xylodon subtropicus LWZ 20180510-24 MT319541 MT319308 China Luo et al. 2022
Xylodon taiwanianus CBS 125875 MH864080 MH875537 New Zealand Vu et al. 2018
Xylodon tropicus CLZhao 3351* OL619261 OL619269 China Qu et al. 2022
Xylodon ussuriensis KUN 1989* NR166241 America Yuan and Zhao 2024
Xylodon verecundus KHL 12261 DQ873642 DQ873643 Sweden Larsson et al. 2006
Xylodon victoriensis LWZ 20180510-29 MT319487 MT319228 Australia Luo et al. 2022
Xylodon wenshanensis CLZhao 15729* OM338097 China Luo et al. 2022
Xylodon wenshanensis CLZhao 10790 OM338095 China Luo et al. 2022
Xylodon wenshanensis CLZhao 15782 OM338098 China Luo et al. 2022
Xylodon wenshanensis CLZhao 15718 OM338096 China Luo et al. 2022
Xylodon xinpingensis CLZhao 11224 MW394662 MW394654 China Ma and Zhao 2021
Xylodon xinpingensis CLZhao 9174* MW394657 China Ma and Zhao 2021
Xylodon yarraensis LWZ 20180510-5 MT319639 MT319378 Australia Luo et al. 2022
Xylodon yunnanensis LWZ 20180922-47 MT319660 China Wang et al. 2021

Phylogenetic analyses

Sequences generated for this study were aligned with additional sequences downloaded from GenBank. Sequences were aligned using MAFFT v.7 (https://mafft.cbrc.jp/alignment/server/), adjusting the direction of nucleotide sequences according to the first sequence (accurate enough for most cases), and selecting the G-INS-i iterative refinement method (Katoh et al. 2019). Alignments were manually adjusted to maximize alignment and minimize gaps with BioEdit v.7.0.9 (Hall 1999). A dataset of concatenated ITS and nLSU sequences was used to determine the phylogenetic position of the new species. Maximum likelihood (ML) analysis was performed using the CIPRES Science Gateway based on the dataset using the RA×ML-HPC BlackBox tool, with setting RA×ML halt bootstrapping automatically and 0.25 for maximum hours and obtaining the best tree using ML search (Miller et al. 2010). Other parameters in ML analysis used default settings, and statistical support values were obtained using nonparametric bootstrapping with 1,000 replicates. Bayesian inference (BI) analysis based on the dataset was performed using MrBayes v.3.2.6 (Ronquist and Huelsenbeck 2003). The best substitution model for the dataset was selected by ModelFinder using a Bayesian information criterion, and the model was used for Bayesian analysis (Kalyaanamoorthy et al. 2017). Four Markov chains were run from random starting trees. Trees were sampled every 1.00th generation. The first 25% of sampled trees were discarded as burn-in, whereas other trees were used to construct a 50% majority consensus tree and for calculating Bayesian posterior probabilities (BPPs).

The branches of the consensus tree that received bootstrap support for ML were greater than or equal to 70%, and Bayesian posterior probabilities were greater than or equal to 0.95, respectively.

Results

BI analysis yielded a similar topology to MP and ML analysis; thus, the MP tree is provided (Figs 16). Branches that received bootstrap support for ML (ML-BS) and BI (BPP) greater than or equal to 70% (MP-BS and ML-BS) and 0.95 (BPP) were considered as significantly supported, respectively.

The phylogeny of Cantharellales

The ITS and nLSU dataset contained sequences from 135 fungal specimens representing 97 Cantharellales taxa. The average SD of split frequencies in BI analyses is 0.013339 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 725. The phylogenetic tree (Fig. 1) reveals that the Cantharellales new species were grouped into the genus Botryobasidium (Botryobasidiaceae).

Figure 1. 

Phylogeny of species in Cantharellales generated by maximum likelihood based on ITS+nLSU sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

The phylogeny of Botryobasidium

The ITS dataset contained sequences from 39 fungal specimens representing 22 Botryobasidium taxa. The average SD of split frequencies in BI analyses is 0.006652 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 1700.5. The phylogenetic tree (Fig. 2) reveals that the new species groups with three taxa, Botryobasidium intertextum (Schwein.) Jülich & Stalper, B. leptocystidiatum L.J. Zhou & H.S. Yuan, and B. subcoronatum.

Figure 2. 

Phylogeny of species in Botryobasidium generated by maximum likelihood based on ITS sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

The phylogeny of Hymenochaetales

The ITS dataset contained sequences from 239 fungal specimens representing 196 Hymenochaetales taxa. The average SD of split frequencies in BI analyses is 0.013469 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 671.5. The phylogenetic tree (Fig. 3) reveals the four new Hymenochaetales species grouped into Hymenochaetaceae, Hyphodontiaceae, and Schizoporaceae.

Figure 3. 

Phylogeny of species in Hymenochaetales generated by maximum likelihood based on ITS+nLSU sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

The phylogeny of Inonotus

The ITS dataset contained sequences from 49 fungal specimens representing 26 Inonotus taxa. The average SD of split frequencies in BI analyses is 0.004227 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 2018.5. The phylogenetic tree (Fig. 4) reveals that the new species is closely related to Inonotus radiatus (Sowerby) P. Karst.

Figure 4. 

Phylogeny of species in Inonotus generated by maximum likelihood based on ITS sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

The phylogeny of Kneiffiella

The ITS dataset contained sequences from 26 fungal specimens representing 21 Kneiffiella taxa. The average SD of split frequencies in BI analyses is 0.007515 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 4107.5. The phylogenetic tree (Fig. 5) reveals that the new species is closely related to Kneiffiella subalutacea (P. Karst.) Jülich & Stalpers.

Figure 5. 

Phylogeny of species in Kneiffiella generated by maximum likelihood based on ITS sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

The phylogeny of Xylodon

The ITS dataset contained sequences from 149 fungal specimens representing 94 Xylodon taxa, 15 Hyphodontia J. Erikss taxa, five Lyomyces P. Karst taxa, and four Kneiffiella taxa. The average SD of split frequencies in BI analyses is 0.020943 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg ESS) = 1031.5. The phylogenetic tree (Fig. 6) reveals that the new species has a close relationship with Xylodon bambusinus C.L. Zhao & X. Ma, X. fissuratus C.L. Zhao, X. subclavatus (Yurchenko, H.X. Xiong and Sheng H. Wu) Riebesehl, Yurch. & Langer, X. montanus C.L. Zhao and X. wenshanensis K.Y. Luo & C.L. Zhao. Additionally, Xylodon granulanoides and X. granulans clustered together.

Figure 6. 

Phylogeny of species in Xylodon generated by maximum likelihood based on ITS sequence data. Branches are labeled with maximum likelihood bootstrap ≥ 70% and Bayesian posterior probabilities ≥ 0.95, respectively.

Taxonomy

Botryobasidium daweishanense J.L. Zhang, H.M. Zhou & C.L. Zhao, sp. nov.

MycoBank No: 856337
Figs 7, 8

Diagnosis.

Botryobasidium daweishanense differs from B. subcoronatum by its araneose hymenial surface, smaller basidia, fusiform, cyanophilous, and wider basidiospores.

Figure 7. 

Basidiomata of Botryobasidium daweishanense (holotype, CLZhao 40062) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Holotype.

China • Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, 28°42'N, 114°11'E, evel. 1356 m asl., on fallen angiosperm branch, 1 August 2019, CLZhao 40062 (SWFC).

Figure 8. 

Microscopic structures of Botryobasidium daweishanense (holotype, CLZhao 40062) A basidiospores B basidia and basidioles C a section of hymenium. Scale bars: 5 μm (A); 10 μm (B, C); 10 × 100 oil.

