Research Article |
Corresponding author: Mingkwan Doilom ( j_hammochi@hotmail.com ) Academic editor: Samantha C. Karunarathna
© 2025 Chunfang Liao, Mingkwan Doilom, D. Jayarama Bhat, Kandawatte Wedaralalage Thilini Chethana, Khanobporn Tangtrakulwanich, Yunhui Yang, Fatimah Al-Otibi, Kevin D. Hyde, Wei Dong.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Liao C, Doilom M, Bhat DJ, Thilini Chethana KW, Tangtrakulwanich K, Yang Y, Al-Otibi F, Hyde KD, Dong W (2025) Unveiling four new taxa and Nigrosynnema natarajanensis comb. nov. in Stachybotryaceae (Hypocreales) from monocotyledon plants in Guangdong Province, China. MycoKeys 114: 299-327. https://doi.org/10.3897/mycokeys.114.139325
|
Members of Stachybotryaceae are distributed worldwide, with certain species playing a significant role as bio-degraders and some causing diseases in plants, humans, and animals. Other species within this family can be found in soil and have been reported as saprobes in various plants. In this study (2021–2022), fungal taxa resembling Stachybotryaceae, isolated from dead leaves of Agave sisalana and a dead stem of Wurfbainia villosa in Guangdong Province, China, are identified based on morphological characteristics and molecular data. Multi-locus phylogeny based on calmodulin (cmdA), internal transcribed spacer (ITS), the large subunit nuclear rDNA (LSU), RNA polymerase II second largest subunit (rpb2), the partial translation elongation factor 1-α (tef1-α), and β-tubulin (tub2) revealed that nine strains were grouped within Stachybotryaceae. Nigrosynnema guangdongense gen. et sp. nov., typical of Stachybotryaceae but having unusual olivaceous brown to black synnemata that are narrower towards the apex and produce phialidic, aseptate, slimy conidia in black and glistening heads, is introduced. Additionally, Brevistachys wurfbainiae and Sirastachys guangdongensis are introduced as new species. Stachybotrys microsporus is a new host record for Agave sisalana. The present study provides comprehensive descriptions, illustrations, and molecular data analyses of the newly discovered taxa and newly recorded species as a taxonomic and phylogenetic contribution to Stachybotryaceae. Furthermore, a new combination, Nigrosynnema natarajanensis, is proposed for the previously described Virgatospora natarajanensis.
4 new taxa, Asparagaceae, Hyphomycetes, saprobic fungi, Sordariomycetes, taxonomy, Zingiberaceae
The family Stachybotryaceae (as Stachybotriaceae), belonging to Hypocreales, Sordariomycetes (
The polyphyletic nature of the genera Myrothecium and Stachybotrys was addressed by
The type genus Stachybotrys was introduced by
Brevistachys, introduced by
In this study, we introduce one new genus, three new species, and one new host record in Stachybotryaceae from dead stems of Wurfbainia villosa and a dead leaf of Agave sisalana in Guangdong Province, China, based on the morphological characteristics and multi-locus phylogenetic analyses of cmdA, ITS, LSU, rpb2, tef1-α, and tub2. The new taxa, Brevistachys wurfbainiae sp. nov., Nigrosynnema guangdongense gen. et. sp. nov., and Sirastachys guangdongensis sp. nov., are compared to morphologically and phylogenetically closely related taxa. A new host record, Stachybotrys microsporus, is presented with a detailed description and illustration supported by phylogenetic evidence. Additionally, a new combination, Nigrosynnema natarajanensis (= Virgatospora natarajanensis), is proposed based on the similarity in morphological characteristics aligning with the generic concept of Nigrosynnema and supported by phylogenetic evidence of the type species of Virgatospora, V. echinofibrosa.
Samples of dead leaves of Agave sisalana and dead stems of Wurfbainia villosa were collected in Guangdong Province, China, during the winter to spring seasons of 2021 and 2022, and the important collection information was noted (
The genomic DNA was extracted from the fungal mycelia cultivated in the dark at 25 °C on PDA for two weeks using the MagPure Plant DNA AS Kit, following the manufacturer’s instructions (Guangzhou Magen Biotechnology Co., Ltd, Guangdong, China). Extracted DNA was preserved at -20 °C for further molecular studies. The calmodulin (cmdA), internal transcribed spacer (ITS), large subunit rDNA (LSU), RNA polymerase II second largest subunit (rpb2), the partial translation elongation factor 1-α (tef1-α), and β-tubulin (tub2) were amplified and sequenced using primer CAL-228F (
The polymerase chain reaction (PCR) contained a total of 25 µl of mixture, including 9.5 µl of ddH2O, 12.5 µl of 2 × Taq Master Mix (a mixture of dNTPs, optimized buffer, and Taq (Nanjing Vazyme Biotech Co., Ltd., Nanjing, China)), and 1 µl of each of the primer and DNA template. The PCR thermal cycling program for ITS and LSU amplification was conducted with an initial denaturation at 95 °C for 3 min, followed by 35 cycles of 94 °C for 30 sec; the annealing temperature was set to 52 °C for 30 sec; the extension step was performed at 72 °C for 1 min; and final elongation was carried out at 72 °C for 10 min. The annealing temperatures were altered to 53.5 °C for cmdA and tef1-α and 55 °C (45 sec) for tub2. PCR was performed for the rpb2 in a thermal cycle as follows: an initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 1 min, an annealing temperature of 52 °C for 2 min, and extension at 72 °C for 1.5 min, with a final elongation at 72 °C for 10 min. The PCR products were purified and sent for sequencing at Tianyi Huiyuan Gene Technology & Services Co. (Guangdong, China). All sequences obtained in this study have been deposited in GenBank (available online: http://www.ncbi.nlm.nih.gov).
The original sequence obtained from the sequencing company was cross-checked by verifying chromatograms using BioEdit v. 7.2.3 (
Names, culture collection numbers, and corresponding GenBank accession numbers of the taxa used in the phylogenetic analyses. The new strains in this study are indicated in cells with light blue shading. “T” is used to represent ex-type. “-” denotes unavailable information.
