Research Article
Print
Research Article
Morphology and multigene phylogeny reveal four new Xylaria (Xylariales, Xylariaceae) species from karst region in China
expand article infoWenyu Zeng, Kamran Habib§, Xin Zhou, Yulin Ren, Xiangchun Shen, Bei Wang|, Yingqian Kang, Jichuan Kang, Qirui Li
‡ Guizhou Medical University, Gui’an New District, China
§ Khushal Khan Khattak University, Karak, Pakistan
| Shandong Qidu Pharmaceutical Co., Ltd, Zibo City, China
¶ Guizhou University, Guiyang, China
Open Access

Abstract

This study presents the identification of four novel Xylaria species, discovered in the karst region of China. The discovery was facilitated by a rigorous analysis that encompassed both morpho-anatomical features and multi-locus phylogenetics utilizing sequences from the ITS, rpb2, and TUB2 loci. The newly identified species are designated as Xylaria jichuanii sp. nov., X. nanningensis sp. nov., X. orientalis sp. nov., and X. taiyangheensis sp. nov. The distinction of these species from their known counterparts was verified through comparison of morphological features and phylogenetic analysis. The study further provides detailed morphological descriptions, illustrative representations, and a phylogenetic tree, all of which contribute to the taxonomic positioning of these novel species.

Key words

Folicolous fungi, Fungal systematics, Southwest China, Xylariaceae, taxonomy

Introduction

Karst is a geological formation characterized by surface and subsurface features that result from the dissolution of soluble rocks by water. This includes morphological, hydrological, and hydrogeological elements (Marčić et al. 2022). Karst landscapes exhibit distinctive shapes, arising from a unique combination of morphological, hydrological, and hydrogeological features of the surface and subsurface, all rooted in water-soluble rocks. These karst regions and their caves constitute invaluable natural resources, harbouring a broad spectrum of ecological niches, many of which are often singular in nature (Pipan and Culver 2013; Forti 2015). Karst regions boast remarkable biodiversity, characterized by endemic species that are uniquely endemic to their respective locales. The diverse habitats, unique microclimates, and isolation of karst regions contribute to this exceptional biological diversity (Jakob et al. 2022; Marčić et al. 2022; Melekhina et al. 2022; Dong et al. 2023; Mičetić 2023; Zhang et al. 2023). Within karst regions, speciation and the existence of discontinuous populations of organisms with phylogenetically distinct origins are commonplace. Being inaccessible, karst landscapes often serve as natural refuges for species that have vanished elsewhere due to hunting and habitat destruction (Li et al. 2021; Marasinghe et al. 2022; Hyde et al. 2023). These ecosystems, despite being biodiversity hotspots, remain largely unmapped. Consequently, identifying biodiversity and understanding the ecology of karst habitats is paramount, given their sensitivity to disturbance and the challenges associated with restoration efforts (Mičetić 2023).

The genus Xylaria, a member of the Xylariaceae family, comprises a highly diverse group of fungi that possess significant ecological significance. Extensive research has underscored the genus’s key role as wood decomposers (Rogers 1986; Fournier et al. 2020; Ma et al. 2022a), a valuable source of bioactive secondary metabolites (Healy et al. 2004), and as endophytes residing within diverse plant species (Davis et al. 2003; Promputtha et al. 2007). Notably, Xylaria has been proven to synthesize a range of bioactive compounds exhibiting promising potential as antibiotic agents (Elias et al. 2018), thereby establishing its pharmaceutical relevance. These fungi are commonly encountered in temperate, subtropical, and tropical regions across the globe, frequently associated with wood, fallen fruits or seeds, leaves or petioles, and termite nests (Dennis 1956; Rogers and Samuels 1986; San and Rogers 1989; Ju and Hsieh 2007; Fournier 2014). Species within the genus are distinguished by their upright, stipitate, and charred stromata, characterized by perithecia that are entirely immersed (San and Rogers 1989; Stadler et al. 2013; Konta et al. 2020; Samarakoon et al. 2022). Globally, there have been reports of more than 300 species belonging to the genus Xylaria (Kirk et al. 2008), while Index Fungorum lists an even more extensive catalog of more than 800 epithets (Ma et al. 2022a). Only in China, including the karst areas of south-western China, about 115 species of woody plants have been recorded (Ma et al. 2022a; Li et al. 2024a), indicating that this genus has rich diversity and universality.

