Research Article
Print
Research Article
The diversity and taxonomy of Tomentella (Thelephoraceae, Thelephorales) with descriptions of four new species from Southwestern China
expand article infoXiaojie Zhang, Fulei Shi, Ke Yang§, Changlin Zhao
‡ Southwest Forestry University, Kunming, China
§ Management and Conservation Bureau, Wumeng Mountain National Nature Reserve, Zhaotong, China
Open Access

Abstract

Taxonomy plays a central role in understanding the diversity of life, translating the products of biological exploration and discovery specimens and observations into systems of names that settle a “classification home” to taxa. Up to this point, studies on the taxonomy and phylogeny of the basidiomycetous genus Tomentella stemmed mainly from the temperate to boreal zones of the North Hemisphere, but were scarce in tropical Asia. In this study, four new species, viz. Tomentella olivaceobasidiosa, T. velutina, T. wumenshanensis and T. yunnanensis from China, are described and illustrated based on the morphological characteristics and molecular phylogenetic analyses, in which the sequences of ITS+nLSU+mtSSU+RPB2 genes were used for the phylogenetic analyses using Maximum Likelihood, Maximum Parsimony and Bayesian Inference methods. All the new species can be well recognised by their macroscopical and anatomical characteristics. The four new species, closely related taxa in the phylogenetic tree and morphologically similar species are discussed.

Key words

Biodiversity, China, phylogenetic analyses, taxonomy, wood-inhabiting fungi, Yunnan Province

Introduction

The genera Amaurodon J. Schröt., Odontia Pers., Pseudotomentella Svrcek, Tomentella Pers. ex. Pat. and Tomentellopsis Hjortstam, belong to the family Thelephoraceae Chevall. of the order Thelephorales Corner ex Oberw. and the phylum Basidiomycota R.T. Moore (Reid and Larsen 1976; Kõljalg 1996). As their common morphological characteristics are resupinate and thin basidiomata, they were recognised as the resupinate thelephoroid fungi by Kõljalg (1996). Species of the group have their own typical characteristics, such as the light blue basidiomata of Amaurodon, the granulose or hydnoid hymenial surface of Odontia, the basidiospores with bifurcate warts or spines of Pseudotomentella and the absence of rhizomorphs in the genus Tomentellopsis. However, the genus Tomentella has diverse and complex morphological features, such as basidiomata with various colours and smooth to granulose surfaces, and basidiospores with diverse shapes and ornamentations (Reid and Larsen 1976; Kõljalg 1996).

Tomentella species have been recognized as ectomycorrhizal (ECM) fungi since the 1980s (Danielson et al. 1983; Kõljalg et al. 2001; Tedersoo et al. 2014). In various of forest ecosystems, the ECM Tomentella-Thelephora lineages are amongst the richest species (Tedersoo et al. 2014; Jakucs et al. 2015; Nouhra et al. 2015). As ectomycorrhizal fungi, they play an important role in nutrient cycling and ecological functions in forest ecosystems (Read and Perez-Moreno 2003; Jakucs et al. 2015; Nouhra et al. 2015). Tomentella species formed ectomycorrhiza with many host tree families, including Achatocarpaceae, Apocynaceae, Betulaceae, Cistaceae, Dipterocarpaceae, Ericaceae, Fabaceae, Fabaceae subfamily Caesalpinioideae, Fagaceae, Orchidaceae, Pinaceae, Myrtaceae, Nothofagaceae, Nyctaginaceae, Papilionoideae, Polygonaceae, Pyrolaceae, Rhamnaceae, Rosaceae, Salicaceae, Ticodendraceae and Tiliaceae (Tedersoo et al. 2007, 2008; Smith et al. 2011; Jakucs et al. 2015; Salomón et al. 2017; Alvarez-Manjarrez et al. 2018; Malysheva et al. 2018; Põlme 2018). Ranging from temperate to tropical zones in forests, the basidiomata of Tomentella are often found on fallen branches and leaves with decayed coniferous and deciduous wood debris, bark, soil, twigs, stumps, stone or even charred wood (Reid and Larsen 1976; Kõljalg 1996; Kuhar et al. 2016).

The genus Tomentella was sister to Thelephora in which both are nested within the family Thelephoraceae, while the morphological limits between Tomentella and Thelephora are not yet clear (Patouillard 1887; Ezhov and Zmitrovich 2017). In previous scientific research, studies about wood-inhabiting fungal molecular systematics revealed that within the species with different macroscopic characteristics located in the same family or even within the same genus, similar microscopic characteristics can be seen (Cui et al. 2019; Guan and Zhao 2021; Guan et al. 2021; Wu et al. 2022; Guan et al. 2023; Wang et al. 2023; Zhao et al. 2023b, 2024; Luo et al. 2024). The studies showed that ITS or nLSU sequences alone could not resolve the phylogenetic relationships in this complex group (Thelephora/Tomentella clade) (Patouillard 1887; Vizzini et al. 2016; Ezhov and Zmitrovich 2017). The research mentioned that genera Thelephora and Tomentella will be considered one genus, based on the morphological and phylogenetic results.

This work describes four new species of Tomentella, which were found in southwest China, based on the morphology and phylogeny. It provides full descriptions, colour photographs, a detailed comparison of four new species with closely related taxa and phylogenetic trees showing the placement of four new species within the genus Tomentella.

Materials and methods

Morphology

Fresh fruiting bodies of the fungi were collected from Kunming, Lincang and Zhaotong of Yunnan Province, P.R. China. Specimens were dried in an electric food dehydrator at 40 °C (Hu et al. 2022), then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China. Macromorphological descriptions are based on field notes and photos captured in the field and lab. Colour terminology follows Petersen (Petersen 1996). Micromorphological data were obtained from the dried specimens when observed under a light microscope following the previous study (Guan et al. 2023; Zhao et al. 2023a). The following abbreviations are used: KOH = 5% potassium hydroxide water solution, CB = Cotton Blue, CB– = acyanophilous, IKI = Melzer’s Reagent, IKI– = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied and n = a/b (number of spores (a) measured from given number (b) of specimens).

Molecular phylogeny

The EZNA HP Fungal DNA Kit (Omega Biotechnologies Co., Ltd., Kunming, China) was used to extract DNA with some modifications from the dried specimens. The nuclear ribosomal ITS region was amplified with primers ITS5 and ITS4 (White et al. 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min and a final extension of 72 °C for 10 min. The nuclear nLSU region was amplified with primer pair LR0R and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min and a final extension of 72 °C for 10 min. The nuclear mt-SSU region was amplified with primer pair MS1 and MS2 (White et al. 1990). The PCR procedure for mt-SSU was as follows: initial denaturation at 94 °C for 2 min, followed by 36 cycles at 94 °C for 45 s, 52 °C for 45 s and 72 °C for 1 min and a final extension of 72 °C for 10 min. The nuclear RPB2 region was amplified with primer pair bRPB2-6F and bRPB2-7.1R (Matheny 2005). The PCR procedure for RPB2 was as follows: initial denaturation at 95 °C for 2.5 min, denaturation at 95 °C for 30 s, annealing at 52 °C for 1 min, extension at 72 °C for 1 min (add 1 °C per cycle), repeat for 40 cycles starting at step 2, extension at 72 °C for 1.5 min, repeat for 40 cycles starting at step 6, leave at 72 °C for 5 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited Company, Yunnan Province, China. All newly generated sequences were deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (Table 1).

Table 1.

List of species, specimens and GenBank accession numbers of sequences used in this study. New species is shown in bold.