Etymology.

Daweishanense (Lat.) refers to the type location “Daweishan National Nature Reserve,” China.

Description.

Basidiomata. Annual, resupinate, coriaceous, without odor or taste when fresh, up to 1.6 cm long, 1.5 cm wide, and 100 μm thick. Hymenial surface araneose, cream when fresh, straw-yellow to yellowish when dry. Sterile margin thin, indistinct, slightly yellowish, up to 0.5 mm.

Hyphal system. Monomitic; generative hyphae with clamp connections, hyaline, thin to slightly thick-walled, frequently branched, interwoven, 5.0–8.0 μm in diam, IKI–, CB+; tissues unchanged in KOH.

Hymenium. Cystidia and cystidoles absent. Basidia barred, slightly sinuous, with six short sterigmata and a basal clamp connection, 11.5–18.0 × 5.0–8.0 μm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores. Fusiform, hyaline, thin-walled, smooth, IKI–, CB+, (6.0–)6.1–7.3 × (3.1–)3.3–3.9(–4.1) μm, L = 6.65 μm, W = 3.64 μm, Q = 1.81–1.85 (n = 60/2).

Additional specimens examined.

China • Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, 28°42'N, 114°11'E, evel. 1356 m asl., on fallen angiosperm branch, 1 August 2019, CLZhao 40061 (SWFC).

Inonotus subglobisporum J.L. Zhang, H.M. Zhou & C.L. Zhao, sp. nov.

MycoBank No: 856340
Figs 9, 10

Diagnosis.

Inonotus subglobisporum differs from I. radiata by its perennial basidiomata, laterally stipitate, polygon pores, tapered, dark brown, thick-walled setae, and subglobose, thick-walled, hyaline basidiospores.

Figure 9. 

Basidiomata of Inonotus subglobisporum (holotype, CLZhao 8765) A, B the front of the basidiomata C, D characteristic hymenophore. Scale bars: 1 cm (A, C); 1 mm (B, D).

Holotype.

China • Yunnan Province, Puer, Jingdong County, Ailaoshan National Nature Reserve, 23°42'N, 101°52'E, evel. 2450 m asl., on fallen angiosperm trunk, 25 August 2018, CLZhao 8765 (SWFC).

Figure 10. 

Microscopic structures of Inonotus subglobisporum (holotype, CLZhao 8765) A basidiospores B basidia and basidioles C setae D hymenium and hyphae from trama E hyphae from context. Scale bars: 5 μm (A); 10 μm (B–E); 10 × 100 oil.

Etymology.

Subglobisporum (Lat.) refers to the subglobose basidiospores.

Description.

Basidiomata. Perennial, laterally stipitate, solitary, without odor or taste when fresh. Pilei fan-shaped, cortical to cork, extend up to 1.3 cm long, 2.2 cm wide, and 6 mm thick in diam at the base. Pileal surface honey-yellow to fuscous when fresh, vinaceous brown to fuscous when dry. Pore surface cream, when fresh, becomes cream to fawn when dry; pores polygonal, 4–6 per mm. Context cinnamon-buff when dry, cork, up to 5 mm thick. Tubes cream to fawn when dry, cork, up to 1 mm long. Stipe with the same color as pores, up to 23 mm long and 15 mm in diameter when dry.

Hyphal structure. Monomitic; generative hyphae, simple-septate, slightly thick-walled, frequently branched, interwoven. Generative hyphae in the tube frequent, brownish, slightly thick-walled, easily collapsing, 2.5–5.0 µm in diam. Generative hyphae in the context frequent, brown, slightly thick-walled, 3.0–7.0 µm in diam, IKI–, CB–; tissues brownish in KOH. Context. Setae numerous, tapered, dark brown, thick-walled, strongly encrusted in the surface, and almost entirely buried, 12.0–69.5 × 4.0–11.0 μm, cystidoles absent. Basidia clavate, with four short sterigmata and a basal simple-septate, 5.5–13.0 × 2.5–6.5 μm; basidioles in shape similar to basidia, but slightly smaller. Basidiospores. Subglobose, hyaline, thick-walled, smooth, IKI–, CB+, (3.5–)3.6–4.3(–4.4) × (2.6–)2.8–3.5(–3.6) μm, L = 3.99 μm, W = 3.20 μm, Q = 1.22–1.27 (n = 120/4).

Other specimens examined.

China • Yunnan Province, Puer, Jingdong County, Ailaoshan National Nature Reserve, 23°42'N, 101°52'E, evel. 2450 m asl., on fallen angiosperm trunk, 23 August 2018, CLZhao 8331; CLZhao 8387; CLZhao 8433; CLZhao 8543; 24 August 2018, CLZhao 8500; 25 August 2018, CLZhao 8678; CLZhao 8737; CLZhao 8789 (SWFC).

Kneiffiella bubalina J.L. Zhang, H.M. Zhou & C.L. Zhao, sp. nov.

MycoBank No: 856342
Figs 11, 12

Diagnosis.

Kneiffiella bubalina differs from K. subalutacea by its cream basidiomata and cylindrical to slightly allantoid basidiospores.

Figure 11. 

Basidiomata of Kneiffiella bubalina (holotype, CLZhao 15708) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Holotype.

China • Yunnan Province, Wenshan, Xichou County, Jiguanshan Forestry Park, 23°53'N, 104°82'E, evel. 1730 m asl., on fallen angiosperm branch, 22 July 2019, CLZhao 15708 (SWFC).

Figure 12. 

Microscopic structures of Kneiffiella bubalina (holotype, CLZhao 15708) A basidiospores B basidia and basidioles C cystidia D a section of hymenium. Scale bars: 5 μm (A); 10 μm (B–D); 10 × 100 oil.

Etymology.

Bubalina (Lat.) refers to its buff-colored hymenial surface.

Description.

Basidiomata. Annual, resupinate, smooth, membranous, without odor or taste when fresh, up to 1.6 cm long, 1.1 cm wide, and 0.1–0.2 mm thick. Hymenial surface araneose, white to cream when fresh, buff when dry. Sterile margin thin, indistinct, slightly buff, up to 1 mm.

Hyphal system. Monomitic; generative hyphae with clamp connections, slightly thick-walled, frequently branched, interwoven, IKI–, CB–, 2.5–3.5 μm in diam; tissues unchanged in KOH.

Hymenium. Cystidia numerous, tubular, rising from subiculum with a basal clamp connection, hyaline, thick-walled except in the apical part, smooth, 103.5–162.5 × 6.0–8.0 μm; cystidioles absent. Basidia club-shaped, slight constriction in the middle part, with four sterigmata and a basal clamp connection, 10.0–14.0 × 4.5–5.0 μm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores. Cylindrical to slightly allantoid, slightly narrower in apical part, hyaline, thin-walled, smooth, IKI–, CB–, 8.0–8.9(–9.1) × (1.7–)1.8–2.3(–2.6) μm, L = 8.41 μm, W = 2.03 μm, Q = 4.15 (n = 30/1).

Xylodon granulanoides J.L. Zhang, H.M. Zhou & C.L. Zhao, sp. nov.

MycoBank No: 856343
Figs 13, 14

Diagnosis.

Xylodon granulanoides differs from X. granulans. by its varied cystidia and broadly ellipsoid, thick-walled basidiospores measuring 4.7–5.3 × 3.6–4.1 μm.

Figure 13. 

Basidiomata of Xylodon granulanoides (holotype, CLZhao 17253) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Holotype.

China • Yunnan Province, Wenshan, Pingbian County, Wenshan National Nature Reserve, 23°22'N, 103°93'E, evel. 1753 m asl., on fallen angiosperm branch, 28 July 2019, CLZhao 17253 (SWFC).

Figure 14. 