In this study, we collected Xylaria specimens from fallen leaves and twigs of plants in the Karst regions of two neighboring provinces Yunnan and Guangxi Zhuang Autonomous Region, China. We performed comprehensive morphological examinations and phylogenetic analyses to ascertain species identification and their positions within the phylogenetic tree. Our phylogenetic analysis utilized sequences from the ITS, rpb2, and TUB2 loci, employing both maximum likelihood and Bayesian frameworks. The results distinguished these specimens from other known species within the genus, leading us to propose them as new species.

Materials and methods

Sample collection

The specimens were collected during surveys conducted in the Karst regions including Yunnan province and Guangxi Zhuang Autonomous Region of China during 2022. All related collection information, including collection time, collector, altitude, latitude and longitude, etc, were recorded. The photos of the collected materials were taken using a Canon G15 camera (Canon Corporation, Tokyo, Japan). Materials were placed in paper bags and taken to the lab for examination. They were dried using a portable fan drier. The specimens were ready for both morphological and molecular studies. The dried specimens were carefully labelled and stored in an ultra-low freezer at -80 °C for one week to eliminate any insects and their eggs. The cultures were obtained before the -80 °C treatment. All specimens were deposited at the herbarium of Guizhou Medical University (GMB) and the Herbarium of Cryptogams, Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (KUN-HKAS). Living cultures were deposited at the Guizhou Medical University Culture Collection (GMBC).

Morphological characterization and isolation

Morphological characteristics of specimens were examined, and photomicrographs were taken as described in Wu et al. (2022), Senanayake and Calabon (2020). Macroscopic characteristics were observed under an Olympus SZ61 stereomicroscope and photographed with a Canon 700D digital camera fitted to a light microscope (Nikon Ni). Samples for microscopic examination were mounted in distilled water and Melzer’s reagent. More than 30 ascospores and 30 asci were measured for each sample using the Tarosoft image framework (v. 0.9.0.7). The images were arranged using Adobe Photoshop CS6 (Adobe Systems, USA). Cultures were obtained from single spores method described in Senanayake and Calabon (2020). Germinating spores were observed with a Stereo Zoom microscope and transferred to potato dextrose agar (PDA; 39 g/l distilled water, Difco potato dextrose). The cultures were incubated at 25–30 °C for 4–6 weeks, with frequent observations.

DNA extraction, Polymerase Chain Reaction (PCR) amplification and sequencing

Mycelium was scraped from pure culture plates using a sterilized scalpel and was used for DNA extraction with the methods of the BIOMIGA fungus genomic DNA extraction kit. For some specimens where the ascospores did not germinate, we used a method of directly extracting DNA from the contents of the perithecium. The DNA samples were kept at –20 °C. Internal transcribed spacers (ITS), TUB2 (β-tubulin), and RNA polymerase II second largest subunit (rpb2) were amplified by PCR with primers ITS1/ITS4 (White et al. 1990; Gardes and Bruns 1993), Bt2a/Bt2b or T1/T22 (Glass and Donaldson 1995; O’Donnell and Cigelnik 1997), and RPB2-5F/RPB2-7cR (Liu et al. 1999) respectively. The components of a 25 μL volume PCR mixture were: 9.5 μL of double distilled water, 12.5 μL of PCR Master Mix, 1 μL of each primer, and 1 μL of template DNA. Qualified PCR products were checked through 1.5% agarose gel electrophoresis stained with GoldenView, and were sent to Sangon Co., China, for sequencing (Xie et al. 2020).

Sequence alignments and phylogenetic analyses

All the obtained sequences were deposited in the GenBank (Table 1). The molecular phylogeny was inferred from a combined dataset of ITS, TUB2 and rpb2 sequences. The reference sequences retrieved from open databases originated from latest Xylaria articles (Hsieh et al. 2010; Stadler et al. 2013; Li et al. 2024a; etc) and the Blastn results of close matches and additional Xylariaceae representatives. Sequences were aligned using the MAFFT v.7.110 online program (Katoh et al. 2019) with the default settings, respectively. The alignment was adjusted manually using BioEdit v.7.0.5.3 (Hall 1999) were necessary, and used trimAl to select available DNA sequences. The maximum likelihood (ML) analysis was implemented in RAxML v.8.2.12 using the GTRGAMMA substitution model with 1,000 bootstrap replicates (Stamatakis 2014). Phylogenetic analyses were conducted using Bayesian inference in MrBayes v. 3.2.1 (Ronquist et al. 2012) online, with Markov chain Monte Carlo (MCMC) sampling in MrBayes v.3.2.2 (Ronquist et al. 2012) used to calculate posterior probabilities (PP). Six simultaneous Markov chains were run for 1,000,000 generations, and trees were sampled every 1,000th generation. The convergence of the MCMC procedure was assessed from the effective sample size scores (all > 100) using MrBayes. The first 25% of the trees were discarded as burn-ins. The remainder was used to calculate the posterior probabilities (PPs) for individual branches. The phylogenetic tree was visualized in FIGTREE v.1.4.3 (Rambaut 2012). All analyses were run on the CIPRES Science Gateway v 3.3 webportal (Miller et al. 2010). The alignments are available in TreeBASE (www.treebase.org/treebase-web/home.html) under ID 31594 for ITS, TUB2 and rpb2 sequences.