Species name Specimen No. GenBank accession No. Country References
ITS nLSU mt-SSU RPB2
Amaurodon aquicoeruleus UK452 AM490944 Australia Miettinen and Kõljalg (2007)
A. caeruleocaseus PERTH06670709 MT565478 Australia Unpublished
A. hydnoides TU108407 AM490941 Venezuela Miettinen and Kõljalg (2007)
Lenzitopsis daii Yuan2952 JN169798 MT319136 China Zhou and Kõljalg (2013)
Odontia sparsa Yuan 10718 MG719980 China Yuan et al. (2018)
O. sparsa Yuan 10780 MG719979 China Yuan et al. (2018)
Phellinotus neoaridus URM 83203 MZ954858 MZ964977 Brazil Salvador-Montoya et al. (2022)
Phellodon atroardesiacus Cui 18449 MZ221189 MZ225598 MZ225636 China Song et al. (2023)
P. atroardesiacus Cui 18457 MZ225577 MZ225599 China Song et al. (2023)
P. cinereofuscus Cui 16962 MZ225583 MZ225605 MZ225643 MZ343200 China Song et al. (2023)
P. cinereofuscus Cui 16963 MZ225584 MZ225606 MZ225644 MZ343201 China Song et al. (2023)
P. melaleucus Cui 18614 OL449262 OL439032 OL439022 China Song et al. (2023)
P. melaleucus Cui 18620 OL449263 OL439033 OL439023 China Song et al. (2023)
P. yunnanensis Cui 17129 MZ225594 MZ225614 MZ225652 MZ343207 China Song et al. (2023)
P. yunnanensis Cui 17131 MZ225595 MZ225615 MZ225653 MZ343208 China Song et al. (2023)
Polyozellus atrolazulinus TU117559 MG214657 Canada Voitk et al. (2018)
P. atrolazulinus TU117477 MF100839 Canada Voitk et al. (2018)
P. mariae TU117235 MF100826 Canada Voitk et al. (2018)
P. purpureoniger TU103000 MF100821 USA Voitk et al. (2018)
Thelephora ganbajun Yuan16756 OP793761 OP793690 OP793718 China Lu et al. (2022)
T. ganbajun Yuan16817 OP793762 OP793687 OP793721 China Lu et al. (2022)
T. grandinioides CLZhao 3406 MZ400677 MZ400671 China Liu et al. (2021)
T. grandinioides CLZhao 3408 MZ400678 MZ400672 China Liu et al. (2021)
T. africana SYN 991 EF507254 Benin Yorou and Agerer (2008)
T. africana M SYN 991 NR_119637 Benin Yorou and Agerer (2008)
T. afrostuposa SYN 2292 JF520431 Guinea Yorou et al. (2012b)
T. afrostuposa M SYN 2292 NR_119954 Guinea Unpublished
T. agbassaensis M SYN 981 NR_119638 Benin Unpublished
T. agbassaensis SYN 981 EF507257 Benin Yorou et al. (2012a)
T. agereri RA 13793 EF538424 Benin Yorou et al. (2011)
T. agereri M RA 13793 NR_119641 Benin Unpublished
T. alpina IB 20060231 NR_121330 Australia Unpublished
T. amyloapiculata SYN 893 EF507263 Benin Yorou et al. (2012a)
T. amyloapiculata M SYN 893 NR_119639 Benin Unpublished
T. asperula iNat66942560 ON943290 Canada Unpublished
T. atrobadia Yuan 11099 MK446335 China Yuan et al. (2020)
T. atrobadia Yuan 11114 MK446336 China Yuan et al. (2020)
T. atrocastanea Yuan 12170 MK211742 MK446337 China Yuan et al. (2020)
T. atrocastanea Yuan 12179 MK211743 MK446338 China Yuan et al. (2020)
T. aureomarginata Yuan 10671 MK211744 MK446339 China Yuan et al. (2020)
T. aureomarginata Yuan 10683 MK211745 MK878395 China Yuan et al. (2020)
T. badia LE 299095 MT981507 Russia Unpublished
T. badia LE 314775 MT981499 Russia Unpublished
T. bidoupensis Yuan 12707 MN684329 Vietnam Lu et al. (2022)
T. bidoupensis Yuan 12685 MN684330 Vietnam Lu et al. (2022)
T. botryoides O-F256708 MT146455 Sweden Svantesson et al. (2021)
T. botryoides O-F256707 MT146454 Sweden Svantesson et al. (2021)
T. brevis Yuan 11328 MK446340 China Yuan et al. (2020)
T. brevis Yuan 11332 MK878396 China Yuan et al. (2020)
T. brevisterigmata IFP 019338 NR_185567 China Unpublished
T. brunneocystidia SYN 839 DQ848613 Benin Yorou and Agerer (2007)
T. brunneocystidia RA 13779 DQ848610 Benin Yorou and Agerer (2007)
T. brunneoflava Yuan 12162 MK211749 MK850194 China Yuan et al. (2020)
T. brunneoflava Yuan 12161 MK211748 China Yuan et al. (2020)
T. brunneogrisea Yuan 12147 MK446343 China Yuan et al. (2020)
T. bryophila FFP1020 JQ711917 Canada Jones et al. (2012)
T. capitata SYN 860 DQ848612 Benin Yorou and Agerer (2007)
T. capitata RA 13785 DQ848611 Benin Yorou and Agerer (2007)
T. capitatocystidiata Yuan 11459 MK446344 China Yuan et al. (2020)
T. capitatocystidiata Yuan 11494 MK446345 China Yuan et al. (2020)
T. casiae Yuan 18263 PP479638 PP486302 China Zhu et al. (2024)
T. casiae Yuan 18254 PP479637 PP486299 China Zhu et al. (2024)
T. castanea JW1 KC952674 Germany Unpublished
T. changbaiensis Yuan 11477 MK446346 China Yuan et al. (2020)
T. changbaiensis Yuan 11496 MK446347 China Yuan et al. (2020)
T. cinerascens SS301 MT146467 Sweden Svantesson et al. (2021)
T. cinerascens SP72a OQ418570 Sweden Svantesson et al. (2021)
T. cinereobrunnea Yuan 12705 MK850199 Vietnam Lu et al. (2022)
T. cinereobrunnea Yuan 12703 MK850198 Vietnam Lu et al. (2022)
T. citrinocystidiata Yuan 10680 MK446348 China Yuan et al. (2020)
T. citrinocystidiata Yuan 10743 MK446349 China Yuan et al. (2020)
T. coerulea MFT22 MK431005 Germany Unpublished
T. coerulea MTB3 MN947340 Germany Unpublished
T. coffeae Yuan 10629 MK446350 China Yuan et al. (2020)
T. coffeae Yuan 11100 MK446351 China Yuan et al. (2020)
T. conclusa Yuan 11986 MK850195 China Yuan et al. (2020)
T. conclusa Yuan 12086 MK446352 China Yuan et al. (2020)
T. cystidiata Yuan 10620 MK446353 China Yuan et al. (2020)
T. cystidiata Yuan 10693 MK446354 China Yuan et al. (2020)
T. dimidiata Yuan 11205 MK211704 MK446355 China Yuan et al. (2020)
T. dimidiata Yuan 11267 MK211705 MK446356 China Yuan et al. (2020)
T. duplexa Yuan 12202 MK211706 MK446357 China Yuan et al. (2020)
T. duplexa Yuan 12207 MK211707 MK446358 China Yuan et al. (2020)
T. efibulata Yuan 11167 MK446360 China Yuan et al. (2020)
T. efibulata Yuan 10699 MK446359 China Yuan et al. (2020)
T. efibulis Yuan 11241 MK211708 MK446361 China Yuan et al. (2020)
T. efibulis Yuan 11329 MK211709 MK446362 China Yuan et al. (2020)
T. ellisii src846 DQ974775 USA Smith et al. (2007)
T. ferruginea LE F-332319 MT981501 Russia Ivanushenko and Volobuev (2020)
T. flavidobadia Yuan 11044 MK446364 China Yuan et al. (2020)
T. flavidobadia Yuan 11061 MK446365 China Yuan et al. (2020)
T. fuscocinerea TU108229 GU214810 Estonia Unpublished
T. fuscocrustosa Yuan 11420 MK211713 MK446367 China Yuan et al. (2020)
T. fuscocrustosa Yuan 11399 MK211712 MK446366 China Yuan et al. (2020)
T. fuscofarinosa Yuan 12142 MK211715 MK446369 China Yuan et al. (2020)
T. fuscofarinosa Yuan 12125 MK211714 MK446368 China Yuan et al. (2020)
T. fuscogranulosa Yuan 10723 MK446370 China Yuan et al. (2020)
T. fuscogranulosa Yuan 10725 MK446371 China Yuan et al. (2020)
T. fuscopelliculosa Yuan 11316 MK211717 China Yuan et al. (2020)
T. fuscopelliculosa Yuan 11305 MK211716 MK446372 China Yuan et al. (2020)
T. galzinii TAA166821 AF272932 Estonia Kõljalg et al. (2001)
T. galzinii TAA149734 AF272928 Estonia Kõljalg et al. (2001)
T. globosa AMC122 OP413006 USA Unpublished