Microscopic structures of Xylodon granulanoides (holotype, CLZhao 17253) A basidiospores B basidia and basidioles C cystidioles D–H cystidia I a section of hymenium. Scale bars: 5 μm (A); 10 μm (B–I); 10 × 100 oil.

Etymology.

Granulanoides (Lat.) refers to the new species’ resemblance to Xylodon granulans.

Description.

Basidiomata. Annual, resupinate, adnate, membranous, without odor or taste when fresh, brittle when dry, up to 5.3 cm long, 2.5 cm wide, and 0.1 mm thick. Hymenial surfaces grandinioid, white to cream when fresh, cream to slightly buff upon drying. Sterile margin thin, indistinct, slightly cream, up to 1 mm.

Hyphal system. Monomitic; generative hyphae with clamp connections slightly encrusted with crystals amongst generative hyphae, hyaline, slightly thick-walled, frequently branched, interwoven, 2.5–3.5 μm in diam, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Cystidia numerous, subclavate to cylindrical, or slightly subcapitate, hyaline, thin-walled, 9.5–29.0 × 4.0–9.5 μm; cystidioles are present, subcapitate, hyaline, thin-walled, 13.5–21.0 × 5.0–9.0 μm. Basidia subcylindrical to clavate, hyaline, thin-walled, with four sterigmata and a basal clamp connection, 11.0–16.0 × 4.0–5.5 µm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores. Broadly ellipsoid, part has a large drop of oil, hyaline, slightly thick-walled, smooth, IKI–, CB–, (4.6–)4.7–5.3(–5.3) × (3.4–)3.6–4.1(–4.2) μm, L = 4.92 μm, W = 3.90 μm, Q = 1.26 (n = 30/1).

Xylodon granulans J.L. Zhang, H.M. Zhou & C.L. Zhao, sp. nov.

MycoBank No: 856344
Figs 15, 16

Diagnosis.

Xylodon granulans differs from X. wenshanensis by its broadly ellipsoid, thin-walled basidiospores measuring 3.8–4.2 × 2.9–3.3 μm.

Figure 15. 

Basidiomata of Xylodon granulans (holotype, CLZhao 17866) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Holotype.

China • Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, 28°42'N, 114°11'E, evel. 1356 m asl. on fallen angiosperm branch, 1 August 2019, CLZhao 17866 (SWFC).

Figure 16. 

Microscopic structures of Xylodon granulans (holotype, CLZhao 17866) A basidiospores B basidia and basidioles C–E cystidia F a section of hymenium. Scale bars: 5 μm (A); 10 μm (B–F); 10 × 100 oil.

Etymology.

Granulans (Lat.) refers to the granulated hymenial surface.

Description.

Basidiomata. Basidiomata annual, resupinate, adnate, membranous, without odor or taste when fresh, up to 2.4 cm long, 1.3 cm wide, and 50–70 μm thick. Hymenial surface grandinioid, cream when fresh, white to slightly cream when dry. Sterile margin thin, indistinct, slightly cream, up to 1 mm.

Hyphal system. Monomitic; generative hyphae with clamp connections slightly encrusted with crystals amongst generative hyphae, hyaline, slightly thick-walled, frequently branched, interwoven, 2.0–2.5 μm in diam, IKI–, CB–; tissues unchanged in KOH.

Hymenium. Cystidia of two types: (1) Capitate cystidia in hymenium and subiculum, hyaline, slightly thick-walled, smooth, slightly constricted at the neck, with a globose head, 4.5–23.5 × 3.0–4.5 μm; (2) Clavate cystidia, slightly sinuous, hyaline, slightly thick-walled, smooth, 13.0–24.0 × 4.0–5.0 μm. Basidia clavate, slightly sinuous, with four sterigmata and a basal clamp connection, 9.0–12.0 × 3.5–4.5 μm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores. Broadly ellipsoid, some of them with an oily drop, hyaline, thin-walled, smooth, IKI–, CB–, (3.7–)3.8–4.2(–4.3) × (2.8–)2.9–3.3(–3.4) μm, L = 4.03 μm, W = 3.12 μm, Q = 1.29–1.29 (n = 60/2).

Other specimen examined.

China • Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, 28°42'N, 114°11'E, evel. 1356 m asl., on fallen angiosperm branch, 1 August 2019, CLZhao 17804 (SWFC).

Discussion

Numerous wood-inhabiting fungal taxa have recently been identified over the last few years (Cui et al. 2019; Guan et al. 2023; Zhao et al. 2023b; Luo et al. 2024; Zhou et al. 2024b). The most recent taxonomic framework recognizes 14 families within Hymenochaetales (Wang et al. 2023; He et al. 2024; Wang and Zhou 2024). To further investigate the wood inhabiting fungal diversity, collections representing five new species viz. Inonotus subglobisporum, Kneiffiella bubalina, Xylodon granulanoides, X. granulans (Hymenochaetales), and Botryobasidium daweishanense (Cantharellales) from Yunnan Province were collected and are introduced based on a combination of morphological features and molecular evidence.

Botryobasidium daweishanense is characterized by an araneose hymenial surface, generative hyphae with clamp connections, subcylindrical basidia (11.5–18.0 × 5.0–8.0 μm), and fusiform, cyanophilous basidiospores (6.1–7.3 × 3.3–3.9 μm). In several previous studies, molecular data have confirmed phylogenetic relationships showing that the genus Botryobasidium is nested within the cantharelloid clade and grouped with related genera such as Cantharellus Lam., Clavulina J. Schröt, Craterellus Pers, and Hydnum L. (Moncalvo et al. 2006; Bernicchia and Gorjón 2010). Macromorphologically, species of Botryobasidium are often mistaken for certain genera, such as Ceratobasidium D.P. Rogers, Sistotrema Fr., and Tulasnella J. Schröt (Donk 1956; Oberwinkler 1982). However, Botryobasidium is distinguished from these genera by the absence of epibasidia, sturdy and long sterigmata, and oily inclusions (Kotiranta and Saarenoksa 2005; Gorjón and Hallenberg 2008; Oberwinkler et al. 2017; Zhou et al. 2024c). The phylogram created based on inferences from the ITS+nLSU data in the present study aligns with previous research. According to the phylogram (Fig. 1), the new species of Botryobasidium daweishanense was grouped into the genus Botryobasidium (Botryobasidiaceae). Phylogenetic analysis of the ITS system (Fig. 2) revealed that the new species Botryobasidium daweishanense is grouped with three taxa: B. intertextum, B. leptocystidiatum, and B. subcoronatum. However, morphologically, Botryobasidium intertextum differs macroscopically from B. daweishanense in being initially thin, hypochnoid, and white and later displaying pellicular and yellowish hymenial surfaces. In contrast, the hymenial surface of B. daweishanense is araneose and exhibits a straw-yellow to cream color when dry. In addition, at the micro level, Botryobasidium intertextum is distinguishable from B. daweishanense by its larger basidiospores (7.0–9.5 × 1.8–2.81 μm) and basidia (15–21 × 5–6.5 μm; Kotiranta and Saarenoksa 1990). Botryobasidium leptocystidiatum and B. daweishanense both display an arachnoid hymenial surface macroscopically; however, B. daweishanense appears cream-colored when fresh and straw-yellow to yellowish when dry, whereas B. leptocystidiatum is grayish-white to smoky gray when fresh and grayish-white to ivory when dry. Additionally, microscopically, B. leptocystidiatum features tubular cystidia, 6–7 sterigmata, and smaller basidia (10.5–15 × 7–8 μm) and longer basidiospores (6.5–7.8 × 2.9–3.7 μm) than B. daweishanense (Zhou et al. 2024c). Botryobasidium subcoronatum is distinguished from B. daweishanense by the former being thin, floccose to hypochnoid, and whitish at first, followed by having a yellowish to ochraceous hymenial surface. On a microscopic level, the species Botryobasidium subcoronatum has relatively larger basidia (20–25 × 7–9 µm) and narrower basidiospores (6–7.5 × 2.5–3 µm; Eriksson and Ryvarden 1973).