Table 1.

List of taxa used for the phylogenetic tree. GenBank accession numbers, specimen numbers, country and reference are given. Holotype specimens are labelled with HT. Ex-type cultures are labelled with ET. Species highlighted in bold were derived from this study. N/A: not available.

Species Specimen No. Country Reference GenBank accession numbers
ITS rpb2 TUB2
Albicollum berberidicola WU:MYC 0043994(HT) Greece Voglmayr et al. (2022) ON869278 ON808457 ON808501
Albicollum canicolle WU:MYC 0043997(ET) Spain Voglmayr et al. (2022) ON869279 ON808458 ON808502
Albicollum longisporum WU:MYC 0044004(HT) Spain Voglmayr et al. (2022) NR182514 ON808465 ON808509
Albicollum vincensii WU:MYC 0044014(ET) Austria Voglmayr et al. (2022) ON869297 ON808475 ON808519
Albicollum vincensii WU:MYC 0044017 Spain Voglmayr et al. (2022) ON869298 ON808476 ON808520
Amphirosellinia fushanensis HAST 91111209(HT) China Hsieh et al. (2010) GU339496 GQ848339 GQ495950
Amphirosellinia nigrospora HAST 91092308(HT) China Hsieh et al. (2010) GU322457 GQ848340 GQ495951
Astrocystis bambusae HAST 89021904 China Hsieh et al. (2010) GU322449 GQ844836 GQ495942
Astrocystis concavispora MFLUCC:14-0174 Italy Daranagama et al. (2015) KP297404 KP340532 KP406615
Astrocystis mirabilis HAST 94070803 China Hsieh et al. (2010) GU322448 GQ844835 GQ495941
Brunneiperidium gracilentum MFLUCC:14-0011 Italy Daranagama et al. (2015) KP297400 KP340528 KP406611
Collodiscula bambusae GZ-62 China Li et al. (2015) KP054279 KP276675 KP276674
Collodiscula japonica CBS 124266 China Jaklitsch and Voglmayr (2012) JF440974 KY624273 KY624316
Daldinia loculatoides CBS 113279(HT) UK Vu et al. (2019) MH862918 KY624247 KX271246
Dematophora buxi JDR 99 France Hsieh et al. (2010) GU300070 GQ844780 GQ470228
Dematophora necatrix CBS 349.36 Argentina Peláez et al. (2008) AY909001 KY624275 KY624310
Entoleuca mammata JDR 100 France Hsieh et al. (2010) GU300072 GQ844782 GQ470230
Entalbostroma erumpens ICMP21152 New Zealand Johnston et al. (2016) NR154013 KX258204 KX258205
Halorosellinia krabiensis MFLU 17-2596(HT) Thailand Dayarathne et al. (2020) MN047119 N/A MN431493
Halorosellinia rhizophorae MFLU 17-2591 Thailand Dayarathne et al. (2020) MN047118 N/A MN431492
Halorosellinia xylocarpi MFLU 18-0545(HT) Thailand Dayarathne et al. (2020) MN047120 N/A MN077076
Helicogermslita clypeata MFLU 18-0852(HT) Thailand Samarakoon et al. (2022) MW240666 MW658647 MW775614
Hypocopra zeae MFLU 18-0809(HT) Thailand Samarakoon et al. (2022) MW240671 MW658650 MW775616
Hypoxylon fragiforme MUCL 51264(ET) Germany Stadler et al. (2013) KC477229 KM186296 KX271282
Jackrogersella cohaerens YMJ 310 France Hsieh et al. (2010) EF026140 GQ844766 AY951655
Kretzschmaria clavus YMJ 114 French Guiana Hsieh et al. (2010) EF026126 GQ844789 EF025611
Kretzschmaria deusta CBS 163.93 Germany Stadler et al. (2013) KC477237 KY624227 KX271251
Kretzschmaria frustulosa HAST 92092010 China Hsieh et al. (2010) GU322451 GQ844838 GQ495944
Kretzschmaria frustulosa HAST 771 Guadeloupe Hsieh et al. (2010) GU322450 GQ844837 GQ495943