T. globosa Yuan 11603 MN684328 Finland Lu et al. (2018)
T. globospora Yuan 10668 MK446374 China Yuan et al. (2020)
T. globospora Yuan 10748 MK446375 China Yuan et al. (2020)
T. gloeocystidiata Yuan 11200 MK446377 China Yuan et al. (2020)
T. gloeocystidiata Yuan 11171 MK446376 China Yuan et al. (2020)
T. griseocastanea Yuan 11401 MK446378 China Yuan et al. (2020)
T. griseocastanea Yuan 11409 MK446379 China Yuan et al. (2020)
T. griseofusca Yuan 11104 MK446381 China Yuan et al. (2020)
T. griseofusca Yuan 11094 MK446380 China Yuan et al. (2020)
T. griseomarginata Yuan 11458 MK211720 MK446382 China Yuan et al. (2020)
T. griseomarginata Yuan 11468 MK211721 MK446383 China Yuan et al. (2020)
T. guiyangensis Yuan 18281 PP479645 PP486306 China Zhu et al. (2024)
T. guiyangensis Yuan 18256 PP479643 PP486300 China Zhu et al. (2024)
T. guineensis M SYN 2331 NR_119955 Guinea Yorou et al. (2012b)
T. guineensis SYN 2331 JF520432 Guinea Yorou et al. (2012b)
T. hjortstamiana TU103641 NR_121290 Seychelles Suvi et al. (2010)
T. inconspicua Yuan 11107 MK446385 China Yuan et al. (2020)
T. inconspicua Yuan 11060 MK446384 China Yuan et al. (2020)
T. incrustata Yuan 12189 MK211723 MK446387 China Yuan et al. (2020)
T. incrustata Yuan 11158 MK211722 MK446386 China Yuan et al. (2020)
T. interrupta Yuan 10775 MK446388 China Yuan et al. (2020)
T. interrupta Yuan 11203 MK446389 China Yuan et al. (2020)
T. intsiae TAA195077 AM412296 Estonia Tedersoo et al. (2007)
T. intsiae TU105130 NR_121286 Seychelles Suvi et al. (2010)
T. lapida LE F-332369 MT981496 Russia Ivanushenko and Volobuev (2020)
T. lapida PN_2Bb_I JQ724049 Poland Hrynkiewicz et al. (2012)
T. larssoniana TU103690 AM412294 Estonia Tedersoo et al. (2007)
T. larssoniana TU105082 NR_119738 Estonia Suvi et al. (2010)
T. lilacinogrisea NS74 DQ068972 Sweden Menkis et al. (2005)
T. lilacinogrisea AR1119 JX630832 USA Timling et al. (2012)
T. longechinulata Yuan 11979 MK211726 MK446393 China Yuan et al. (2020)
T. longechinulata Yuan 12083 MK211727 MK446394 China Yuan et al. (2020)
T. longiaculeifera Yuan 10744 MK446391 China Yuan et al. (2020)
T. longiaculeifera Yuan 11119 MK446392 China Yuan et al. (2020)
T. longiechinula Yuan 12687 MK850201 Vietnam Lu et al. (2022)
T. longiechinula Yuan 12720 MK850200 Vietnam Lu et al. (2022)
T. longisterigmata IFP 19181 NR_161037 Finland Lu et al. (2018)
T. maroana M SYN 878 NR_119636 Benin Yorou and Agerer (2008)
T. maroana SYN 878 EF507250 Benin Yorou and Agerer (2008)
T. megaspora Yuan 11326 MK446395 China Yuan et al. (2020)
T. megaspora Yuan 11472 MK446396 China Yuan et al. (2020)
T. muricata O-F256712 MT146462 Sweden Svantesson et al. (2021)
T. muricata O-F256713 MT146461 Sweden Svantesson et al. (2021)
T. nitellina src675 DQ974778 USA Smith et al. (2007)
T. olivacea Yuan 11043 MK446397 China Yuan et al. (2020)
T. olivacea Yuan 11139 MK446398 China Yuan et al. (2020)
T. olivaceobasidiosa CLZhao 14051 PP810228 PQ060163 PQ156137 China Present study
T. olivaceobasidiosa CLZhao 14056 PP810229 PP809698 PQ060164 PQ156138 China Present study
T. olivaceobrunnea Yuan 12148 MK446400 China Yuan et al. (2020)
T. olivaceobrunnea Yuan 11194 MK446399 China Yuan et al. (2020)
T. olivaceomarginata Yuan 18268 PP479639 PP486303 China Zhu et al. (2024)
T. olivaceomarginata Dai 25782 PP479640 China Zhu et al. (2024)
T. pallidobrunnea Yuan 11493 MK211731 MK446402 China Yuan et al. (2020)
T. pallidobrunnea Yuan 11481 MK211730 MK446401 China Yuan et al. (2020)
T. pallidocastanea Yuan 11416 MN684323 China Lu et al. (2018)
T. pallidocastanea Yuan 12034 MN684324 China Lu et al. (2018)
T. pallidomarginata Yuan 11474 MK211733 MK446404 China Yuan et al. (2020)
T. pallidomarginata Yuan 11404 MK211732 MK446403 China Yuan et al. (2020)
T. parmastoana NAN13 MN075506 Thailand Unpublished
T. parmastoana TU 103582 NR_121289 USA Tedersoo et al. (2007)
T. parvispora Yuan 11196 MK446406 China Yuan et al. (2020)
T. parvispora Yuan 11144 MK446405 China Yuan et al. (2020)
T. patagonica BAFC52372 NR_159018 Argentina Kuhar et al. (2016)
T. patagonica LR-24 MT366710 USA Unpublished
T. pertenuis Yuan 11064 MK446407 China Yuan et al. (2020)
T. pertenuis Yuan 11131 MK446408 China Yuan et al. (2020)
T. pileocystidiata TU105068 NR_119739 Estonia Suvi et al. (2010)
T. pileocystidiata TU105054 FM955845 Estonia Suvi et al. (2010)
T. pilosa TU124067 MT146459 MT554521 Sweden Svantesson et al. (2021)
T. pilosa TU124234 MT146458 Sweden Svantesson et al. (2021)
T. pisoniae TU103671 NR_121358 USA Suvi et al. (2010)
T. pisoniae TU103655 FN185986 Argentina Kuhar et al. (2016)
T. pulvinulata BAFC52370 NR_159017 Argentina Kuhar et al. (2016)
T. qingyuanensis Yuan 10616 MK446409 China Yuan et al. (2020)
T. qingyuanensis Yuan 11109 MK446410 China Yuan et al. (2020)
T. rotundata Yuan 18269 PP479641 PP486304 China Zhu et al. (2024)
T. rotundata Yuan 18273 PP479642 PP486305 China Zhu et al. (2024)
T. segregata Yuan 10650 MK446411 China Yuan et al. (2020)
T. segregata Yuan 11256 MK446412 China Yuan et al. (2020)
T. separata Yuan 10664 MK211737 MK850196 China Yuan et al. (2020)
T. separata Yuan 10654 MK211736 MK850197 China Yuan et al. (2020)
T. stipitata Yuan 11160 MK446413 China Yuan et al. (2020)
T. storea Yuan 10749 MK446416 China Yuan et al. (2020)
T. storea Yuan 10623 MK446415 China Yuan et al. (2020)
T. stuposa IB2005314 EF644117 Australia Krpata et al. (2008)
T. subclavigera O-F256725 MT146460 Sweden Svantesson et al. (2021)
T. subtestacea FFP816 JQ711878 Canada Jones et al. (2012)
T. subtestacea FR-F10 MW546519 South Korea Unpublished
T. tedersooi TU103663 NR_121359 Estonia Suvi et al. (2010)
T. tedersooi TU103664 FN185989 Estonia Suvi et al. (2010)
T. tenuirhizomorpha Yuan 12059 MG799185 MN684327 China Lu et al. (2018)
T. tenuissima FK14070 KT032087 Argentina Kuhar et al. (2016)
T. tenuissima BAFC52369 NR_159016 USA Kõljalg et al. (2001)
T. terrestris EL9897 AF272901 Estonia Kõljalg et al. (2001)
T. terrestris TAA159557 AF272911 Estonia Kõljalg et al. (2001)
T. velutina CLZhao 25474 PP645440 PP809700 PQ060166 China Present study
T. verruculata Yuan 12684 MN684331 China Lu et al. (2022)
T. verruculata Yuan 12680 MN684332 China Lu et al. (2022)
T. viridula MTB37 MN947374 Estonia Kõljalg et al. (2001)
T. wumenshanensis CLZhao 33775 PP810230 PP809699 PQ060165 China Present study
T. yunnanensis CLZhao 32532 PP810231 China Present study
Tomentellopsis rosannae MES-3338 MT366690 Chile Kuhar et al. (2022)
T. submollis RS-22498 AJ410774 Finland Kuhar et al. (2022)
T. submollis P24-F AM086447 Norway Kuhar et al. (2022)
T. zygodesmoides JS-27216 AJ410759 Norway Kuhar et al. (2022)
T. zygodesmoides KHL-8653 AJ410761 Norway Kuhar et al. (2022)