Taxa | Culture collection numbers | GenBank accession numbers | |||||
---|---|---|---|---|---|---|---|
cmdA | ITS | LSU | rpb2 | tef1-α | tub2 | ||
Achroiostachys humicola | CBS 317.72 | KU845777 | KU845797 | KU845817 | KU845835 | KU845852 | KU845758 |
A. humicola | CBS 868.73T | KU845779 | KU845799 | KU845819 | KU845837 | KU845854 | KU845760 |
A. levigata | CBS 185.79T | KU845785 | KU845805 | KU845825 | KU845841 | KU845860 | KU845765 |
A. levigata | CBS 363.58 | KU845786 | KU845806 | KU845826 | KU845842 | KU845861 | KU845766 |
Albosynnema elegans | GB 3101T | - | - | AF193226 | - | - | - |
Albifimbria verrucaria | CPC 30056 | KU845869 | KU845885 | KU845904 | KU845923 | KU845942 | KU845961 |
Al. verrucaria | CBS 176.27 | KU845870 | KU845886 | KU845905 | KU845924 | KU845943 | KU845962 |
A.. viridis | CBS 244.78 | - | KU845897 | KU845916 | KU845935 | KU845954 | KU845973 |
A.. viridis | CBS 449.71T | KU845879 | KU845898 | KU845917 | KU845936 | KU845955 | KU845974 |
Alfaria caricicola | CBS 113567T | KU845976 | KU845983 | KU845992 | KU846001 | KU846008 | KU846014 |
A.f. cyperiesculenti | CPC 23153T | - | KJ869143 | KJ869200 | - | - | - |
A.f. thymi | CBS 447.83T | KU845981 | KU845990 | KU845999 | - | KU846013 | KU846021 |
Alfariacladiella spartii | CPC 24966 | - | NR_164243 | NG_070399 | - | - | - |
Brevistachys globosa | CBS 141056T | KU846024 | KU846038 | KU846057 | - | KU846085 | KU846101 |
B. globosa | CPC 15952 | KU846025 | KU846040 | KU846059 | - | KU846087 | KU846103 |
B. globosa | CPC 16060 | - | KU846042 | KU846061 | - | KU846089 | KU846105 |
B. lateralis | CBS 141058T | KU846027 | KU846043 | KU846062 | KU846074 | KU846090 | KU846106 |
B. ossiformis | CBS 696.73T | - | KU846044 | KU846063 | - | - | KU846107 |
B. ossiformis | CBS 112792 | KU846028 | KU846045 | KU846064 | KU846075 | KU846091 | KU846108 |
B. ossiformis | CPC 16031 | KU846029 | KU846046 | KU846065 | - | KU846092 | KU846109 |
B. subsimplex | ATCC 32888T | - | AF205439 | - | - | - | - |
B. variabilis | CBS 141057 | KU846030 | KU846047 | KU846066 | KU846076 | KU846093 | KU846110 |
B. wurfbainiae | ZHKUCC 23-1011T | PP746514 | PP645738 | PP683135 | PP746507 | PP746523 | PP746532 |
B. wurfbainiae | ZHKUCC 23-1012 | PP746515 | PP645739 | PP683136 | PP746508 | PP746524 | PP746533 |
B. wurfbainiae | ZHKUCC 23-1013 | PP746516 | PP645740 | PP683137 | PP746509 | PP746525 | PP746534 |
Capitofimbria compacta | CBS 111739T | KU846261 | KU846287 | KU846317 | KU846349 | KU846378 | KU846404 |
C. compacta | MUCL 50238 | - | KU878556 | KU878557 | KU878558 | - | KU878559 |
Cymostachys coffeicola | CBS 252.76T | KU846035 | KU846052 | KU846071 | KU846081 | KU846097 | KU846113 |
Cy. coffeicola | CPC 25009 | - | KU846053 | - | - | - | - |
Cy. fabispora | CBS 136180T | KU846036 | KU846054 | KU846072 | KU846082 | KU846098 | KU846114 |
Cy. fabispora | CPC 24352 | - | KU846055 | - | KU846083 | KU846099 | - |
Didymostilbe aurantispora | CBS 616.85T | - | - | KU846344 | - | - | - |
D. matsushimae | CBS 549.84 | - | - | KU846345 | - | - | - |
D. matsushimae | CCFC 54984 | - | - | AY283545 | - | - | - |
Digitiseta dimorpha | MUCL 54683T | - | KY389329 | KY389349 | KY389367 | KY769935 | KY366460 |
D.. multidigitata | MUCL 41187T | - | KY389325 | KY389345 | KY389363 | KY769934 | KY366456 |
D.. parvidigitata | MUCL 48180T | - | KY389326 | KY389346 | KY389364 | KY769931 | KY366457 |
D.. parvidigitata | MUCL 48271 | - | KY389327 | KY389347 | KY389365 | KY769932 | KY366458 |
D.. parvidigitata | MUCL 48260 | - | KY389328 | KY389348 | KY389366 | KY769933 | KY366459 |
D.. setiramosa | CBS 534.88 | - | AY254156 | - | - | KY769930 | - |
Dimorphiseta terrestris | CBS 127345T | KU846284 | KU846314 | KU846346 | KU846375 | KU846401 | KU846431 |
Fusarium sambucinum | CBS 146.95 | - | - | KM231682 | KM232381 | - | - |
F. sambucinum | CBS 136.24 | - | - | MH866281 | - | - | - |
Globobotrys sansevieriicola | CBS 138872T | - | KR476717 | KR476752 | - | KR476793 | KR476794 |
Grandibotrys pseudotheobromae | CBS 136170T | - | KU846135 | KU846161 | KU846188 | KU846215 | KU846241 |
G. pseudotheobromae | CBS 136391 | - | KU846136 | KU846162 | KU846189 | KU846216 | KU846242 |
G. xylophila | CBS 136179T | KU846115 | KU846137 | KU846163 | KU846190 | KU846217 | |
Gregatothecium humicola | CBS 205.96T | KU846285 | KU846315 | KU846347 | KU846376 | KU846402 | KU846432 |
Hyalinostachys cylindrospora | MFLUCC 17-2583 | - | NR_182450 | NG_148956 | - | - | - |
Inaequalispora prestonii | CBS 175.73T | KU846286 | KU846316 | KU846348 | KU846377 | KU846403 | KU846433 |
Kastanostachys aterrima | CBS 101310T | - | - | AF178565 | KU846191 | - | - |
Koorchaloma bambusae | MFLU 19-2899 | - | MT185516 | MT183479 | MT432230 | - | - |
K. europaea | PRM 953076 | - | LR963471 | - | - | - | - |
K. krabiense | MFLUCC 16-0317T | - | MH388348 | MH376721 | MH412729 | - | - |
K. oryzae | MFLUCC 21-0055T | - | MZ519544 | MZ519543 | MZ508427 | - | - |