Inonotus subglobisporum is characterized by perennial, laterally stipitate basidiomata; tapered, dark brown, thick-walled setae (12.0–69.5 × 4.0–11.0 μm); and subglobose, cyanophilous basidiospores (3.6–4.3 × 2.8–3.5 μm). In the phylogenetic tree of Wu et al. (2022), species of Inonotus formed a monophyletic clade; however, Inonotus may still be a polyphyletic genus because most species within the genus have not been phylogenetically analysed. Wagner and Fischer also regarded Inonotus as a polyphyletic group (Wagner and Fischer 2002; Lin et al. 2023). In the present study, the phylogenetic analysis of the ITS system (Fig. 4) was consistent with previous reports and revealed that the species Inonotus subglobisporum was a sister to I. radiatus. However, morphologically, the species Inonotus radiatus differs from I. subglobisporum in terms of its annual basidiomata, which are typically in imbricate clusters; hooked setae; and ellipsoid, hyaline to pale yellowish basidiospores (3.8–5 × 2.6–3.5 μm; Dai 2010).

Kneiffiella bubalina is characterized by cream-colored basidiomata, slightly thick-walled generative hyphae, and cylindrical to slightly allantoid basidiospores (8.0–8.9 × 1.8–2.3 μm). Riebesehl and Langer (2017) showed the monophyly of Kneiffiella species by inferring ITS sequences using Bayesian analysis. Wang et al. (2021) classified Kneiffiella as belonging to the family Chaetoporellaceae (Riebesehl and Langer 2017; Wang et al. 2021; Langer et al. 2022). Based on a phylogenetic analysis of the ITS + nLSU system (Fig. 3), we determined that the genus Kneiffiella is nested in the Chaetoporellaceae clade. Phylogenetic analysis of the ITS system (Fig. 5) revealed that the new species, Kneiffiella bubalina, is a sister to K. subalutacea. Morphologically, Kneiffiella subalutacea resembles K. bubalina because of its smooth hymenial surface, tubular, obtuse apical part, and thick-walled cystidia. However, Kneiffiella subalutacea can be distinguished from K. bubalina by its yellowish basidiomata and allantoid, smooth, thin-walled basidiospores (6–8 × 1.5–2.0 μm; Eriksson and Ryvarden 1976).

Xylodon granulanoides is characterized by grandinioid hymenial surfaces, varied cystidia, and broadly ellipsoid, thick-walled basidiospores (4.7–5.3 × 3.6–4.1 μm). Xylodon granulans is characterized by grandinioid hymenial surfaces, capitate cystidia and clavate cystidia, and broadly ellipsoid, thin-walled basidiospores (3.8–4.2 × 2.9–3.3 μm). In several previous phylogenetic studies based on multiple loci in the family Schizoporaceae, three genera, Fasciodontia Yurchenko & Riebesehl, Lyomyces, and Xylodon, were located in this family (Wang et al. 2021; Yuan and Zhao 2024). The present study’s phylogram inferred from the ITS+nLSU data (Fig. 3) shows that two new species, Xylodon granulanoides and X. granulans, are grouped within the family Schizoporaceae. Based on the ITS topology (Fig. 6), these two new species are closely clustered with five other species: Xylodon bambusinus, X. fissuratus, X. montanus, X. subclavatus, and X. wenshanensis; meanwhile, the taxon X. granulans is a sister to X. granulanoides. However, morphologically, Xylodon granulans differs from X. granulanoides in that X. granulans lacks cystidioles and exists as broadly ellipsoid, thin-walled basidiospores (3.8–4.2 × 2.9–3.3 μm). Xylodon bambusinus differs from X. granulans and X. granulanoides in its ceraceous basidiomata, fusiform cystidia and capitate cystidia, and broad, ellipsoid, thin-walled basidiospores (4–5.5 × 3–4 μm; Ma and Zhao 2021). Xylodon fissuratus and X. montanus differ from X. granulans and X. granulanoides in that X. fissuratus and X. montanus have only one cystidia. In contrast, X. fissuratus has capitate cystidia, a thin-walled hyphal structure, and ellipsoid, thin-walled basidiospores (4.0–5.0 × 3.0–4.0 µm; Guan et al. 2023). Xylodon montanus has a smooth hymenial surface, moniliform cystidia, and ellipsoid to broad ellipsoid basidiospores (3.9–5.3 × 3.2–4.3 µm; Qu et al. 2022). Xylodon subclavatus can be distinguished from X. granulans and X. granulanoides by its cracked, aculei wart-like to conical, blunt to acute hymenial surface, and four types of cystidia: subclavate, hyphoid, capitate to sucapitate, and moniliform (Yurchenko et al. 2013). Xylodon wenshanensis can be distinguished from X. granulans and X. granulanoides by its capitate cystidia, clavate cystidia, and ellipsoid, thin-walled basidiospores (3–5 × 2–3.5 μm; Luo et al. 2022).

The families Chaetoporellaceae, Hymenochaetaceae, and Schizoporaceae represent a well-studied group within Hymenochaetales (Luo and Zhao 2021; Langer et al. 2022; Cho et al. 2024; Freire and Soares 2024; Viner et al. 2024); however, the diversity of species in China remains poorly understood, particularly in the southwestern region. Additionally, the genus Botryobasidium has rarely been reported in recent years, particularly in southwestern China. Therefore, the species diversity of Cantharellales and Hymenochaetales in China, particularly in the subtropical and tropical regions, has not been sufficiently studied. This study contributes to our understanding of fungal diversity in these areas and underscores the urgent need for further fieldwork and molecular analyses to identify new taxa. Our findings confirm that fungal diversity is abundant in southwestern China.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project No. 3246006), the Scientific Research Fund of Yunnan Provincial Department of Education (2024J0668), and the Forestry Innovation Programs of Southwest Forestry University (Project No: LXXK-2023M07).

Author contributions

Conceptualization, HZ and JZ; methodology, HZ and JZ; software, HZ, JZ, and ZG; validation, HZ and JZ; formal analysis, HZ and JZ; investigation, HZ, CZ, and JZ; resources, HZ; writing—original draft preparation, HZ, JZ, and ZG; writing—review and editing, HZ and JZ; visualization, HZ and JZ; supervision, HZ and JZ; project administration, HZ; funding acquisition, HZ. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Jianling Zhang https://orcid.org/0009-0005-3268-7665