The sequences were aligned in MAFFT v. 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using AliView v. 1.27 (Larsson 2014). The sequence alignments were deposited in TreeBase (ID 31627). Sequences of Phellinotus neoaridus Drechsler-Santos & Robledo. Parmasto retrieved from GenBank was used as an outgroup in the ITS+nLSU+mtSSU+RPB2 analysis (Fig. 1; Salvador-Montoya et al. (2022)). The sequence alignments were deposited in TreeBase (ID 31628). Sequences of Odontia sparsa Yuan Yuan, Y.C. Dai & H.S. Yuan retrieved from GenBank were used as the outgroups in the ITS+nLSU analysis (Fig. 2; Yuan et al. (2018)).

Figure 1. 

Maximum parsimony strict consensus tree illustrating the phylogeny of Tomentella and related genera in the family Thelephoraceae, based on ITS+nLSU+mtSSU+RPB2 sequences. Branches are labelled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50% and Bayesian posterior probabilities ≥ 0.95, respectively.

Figure 2. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the three new species and related species in Tomentella, based on ITS sequences. Branches are labelled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50% and Bayesian posterior probabilities ≥ 0.95, respectively. The type species are marked with *.

Maximum parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were applied to the combined three datasets following a previous study (Zhao et al. 2023a). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1,000 pseudo replicates (Felsenstein 1985). Descriptive tree statistics-tree length (TL), composite consistency index (CI), composite retention index (RI), composite rescaled consistency index (RC) and composite homoplasy index (HI) - were calculated for each maximum parsimonious tree generated. The combined dataset was also analysed using Maximum Likelihood (ML) in RAxML-HPC2 through the CIPRES Science Gateway (Miller et al. 2006). Branch support (BS) for the ML analysis was determined by 1000 bootstrap pseudo replicates.

MrModelTest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each dataset for Bayesian inference (BI), which was performed using MrBayes 3.2.7a with a best model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al. 2012). A total of four Markov chains were run for two runs from random starting trees for 2 million generations for ITS+nLSU+mtSSU+RPB2 (Fig. 1) and 12 million generations for ITS+nLSU (Fig. 2) with trees and parameters sampled every 1,000 generations. The first quarter of all of the generations were discarded as burn-ins. A majority rule consensus tree was computed from the remaining trees. Branches were considered as significantly supported if they received a maximum likelihood bootstrap support value (BS) of ≥ 70%, a maximum parsimony bootstrap support value (BT) of ≥ 70% or a Bayesian posterior probability (BPP) of ≥ 0.95.

Results

Molecular phylogeny

The ITS+nLSU+mtSSU+RPB2 dataset (Fig. 1) comprised sequences from 38 fungal specimens representing 26 taxa. The dataset had an aligned length of 6,608 characters, of which 5,402 characters were constant, 318 were variable and parsimony-uninformative and 888 were parsimony-informative. Maximum parsimony analysis yielded one equally parsimonious tree (TL = 2,559, CI = 0.6444, HI = 0.3566, RI = 0.7784 and RC = 0.5016). The best model of nucleotide evolution for the ITS+nLSU+mtSSU+RPB2 dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology to the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.009434 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 950. The phylogram, based on the ITS+nLSU+mtSSU+RPB2 rDNA gene regions (Fig. 1), included seven genera within the family Thelephoraceae (Thelephorales), including Amaurodon, Lenzitopsis Malençon & Bertault, Phellodon P. Karst, Polyozellus Murrill, Thelephora Ehrh. ex Willd., Tomentella and Tomentellopsis, in which four new species were nested into the genus Tomentella.

The ITS+nLSU dataset (Fig. 2) comprised sequences from 115 fungal specimens representing 69 taxa. The dataset had an aligned length of 2117 characters, of which 1664 characters were constant, 71 were variable and parsimony-uninformative and 340 were parsimony-informative. Maximum parsimony analysis yielded one equally parsimonious tree (TL = 2,501, CI = 0.2735, HI = 0.7265, RI = 0.5884 and RC = 0.1609). The best model of nucleotide evolution for the ITS dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a topology similar to that of the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.009654 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 360. The phylogenetic tree (Fig. 2) showed that the new species Tomentella olivaceobasidiosa formed a monophyletic lineage in the ITS+nLSU phylogetic tree. Furthermore, the new species T. velutina was sister to T. larssoniana Suvi & Kõljalg. The new taxon, T. wumenshanensis was sister to T. pallidobrunnea H.S. Yuan, X. Lu & Y.C. Dai. Moreover, the new species T. yunnanensis was grouped closely with three taxa T. bryophila (Pers.) M.J. Larsen, T. griseomarginata H.S. Yuan, X. Lu & Y.C. Dai and T. subclavigera Litsch.

