Research Article |
Corresponding author: Yao-Bin Song ( ybsong@hznu.edu.cn ) Academic editor: Ajay Kumar Gautam
© 2024 Yu-Yu Shen, Zi-Wen Zhang, Wen-Qian Li, Xing-Ning Liu, Fei-Ying Tian, Chun-Mei Pang, Wen-Hong Dai, Yao-Bin Song, Ming Dong.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Shen Y-Y, Zhang Z-W, Li W-Q, Liu X-N, Tian F-Y, Pang C-M, Dai W-H, Song Y-B, Dong M (2024) Morpho-molecular analysis of two new species Deconica and Entocybe in Agaricales from Mount Tianmu, China. MycoKeys 109: 319-336. https://doi.org/10.3897/mycokeys.109.131298
|
Two new species of Agaricales, Deconica flavum and Entocybe roseoalbus, are described from Mount Tianmu, Zhejiang Province, Eastern China. Two new species are distinct and monophyletic based on morphology and phylogenetic analyses. Deconica flavum differs from other Deconica species in that the pileus is brow shallow in the center and stipe with yellowish white fibrils, scatted on litter under coniferous and broad-leaved mixed forest at 1162 m. Entocybe roseoalbus is distinguished from other species of Entocybe by nearly blue pileus and pinkish-white stipe, scatted on humus in similar forest conditions at 1025 m. The differences are discussed between the two new taxa and their similar species morphologically, and related species phylogenetically.
Entolomataceae, Strophariaceae, taxonomy
Agaricales is the largest order in the kingdom Fungi with nearly 20,000 species (
The genus Deconica (W.G. Sm.) P. Karst. has been placed in the family Strophariaceae of Agaricales (
Entocybe T. J. Baroni, Hofstetter & Largent is the genus placed in the family Entolomataceae within Agaricales (
In the past decade, new species, combinations, and records of Deconica and Entocybe have been reported across the world (
Morphological observations encompassing the macro and microscopic structural characteristics were made from fresh and dried material. The color standards have been noted from the fresh samples as per
DNA was extracted from dried basidiomata tissue using the Cetyltrimethylammonium Bromide method (CTAB) (
Sources of sequences and their GenBank accession numbers that were used in this study.
Species name | Specimen voucher | Country | ITS | LSU |
---|---|---|---|---|
Clitocybe sclerotoidea | iNAT:187491457 | USA | PP573968 | – |
Deconica bayliasiana | OTA:71563 | New Zealand | OQ064952 | – |
D. bayliasiana | PDD:105444 | New Zealand | KM975393 | – |
D. bayliasiana | OTA:73288 | New Zealand | OQ065068 | – |
D. chionophila | CBS:658.87 (Type) | France | NR_160176 | – |
D. chionophila | FA 1743 | France | OR419908 | – |
D. citrispora | PDD:87522 | New Zealand | KM975431 | – |
D. citrispora | TENN:055373 | Argentina | KY559334 | – |
D. citrispora | – | – | OL616138 | – |
D. cokeriana | CCB45 (TENN) | USA | KC669315 | – |
D. cokeriana | Ps482 | USA | MK965913 | – |
D. cokeriana | PRM922477 | USA | MK965914 | – |
D. coprophila | MHHNU 30335 | – | MK214386 | – |
D. coprophila | 257N1 | – | OP237142 | – |
D. coprophila | MHHNU 7935 | – | OP862790 | – |
D. coprophila | MHHNU 7937 | – | OP862791 | – |