K. spartinicola | SAP 130 | - | AF422963 | - | - | - | - |
Koorchalomella salmonispora | MD6018 | - | - | KX611345 | - | - | - |
Melanopsamma pomiformis | CBS 325.90 | KU846031 | KU846048 | KU846067 | KU846077 | KU846094 | KU846111 |
M. pomiformis | CBS 101322T | KU846032 | KU846049 | KU846068 | KU846078 | - | - |
M. pomiformis | CBS 114119 | KU846033 | KU846050 | KU846069 | KU846079 | KU846095 | KU846112 |
M. xylophila | CBS 100343T | KU846034 | KU846051 | KU846070 | KU846080 | KU846096 | - |
Memnoniella alishanensis | MFLUCC 20-0168T | - | MW114372 | - | - | - | MW148278 |
Me. brunneoconidiophora | CBS 109477 | - | KU846138 | KU846165 | KU846192 | KU846218 | KU846243 |
Me. brunneoconidiophora | CBS 136191T | KU846116 | KU846139 | KU846166 | KU846193 | KU846219 | KU846244 |
Me. celtidis | MFLUCC 20-0040T | - | MW114374 | - | - | - | MW148280 |
Me. celtidis | NCYUCC 19-0326 | - | MW114375 | - | - | - | MW148281 |
Me. chromolaenae | MFLUCC 17-1507 | - | NR_168873 | MT214465 | - | - | - |
Me. dichroa | CBS 526.50 | KU846117 | KU846140 | KU846167 | KU846194 | KU846220 | - |
Me. dichroa | CBS 123800 | KU846118 | KU846141 | KU846168 | KU846195 | KU846221 | - |
Me. echinata | CBS 216.32T | KU846119 | KU846142 | KU846169 | KU846196 | KU846222 | KU846245 |
Me. echinata | DAOMC 173162 | KU846125 | JN942886 | JN938868 | KU846202 | KU846228 | KU846250 |
Me. echinata | DAOMC 235365 | KU846126 | KU846149 | KU846176 | KU846203 | KU846229 | KU846251 |
Me. ellipsoidea | CBS 136199 | KU846127 | KU846150 | KU846177 | KU846204 | KU846230 | KU846252 |
Me. ellipsoidea | CBS 136200 | KU846128 | KU846151 | KU846178 | KU846205 | KU846231 | KU846253 |
Me. ellipsoidea | CBS 136201T | KU846129 | KU846152 | KU846179 | KU846206 | KU846232 | KU846254 |
Me. humicola | CBS 463.74T | KU846130 | KU846154 | KU846181 | KU846208 | KU846234 | |
Me. longistipitata | CBS 136197 | KU846131 | KU846155 | KU846182 | KU846209 | KU846235 | KU846256 |
Me. longistipitata | ATCC 22699 | - | AF081471 | - | - | - | - |
Me. mori | MFLUCC 18-1640T | - | MW114377 | - | - | - | MW148283 |
Me. nilagirica | MFLUCC 15-0660 | - | KU760374 | - | KU760394 | - | - |
Me. oblongispora | MFLUCC 17-2064 | - | MT310665 | - | MT394724 | - | - |
Me. oblongispora | MFLUCC 15-1074 | KY124123 | KU760376 | - | KU760396 | KY124127 | |
Me. oenanthes | ATCC 22844T | - | AF081473 | - | - | - | - |
Me. oenanthes | CBS 388.73 | - | KU846156 | KU846183 | KU846210 | KU846236 | |
Me. Pseudodichroa | BCRC FU31689T | - | ON692522 | - | LC714856 | LC714858 | LC714861 |
Me. Pseudodichroa | BCRC FU31700 | - | ON692523 | - | LC714857 | LC714859 | LC714862 |
Me. pseudonilagirica | CBS 136405T | KU846132 | KU846157 | KU846184 | KU846211 | KU846237 | KU846257 |
Me. putrefolia | CBS 101177T | - | KU846158 | KU846185 | KU846212 | KU846238 | KU846258 |
Me. putrefolia | CBS 136171 | KU846133 | KU846159 | KU846186 | KU846213 | KU846239 | KU846259 |
Me. sinensis | YMF 1.05582T | - | MK773576 | - | MK773575 | MK772066 | MK773574 |
Memnoniella sp. | MUCL 50191 | KU846134 | KU846160 | KU846187 | KU846214 | KU846240 | KU846260 |
Myrothecium inundatum | CBS 196.74 | KU846434 | KU846451 | KU846473 | - | KU846513 | KU846532 |
My. inundatum | CBS 275.48T | KU846435 | KU846452 | KU846474 | - | KU846514 | KU846533 |
My. inundatum | CBS 120646 | KU846438 | KU846455 | KU846477 | - | KU846516 | KU846536 |
My. simplex | CBS 582.93T | KU846439 | KU846456 | KU846478 | - | KU846517 | KU846537 |
Myxospora crassiseta | CBS 731.83T | KU846442 | KU846459 | KU846481 | KU846497 | KU846520 | KU846540 |
Myx. crassiseta | CBS 121141 | KU846443 | KU846460 | KU846482 | KU846498 | KU846521 | KU846541 |
Myx. masonii | CBS 174.73T | KU846445 | KU846462 | KU846484 | KU846500 | KU846523 | KU846543 |
Neomyrothecium humicola | CBS 310.96T | KU846448 | KU846467 | KU846488 | KU846505 | KU846527 | - |
Nigrosynnema guangdongense | ZHKUCC 23-1014T | PP746517 | PP645741 | PP683138 | PP668100 | PP746526 | PP746535 |
N. guangdongense | ZHKUCC 23-1015 | PP746518 | PP645742 | PP683139 | PP668101 | PP746527 | PP746536 |
Paramyrothecium foliicola | CBS 113121T | KU846266 | KU846294 | KU846324 | - | KU846385 | KU846411 |
P. roridum | CBS 212.95 | KU846269 | KU846299 | KU846329 | KU846360 | KU846389 | KU846416 |
P. roridum | CBS 357.89T | KU846270 | KU846300 | KU846330 | KU846361 | KU846390 | KU846417 |
Parvothecium terrestre | CBS 198.89T | KU846449 | KU846468 | KU846489 | KU846506 | KU846528 | KU846548 |
Parvothecium terrestre | CBS 534.88 | KU846450 | KU846469 | KU846490 | KU846507 | KU846529 | KU846549 |
Peethambara sundara | CBS 521.96 | - | KU846470 | KU846491 | KU846508 | KU846530 | KU846550 |
Pe. sundara | CBS 646.77T | - | KU846471 | AF193245 | KU846509 | KU846531 | KU846551 |
Septomyrothecium maraitiense | MUCL 47202T | - | - | KU846493 | KU846510 | - | - |
S. uniseptatum | CBS 100966 | - | KU846472 | KU846494 | KU846511 | - | KU846552 |