Taxonomy

Tomentella olivaceobasidiosa X.J. Zhang & C.L. Zhao, sp. nov.

MycoBank No: 854694
Figs 3, 4

Holotype

China • Yunnan Province, Kunming, Panlong District, Yeyahu Forest Park, 25°13'N, 102°87'E, altitude 2125 m, on the angiosperm trunk, leg. C.L. Zhao, 30 September 2019, CLZhao 14056 (SWFC).

Figure 3. 

Tomentella olivaceobasidiosa (holotype, CLZhao 14056): basidiomata on the substrate (A), macroscopic characteristics of hymenophore (B). Scale bars: 1 cm (A); 1 mm (B).

Etymology

Olivaceobasidiosa (Lat.): refers to the olivaceous basidiomata.

Figure 4. 

Microscopic structures of Tomentella olivaceobasidiosa (holotype, CLZhao 14056): basidiospores (A), basidia and basidioles (B), a section of the hymenium (C). Scale bars: 10 µm (A–C).

Description

Basidiomata annual, resupinate, separable from the substrate, arachnoid, without odour or taste when fresh, and up to 3 cm long, 2.5 cm wide, 0.3–0.6 mm thick. Hymenial surface smooth, slightly olivaceous when fresh, olivaceous to slightly brown upon drying. Sterile margin narrow, olivaceous, up to 1 mm.

Hyphal system : Monomitic; generative hyphae with clamp connections, pale brown, slightly thick-walled, moderately branched, interwoven, 3.5–5 µm in diameter. IKI–, CB–; brown-black to black in KOH.

Hymenium : Cystidia and cystidioles absent. Presence of crystals amongst generative hyphae. Basidia clavate, with 4 sterigmata and a basal clamp connection, 39–48.5 × 7–8.5 µm, basidiole clavate, slightly smaller than basidia.

Spores : Basidiospores subglobose to globose, nodulose to verrucose, yellowish-brown, thick-walled, IKI–, CB–, (6.5–)7–9(–9.5) × (5–)6–7.5(–8.5) µm, L = 8.4 µm, W = 7 µm, Q = 1.20–1.23 (n = 60/2).

Additional specimen examined (paratype): China. Yunnan Province, Kunming, Panlong District, Yeyahu Forest Park, GPS coordinates: 25°13'N, 102°87'E, elev. 2125 m, on the angiosperm trunk, leg. C.L. Zhao, 30 September 2019, CLZhao 14051 (SWFC).

Tomentella velutina X.J. Zhang & C.L. Zhao, sp. nov.

MycoBank No: 854695
Figs 5, 6

Holotype

China • Yunnan Province, Lincang, Fengqing County, 24°66'N, 100°19'E, altitude 2060 m, on the fallen branch of angiosperm, leg. C.L. Zhao, 22 October 2022, CLZhao 25474 (SWFC).

Figure 5. 

Tomentella velutina (holotype, CLZhao 25474): basidiomata on the substrate (A), macroscopic characteristics of hymenophore (B). Scale bars: 1 cm (A); 1 mm (B).

Etymology

Velutina (Lat.): refers to the velvety hymenophore of the type specimen.

Figure 6. 

Microscopic structures of Tomentella velutina (holotype, CLZhao 25474): basidiospores (A), basidia and basidioles (B), a section of the hymenium (C). Scale bars: 10 µm (A–C).

Description

Basidiomata annual, resupinate, adnate, cotton to floccose, without odour and taste when fresh and up to 4.5 cm long, 3 cm wide, 0.3–0.5 mm thick. Hymenial surface cotton to floccose, fawn to reddish brown when fresh, turn reddish brown to vinaceous brown when dry. Sterile margin narrow, fawn to reddish brown, up to 2 mm.

Hyphal system : Monomitic; generative hyphae with clamp connections, yellowish-brown, slightly thick-walled, 3–7 mm in diameter, IKI–, CB–, brown-black to black in KOH.

Hymenium : Cystidia and cystidioles absent. Basidia clavate, colourless, with 4 sterigmata and a basal clamp connection 36–42.5 × 7–8 µm.

Spores : Basidiospores broadly ellipsoid, yellowish-brown, thick-walled, ornamented, with 1–2 oil drops, CB–, IKI–, 7–9 × (5.5–)6–7.5 µm, L = 7.82 µm, W = 6.71 µm, Q = 1.16 (n = 30/1).

Tomentella wumenshanensis X.J. Zhang & C.L. Zhao, sp. nov.

MycoBank No: 854696
Figs 7, 8

Holotype

China • Yunnan Province, Zhaotong, Wumengshan National Nature Reserve, 27°33'N, 103°72'E, altitude 2300 m, on the fallen branch of angiosperm, leg. C.L. Zhao, 21 September 2023, CLZhao 33775 (SWFC).

Figure 7. 

Tomentella wumenshanensis (holotype, CLZhao 33775): basidiomata on the substrate (A), macroscopic characteristics of hymenophore (B). Scale bars: 1 cm (A); 1 mm (B).

Etymology

Wumenshanensis (Lat.): refers to the type locality “Wumengshan National Nature Reserve”.

Figure 8. 

Microscopic structures of Tomentella wumenshanensis (holotype, CLZhao 33775): basidiospores (A), basidia and basidioles (B), a section of the hymenium (C). Scale bars: 10 µm (A–C).

Description

Basidiomata annual, resupinate, membranaceous, without odour or taste when fresh, up to 15 cm long, 2 cm wide, 0.1–0.2 mm thick. Hymenial surface smooth, yellowish-brown to orange brown when dry. Sterile margin narrow, yellowish-brown, up to 1 mm.

Hyphal system : Monomitic; generative hyphae with clamp connections, yellowish-brown, slightly thick-walled, moderately branched, interwoven, 5–8 µm in diameter, IKI–, CB–; brown-black to black in KOH.

Hymenium : Cystidia and cystidioles absent. Basidia barrel-shaped to slightly clavate, with 4 sterigmata and a basal clamp connection, 25–28 × 5.5–8.5 µm; basidioles dominant, slightly smaller than basidia.

Spores : Basidiospores subglobose to globose, nodulose to verrucose, yellowish-brown, thick-walled, IKI–, CB–, (7–) 7.5–9.5(–10) × 6–8(–8.5) µm, L = 8.3 µm, W = 7 µm, Q = 1.19 (n = 30/1).

Tomentella yunnanensis X.J. Zhang & C.L. Zhao, sp. nov.

MycoBank No: 854697
Figs 9, 10

Holotype

China • Yunnan Province, Zhaotong, Wumengshan National Nature Reserve, 27°33'N, 103°72'E, altitude 2300 m, on the fallen branch of angiosperm, leg. C.L. Zhao, 28 August 2023, CLZhao 32532 (SWFC).

Figure 9. 

Tomentella yunnanensis (holotype, CLZhao 32532): basidiomata on the substrate (A), macroscopic characteristics of hymenophore (B). Scale bars: 1 cm (A); 1 mm (B).