D. coprophila | S62 | – | OR237579 | – |
D. flavum | 2381 | China | OR906279 | OR906277 |
D. flavum | 2382 | China | OR906280 | OR906278 |
D. hartii | CBS: 273.81 (Type) | Canada | MH861342 | – |
D. horizontalis | DA-17014 | France | MZ234153 | – |
D. horizontalis | FF15120 | France | MZ361342 | – |
D. horizontalis | FF16067 | France | MZ363738 | – |
D. horizontalis | MEL:2321097 | Australia | OL771718 | – |
D. horizontalis | MEL | Australia | OL771719 | – |
D. horizontalis | MEL | Australia | OL771720 | – |
D. horizontalis | S.D. Russell iNaturalist #1827064 | USA | ON416969 | – |
D. magica | HN170821119 | France | OM397446 | – |
D. micropora | FJ596921 | – | MW871601 | – |
D. milvispora | PBM3781 (TENN) (holotype) | Australia | KC669314 | – |
D. milvispora | TENN F-067013 (holotype) | USA | NR_176108 | – |
D. montana | Hao & Guo & Han 131610 | China | MH425255 | – |
D. montana | – | France | MH862108 | – |
D. montana | MICH:340541 | USA | MT913618 | – |
D. montana | iNAT 37380190 | USA | OM203503 | – |
D. montana | iNAT 37434339 | USA | OM203504 | – |
D. montana | DAVFP:29764 | Canada | OQ225666 | – |
D. montana | DAVFP:29781 | Canada | OQ225683 | – |
D. novae-zelandiae | PDD:87768 | New Zealand | KM975401 | – |
D. overeemii | DED 8328 (SFSU) | Africa | KX017212 | – |
D. phyllogena | SFC20160714-66 | – | MF437002 | – |
D. phyllogena | Mushroom Observer # 282800 | USA | MK607529 | – |
D. phyllogena | HFJAU-TD393 | China | MN622718 | – |
D. phyllogena | ZMU197_ITS | China | MW724279 | – |
D. phyllogena | HBAU15299 | – | MW862324 | – |
D. pratensis | L | Netherlands | MT622238 | – |
D. protea | BAP 596 (SFSU) | Africa | KX017213 | – |
D. sp. | TENN051714 | USA | HQ728541 | – |
D. sp. | TFB12591 (TENN) | USA | KC669313 | – |
D. sp. | – | Thailand | KM270756 | – |
D. sp. | Mushroom Observer # 340420 | USA | MK607606 | – |
D. sp. | TENN-F-009938 | USA | MT622256 | – |
D. sp. | LXYZF1 | – | MZ452395 | – |
D. sp. | OTA:73406 | New Zealand | OQ065091 | – |
D. sp. | OTA:73424 | New Zealand | OQ065098 | – |
D. sp. | FLAS-F-61579 | USA | MH211973 | – |
D. sp. | RA712-7 | USA | MK234215 | – |
D. thailandensis | XAL | Thailand | MT622245 | – |
D. umbrina | XAL | Malaysia | MT622246 | – |
Entocybe haastii | MEN 2004055/53 | Netherlands | KC710086 | – |
Entocybe haastii | MEN 2006617 | Netherlands | KC710089 | – |
Entocybe haastii | MEN 2011045 | Netherlands | KC710101 | – |
Entocybe haastii | K(M):103926 | UK | MF977946 | – |
Entocybe haastii | K(M):35980 | UK | MF977961 | – |
Entocybe haastii | K(M):82407 | UK | MF977962 | – |
Entocybe haastii | K(M):173454 | UK | MF977974 | – |
Entocybe haastii | MEL:2379812 | UK | MF977980 | MF977980 |
Entocybe haastii | K(M):82407 | UK | – | MF977962 |
Entocybe nitida | F14054 (UBC) | Canada | AF335449 | – |
Entocybe nitida | UBC herbarium F14288 | Canada | AY228340 | – |
Entocybe nitida | 287 | Italy | JF907989 | – |
Entocybe nitida | MEN 8376 | Netherlands | KC710076 | – |
Entocybe nitida | Hausknecht 2006201 | Netherlands | KC710100 | – |