Zirui Gu https://orcid.org/0000-0003-1476-9040

Chunqin Zhou https://orcid.org/0009-0004-8117-1537

Hongmin Zhou https://orcid.org/0000-0002-0724-5815

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Adaku N, Park HB, Spakowicz DJ, Tiwari MK, Strobel SA, Crawford JM, Rogers FA (2020) A DNA repair inhibitor isolated from an Ecuadorian fungal endophyte exhibits synthetic lethality in PTEN-deficient glioblastoma. Journal of Natural Products 83(6): 1899–1908. https://doi.org/10.1021/acs.jnatprod.0c00012
  • Amalfi M, Yombiyeni P, Decock C (2010) Fomitiporia in sub-Saharan Africa: Morphology and multigene phylogenetic analysis support three new species from the Guineo-Congolian rainforest. Mycologia 102(6): 1303–1317. https://doi.org/10.3852/09-083
  • An DY, Liang ZQ, Jiang S, Su MS, Zeng NK (2017) Cantharellus hainanensis a new species with a smooth hymenophore from tropical China. Mycoscience 58(6): 438–444. https://doi.org/10.1016/j.myc.2017.06.004
  • Anonymous (1969) Flora of British Fungi. Colour Identification Chart. Her Majesty’s Stationery Office, London.
  • Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Kandawatte TC, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Nejhad MG, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Gareth Jones EB, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov T, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal-Forno M, Flad V, Fliegerová K, Greiner K, Griffith GW, Ho HM, Valerie H, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytövuori I, Lawrey J, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch T, Matsumura M, Moncada B, Nuankaew S, Parnmen S, Santiago A, Sommai S, Song Y, Souza CAF, Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei SF, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier J, Erio C, Luangsa-Ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common R, Stadler M, Yan J, Li XH, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen HA, Chen XH (2015) Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75(1): 27–274. https://doi.org/10.1007/s13225-015-0346-5
  • Bernicchia A, Gorjón SP (2010) Fungi Europaei 12: Corticiaceae s.l.; Edizioni Candusso Publishers, Salamanca, Spain, 1–1007.
  • Bernicchia A, Langer GJ, Gorjón SP (2010) Botryobasidium sassofratinoense sp. nov. (Cantharellales, Basidiomycota) from Italy. Mycotaxon 111(1): 403–409. https://doi.org/10.5248/111.403
  • Běťák J, Holec J, Beran M, Riebesehl J (2021) Ecology and distribution of Kneiffiella curvispora (Hymenochaetales, Basidiomycota) in Central Europe and its phylogenetic placement. Nova Hedwigia 113(1–2): 161–189. https://doi.org/10.1127/nova_hedwigia/2021/0635
  • Brazee NJ (2015) Phylogenetic relationships among species of Phellinus sensu stricto, cause of white trunk rot of hardwoods, from Northern North America. Forests 6(11): 4191–4211. https://doi.org/10.3390/f6114191
  • Brazee NJ, Lindner DL (2013) Unravelling the Phellinus pini s.l. complex in North America: A multilocus phylogeny and differentiation analysis of Porodaedalea. Forest Pathology 43(2): 132–143. https://doi.org/10.1111/efp.12008
  • Cao T, Hu YP, Yu JR, Wei TZ, Yuan HS (2021) A phylogenetic overview of the Hydnaceae (Cantharellales, Basidiomycota) with new taxa from China. Studies in Mycology 99(1): 100–121. https://doi.org/10.1016/j.simyco.2021.100121
  • Chen JZ, Zhao CL (2020) Morphological and molecular identification of four new resupinate species of Lyomyces (Hymenochaetales) from Southern China. MycoKeys 65: 101–118. https://doi.org/10.3897/mycokeys.65.48660
  • Chen JJ, Shen LL, Cui BK (2014) Amylosporus succulentus sp. nov. (Russulales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Cryptogamie. Mycologie 35(3): 271–282. https://doi.org/10.7872/crym.v35.iss3.2014.271
  • Chen JJ, Zhou LW, Ji XH, Zhao CL (2016) Hyphodontia dimitica and H. subefibulata spp. nov. (Schizoporaceae, Hymenochaetales) from Southern China based on morphological and molecular characters. Phytotaxa 269(1): 1–13. https://doi.org/10.11646/phytotaxa.269.1.1
  • Cho Y, Kim D, Lim YW (2024) Phylogenetic assessment of understudied families in Hymenochaetales (Basidiomycota, Fungi)-reporting uncovered species and reflecting the recent taxonomic updates in the republic of Korea. Journal of Microbiology 62(6): 429–447. https://doi.org/10.1007/s12275-024-00120-5
  • Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137–392. https://doi.org/10.1007/s13225-019-00427-4
  • Decock C, Figueroa SA, Robledo G, Castillo G (2007) Fomitiporia punctata (Basidiomycota, Hymenochaetales) and its presumed taxonomic synonyms in America: Taxonomy and phylogeny of some species from tropical/subtropical areas. Mycologia 99(5): 733–752. https://doi.org/10.1080/15572536.2007.11832537
  • Delgersaikhan N, Odkhuu E, Khaltar P, Samdan E, Dugarsuren U, Dalkhsuren S, Dorjkhuu A, Aldartsogt D, Amgalanbaatar A (2024) Antidiabetic activity of Inonotus obliquus water extract in alloxan-induced diabetic mice. Journal of Complementary & Integrative Medicine 21(4): 472–480. https://doi.org/10.1515/jcim-2024-0316
  • Diederich P, Lawrey J, Capdet M, Pereira S, Romero AI, Etayo J, Flakus A, Sikaroodi M, Ertz D (2014) New lichen-associated bulbil forming species of Cantharellales (Basidiomycetes). Lichenologist (London, England) 46(3): 333–347. https://doi.org/10.1017/S0024282913000583
  • Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Zhao CL, Akmal M (2024a) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere 15(1): 1110–1293. https://doi.org/10.5943/mycosphere/15/1/10
  • Dong JH, Wang XY, He SY, Zhang JL, Yin HJ, Zhang SH, Zhao CL (2024b) Botryobasidium bambusinum (Botryobasidiaceae, Cantharellales): A new species from Yunnan, Southwest China, based on morphology and phylogeny. New Zealand Journal of Botany 1–18. https://doi.org/10.1080/0028825X.2024.2438181
  • Donk MA (1956) Notes on resupinate Hymenomycetes-II. The tulasnelloid fungi. Reinwardtia 3(3): 363–379.
  • Du R, Wu F, Gate GM, Dai YC, Tian XM (2020) Taxonomy and phylogeny of Sidera (Hymenochaetales, Basidiomycota): Four new species and keys to species of the genus. MycoKeys 68: 115–135. https://doi.org/10.3897/mycokeys.68.53561
  • Dunham SM, O’dell T, Molina R (2003) Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species Cantharellus cascadensis sp. nov. from the American Pacific Northwest. Mycological Research 107(10): 1163–1177. https://doi.org/10.1017/S0953756203008475
  • Eriksson J, Ryvarden L (1973) The Corticiaceae of North Europe, 2. Fungiflora Publishers, Norway.
  • Eriksson J, Ryvarden L (1976) The Corticiaceae of North Europe, 4. Fungiflora Publishers, Norway.
  • Fernandez-Lopez J, Telleria MT, Duenas M, Laguna-Castro M, Schliep K, Martín MP (2020) Linking morphological and molecular sources to disentangle the case of Xylodon australis. Scientific Reports 10(1): 2045–2322. https://doi.org/10.1038/s41598-020-78399-8
  • Freire RBM, Soares AM (2024) Taxonomic study of Hymenochaetaceae species (Agaricomycetes, Basidiomycota) in the municipalities of Tomé-Açu and Bujaru, Pará, Brazil. Anais da Academia Brasileira de Ciências 96(suppl 1): e20230338. https://doi.org/10.1590/0001-3765202420230338