Etymology

Yunnanensis (Lat.): refers to the type locality “Yunnan Province”.

Figure 10. 

Microscopic structures of Tomentella yunnanensis (holotype, CLZhao 32532): basidiospores (A), basidia and basidioles (B), a section of the hymenium (C). Scale bars: 10 µm (A–C).

Description

Basidiomata annual, resupinate, arachnoid, without odour or taste when fresh, up to 10 cm long, 3 cm wide, 0.2–0.3 mm thick. Hymenial surface smooth, slightly buff when fresh, buff to cinnamon buff when dry. Sterile margin narrow, cream to slightly buff, up to 1 mm.

Hyphal system : Monomitic; generative hyphae with clamp connections, pale brown, slightly thick-walled, branched, interwoven, 4–5 µm in diameter, IKI–, CB–; brown-black to black in KOH.

Hymenium : Cystidia and cystidioles absent. Basidia cylindrical to subclavate, with 4 sterigmata and a basal clamp connection, 46–57 × 7–9.5 µm; basidioles slightly smaller than basidia.

Spores : Basidiospores subglobose to globose, nodulose to verrucose, yellowish-brown, thick-walled, IKI–, CB–, 7–8.5(–9) × 5–8 µm, L = 8.13 µm, W = 6.72 µm, Q = 1.21 (n = 30/1).

Discussion

Recently, many wood-inhabiting fungal taxa have been reported worldwide (Cui et al. 2019; Guan et al. 2023; Luo et al. 2024; Zhou et al. 2024) and, in the present study, four new species of the genus Tomentella are reported, based on a combination of morphological features and molecular evidence. The macroscopical and anatomical characteristics can well recognise all of them; T. olivaceomarginata is characterised by the olivaceous margin of the basidiomata and the presence of the clavate basidia measuring 39–48.5 × 7–8.5 µm. Tomentella velutina can be recognised by having adnate cotton to floccose basidiomata and the presence of the clavate basidia and broadly ellipsoid basidiospores measuring 7–9 × 6–7.5 µm with 1–2 oil drops. Tomentella wumenshanensis is characterised by the membranaceous basidiomata having a tuberculate pileal surface hymenial and the presence of the barrel-shaped to slightly clavate basidia measuring 25–28 × 5.5–8.5 µm. Tomentella yunnanensis can be characterised by the typical of the arachnoid basidiomata having cylindrical to subclavate basidia measuring 46–57 × 7–9.5 µm.

Molecular phylogenetic analyses of the previous studies revealed that the taxa of both genera, Thelephora and Tomentella were non-monophyletic groups, in which they were intermixed in molecular phylogeny (Stalpers 1993; Kõljalg 1996; Larsson 2014; Ramírez-López et al. 2015; Vizzini et al. 2016; Li et al. 2020). In the present study, the four-genes (ITS+nLSU+mtSSU+RPB2) phylogenetic analysis provided an improved resolution at the family level and showed that the genera Thelephora and Tomentella grouped together, which is consistent with previous results (Stalpers 1993; Kõljalg et al. 2001; Yorou et al. 2008; Vizzini et al. 2016; Zmitrovich et al. 2018; Li et al. 2020), and four new species were nested into the genus Tomentella. The phylogenetic tree divided Tomentella into several distinct clades and most of the clades are consistent with the previous ITS phylogenetic analyses (Yuan et al. 2020; Lu et al. 2022). This study identifies and describes four new Tomentella species from China, based on morphological characteristics and phylogenetic analyses combining ITS+nLSU sequences (Fig. 2).

Phylogenetic analyses revealed that the new species Tomentella olivaceobasidiosa formed a monophyletic lineage. Morphologically, T. aureomarginata is distinguishable from T. olivaceobasidiosa by having the pelliculose basidiomata with the golden brown to yellowish brown hymenium surface and smaller, slightly thick-walled basidiospores measuring 6.5–7 × 6–6.5 µm (Yuan et al. 2020). The species Tomentella brunneoflava is distinct from T. olivaceobasidiosa by its brownish yellow hymenium surface and smaller basidia measuring 10–30 × 3–5 µm (Yuan et al. 2020). The species T. separata is delimited from T. olivaceobasidiosa by having the pelliculose basidiomata with the honey yellow to yellowish brown hymenium surface and narrower basidia measuring 15–55 × 3.5–6 µm (Yuan et al. 2020).

Phylogenetic analyses revealed that the species Tomentella velutina was sister to T. larssoniana. However, morphologically, T. larssoniana is different from T. velutina by the grey or dark grey hymenophore, thin-walled subicular hyphae and wider basidia measuring 26–43 × 8.2–11 µm (Suvi et al. 2010). Morphologically, Tomentella casiae H.S. Yuan & Y.Q. Zhu differs from T. velutina by the granulose, greyish to grey hymenial surface and narrower basidia measuring 30–55 × 4–6.5 µm (Zhu et al. 2024). Tomentella verruculata X. Lu & H.S. Yuan is different from T. velutina by the arachnoid basidiomata, light brown to dark brown hymenial surface, and narrower basidiospores measuring 6.5–7.5 × 5.5–6 µm (Lu et al. 2022).

Phylogenetic analyses revealed that the new species Tomentella wumenshanensis was sister to T. pallidobrunnea. However, morphologically, T. pallidobrunnea is different from T. wumenshanensis by the pale brown to dark brown hymenial surface, thin-walled subhymenial generative hyphae and utriform, sinuous basidia (Yuan et al. 2020). Morphologically, the species T. guiyangensis H.S. Yuan & Y.Q. Zhu is distinct from T. wumenshanensis by its dark brown to chestnut hymenial surface and longer basidia measuring 35–55 × 5–9 µm (Zhu et al. 2024). T. stipitobasidia X. Lu & H.S. Yuan is distinguishable from T. wumenshanensis by arachnoid basidiomata with the brown to dark brown hymenial surface and longer basidia measuring 30–60 × 6–12 µm (Lu et al. 2022)

Phylogenetic analyses revealed that the new species Tomentella yunnanensis was grouped with three taxa, T. bryophila, T. griseomarginata and T. subclavigera. However, morphologically T. bryophila is distinguishable from T. yunnanensis by the yellow to ferruginous to reddish brown hymenial surface and yellowish to pale brown, nodose-septate generative hyphae (Reid and Larsen 1976). The species T. griseomarginata is distinct from T. yunnanensis by its greyish brown to dark brown hymenial surface, smaller basidia measuring 15–40 × 5–9 µm and smaller basidiospores measuring 6.5–7 × 6–6.5 µm (Yuan et al. 2020). The taxon T. subclavigera can be delimited from T. yunnanensis by having clavate cystidia measuring 105–145 × 7–11 µm and shorter basidia measuring 25–40 × 6–7.5 µm (Kõljalg 1996). Morphologically, T. olivaceomarginata H.S. Yuan & Y.Q. Zhu can be delimited from T. yunnanensis by having the pale brown to brown hymenial surface and shorter basidia measuring 15–35 × 6–8 µm (Zhu et al. 2024). Tomentella cinereobrunnea X. Lu & H.S. Yuan is distinguishable from T. yunnanensis by the greyish brown to brown hymenial surface and smaller basidia measuring 15–35 × 4–6 µm (Lu et al. 2022).