Entocybe nitida | MEN 200324 | Netherlands | KC710122 | – |
Entocybe nitida | iNAT:17857763 | USA | OL602070 | OL602070 |
Entocybe nitida | iNAT:34316843 | USA | OM522259 | OM522259 |
Entocybe nitida | ME Noordeloos 200326 | Netherlands | – | GQ289175 |
Entocybe nitida | NL-5402 | USA | – | MK277955 |
Entocybe sp. | OMDL K. Canan iNaturalist # 185356854 | USA | PP156155 | – |
Entocybe roseoalbus | 3461 | China | PP974446 | PP974447 |
Entocybe roseoalbus | 3462 | China | PP974445 | PP974448 |
Entocybe trachyospora | DAVFP:28111 | Canada | JF899553 | – |
Entocybe trachyospora | den Bakker1153 | Netherlands | KC710088 | – |
Entocybe trachyospora | den Bakker 1901 | Netherlands | KC710121 | – |
Entocybe trachyospora | iNAT:17857961 | USA | OL602069 | OL602069 |
Entocybe trachyospora | OMDL K. Canan iNaturalist 103586037 | USA | OR824557 | OR824557 |
Entocybe trachyospora | TB5856 | – | – | GU384629 |
Entocybe turbida | PRM 915266 | Czech Republic | FJ824815 | – |
Entocybe turbida | 16176 | Italy | JF908005 | – |
Entocybe turbida | MEN200351 | Netherlands | KC710060 | – |
Entocybe turbida | MQ18R373-QFB30889 | Canada | MN992146 | MN992146 |
Entocybe turbida | MQ18R118-QFB30634 | Canada | MN992147 | - |
Entocybe turbida | MQ18R137-QFB30653 | Canada | MN992148 | MN992148 |
Entocybe turbida | F26446 | Canada | MZ314674 | – |
Entocybe turbida | OMDL K. Canan iNaturalist # 188618716 | USA | PP156263 | PP156263 |
Entocybe turbida | TRTC175668 | Canada | PP383792 | – |
Entocybe turbida | GLM 45919 | Germany | – | AY207198 |
Entocybe turbida | ME Noordeloos 200351 | Netherlands | – | GQ289201 |
Entocybe turbida | F26446 | Canada | – | MZ314674 |
Entocybe vinaceum | TB8870 | – | – | GU384631 |
Entoloma abortivum | H. den Bakker 92 | – | – | GQ289150 |
Entoloma abortivum | HMJAU 1955 | China | – | JQ320131 |
Entoloma albotomentosum | DA-20014 | France | OM368079 | OM368079 |
Entoloma alcedicolor | E. Arnolds 0276 | Netherlands | – | GQ289152 |
Entoloma alpicola | TB6415 | – | – | AF261302 |
Entoloma ameides | RBG Kew K(M)128844 | England | EU784199 | – |
Entoloma assiduum | KaiR1143 | Cyprus | – | OL338157 |
Entoloma baronii | Gates E2292 | Netherlands | KC710093 | – |
Entoloma belouvense var. albertinae | CME5 | Panama | MZ611628 | MZ611628 |
Entoloma byssisedum var. microsporum | SAAS1160 | China | – | KU534231 |
Entoloma caccabus | ME Noordeloos 200324 | – | – | GQ289155 |
Entoloma cetratum | KaiR932 | Austria | OL338132 | OL338132 |
Entoloma cf. vernum | RH17-107 | USA | – | MW084700 |
Entoloma cf. vernum | RH17-153 | USA | – | MW084701 |
Entoloma coeruleogracilis | Gates E1777 | Netherlands | KC710069 | – |
Entoloma coeruleogracilis | MEN 2004055 | Netherlands | KC710107 | – |
Entoloma contrastans | L 0608161 | Australia | – | MK277982 |
Entoloma costatum | G. Immerzeel 2000-10-10 | Netherlands | – | GQ289161 |
Entoloma depluens | S.D. Russell ONT iNaturalist 129768621 | USA | OP549186 | OP549186 |
Entoloma flavifolium | TB6215 | – | – | AF261301 |
Entoloma fuligineoviolaceum | MEN 2009-071 | Australia | – | MK277989 |