  • Frey W, Hurka K, Oberwinkler F (1977) Beiträge zur Biologie der niederen Pflanzen. Systematik, Stammesgeschichte, ökologie. Gustav Fischer Verlag, Stuttgart/New York.
  • Fukami T, Dickie IA, Wilkie P, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecology Letters 13(6): 675–684. https://doi.org/10.1111/j.1461-0248.2010.01465.x
  • Girometta CE, Bernicchia A, Baiguera RM, Bracco F, Buratti S, Cartabia M, Picco AM, Savino E (2020) An Italian research culture collection of wood decay fungi. Diversity 12(2): 58. https://doi.org/10.3390/d12020058
  • Gonzalez D, Carling DE, Kuninaga S, Vilgalys R, Cubeta MA (2001) Ribosomal DNA systematics of Ceratobasidium and Thanatephorus with Rhizoctonia anamorphs. Mycologia 93(6): 1138–1150. https://doi.org/10.1080/00275514.2001.12063247
  • Gorjón SP, Hallenberg N (2008) New records of Sistotrema species (Basidiomycota) from the Iberian Peninsula. Sydowia 60(2): 205–212.
  • Gottlieb AM, Wright JE, Moncalvo JM (2002) Inonotus s. l. in Argentina-morphology, cultural characters and molecular analyses. Mycological Progress 1(3): 299–313. https://doi.org/10.1007/s11557-006-0028-5
  • Gray SF (1821) A natural arrangement of British plants. Nabu Press, London, UK, 649 pp.
  • Guan QX, Zhao TJ, Zhao CL (2020) Morphological characters and phylogenetic analyses reveal two new species of Peniophorella from Southern China. Mycological Progress 19(4): 397–404. https://doi.org/10.1007/s11557-020-01568-6
  • He SH, Li HJ (2012) Pseudochaete latesetosa and P. subrigidula spp. nov. (Hymenochaetales, Basidiomycota) from China based on morphological and molecular characters. Mycological Progress 12(2): 331–339. https://doi.org/10.1007/s11557-012-0838-6
  • He X, Shi ZJ, Zhao CL (2020) Morphological and molecular identification of two new species of Tubulicrinis (Hymenochaetaceae, Hymenochaetales) from Southern China. Mycoscience 61(4): 184–189. https://doi.org/10.1016/j.myc.2020.03.008
  • He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Schoutteten N, Denchev CM, Kemler M, Gorjón SP, Begerow D, Valenzuela R, Davoodian N, Niskanen T, Vizzini A, Redhead SA, Ramírez CV, Papp V, Dudka VA, Dutta AK, García SR, Liu XZ, Kijpornyongpan T, Savchenko A, Tedersoo L, Theelen B, Trierveiler PL, Wu F, Zamora JC, Zeng XY, Zhou LW, Liu SL, Ghobad NM, Giachini AJ, Li GJ, Kakishima M, Olariaga I, Haelewaters D, Sulistyo B, Sugiyama J, Svantesson S, Yurkov A, Alvarado P, Antonín V, da Silva AF, Druzhinina I, Gibertoni TB, Guzmán DL, Justo A, Karunarathna SC, Galappaththi MCA, Toome HM, Hosoya T, Liimatainen K, Márquez R, Mešić A, Moncalvo JM, Nagy LG, Varga T, Orihara T, Raymundo T, Salcedo I, Silva FAGS, Tkalčec Z, Wartchow F, Zhao CL, Bau T, Cabarroi HM, Cortés PA, Decock C, Lange RD, Weiss M, Menolli JN, Nilsson RH, Fan YG, Verbeken A, Gaforov Y, Meiras OA, Mendes ARL, Zeng NK, Wu Q, Hyde KD, Kirk PM, Zhao RL (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Diversity 126(3): 127–406. https://doi.org/10.1007/s13225-024-00535-w
  • Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiss M, Thorn RG (2014) 14 Agaricomycetes. In: McLaughlin D, Spatafora J (Eds) Systematics and evolution. The Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol 7A. Springer, Berlin, 373–429. https://doi.org/10.1007/978-3-642-55318-9_14
  • Hjortstam K, Ryvarden L, Iturriaga T (2005) Studies in corticioid fungi from Venezuela II (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 20: 42–78.
  • Hu YW, Karunarathna SC, Li HL, Galappaththi MA, Zhao CL, Kakumyan P, Mortimer PE (2022) The impact of drying temperature on basidiospore size. Diversity 14(4): 239. https://doi.org/10.3390/d14040239
  • Jang Y, Jang S, Min M, Hong JH, Lee H, Lee AH, Lim YW, Kim JJ (2015) Comparison of the diversity of Basidiomycetes from dead wood of the Manchurian fir (Abies holophylla) as evaluated by fruiting body collection, mycelial isolation, and 454 Sequencing. Microbial Ecology 70(3): 634–645. https://doi.org/10.1007/s00248-015-0616-5
  • Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim JJ (2016) Diversity of wood inhabiting polyporoid and corticioid fungi in Odaesan National Park, South Korea. Mycobiology 44(4): 217–236. https://doi.org/10.5941/MYCO.2016.44.4.217
  • Ji HX, Vlasak J, Tian MX, Dai CY (2018) Three new species of Fomitiporella (Hymenochaetales, Basidiomycota) based on the evidence from morphology and DNA sequence data. MycoKeys 30(30): 73–89. https://doi.org/10.3897/mycokeys.30.23109
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Korotkin HB, Swenie RA, Miettinen O, Budke JM, Chen KH, Lutzoni F, Smith ME, Matheny PB (2018) Stable isotope analyses reveal previously unknown trophic mode diversity in the Hymenochaetales. American Journal of Botany 105(11): 1869–1887. https://doi.org/10.1002/ajb2.1183
  • Kotiranta H, Saarenoksa R (2000) Three new species of Hyphodontia (Corticiaceae). Annales Botanici Fennici 37(4): 255–278.
  • Kotiranta H, Saarenoksa R (2005) Ceratobasidium and Oliveonia (Basidiomycota, Aphyllophorales) in Finland. Annales Botanici Fennici 42(4): 237–245. https://doi.org/10.3732/ajb.92.1.179
  • Kumari D, Upadhyay RC, Reddy MS (2012) Craterellus indicus sp. nov., a new species associated with Cedrus deodara from the Western Himalayas, India. Mycological Progress 11(3): 769–774. https://doi.org/10.1007/s11557-011-0788-4
  • Langer G, Langer E (1998) Haplotrichum parmastii sp. nov. collected in Costa Rica. Folia Cryptogamica Estonica 33: 63–69.
  • Langer G, Langer E, Oberwinkler F, Chen J (2000b) Speciation of Botryobasidium subcoronatum (Basidiomycota) collected in Taiwan: Morphology, mating tests, and molecular data. Mycoscience 41(3): 201–210. https://doi.org/10.1007/BF02489672
  • Langer EJ, Běťák J, Holec J, Klug A, Riebesehl J (2022) Kneiffiella altaica and Kneiffiella subaltaica sp. nov. – a rare species found in European old-growth forests and a closely related new species from North America. Nova Hedwigia 115(1–2): 205–225. https://doi.org/10.1127/nova_hedwigia/2022/0709
  • Lawrey JD, Zimmermann E, Sikaroodi M, Diederich P (2016) Phylogenetic diversity of bulbil-forming lichenicolous fungi in Cantharellales including a new genus and species. The Bryologist 119(4): 341–349. https://doi.org/10.1639/0007-2745-119.4.341
  • Leacock PR, Riddell J, Wilson AW, Zhang R, Ning C, Mueller GM (2016) Cantharellus chicagoensis sp. nov. is supported by molecular and morphological analysis as a new yellow chanterelle in midwestern United States. Mycologia 108(4): 765–772. https://doi.org/10.3852/15-230
  • Lin YC, Chen CY, Chen CC, Wu SH (2023) Inonotus chrysomarginatus, a newly recorded species in Taiwan, and a list of Taiwan’s known Inonotus species as well as segregated species from the genus. Fungi Science 38(1): 1–12.
  • Liu SL, Gafforov Y, Zhang XY, Wang HL, Wang XW, Zhou LW (2019) Reinstatement of the corticioid genus Leifia (Hymenochaetales, Basidiomycota) with a new species L. brevispora from Hubei, Central China. MycoKeys 51: 85–96. https://doi.org/10.3897/mycokeys.51.33262