The phylogenetic tree reveals that individual species of Tomentella can form ectomycorrhiza with different host tree species in different families and closely related species in the same clade can be restricted to the same host tree family, in which the investigated forests were dominated by the coniferous trees Pinus kesiya mixed with families such as Ericaceae, Fagaceae, Lentibulariaceae, Orchidaceae and Rosaceae (Nguyen et al. 2012; Pócs et al. 2019). The present study found four new taxa in broad-leaved forests (Fagaceae and/or Pinaceae) mixed with coniferous trees. China is one of the most biodiverse countries in the world and more Tomentella species remain to be discovered here. Therefore, further studies are needed to enrich the species diversity of Tomentella.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project Nos. 32170004, U2102220), Forestry Innovation Programs of Southwest Forestry University (Grant No: LXXK-2023Z07), the Science Foundation of Education Department of Yunnan Province (2024Y579) and the Yunnan Province College Students Innovation and Entrepreneurship Training Program (Project no. S202410677025).

Author contributions

Conceptualization, C.Z.; methodology, C.Z. and X.Z.; software, C.Z. and F.S; validation, C.Z.; formal analysis, C.Z. and X.Z.; investigation, C.Z. and X.Z.; resources, C.Z.; writing—original draft preparation, X.Z., F.S. and K.Y.; writing—review and editing, C.Z., and X.Z.; visualization, C.Z. and X.Z.; supervision, C.Z.; project administration, C.Z.; funding acquisition, C.Z. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Xiaojie Zhang https://orcid.org/0000-0001-9954-3213