Entoloma gracilior | MEN 2011043 | Netherlands | KC710079 | – |
Entoloma gregarium | SAAS1220 (Holotype) | China | – | KU534237 |
Entoloma gregarium | SAAS1493 | China | – | KU534238 |
Entoloma gregarium | SAAS:1220 (Holotype) | China | – | NG_153851 |
Entoloma haastii | G. Gates E1777 | Netherlands | – | GQ289168 |
Entoloma heae | SAAS1091 (Holotype) | China | – | KU534232 |
Entoloma heae | SAAS1016 | China | – | KU534236 |
Entoloma heae | SAAS1091 | China | – | NG_153850 |
Entoloma incanosquamulosum | MD2014-13 | Italy | OL338320 | OL338320 |
Entoloma nidorosum | TB6263 | – | – | AF261296 |
Entoloma nitidum | TB7526 | – | – | GU384626 |
Entoloma nubooccultatum | KaiR687 (Holotype) | Panama | MZ611675 | MZ611675 |
Entoloma ortonii | KaiR1008 | Germany | OL338141 | – |
Entoloma ortonii | KaiR1008 | Germany | – | OL338141 |
Entoloma paraconferendum | CME6 (Holotype) | Panama | MZ611629 | MZ611629 |
Entoloma paraconferendum | CME7 | Panama | MZ611630 | MZ611630 |
Entoloma platyphylloides | 14740 | Italy | JF908003 | – |
Entoloma politum | ME Noordeloos 200325 | – | – | GQ289181 |
Entoloma sericatum | M.T. Tholl #1991 | Luxembourggg | MW340721 | MW340721 |
Entoloma sericatum | ME Noordeloos 200328 | Netherlands | – | GQ289189 |
Entoloma silvae-frondosae | L:DB6568 (Holotype) | Hungary | – | MH792065 |
Entoloma sp. | EH37 | Canada | FJ717489 | – |
Entoloma sp. | T503 | Australia | JF960759 | – |
Entoloma sp. | CT-4335 | USA | KY462337 | – |
Entoloma sp. | S.D. Russell MycoMap 6944 | USA | MK564545 | MK564545 |
Entoloma sp. | TENN:077957 | USA | PP831632 | PP831632 |
Entoloma sp. | EM677 | Japan | – | AB692015 |
Entoloma sp. | 80812 | China | – | KJ648486 |
Entoloma sp. | SAAS203 | China | – | KJ658971 |
Entoloma sp. | SAAS712 | China | – | KJ658973 |
Entoloma sp. | HGS-2021-8-23-6 | – | – | OL336509 |
Entoloma sphagneti | Bas 6.86 | Netherlands | KC710061 | – |
Entoloma sphagneti | OW-E2-14 | Norway | KX945366 | – |
Entoloma undatum | 16854 | Italy | JF908007 | – |
Entoloma undatum | KUN-HKAS 115925 (WZ224) | China | MZ855875 | MZ855875 |
Entoloma undatum | HAY-F-004639 | USA | OR778327 | OR778327 |
Entoloma undatum | HAY-F-002256 | USA | PP575920 | PP575920 |
Entoloma undatum | HAY-F-004798 | USA | PP626490 | PP626490 |
Entoloma vernum | 1193 | USA | – | KX670983 |
Entoloma vezzenaense | A. Hausknecht (ex WU 14588) | Netherlands | – | GQ289204 |
Kuehneromyces sp. | – | Australia | MK965912 | – |
The newly generated sequences in the study were evaluated for quality using BioEdit and Blast search results as per
Phylogenetic trees of Deconica were constructed using ITS and LSU sequence data following recent publications (
Phylogenetic trees of Entocybe were constructed using the two concatenated ITS–LSU sequences dataset. The dataset consists of 62 ITS sequences and 66 LSU sequences including outgroup Clitocybe sclerotoidea (iNAT:187491457). In ML phylogenetic analysis, the best-fitting model was TIM2+F+G4 (ITS) and TIM2+F+R2 (LSU) determined by ModelFinder (
The analyses of Deconica generated four supported clades, labeled a–d (Fig.