  • Liu ZB, Zhou M, Yuan Y, Dai YC (2021) Global diversity and taxonomy of Sidera (Hymenochaetales, Basidiomycota): Four new species and keys to species of the genus. Journal of Fungi 7(4): 251. https://doi.org/10.3390/jof7040251
  • Liu ZB, Zhou M, Wu F, Yu J (2022) Two New Species of Sidera (Hymenochaetales, Basidiomycota) from Southwest China. Journal of Fungi 8(4): 385. https://doi.org/10.3390/jof8040385
  • Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian E, Lu Y-Z, Zhang J-Y, Ma J, Dutta AK, Acharya K, Du T-Y, Xu J, Kim JS, Lim YW, Gerlach A, Zeng N-K, Han Y-X, Razaghi P, Raza M, Cai L, Calabon MS, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashetti AC, Pawar KS, Jiang S, Zhang C, Zhang H, Qing Y, Bau T, Peng X-C, Wen T-C, Ramirez NA, Niveiro N, Li M-X, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo C-H, da Silva TM, Souza-Motta CM, Bezerra JDP, He G, Ji X-H, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou L-W (2024) Fungal diversity notes 1717–1817: Taxonomic and phylogenetic contributions on family, genera and species of fungal taxa. Fungal Diversity 124(6): 1–216. https://doi.org/10.1007/s13225-023-00529-0
  • Luo KY, Zhao CL (2021) Fasciodontia yunnanensis (Schizoporaceae, Hymenochaetales), a new species from Southern China. Annales Botanici Fennici 58(4–6): 259–266. https://doi.org/10.5735/085.058.0411
  • Luo KY, Qu MH, Zhao CL (2021) Additions to the knowledge of corticioid Xylodon (Schizoporaceae, Hymenochaetales): Introducing three new Xylodon species from Southern China. Diversity 13(11): 581. https://doi.org/10.3390/d13110581
  • Luo KY, Chen ZY, Zhao CL (2022) Phylogenetic and taxonomic analyses of three new wood-inhabiting fungi of Xylodon (Basidiomycota) in a forest ecological system. Journal of Fungi 8(4): 405. https://doi.org/10.3390/jof8040405
  • Luo KY, Su JQ, Zhao CL (2024) Morphological and molecular identification for four new wood inhabiting species of Trechispora (Basidiomycota) from China. MycoKeys 105: 155–178. https://doi.org/10.3897/mycokeys.105.120438
  • M’Barek HN, Arif S, Taidi B, Hajjaj H (2020) Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnology Reports 28: 1–10. https://doi.org/10.1016/j.btre.2020.e00541
  • Masumoto H, Degawa Y (2020) Bryoclavula phycophila gen. et sp. nov. belonging to a novel lichenised lineage in Cantharellales (Basidiomycota). Mycological Progress 19(7): 705–714. https://doi.org/10.1007/s11557-020-01588-2
  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, New Orleans, 8 pp. https://doi.org/10.1109/GCE.2010.5676129
  • Moncalvo JM, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiss M, Garnica S, Danell E, Langer GJ, Langer EJ, Larsson E, Larsson KH, Vilgalys R (2006) The cantharelloid clade: Dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98(6): 937–948. https://doi.org/10.1080/15572536.2006.11832623
  • Oberwinkler F (1982) The Significance of the Morphology of the Basidium in the Phylogeny of Basidiomycetes. In: Wells K, Wells EK (Eds) Basidium and Basidiocarp. Springer Series in Microbiology. Springer, New York, NY, 9–35. https://doi.org/10.1007/978-1-4612-5677-9_2
  • Olariaga I, Buyck B, Esteve-Raventós F, Valerie H, Manjón JL, Moreno G, Salcedo I (2015) Assessing the taxonomic identity of white and orange specimens of Cantharellus: Occasional colour variants or independent species? Cryptogamie. Mycologie 36(4): 1–14. https://doi.org/10.7872/crym/v36.iss3.2015.287
  • Olariaga I, Moreno G, Manjon JL, Salcedo I, Hofstetter V, Rodriguez D, Buyck B (2017) Cantharellus (Cantharellales, Basidiomycota) revisited in Europe through a multigene phylogeny. Fungal Diversity 83(1): 263–292. https://doi.org/10.1007/s13225-016-0376-7
  • Olariaga I, Huhtinen S, Laessoe T, Petersen JH, Hansen K (2020) Phylogenetic origins and family classification of typhuloid fungi, with emphasis on Ceratellopsis, Macrotyphula and Typhula (Basidiomycota). Studies in Mycology 96(11): 155–184. https://doi.org/10.1016/j.simyco.2020.05.003
  • Petersen JH (1996) Farvekort. The Danish Mycological Society’s colour-chart. Foreningen til Svampekundskabens Fremme, Greve, 6 pp.
  • Phookamsak R, Hyde K, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura S, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DA, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mesic A, Dutta AK, Karbowy-Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Deping W, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe I, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Kandawatte TC, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Samarakoon M, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, Silva NI, Pereira OL (2019) Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w
  • Ponce Á, Salerni E, D’Aguanno MN, Perini C (2023) Wood-decay fungi fructifying in Mediterranean deciduous oak forests: A community composition, richness and productivity study. Forests 14(7): 1326. https://doi.org/10.3390/f14071326
  • Purahong W, Wubet T, Krüger D, Buscot F (2018) Molecular evidence strongly supports dead wood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. The ISME Journal 12(1): 289–295. https://doi.org/10.1038/ismej.2017.177
  • Qu MH, Wang DQ, Zhao CL (2022) A phylogenetic and taxonomic study on Xylodon (Hymenochaetales): Focusing on three new Xylodon species from Southern China. Journal of Fungi 8(1): 35. https://doi.org/10.3390/jof8010035
  • Rathnayaka AR, Tennakoon DS, Jones GE, Wanasinghe DN, Bhat DJ, Priyashantha AH, Stephenson SL, Tibpromma S, Karunarathna SC (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany, 1–28. https://doi.org/10.1080/0028825X.2024.2381734
  • Riebesehl J, Langer E (2017) Hyphodontia s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to currently all 120 species. Mycological Progress 16(6): 637–666. https://doi.org/10.1007/s11557-017-1299-8
  • Riebesehl J, Yurchenko E, Nakasone KK, Langer E (2019) Phylogenetic and morphological studies in Xylodon (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys 47: 97–137. https://doi.org/10.3897/mycokeys.47.31130
  • Rosenthal L, Larsson KH, Branco S, Chung JA, Glassman SI, Liao HL, Peay K, Smith DP, Talbot JM, Taylor JW, Vellinga E, Vilgalys R, Bruns TD (2017) Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109(1): 115–127. https://doi.org/10.1080/00275514.2017.1281677
  • Suhara H, Kurogi S (2015) Cantharellus cyphelloides (Cantharellales), a new and unusual species from a Japanese evergreen broad-leaved forest. Mycological Progress 14(8): 55. https://doi.org/10.1007/s11557-015-1079-2
  • Swenie RA, Looney B, Ke YH, Rojas JA, Cubeta MA, Langer GJ, Vilgalys R, Matheny PB (2023) PacBio high-throughput multi-locus sequencing reveals high genetic diversity in mushroom-forming fungi. Molecular Ecology Resources 24(15): e13885. https://doi.org/10.1111/1755-0998.13885
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Viner I, Spirin V, Zíbarová L, Larsson KH (2018) Additions to the taxonomy of Lagarobasidium and Xylodon (Hymenochaetales, Basidiomycota). MycoKeys 41: 65–90. https://doi.org/10.3897/mycokeys.41.28987