S. uniseptatum | MUCL 52944 | - | - | KU846495 | KU846512 | - | - |
Sirastachys castanedae | CBS 164.97 | KU846553 | KU846658 | KU846771 | KU846885 | KU846990 | KU847094 |
Si. castanedae | CBS 531.69 | KU846554 | KU846659 | KU846772 | KU846886 | KU846991 | KU847095 |
Si. castanedae | CBS 136403T | KU846555 | KU846660 | KU846773 | KU846887 | KU846992 | KU847096 |
Si. castanedae | CPC 20373 | KU846556 | KU846661 | KU846774 | KU846888 | KU846993 | KU847097 |
Si. cylindrospora | CBS 136166T | KU846557 | KU846662 | KU846775 | KU846889 | - | KU847098 |
Si. cylindrospora | CBS 13654 | KU846558 | KU846663 | KU846776 | KU846890 | KU846994 | KU847099 |
Si. cyperacearum | CBS 143444 | - | MH107917 | MH107963 | - | - | - |
Si. guangdongensis | ZHKUCC 23-1003T | PP746510 | PP645734 | PP683131 | PP754606 | PP746519 | PP746528 |
Si. guangdongensis | ZHKUCC 23-1004 | PP746511 | PP645735 | PP683132 | PP754607 | PP746520 | PP746529 |
Si. longispora | ATCC 32451T | - | AF081482 | - | - | - | |
Si. pandanicola | CBS 136545T | - | KU846664 | KU846777 | - | - | KU847100 |
Si. phaeospora | CBS 100155T | KU846560 | KU846666 | KU846779 | KU846891 | KU846995 | KU847102 |
Si. phangngaensis | MFLUCC 15-0680 | - | NR_168202 | NG_068841 | MH412735 | - | - |
Si. phyllophila | CBS 173.97 | KU846565 | KU846671 | KU846784 | KU846896 | KU846998 | KU847107 |
Si. phyllophila | CBS 136169T | KU846566 | KU846672 | KU846785 | KU846897 | KU846999 | KU847108 |
Si. pseudolongispora | CBS 417.93 | KU846567 | KU846673 | KU846786 | KU846898 | KU847000 | KU847109 |
Si. pseudolongispora | CBS 100154T | KU846568 | KU846674 | KU846787 | KU846899 | - | KU847110 |
Sirastachys sp. | CBS 308.56 | KU846569 | KU846675 | KU846788 | KU846900 | KU847001 | KU847111 |
Smaragdiniseta bisetosa | CBS 459.82T | KU847206 | KU847229 | KU847255 | KU847281 | KU847303 | KU847319 |
Stachybotrys aloeticola | CBS 137940T | KU846570 | KJ817888 | KJ817890 | KU846901 | - | KJ817886 |
St. aloeticola | CBS 137941 | KU846571 | KJ817889 | KJ817891 | KU846902 | - | KJ817887 |
St. chartarum | CBS 182.80T | KU846573 | KU846679 | KU846792 | KU846904 | KU847003 | KU847115 |
St. chartarum | CBS 119371 | KU846594 | KU846700 | KU846813 | KU846925 | KU847024 | KU847135 |
St. chartarum | CBS 485.48 | KU846577 | KU846683 | KU846796 | KU846908 | KU847007 | KU847119 |
St. chlorohalonata | CBS 113.97 | KU846635 | KU846742 | KU846855 | KU846965 | KU847065 | KU847176 |
St. chlorohalonata | CBS 127.94 | KU846636 | KU846743 | KU846856 | KU846966 | KU847066 | KU847177 |
St. chlorohalonata | CBS 222.46 | KU846637 | KU846744 | KU846857 | KU846967 | KU847067 | KU847178 |
St. chlorohalonata | CBS 250.89 | KU846617 | KU846723 | KU846836 | KU846948 | KU847047 | KU847158 |
St. chlorohalonata | CBS 109283 | KU846622 | KU846728 | KU846841 | KU846953 | KU847052 | KU847163 |
St. chlorohalonata | CBS 109285T | KU846623 | KU846729 | KU846842 | KU846954 | KU847053 | KU847164 |
St. chlorohalonata | CBS 136158 | KU846626 | KU846732 | KU846845 | KU846956 | KU847056 | KU847167 |
St. dolichophialis | DAOMC 227011 | KU846628 | KU846734 | KU846847 | KU846958 | - | KU847169 |
St. limonispora | CBS 128809T | KU846629 | KU846735 | KU846848 | KU846959 | KU847058 | KU847170 |
St. limonispora | CBS 136165 | KU846630 | KU846736 | KU846849 | KU846960 | KU847059 | KU847171 |
St. microsporus | CBS 186.79 | KU846631 | KU846737 | KU846850 | DQ676580 | KU847060 | KU847172 |
St. microsporus | ATCC 18852T | - | AF081475 | - | - | - | - |
St. microsporus | MFLUCC 15-0830 | KY124124 | KU760377 | - | KU760397 | - | KY124128 |
St. microsporus | MFLUCC 15-1076 | KY124125 | KU760378 | - | KU760398 | - | KY124129 |
St. microsporus | MFLUCC 20-0190 | - | MW477992 | - | - | MW480237 | MW480235 |
St. microsporus | ZHKUCC 23-1007 | PP746512 | PP645736 | PP683133 | PP668098 | PP746521 | PP746530 |
St. microsporus | ZHKUCC 23-1008 | PP746513 | PP645737 | PP683134 | PP668099 | PP746522 | PP746531 |
St. musae | MFLUCC 20-0188T | MW480232 | NR_173231 | - | MW480230 | - | MW480234 |
St. musae | MFLUCC 20-0152 | MW480231 | MW477991 | - | MW480229 | - | MW480233 |
St. pallescens | HGUP 0146T | KC305345 | KC305345 | - | - | - | |
St. phaeophialis | KAS 525T | KU846632 | KU846738 | KU846851 | KU846962 | KU847061 | KU847173 |
St. reniformis | CBS 976.95 | KU846633 | KU846739 | KU846852 | KU846963 | KU847062 | KU847174 |
St. reniformis | CBS 136198 | - | KU846740 | KU846853 | - | KU847063 | - |
St. subcylindrospora | HGUP 0201T | - | KC305354 | - | - | - | - |
St. subreniformis | HGUP 1051T | - | KC305344 | - | - | - | - |
St. subsylvatica | CBS 126205T | KU846634 | KU846741 | KU846854 | KU846964 | KU847064 | KU847175 |
Stachybotrys sp. | CBS 525.50 | KU846645 | KU846752 | KU846865 | KU847075 | KU847186 | |
Striatibotrys eucylindrospora | CBS 203.61T | KU846648 | KU846755 | KU846868 | KU846975 | KU847078 | KU847189 |
Str. eucylindrospora | CBS 136399 | - | KU846757 | KU846870 | KU846977 | KU847080 | KU847191 |