The analyses of Entocybe resulted in two well-supported clades, clade a and clade b (Fig.
The specific epithet flavum (Lat.) refers to the species having stramineous color in the center of the pileus.
Pileus convex-campanulate, commonly papillate, light brown (6D8) or sunburn (6D5), center stramineus (5C8), (8–)10–20 mm; margin striate, invariable color when bruised, surface flocculose or with white fibrillose patches of veil on half of the pileus. Context fleshy on disk, pale yellowish (6A3). Lamellae adnexed to adnate, with decurrent tooth, distant, pompeian yellow (5C6), brown shellow (5C8), or gold brown (5D7). Stipe central, cylindrical, equal to broader at apex, hollow, cartilaginous, flocculose, 11–14 × 1.2–2.7 mm; dark blonde (5D4) to light brown (6D5), with yellowish white fibrils. Smell indistinct.
Basidiospores fusiform, ellipsoid to ovoid, yellowish brown under light microscopy with germ pore, the middle part concave under scanning electron microscopy, (3.0) 3.3–4.7 (5.1) × (2.2) 2.6–3.3 (4.3) µm, Q = 0.8–1.8, Qav = 1.4 (concave side), (3.6) 4.2–4.9 (5.1) × (2.9) 3.1–3.9 (4.0) µm, Q = 1.0–1.5, Qav = 1.3 (convex side) in frontal view. Basidia cylindrical or claviform with median constriction, 4-spored, hyaline, thin-walled, 11.7–17.1 × 3.8–5.7 µm. Pleurocystidia type chrysocystidia clavate to broadly clavate, apex mucronate or rostrate, thin-walled, hyaline, with hyaline content, 15.2–26.8 × 5.6–13.0 µm. Pleurocystidia type leptocystidium narrowly utriform, hyaline, thin-walled, abundant, 7.7–17.9 × 3.3–5.7 µm. Cheilocystidia widely utriform, cylindrical, hyaline, 12.3–20.5 × 3.6–5.2 µm. Pileipellis a gelatinous cutis 2.0–4.5 µm diam, hyaline, and thin-walled, with clamp connections. Stipitipellis a cutis 4.7–10.6 µm diam, hyaline, thin-walled, with clamp connections.
Scattered on litter under coniferous and broad-leaved mixed forests at 1162 m a.s.l., currently only known from Zhejiang Province, China.
The specific epithet roseoalbus (Lat.) refers to the pinkish-white stipe.
Pileus umbonate, undulating, occasional dehiscence in the middle, and slight dehiscence at the edge when mature, not hygrophanous, not translucent-striate, surface finely felted with densely appressed-fibrillose or matted-fibrillose, rivulose, blackish blue (20F7 or 20F8) in the middle, gradually lighter, becoming dark blue (20E6), 47–68 mm diam. Context white, 1.8–1.9 mm thick above the stipe. Lamellae unequal, adnate, margin slightly serrate, 23–26 × 9.3–11.2 mm (length × breadth), at first pinkish white (7A2) then pastel red (7A4) to pale red (7A3) with basidiospore maturity. Stipe central, 69–72 mm long, 7.2–7.7 mm (apex)–7.1–7.5 mm (middle)–8.3–8.8 mm (base) diam, equal but slightly thinner in the upper middle, hollow and splits longitudinally with ease, pinkish white (10A2), white at the base, fragile. Odor not distinctive. Taste not recorded.