Fulei Shi https://orcid.org/0009-0003-8540-7079

Changlin Zhao https://orcid.org/0000-0002-8668-1075

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Alvarez-Manjarrez J, Garibay-Orijel R, Smith ME (2018) Caryophyllales are the main hosts of a unique set of ectomycorrhizal fungi in a neotropical dry forest. Mycorrhiza 28(2): 103–115. https://doi.org/10.1007/s00572-017-0807-7
  • Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137–392. https://doi.org/10.1007/s13225-019-00427-4
  • Danielson RM, Visser S, Parkinson D (1983) Microbial activity and mycorrhizal potential of four overburden types used in the reclamation of extracted oil sands. Canadian Journal of Soil Science 63(2): 363–375. https://doi.org/10.4141/cjss83-035
  • Ezhov ON, Zmitrovich IV (2017) Lignotrophic basidiomycetes from pioneering microsites in boreal forests of the White Sea Region. Byulleten Moskovskogo Obshchestva Ispytateley Prirody. Otdel biologiceskij 122: 44–50.
  • Guan QX, Li YF, Zhao CL (2021) Morphological and phylogenetic evidence for recognition of two new species of Hyphoderma (Basidiomycota) from southern China, with a key to all Chinese Hyphoderma. MycoKeys 83: 145–160. https://doi.org/10.3897/mycokeys.83.69909
  • Hrynkiewicz K, Toljander YK, Baum C, Fransson P, Taylor AFS, Weih M (2012) Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands. Mycorrhiza 22(8): 603–613. https://doi.org/10.1007/s00572-012-0437-z
  • Hu Y, Karunarathna SC, Li H, Galappaththi MC, Zhao CL, Kakumyan P, Mortimer PE (2022) The impact of drying temperature on basidiospore size. Diversity 14(4): 239. https://doi.org/10.3390/d14040239
  • Jakucs E, Eros-Honti Z, Seress D, Kovács GM (2015) Enhancing our understanding of anatomical diversity in Tomentella ectomycorrhizas: Characterization of six new morphotypes. Mycorrhiza 25(6): 419–429. https://doi.org/10.1007/s00572-014-0622-3
  • Jones MD, Phillips LA, Treu R, Ward V, Berch SM (2012) Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. Latifolia Engelm.) stands in central British Columbia. Applied Soil Ecology 60: 29–40. https://doi.org/10.1016/j.apsoil.2012.01.010
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kõljalg U (1996) Tomentella (Basidiomycota) and related genera in temperate Eurasia. Synopsis Fungorum 9: 1–213.
  • Kõljalg U, Anders D, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson KH, Fransson P, Kårén O, Jonsson L (2001) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Molecular Ecology 9(12): 1985–1996. https://doi.org/10.1046/j.1365-294X.2000.01105.x
  • Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycological Research 112(9): 1069–1079. https://doi.org/10.1016/j.mycres.2008.02.004
  • Kuhar F, Barroetaveña C, Rajchenberg M (2016) New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108(4): 780–790. https://doi.org/10.3852/15-244
  • Kuhar F, Nouhra E, Smith ME, Caiafa MV, Greslebin A (2022) Tomentellopsis rosannae sp. nov. (Basidiomycota, Thelephorales), first species in the genus described from the Southern Hemisphere 59: 115–123. https://doi.org/10.30550/j.lil/2022.59.S/2022.08.18
  • Liu XF, Tibpromma S, Xu JC, Kumla J, Karunarathna SC, Zhao CL (2021) Taxonomy and phylogeny reveal two new potential edible ectomycorrhizal mushrooms of Thelephora from East Asia. Diversity 13(12): 646. https://doi.org/10.3390/d13120646
  • Lu X, Cao T, Nguyên TTT, Yuan HS (2022) Six new species of Tomentella (Thelephorales, Basidiomycota) from tropical pine forests in central Vietnam. Frontiers in Microbiology 13: 864198. https://doi.org/10.3389/fmicb.2022.864198
  • Luo KY, Su JQ, Zhao CL (2024) Morphological and molecular identification for four new wood inhabiting species of Trechispora (Basidiomycota) from China. MycoKeys 105: 155–178. https://doi.org/10.3897/mycokeys.105.120438
  • Malysheva EF, Malysheva VF, Voronina EY, Kovalenko EA (2018) Diversity of fungal communities associated with mixotrophic pyroloids (Pyrola rotundifolia, P. media and Orthilia secunda) in their natural habitats. Botanica Pacifica 7(2): 31–39. https://doi.org/10.17581/bp.2018.07202
  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Molecular Phylogenetics and Evolution 35(1): 1–20. https://doi.org/10.1016/j.ympev.2004.11.014
  • Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16(1): 33–41. https://doi.org/10.1007/s00572-005-0011-z
  • Miettinen O, Kõljalg U (2007) Amaurodon sumatranus (Thelephorales, Basidiomycota), a new species from Indo-nesia. Mycotaxon 100: 51–59.
  • Nguyen VV, Nguyen QH, Nguyen TMH, Jung SW, Hwang JM, Bae YJ (2012) Aquatic insect fauna of bidoup-nui ba national park in lam dong province. Southern Vietnam. Entomological Research Bulletin 28: 29–34.
  • Nouhra E, Pastor N, Becerra A, Areitio ES, Geml J (2015) Greenhouse seedlings of alnus showed low host intrageneric specificity and a strong preference for some Tomentella ectomycorrhizal associates. Microbial Ecology 69(4): 813–825. https://doi.org/10.1007/s00248-014-0522-2
  • Nylander JAA (2004) MrModeltest v.2. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden.
  • Patouillard N (1887) Les Hyménomycètes d’Europe. Paul Klincksieck, Paris, 166 pp.
  • Petersen JH (1996) The danish mycological society’s colour-chart. Foreningen til Svampekundskabens Fremme, Greve.
  • Pócs T, Tram NKT, He Q, Katagiri T, Luong TT (2019) New records for the liverwort and hornwort flora of Vietnam, 1. Acta Botanica Hungarica 61(3–4): 397–413. https://doi.org/10.1556/034.61.2019.3-4.9
  • Põlme S (2018) Ticodendron incognitum and Neea pittieri associated ectomycorrhizal fungi in neotropical mountain forest. Asian Journal of Mycology 1(1): 137–145. https://doi.org/10.5943/ajom/1/1/11
  • Ramírez-López I, Villegas-Ríos M, Salas-Lizana R (2015) Thelephora versatilis and Thelephora pseudoversatilis: Two new cryptic species with polymorphic basidiomes inhabiting tropical deciduous and sub-perennial forests of the Mexican Pacific coast. Mycologia 107: 346–358. https://doi.org/10.3852/14-151
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Salomón MES, Barroetaveña C, Pildain MB, Kuhar F, Rajchenberg M (2017) Tomentella (Thelephorales, Basidiomycota) en bosques de Nothofagaceae de Patagonia, Argentina: micorrizas de nuevas especies. Boletin de la Sociedad Argentina de Botanica 52: 423–434. https://doi.org/10.31055/1851.2372.v52.n3.18023
  • Salvador-Montoya CA, Elias SG, Popoff OF, Robledo GL, Urcelay C, Góes-Neto A, Martínez S, Drechsler-Santos ER (2022) Neotropical studies on Hymenochaetaceae: Unveiling the diversity and endemicity of Phellinotus. Journal of Fungi 8(3): 216. https://doi.org/10.3390/jof8030216
  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. The New Phytologist 174(4): 847–863. https://doi.org/10.1111/j.1469-8137.2007.02040.x
  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. The New Phytologist 192(3): 699–712. https://doi.org/10.1111/j.1469-8137.2011.03844.x
  • Stalpers JA (1993) The Aphyllophoraceous Fungi I. Keys to the species of the Thelephorales. Studies in Mycology 35: 1–168.
  • Song CG, Sun YF, Liu S, Chen YY, Cui BK (2023) Phylogenetic analyses and morphological studies reveal four new species of Phellodon (Bankeraceae, Thelephorales) from China. Journal of Fungi 9(1): 30. https://doi.org/10.3390/jof9010030
  • Suvi T, Tedersoo L, Abarenkov K, Beaver K, Gerlach J, Kõljalg U (2010) Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: Identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102(3): 522–533. https://doi.org/10.3852/09-147
  • Svantesson S, Larsson K, Larsson E (2021) Pseudotomentella badjelanndana, Pseudotomentella sorjusensis and Tomentella viridibasidia—Three new corticioid Thelephorales species from the Scandes Mountains. Phytotaxa 2(2): 497. https://doi.org/10.11646/phytotaxa.497.2.1
  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: Diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). The New Phytologist 175(2): 321–333. https://doi.org/10.1111/j.1469-8137.2007.02104.x
  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. The New Phytologist 180(2): 479–490. https://doi.org/10.1111/j.1469-8137.2008.02561.x
  • Tedersoo L, Harend H, Buegger F, Pritsch K, Saar I, Kõljalg U (2014) Stable isotope analysis, field observations and synthesis experiments suggest that Odontia is a non-mycorrhizal sister genus of Tomentella and Thelephora. Fungal Ecology 11: 80–90. https://doi.org/10.1016/j.funeco.2014.04.006
  • Timling I, Dahlberg A, Walker D, Gardes M, Charcosset J, Welker J, Taylor D (2012) Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere 3(11): 1–25. https://doi.org/10.1890/ES12-00217.1
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vizzini A, Angelini C, Losi C, Ercole E (2016) Thelephora dominicana (Basidiomycota, Thelephorales), a new species from the dominican republic, and preliminary notes on thelephoroid genera. Phytotaxa 265(1): 27–38. https://doi.org/10.11646/phytotaxa.265.1.2
  • Voitk A, Saar I, Trudell S, Spirin V, Beug M, Kõljalg U (2018) Polyozellus multiplex (Thelephorales) is a species complex containing four new species. Mycologia 109(6): 975–992. https://doi.org/10.1080/00275514.2017.1416246
  • Wang CG, Zhao H, Liu HG, Zeng GY, Yuan Y, Dai YC (2023) A multi-gene phylogeny clarifies species diversity, taxonomy, and divergence times of Ceriporia and other related genera in Irpicaceae (Polyporales, Basidiomycota). Mycosphere : Journal of Fungal Biology 14(1): 1665–1729. https://doi.org/10.5943/mycosphere/14/1/19
  • Wu F, Man XW, Tohtirjap A, Dai YC (2022) A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. Forest Ecosystems 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051
  • Yorou SN (2008) Miscellaneous Contributions to the Anatomy and Molecular Phylogeny of Tropical African Resupinate Thelephorales. Ph.D. Thesis, University of Munich, Munich, Germany, 120 pp.
  • Yorou NS, Guelly AK, Agerer R (2011) Anatomical and ITS rDNA-based phylogenetic identification of two new West African resupinate thelephoroid species. Mycoscience 52(6): 363–375. https://doi.org/10.1007/S10267-011-0117-4
  • Yorou NS, Diabaté M, Agerer R (2012a) Phylogenetic placement and anatomical characterisation of two new West African Tomentella (Basidiomycota, Fungi) species. Mycological Progress 11(1): 171–180. https://doi.org/10.1007/s11557-011-0739-0
  • Yorou NS, Gardt S, Guissou ML, Diabaté M, Agerer R (2012b) Three new Tomentella species from West Africa identified by anatomical and molecular data. Mycological Progress 11(2): 449–462. https://doi.org/10.1007/s11557-011-0760-3
  • Yuan Y, Wu F, Dai YC, Qin WM, Yuan HS (2018) Odontia aculeata and O. sparsa, two new species of tomentelloid fungi (Thelephorales, Basidiomycota) from the secondary forests of northeast China. Phytotaxa 372(3): 183–192. https://doi.org/10.11646/phytotaxa.372.3.1
  • Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun GY, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov A, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Krishnendu Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, Lira CRS, Liu JK, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren YH, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW (2020) Fungal diversity notes 1277–1386: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 1(1): 1–260. https://doi.org/10.1007/s13225-020-00461-7
  • Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023a) Multi-gene phylogeny and taxonomy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9(3): 1–41. https://doi.org/10.3390/jof9030320
  • Zhao H, Nie Y, Zong TK, Wang K, Lv ML, Cui YJ, Tohtirjap A, Chen JJ, Zhao CL, Wu F, Cui BK, Yuan Y, Dai YC, Liu XY (2023b) Species diversity, updated classification and divergence times of the phylum Mucoromycota. Fungal Diversity 123(1): 49–157. https://doi.org/10.1007/s13225-023-00525-4
  • Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore funga and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystems 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200
  • Zhou HM, Zhang XC, Li JT, Wu F, Zhao CL (2024) Morphological characteristics and phylogenetic analyses revealed four new wood-inhabiting fungi (Agaricomycetes, Basidiomycota) in Xizang Autonomous Region, China. MycoKeys 106: 201–224. https://doi.org/10.3897/mycokeys.106.125831
  • Zhu YQ, Li XL, Zhao DX, Wei YL, Yuan HS (2024) Four new species of Tomentella (Thelephorales, Basidiomycota) from subtropical forests in Southwestern China. Journal of Fungi 10(7): 440. https://doi.org/10.3390/jof10070440
  • Zmitrovich IV, Shchepin ON, Malysheva VF, Kalinovskaya NI, Volobuev SV, Myasnikov AG, Ezhov ON (2018) Basidiome reduction in litter-inhabiting Thelephorales in boreal forest environments: Morphological and molecular evidence. Current Research in Environmental & Applied Mycology 8(3): 360–371. https://doi.org/10.5943/cream/8/3/7
login to comment