Str. eucylindrospora | CBS 136547 | KU846649 | KU846758 | KU846871 | KU846978 | KU847081 | KU847192 |
Str. neoeucylindrosporus | UAMH 7211 | - | MW187767 | MW187732 | MW192603 | MW192605 | MW192606 |
Str. neoeucylindrosporus | UAMH 7122 | - | MW187766 | MW187768 | MW192608 | MW192609 | MW192610 |
Striaticonidium brachysporum | CBS 131.71 | KU847207 | KU847230 | KU847256 | KU847282 | KU847304 | KU847320 |
Stri. brachysporum | CBS 513.71T | KU847209 | KU847232 | KU847258 | KU847284 | KU847305 | KU847322 |
Stri. brachysporum | CBS 126552 | KU847210 | KU847233 | KU847259 | KU847285 | KU847306 | KU847323 |
Stri. cinctum | CBS 373.50 | KU847214 | KU847237 | KU847263 | KU847289 | - | KU847327 |
Stri. cinctum | CBS 932.69T | KU847216 | KU847239 | KU847265 | KU847290 | - | KU847329 |
Stri. Deklijnearum | CBS 143232 | - | NR_156676 | NG_058527 | - | MG386158 | MG386171 |
Stri. humicola | CBS 258.76T | - | KU847240 | KU847266 | KU847311 | KU847330 | |
Stri. humicola | CBS 388.97 | KU847217 | KU847241 | KU847267 | KU847291 | KU847312 | KU847331 |
Stri. synnematum | CBS 479.85T | KU847218 | KU847242 | KU847268 | KU847292 | - | KU847332 |
Tangerinosporium thalitricola | CBS 317.61T | KU847219 | KU847243 | KU847269 | - | - | KU847333 |
Virgatospora echinofibrosa | CBS 110115 | KU847220 | KU847244 | KU847270 | KU847293 | KU847313 | KU847334 |
V. echinofibrosa | MUCL 39092 | - | KU847245 | KU847271 | KU847294 | - | KU847335 |
Xenomyrothecium tongaense | CBS 598.80T | KU847221 | KU847246 | KU847272 | KU847295 | KU847314 | KU847336 |
Xepicula jollymannii | CBS 276.48T | KU847223 | KU847248 | KU847274 | KU847297 | KU847316 | KU847338 |
X. jollymannii | CBS 126168 | KU847224 | KU847250 | KU847276 | KU847298 | KU847317 | KU847340 |
X. leucotricha | CBS 278.78 | KU847227 | KU847253 | KU847279 | KU847301 | - | KU847343 |
X. leucotricha | CBS 483.78 | KU847228 | KU847254 | KU847280 | KU847302 | KU847318 | KU847344 |
The combined cmdA, ITS, LSU, rpb2, tef1-α, and tub2 sequence data were performed using maximum likelihood (ML) and Bayesian inference (BI) analyses. The ML analysis was carried out in the CIPRES Science Gateway online platform (
The phylogenetic tree was constructed using the combined cmdA, ITS, LSU, rpb2, tef1-α, and tub2 sequence data of 184 strains (including our new strains) through ML and BI analyses. The total length of the dataset, including gaps, was 5060 base pairs (cmdA: 1–930, ITS: 931–1657, LSU: 1658–2494, rpb2: 2495–3274, tef1-α: 3275–4646, tub2: 4647–5060). The topology of the ML analysis resembled that of the BI analysis. The highest-scoring RAxML tree, with a final ML optimization likelihood value of -87901.129587, is depicted in Fig.
Phylogram generated from maximum likelihood analysis (RAxML) of strains in Stachybotryaceae based on the combined cmdA, ITS, LSU, rpb2, tef1-α, and tub2 sequence data. Maximum likelihood bootstrap values ≥ 70% (ML) and Bayesian posterior probabilities ≥ 0.90 (ML/BYPP) are provided at the nodes. The tree is rooted with Fusarium sambucinum strains CBS 136.24 and CBS 146.95. The hyphen (-) represents support values < 70% ML and < 0.90 BYPP. The ex-type strains are denoted as “T”, while the newly isolated strains are highlighted in blue.
In reference to the host genus Wurfbainia, from which the holotype was isolated.
MHZU 23-0254.
Saprobic on dead stem of Wurfbainia villosa. Sexual morph: undetermined. Asexual morph: Colonies superficial on host substrate, effuse, hairy, gregarious, with numerous dark conidia on the substrate visible as black granular powder. Conidiophores 80–235 × 3–5.5 µm (av. 155 × 4.5 μm, n = 20), macronematous, mononematous, erect, simple, unbranched, straight or flexuous, subcylindrical, unevenly olivaceous brown, 1–3-septate, not constricted at the septa, smooth-walled to finely verruculose in the above half, thick-walled, with bulbous apices, bearing 5–8 conidiogenous cells at the tip, often intermixed with setiferous, flexuous, sterile filaments. Setae 230–390 × 3–6 µm (av. 305 × 4.5 μm, n = 20), arising from the basal stroma, adjacent to cells that give rise to fertile conidiophores, unbranched, straight, and subhyaline at base, mostly flexuous, olivaceous green, in above half, moderately thick-walled, smooth, septate, acute at apex. Conidiogenous cells 6–10 × 4–7 µm (av. 7.5 × 5.5 μm, n = 30), enteroblastic, monophialidic, discrete, determinate, terminal, elongate doliiform, pale to dark brown, smooth-walled, with a conspicuous collarette. Conidia 5–9 µm diam. (av. 7 μm, n = 30), acrogenous, solitary, dry, obovoid to subglobose, aseptate, hyaline, and smooth-walled when young, pale brown, mostly olivaceous to dark brown, verrucose to warty-surfaced at maturity.
Colonies on PDA reaching 2 cm in two weeks at 28 ± 2 °C, medium dense, raised, sparse, filamentous, floccose to fluffy, velvety, filiform at margin, cream to pale brown from above; brown to pale luteous from reverse.