Basidiospores distinctly angular (6–8 angled) to some indistinctly and faintly rounded pustulate, ornamentation composed of broken ridges under an SEM, (4.0) 4.73–5.6 (6.5) × (4.6) 4.8–5.5 (6.1) µm, Q = 0.7–1.3, Qav = 1.0 in side-view. Basidia clavate, 3– or 4– sterigmate, filled with refractive oil bodies, 22.3–32.8 × 7.1–9.9 µm. Hymenial cystidia absent. Hymenophoral trama subregular, made up of cylindrical to slightly inflated elements, 36.9–92.5 × 11.6–22.8 µm. Lamella edge crowded with tufts of cheilocystidia. Cheilocystidia clavate, hyaline, abundant, 12.7–25.1 × 2.3–7.1 µm. Hymenial cystidia absent. Pileipellis multi-layered cutis, cylindrical, pigments intracellular, with special long and curved hyphae, 30.2–60.8 × 8–20.9 µm. Pileocystidia (terminal cells) narrowly cylindric to clavate, pigments intracellular, subtended by inflated cells of the pileal trama, 15.7–30.8 × 2.8–4.5 µm. Stipitipellis multi-layered cutis, similar to pileipellis, cylindrical hyphae, pigments intracellular, with special long and curved hyphae, 7.7–12.4 µm diam. Caulocystidia absent. Clamp connections present in all tissues.
Scatted on humus under coniferous and broad-leaved mixed forests at 1025 m a.s.l., currently only known from Zhejiang Province, China.
Deconica flavum is characterized by small and convex basidiomata with ellipsoid to ovoid basidiospores, two types of pleurocystidia, chrysocystidia and leptocystidia. It was growing on litter as other Deconica species. Entocybe roseoalbus is peculiar in having isodiametric basidiospores with 6–8 angles and broken ridges, pileipellis and stipitipellis with intracellular pigment, and abundant clamp connections in all tissues, as shown by the other Entocybe species. Furthermore, phylogenetically in ML and BI trees, the specimens formed two distinct lineages within Deconica and Entocybe, respectively (Figs
Deconica species are distributed worldwide, with notable records in Europe, America, South Asia, and Oceania (GBIF, https://www.gbif.org/search?q=Deconica). Many species of the genus Deconica have been described recently based on the ITS phylogenetic analysis (
The nearly blue species in Entolomataceae, Entocybe haastii, E. nitida, Entoloma alcedicolor, E. eugenei, E. hochstetteri, E. mengsongense, E. tadungense and E. virescens have similar color in pileus and stipe (
In conclusion, sufficient evidence from morphological and molecular phylogenetic analyses supports the distinction of D. flavum and Entocybe roseoalbus from other recorded species of the respective genus.
We are grateful to Xing-Qiang Wang and Jia-Jie Shi for collecting samples. We are grateful to Yu Yang for her help in experimentation. We appreciate Fang-Min Fei’s help in writing.
The authors have declared that no competing interests exist.
No ethical statement was reported.
This work was supported by the National Natural Science Foundation of China (grant no. 32371580 and 31670429).
Morphological data, photo plates, phylogenetic analyses, and original drafts were completed by Yu-Yu Shen. Yao-Bin Song, Ming Dong, and Zi-Wen Zhang revised the paper. Wen-Qian Li revised the photo plates. Xing-Ning Liu, Fei-Ying Tian, and Wen-Hong Dai participated in molecular experiments. Chun-Mei Pang participated in the sample collection.
Yu-Yu Shen https://orcid.org/0009-0003-4947-4266
Zi-Wen Zhang https://orcid.org/0009-0001-4045-8505
Wen-Qian Li https://orcid.org/0009-0000-1998-030X
Xing-Ning Liu https://orcid.org/0009-0002-0176-7943
Fei-Ying Tian https://orcid.org/0009-0007-3212-5261
Chun-Mei Pang https://orcid.org/0000-0001-5346-8676
Wen-Hong Dai https://orcid.org/0009-0003-1238-3758
Yao-Bin Song https://orcid.org/0000-0001-9342-0423
Ming Dong https://orcid.org/0000-0002-1046-2140
Publicly available datasets were analyzed in this study which can be found here: https://www.ncbi.nlm.nih.gov/; https://indexfungorum.org/.