  • Viner I, Larsson KH, Spirin V, Langer EJ, Miettinen O (2024) Revision of Kneiffiella with segregation of Egonia gen. nov. (Hymenochaetales, Agaricomycetes): How similar morphology can hide taxonomic diversity in the molecular era. Persoonia 53: 1–28. https://doi.org/10.3767/persoonia.2024.53.01
  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi AMS, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • Wagner T, Fischer M (2002) Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94(6): 998–1016. https://doi.org/10.1080/15572536.2003.11833156
  • Wang XW, Zhou LW (2024) Umbellaceae fam. nov. (Hymenochaetales, Basidiomycota) for Umbellus sinensis gen. et sp. nov. and three new combinations. Journal of Fungi 10(1): 22. https://doi.org/10.3390/jof10010022
  • Wang XW, May TW, Liu SL, Zhou LW (2021) Towards a Natural Classification of Hyphodontia sensu lato and the trait evolution of basidiocarps within Hymenochaetales (Basidiomycota). Journal of Fungi 7(6): 478. https://doi.org/10.3390/jof7060478
  • Wang XW, Jiang JH, Liu SL, Gafforov Y, Zhou LW (2022) Species diversification of the coniferous pathogenic fungal genus Coniferiporia (Hymenochaetales, Basidiomycota) in association with its biogeography and host plants. Phytopathology 112(2): 404–413. https://doi.org/10.1094/PHYTO-05-21-0181-R
  • Wang Y, Lai Z, Li XX, Yan RM, Zhang ZB, Yang HL, Zhu D (2016) Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World Journal of Microbiology and Biotechnology 32(2): 20. https://doi.org/10.1007/s11274-015-1966-3
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: MA Gefand DH, Sninsky JJ, White MJT (Eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto B, Saxena RK, Erdoğdu M, Selçuk F, Rajeshkumar KC, Aptroot A, Błaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska J, Pem D, Pfliegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez-Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2022) Outline of Fungi and fungus-like taxa–2021. Mycosphere 13(1): 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  • Wilson AW, Aime MC, Dierks J, Mueller GM, Henkel TW (2012) Cantharellaceae of Guyana I: New species, combinations and distribution records of Craterellus and a synopsis of known taxa. Mycologia 104(6): 1466–1477. https://doi.org/10.3852/11-412
  • Wu F, Zhou LW, Dai YC (2016) Neomensularia duplicata gen. et sp. nov. (Hymenochaetales, Basidiomycota) and two new combinations. Mycologia 108(5): 891–898. https://doi.org/10.3852/16-020
  • Yang J, Dai LD, He SH (2016) Hymenochaetopsis nom. nov. proposed to replace Pseudochaete (Hymenochaetales, Basidiomycota) with descriptions of H. laricicola sp. nov and H. gigasetosa new to China. Mycological Progress 15(2): 13. https://doi.org/10.1007/s11557-015-1153-9
  • Yang Y, Jiang Q, Li Q, Yang J, Cha L, Cheng L, Yang S, Zhao C, Zhou H (2023) Molecular systematics and taxonomic analyses of three new wood-inhabiting fungi of Hyphoderma (Hyphodermataceae, Basidiomycota). Journal of Fungi 9(11): 1044. https://doi.org/10.3390/jof9111044
  • Yu HY, Zhao CL, Dai YC (2013) Inonotus niveomarginatus and I. tenuissimus spp. nov. (Hymenochaetales), resupinate species from tropical China. Mycotaxon 124(1): 61–68. https://doi.org/10.5248/124.61
  • Yu J, Wang XW, Liu SL, Shen S, Zhou LW (2021) Taxonomy and phylogeny of Resinicium sensu lato from Asia-Pacific revealing a new genus and five new species (Hymenochaetales, Basidiomycota). IMA Fungus 12(1): 19. https://doi.org/10.1186/s43008-021-00071-1
  • Yu SC, Lai ZX, Xue HM, Zhu JH, Yue GH, Wang JW, Jin LH (2024) Inonotus obliquus aqueous extract inhibits intestinal inflammation and insulin metabolism defects in Drosophila. Toxicology Mechanisms and Methods 34(9): 1–52. https://doi.org/10.1080/15376516.2024.2402865
  • Yuan Q, Zhao CL (2024) Morphology and multigene phylogeny revealed four new species of Xylodon (Schizoporaceae, Basidiomycota) from Southern China. MycoKeys 107: 161–187. https://doi.org/10.3897/mycokeys.107.128223
  • Yurchenko E (2008) Corticioid fungi (Basidiomycota) on living wooden plants in Belarus: Species inventory and host colonization strategies. Botanica Lithuanica 14(3): 177–189.
  • Yurchenko E, Riebesehl J, Langer EJ (2017) Clarification of Lyomyces sambuci complex with the descriptions of four new species. Mycological Progress 16(9): 865–876. https://doi.org/10.1007/s11557-017-1321-1
  • Yurchenko E, Riebesehl J, Langer EJ (2020a) Fasciodontia gen. nov. (Hymenochaetales, Basidi omycota) and the taxonomic status of Deviodontia. Mycological Progress 19(2): 171–184. https://doi.org/10.1007/s11557-019-01554-7
  • Zhang XC, Li YC, Wang YY, Xu Z, Zhao CL, Zhou HM (2024a) Xylodon asiaticus (Hymenochaetales, Basidiomycota), a new species of corticioid fungus from Southern China. Phytotaxa 634(1): 1–15. https://doi.org/10.11646/phytotaxa.634.1.1
  • Zhang XJ, Shi FL, Yang K, Zhao CL (2024b) The diversity and taxonomy of Tomentella (Thelephoraceae, Thelephorales) with descriptions of four new species from Southwestern China. MycoKeys 109: 1–29. https://doi.org/10.3897/mycokeys.109.132941
  • Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023b) Multi‐gene phylogeny and taxonomy of the wood‐rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9(3): 201–241. https://doi.org/10.3390/jof9030320
  • Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y (2023a) Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics with an emphasis on Coltricia. Genome Biology and Evolution 15(8): 136. https://doi.org/10.1093/gbe/evad136
  • Zhou LW, Qin WM (2011) Inonotus sp. nov. (Hymenochaetaceae) from Guizhou, Southwest China with a preliminary discussion on the phylogeny of its kin. Mycological Progress 11(3): 791–798. https://doi.org/10.1007/s11557-011-0792-8
  • Zhou LW, Qin WM (2013) Sistotrema subconfluens sp. nov. (Cantharellales, Basidiomycota) from Changbaishan Nature Reserve, northeastern China. Mycoscience 54(3): 178–182. https://doi.org/10.1016/j.myc.2012.08.005
  • Zhou LW, Vlasák J, Decock C, Assefa A, Stenlid J, Abate D, Wu SH, Dai YC (2015) Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Diversity 77(1): 335–347. https://doi.org/10.1007/s13225-015-0335-8
  • Zhou HM, Zhang XC, Li JT, Wu F, Zhao CL (2024a) Morphological characteristics and phylogenetic analyses revealed four new wood-inhabiting fungi (Agaricomycetes, Basidiomycota) in Xizang Autonomous Region, China. MycoKeys 106: 201–224. https://doi.org/10.3897/mycokeys.106.125831
  • Zhou Q, Jiang QQ, Yang X, Yang JW, Zhao CL, Zhao J (2024b) Phylogenetic and Taxonomic analyses of five new wood-inhabiting fungi of Botryobasidium, Coltricia and Coltriciella (Basidiomycota) from China. Journal of Fungi 10(3): 205. https://doi.org/10.3390/jof10030205
  • Zhou LJ, Li XL, Yuan HS (2024c) Three new wood inhabiting fungi of Botryobasidium (Cantharellales, Basidiomycota) from subtropical forests of Southwestern China. MycoKeys 109: 337–354. https://doi.org/10.3897/mycokeys.109.133325

Jianling Zhang and Zirui Gu contributed equally to this work and share the first authorship.
login to comment