China • Guangdong Province, Yangchun City, Yongning Town (22.256185°N, 111.609037°E, 270 m), on dead stems of Wurfbainia villosa (Lour.) Škorničk. & A.D. Poulsen. (Zingiberaceae), 10 April 2022, C.F. Liao & Y.H. Yang, YAM16 (MHZU 23-0254, holotype) • ex-type, ZHKUCC 23-1011 • ibid., living culture ZHKUCC 23-1012, and ZHKUCC 23-1013.
Brevistachys wurfbainiae (MHZU 23-0254, holotype) a, b colonies on the surface substrate c, d conidiophores, setae or conidiophore-like (arrow), conidiogenous cells, and conidia e, f conidiogenous cells with conidia g conidia h germinated conidium i, j colonies on PDA (front and below). Scale bars: 100 µm (b–d); 10 µm (e, f); 5 µm (g); 20 µm (h).
Brevistachys wurfbainiae differs from other known species in the genus Brevistachys by having erect to flexuous, sterile, setiferous filaments intermixed with fertile conidiophores. Brevistachys wurfbainiae resembles B. subsimplex but differs from the latter in having slightly longer conidiophores with bulbous apices (80–235 × 3–5.5 µm vs. 80–200 (most frequently 100–140) × 3–5.5 µm) and shorter conidiogenous cells (6–10 × 4–7 µm vs. 8–13 × 4–6 µm). The conidiophores of B. wurfbainiae are 1–3-septate, while they are 2–6-septate in B. subsimplex (
The name refers to the characteristic black synnemata formed on natural substrate.
Saprobic on dead plant material. Sexual morph: undetermined. Asexual morph: Conidiomata synnematous or sporodochial. Synnemata unbranched, subcylindrical, globose to subglobose head, robust at base, olivaceous brown to black, straight or curved in the upper portion, consisting of bundles of parallelly arranged, tightly compacted conidiophores. Sporodochia stromatic, superficial, scattered or gregarious, irregular, pulvinate, with white mycelium surrounding an olivaceous green mass of conidia. Conidiophores arising from basal stroma, macronematous, mononematous, septate, unbranched or branched, straight or flexuous, thin-walled, subcylindrical, olivaceous brown, verrucose, consisting of a stipe and a penicillately branched conidiogenous apparatus consisting of a whorl of primary branches, each terminating in number of conidiogenous cells. Conidiogenous cells enteroblastic, monophialidic, integrated, terminal, clavate to subcylindrical, hyaline to pale olivaceous brown, smooth, often verruculose at base, with a conspicuous collarette. Conidia solitary, fusiform to ellipsoidal, aseptate, initially hyaline, becoming olivaceous brown to dark brown, longitudinally striated at surface, with a distinct dark basal hilum.
Nigrosynnema guangdongense C.F. Liao, K.D. Hyde & Doilom
Nigrosynnema resembles Striaticonidium in having fusiform to ellipsoidal conidia with longitudinal striations. However, it can be distinguished from Striaticonidium by having synnematous conidiomata, the absence of setae on the sporodochia, as well as support from molecular data. The synnematous conidiomata of Nigrosynnema are subcylindrical, flexuous, narrower towards the apex of the stipe, and robust at the base. The sporodochia are devoid of setae. However, in Striaticonidium, they are cylindrical to pyriform, broadened towards the apex, and have sporodochia covered by setae (
Nigrosynnema resembles Virgatospora described by
Morphological comparison of Nigrosynnema and its closely related genera.
Genera | Synnematous conidiomata | Sporodochial conidiomata | Conidiogenous cells | Conidia | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Shape | Color | Shape | Color | Shape | Color | Shape | Color | Number of septa | ||
Nigrosynnema | Subcylindrical, narrower towards the apex of the stipe with a robust base | Olivaceous brown to black | Irregular, with white mycelia surrounding an olivaceous green mass of conidia | Olivaceous brown to black | Enteroblastic, phialidic, monophialidic, subcylindrical | Mostly hyaline, sometimes pale olivaceous brown in the lower portion | Fusiform to ellipsoidal, longitudinally striated | Olivaceous brown to dark brown | Aseptate | This study |
Albosynnema | Subcylindrical | Hyaline | - | - | Phialidic, cylindrical to subulate | Hyaline | Ellipsoidal to oblong | Blackish brown to black | 3-septate |
|
Didymostilbe | Cylindrical, slightly thinned downwards, apex in a globose-hemispherical cap | White-gray | - | - | - | - | Short oblong-fusoid | Hyaline | 0–1-septate |
|
Digitiseta | - | - | Circular to ellipsoid | Hyaline | Penicillus biverticillate, phialides, cylindrical, finger-like, straight to slightly incurved inward the penicillus | Hyaline | Cylindrical to slightly asymmetrical | Hyaline to pale greenish | Aseptate |
|
Peethambara | Cylindrical with a subglobose to oval head surmounted by conspicuous, slimy conidia | White | - | - | Phialide, mostly subcylindrical, sometimes wider in the middle than at either end | Hyaline | Ellipsoidal to limoniform, with mammiform basal and/or apical | Hyaline to subhyaline |
1-septate |
|
Striaticonidium | Cylindrical to pyriform, broadening towards the apex | Marginal hyphae of synnemata olivaceous green | Oval to elongate or irregular with a white to grey setose fringe surrounding an olivaceous green to dark green slimy mass of conidia | Olivaceous green to mouse grey | Phialidic, clavate to cylindrical to subcylindrical | Hyaline | Fusiform to ellipsoidal, longitudinally striated | Olivaceous green to brown | Aseptate |
|
Virgatospora | Cylindrical throughout the greater part, somewhat expanded at the apex and base | White or yellow at the base, yellow-black or blackish black at the apex | - | - | - | - | Campanulate, cylindrical, or allantoid to fusiform | Pale, olive to fuscous | Mature 3-(sometimes 2-or 4)-septate |
|
The phylogenetic analyses supported that our two strains (ZHKUCC 23-1014 and ZHKUCC 23-1015) formed a distinct clade from other morphologically closely related taxa and constituted a well-supported clade related to Digitiseta with 94% ML and 1.00 BYPP statistical support. The main distinguishing morphological characteristic between the two genera is the absence of hypha-like setoid structures in Nigrosynnema, whereas Digitiseta, introduced by
Based on morphological and molecular evidence, we introduce a novel asexual genus, Nigrosynnema, characterized by olivaceous to black synnematous or sporodochial conidiomata that produce phialidic, aseptate conidia in black, slimy, glistening masses or heads. The conidia are fusiform to ellipsoidal, aseptate, longitudinally striated, and olivaceous brown to dark brown.
The epithet “guangdongense” refers to the locality, Guangdong Province, China, where the holotype was collected.
MHZU 23-0255.
Saprobic on dead stem of Wurfbainia villosa. Sexual morph: undetermined. Asexual morph: Synnemata on the natural substrate, 370–570 × 20–50 µm (av. 470 × 33 μm, n = 20), erect, unbranched, subcylindrical, with a robust base, narrowed towards fertile apex, olivaceous brown to black, straight or curved in the upper portion, consisting of parallelly arranged, tightly compacted conidiophores. Conidiophores 2–4 µm wide, subcylindrical, branched, olivaceous brown, slightly tapering towards the apex, verrucose. Conidiogenous cells 10.5–32.5 × 1.5–3 µm (av. 22 × 2.5 μm, n = 30), enteroblastic, monophialidic, discrete, terminal, subcylindrical, mostly hyaline, sometimes pale olivaceous brown in the lower portion, mostly smooth-walled in above half, often verruculose at below half, with a conspicuous collarette. Conidia 10–12.5 × 3–4.5 µm (av. 11.5 × 4 μm, n = 30), solitary, slimy, fusiform to ellipsoidal, aseptate, longitudinally striated, olivaceous brown to dark brown, guttulate, obtuse at both ends, with a distinct dark basal hilum.
Nigrosynnema guangdongense (MHZU 23-0255, holotype) on natural substrate a–c synnemata on substrate d synnema e top of synnema f base of synnema g, h conidia i conidiogenous cells with conidia j germinated conidium k colonies on PDA (front and below). Scale bars: 500 µm (a); 200 µm (b); 100 µm (c, d); 20 µm (e, f); 10 µm (g–j).
Colonies on PDA reaching 4.5–6.5 cm in two weeks at 28 ± 2 °C, medium dense, flat or effuse, diffuse, rough, circular, filiform with curled, large circle in the middle becoming a wave and extends outward, cream from above; cream from the reverse. The spores produced on PDA after three weeks. Conidiomata 220–300 × 15–20 µm, sporodochial, superficial, scattered, irregular, with white mycelia surrounding an olivaceous green mass of conidia, with or without covering the slimy mass of conidia, without setae. Conidiophores arising from the basal stroma, consisting of a stipe and a penicillately branched conidiogenous apparatus; stipes unbranched or rarely branched, hyaline, septate, smooth, 10–30 × 2.5–3.5 µm (av. 18 × 3.0 μm, n = 20), conidiogenous apparatus consisting of a whorl of 2–5 primary branches, each terminating in 2–5 conidiogenous cells; primary branches, 1, 2-septate, smooth, unbranched, 8–20 × 2–6 µm, secondary branches, aseptate, smooth, unbranched, 6–20 × 2–5 µm. Conidiogenous cells 10–20 × 2–4 µm (av. 14 × 2.5 μm, n = 30), phialidic, terminal, with a conspicuous collarette, clavate to cylindrical, hyaline, smooth. Conidia 7–10 × 3–5 µm (av. 8.5 × 3.5 μm, n = 30), acrogenous, longitudinally striated, fusiform to ellipsoidal, aseptate, initially hyaline, becoming olivaceous green when mature.
China • Guangdong Province, Yangchun City, Yongning Town (22.256185°N, 111.609037°E, 270 m), on dead stems of Wurfbainia villosa (Lour.) Škorničk. & A.D. Poulsen. (Zingiberaceae), 10 April 2022, C.F. Liao & Y.H. Yang, YAM19 (MHZU 23-0255, holotype) • ex-type, ZHKUCC 23-1014 • ibid., living culture ZHKUCC 23-1015.
Nigrosynnema guangdongense is established here as the type species. It is similar to Virgatospora natarajanensis described by
Nigrosynnema guangdongense and Virgatospora echinofibrosa (the type species of Virgatospora) (
Additionally, N. guangdongense has smaller (10–12.5 × 3–4.5), fusiform, aseptate conidia compared to ellipsoidal to limoniform, 3-(sometimes 2- or 4)-septate conidia (39–50 × 9–15 µm) of V. echinofibrosa.
Virgatospora natarajanensis D’Souza, S.K. Singh & Bhat, Mycotaxon 82: 141 (2002).
IMI 386680.
India • Middle Andaman Island, on dead leaves of Calamus thwaitesii, 15 December 2000, Rajiv Kumar, IMI386680 (holotype).
See
See
The epithet “guangdongensis” refers to the locality, Guangdong Province, China, where the holotype was collected.
MHZU 23-0250.
Saprobic on dead stem of Agave sisalana. Sexual morph: undetermined. Asexual morph: Colonies superficial on host substrate, erect, gregarious, visible as numerous black conidial masses. Conidiophores 105–170 × 3.5–7 µm (av. 140 × 5.5 μm, n = 30), macronematous, mononematous, erect, simple, unbranched, straight or slightly flexuous, subcylindrical, hyaline, 1–5-septate, not constricted at septa, smooth-walled, or slightly verrucose, thick-walled, bearing 4–8 conidiogenous cells on the tip. Conidiogenous cells 6.5–12.5 × 4–5 µm (av. 10 × 4 μm, n = 30), enteroblastic, monophialidic, discrete, determinate, terminal, elongate doliiform to reniform, subhyaline to brown, smooth-walled, with a conspicuous collarette. Conidia 5–6 × 4–5 µm (av. 5.5 × 4 μm, n = 30), acrogenous, aggregating in slimy masses, obovoid, with a prominent hilum, aseptate, brown, pale olivaceous brown, black, smooth-walled.
Colonies on PDA reaching 5.5–6.0 cm in two weeks at 28 ± 2 °C, medium dense, flat, circular, cream from above; pale luteous from the reverse, with no pigmentation.
China • Guangdong Province, Guangzhou City, Zhongkai University of Agriculture and Engineering (23.10643°N, 113.28240°E, 20 m), on dead leaf of Agave sisalana Perr. ex Engelm. (Agavaceae), 17 November 2021, C.F. Liao & Y.H. Yang, JM02 (MHZU 23-0250, holotype) • ex-type, ZHKUCC 23-1003 • ibid., living culture ZHKUCC 23-1004.
Sirastachys guangdongensis resembles Si. pandicola and Si. Phaeospora that were described by
Saprobic on dead leaf of Agave sisalana. Sexual morph: undetermined. Asexual morph: Colonies superficial on host substrate, gregarious, visible as numerous black conidial masses. Conidiophores 35–70 × 2.5–5 µm (av. 48 × 4 μm, n = 30), macronematous, mononematous, irregularly or sympodially branched, straight or flexuous, subcylindrical, hyaline, becoming pale olivaceous brown in the above half, 1–3-septate, not constricted at the septa, smooth-walled, slightly rough-walled in the subterminal region, thick-walled, bearing 3–9 conidiogenous cells on the tip. Conidiogenous cells 6–10 × 4–6 µm (av. 8 × 5 μm, n = 30), enteroblastic, monophialidic, discrete, determinate, terminal, obovoid, sub-hyaline to pale olivaceous brown, smooth-walled. Conidia 5–7 µm diam. (av. 6 μm, n = 30), aggregating in slimy masses, globose, subglobose, aseptate, olivaceous brown to black, rough-walled, verrucose.
Stachybotrys microsporus (MHZU 23-0252, new host record) a–c colonies on the surface substrate d, e conidiophores f–i conidiogenous cells j conidia k colonies on pda (front) l colony on pda (below) m mycelium, conidiophores, and conidiogenous cells with conidia n–p conidiogenous cells with conidia q conidia. Scale bars: 20 µm (d, e); 50 µm (f–j, m); 10 µm (n–q).
Colonies on PDA reaching 2.5–3.0 cm in two weeks at 28 ± 2 °C, medium dense, raised, flat, floccose to fluffy, velvety, irregular edge, gold brown at the center, pale brown, with conidiophores forming on the surface of the medium, carrying slimy olivaceous green from above; brown to pale luteous from the reverse. The conidia producing on PDA after three weeks: Conidiophores 30–80 × 3.5–5.5 µm (av. 46 × 4 μm, n = 30), most similar with the above description, 0–2-septate, unbranched or branched, bearing 2–10 conidiogenous cells at the tip. Conidiogenous cells 9–17 × 4.5–7.5 µm (av. 12 × 5.5 μm, n = 30), most similar to those on natural substrate. Conidia 6.5–10 × 3–6.5 µm (av. 8 × 5 μm, n = 30), often aggregated as large, slimy, glistening, blackheads, initially hyaline to olivaceous green, oblong, obovoid to subglobose, becoming black-brown, globose, smooth to verruculose.
China • Guangdong Province, Guangzhou City, Zhongkai University of Agriculture and Engineering (23.10643°N, 113.28240°E, 20 m), on dead leaf of Agave sisalana Perr. ex Engelm. (Agavaceae), 17 November 2021, C.F. Liao & Y.H. Yang, SR09A (MHZU 23-0252, new host record) • living culture, ZHKUCC 23-1007 • ibid., living culture ZHKUCC 23-1008.
• Canada, Cuba, India, Nigeria, and Pakistan (
Agave sisalana (this study), Arachishypogaea rhizosphere, soil (
Stachybotrys microsporus (ZHKUCC 23-1007, ZHKUCC 23-1008) formed a subclade with the type and other strains of St. microsporus with 100% ML and 1.00 BYPP (Fig.
Species of Stachybotryaceae have primarily been collected from soil and dead plant tissues. For example, Albifimbria terrestris was isolated from soil in mopane woodlands in Namibia and unidentified dead hardwood in the USA, while Cymostachys fabispora was obtained from decaying leaf material in Cuba and Aloe ferox in Tanzania (
The new genus, Nigrosynnema, is phylogenetically related to but distinct from Digitiseta and Striaticonidium. These taxa are classified into distinct genera based on differences in their asexual morphs, as detailed in the notes under Nigrosynnema. Nigrosynnema is also similar to Peethambara in having synnematous, erect conidiomata, unbranched or branched, septate, smooth conidiophores with phialidic conidiogenous cells (
This study proposes Sirastachys guangdongensis as a novel species in the family Stachybotryaceae, represented by the strains ZHKUCC 23-1003 and ZHKUCC 23-1004. It is noted that
The taxonomic placement and phylogenetic relationship of many species, such as Myrothecium atrocarneum, Stachybotrys asperulus, St. atrogriseus, St. atrus, St. clitoriae, and St. verrucosus in Stachybotryaceae, remain unclear due to a lack of DNA sequence data of ex-type strains and fresh collections. Furthermore, many species in Stachybotryaceae are limited to ITS and LSU sequence data. There is a scarcity of reliable phylogenetic markers (e.g., cmdA, rpb2, tef1-α, and tub2) to identify the phylogenetic status within Stachybotryaceae accurately. Future taxonomic studies in this family should incorporate multi-locus genes, such as cmdA, ITS, LSU, rpb2, tef1-α, and tub2, along with morphological characteristics and other polyphasic approaches (e.g., physiology and secondary metabolites), while also considering hosts and their distribution to enhance our understanding in this issue (
We would like to thank Dr. Shaun Pennycook (Landcare Research, New Zealand) for his invaluable contribution in reviewing the nomenclature. Mingkwan Doilom thanks the Science and Technology Bureau of Guangzhou City (grant numbers 2023A04J1426). We deeply appreciate Zhongkai University of Agriculture and Engineering for providing us with the essential research facilities. We would like to thank Mae Fah Luang University for the partial scholarship for the doctoral degree program. Kevin D. Hyde and Fatimah Al-Otibi extend their appreciation to the Researchers Supporting Project number (RSP2025R114), King Saud University, Riyadh, Saudi Arabia.
The authors have declared that no competing interests exist.
No ethical statement was reported.
This research was funded by the Science and Technology Bureau of Guangzhou City, grant numbers 2023A04J1426.
Conceptualization: KWTC, WD, MD, CL. Data curation: CL. Formal analysis: MD, CL. Funding acquisition: MD. Investigation: DJB, CL, MD, KDH. Methodology: CL. Project administration: KDH. Resources: YY, MD, CL. Software: KDH, KWTC, CL. Supervision: KWTC, KT, MD. Validation: MD. Visualization: DJB, MD, CL. Writing - original draft: MD, CL. Writing - review and editing: FAO, WD, KWTC, KT, CL, MD, DJB, YY.
Chunfang Liao https://orcid.org/0000-0002-6309-1101
Mingkwan Doilom https://orcid.org/0000-0001-6167-3637
D. Jayarama Bhat https://orcid.org/0000-0002-3800-5910
Kandawatte Wedaralalage Thilini Chethana https://orcid.org/0000-0002-5816-9269
Khanobporn Tangtrakulwanich https://orcid.org/0009-0002-7081-618X
Yunhui Yang https://orcid.org/0000-0002-0326-1471
Fatimah Al-Otibi https://orcid.org/0000-0003-3629-5755
Kevin D. Hyde https://orcid.org/0000-0002-2191-0762
All of the data that support the findings of this study are available in the main text.