Kretzschmaria guyanensis HAST 89062903 China Hsieh et al. (2010) GU300079 GQ844792 GQ478214
Kretzschmaria lucidula JDR 112 French Guiana Hsieh et al. (2010) EF026125 GQ844790 EF025610
Kretzschmaria megalospora JDR 229 Malaysia Hsieh et al. (2010) EF026124 GQ844791 EF025609
Kretzschmaria neocaledonica HAST 94031003 China Hsieh et al. (2010) GU300078 GQ844788 GQ478213
Kretzschmaria pavimentosa JDR 109 China Hsieh et al. (2010) GU300077 GQ844787 GQ478212
Kretzschmaria sandvicensis JDR 113 USA Hsieh et al. (2010) GU300076 GQ844786 GQ478211
Kretzschmariella culmorum JDR 88 France Pi et al. (2021) KX430043 N/A KX430046
Leptomassaria simplex WU:MYC:0044025 Austria Voglmayr et al. (2022) ON869305 ON808483 ON808527
Leptomassaria simplex WU:MYC:0044026 Austria Voglmayr et al. (2022) ON869306 ON808484 ON808528
Linosporopsis ischnotheca LIF1 Switzerland Voglmayr and Beenken (2020) MN818952 MN820708 MN820715
Linosporopsis ischnotheca LIF2 Switzerland Voglmayr and Beenken (2020) MN818953 MN820709 MN820716
Linosporopsis ochracea LIO3 Germany Voglmayr and Beenken (2020) MN818958 MN820714 MN820721
Linosporopsis ochracea LIO2 Germany Voglmayr and Beenken (2020) MN818957 MN820713 MN820720
Nemania abortiva BISH 467(HT) USA Hsieh et al. (2010) GU292816 GQ844768 GQ470219
Nemania beaumontii HAST 405 Martinique Hsieh et al. (2010) GU292819 GQ844772 GQ470222
Nemania beaumontii HAST 90080610 China Hsieh et al. (2010) GU292818 GQ844771 GQ470221
Nemania diffusa HAST 91020401 China Hsieh et al. (2010) GU292817 GQ844769 GQ470220
Nemania ethancrensonii WU:MYC: 0040047(HT) USA Voglmayr et al. (2022) ON869311 ON808489 ON808533
Nemania illita JDR 236 USA Hsieh et al. (2010) EF026122 GQ844770 EF025608
Nemania macrocarpa WSP 265 USA Hsieh et al. (2010) GU292823 GQ844776 GQ470226
Nemania maritima HAST 89120401(HT) China Hsieh et al. (2010) GU292822 GQ844775 GQ470225
Nemania primolutea HAST 91102001(HT) China Hsieh et al. (2010) EF026121 GQ844767 EF025607
Nemania serpens HAST 235 Canada Hsieh et al. (2010) GU292820 GQ844773 GQ470223
Nemania sphaeriostoma JDR 261 USA Hsieh et al. (2010) GU292821 GQ844774 GQ470224
Nemania uda WU:MYC: 0040046 Austria Voglmayr et al. (2022) ON869312 ON808488 ON808532
Neoxylaria arengae MFLUCC 15-0292(HT) Thailand Konta et al. (2020) MT496747 MT502418 N/A
Neoxylaria juruensis HAST 92042501 China Hsieh et al. (2010) GU322439 GQ844825 GQ495932
Oligostoma insidiosum WU:MYC: 0044034 Austria Voglmayr et al. (2022) ON869313 ON808490 ON808534
Oligostoma insidiosum WU:MYC: 0044033(ET) Austria Voglmayr et al. (2022) ON869315 ON808492 ON808536
Podosordaria mexicana WSP 176 Mexico Hsieh et al. (2010) GU324762 GQ853039 GQ844840
Podosordaria muli WSP 167(HT) Mexico Hsieh et al. (2010) GU324761 GQ853038 GQ844839
Poronia pileiformis WSP 88113001(ET) China Hsieh et al. (2010) GU324760 GQ853037 GQ502720
Rosellinia aquila MUCL:51703 France Wendt et al. (2018) KY610392 KY624285 KX271253
Rosellinia corticium MUCL:51693 France Wendt et al. (2018) KY610393 KY624229 KX271254
Rosellinia lamprostoma HAST 89112602 China Hsieh et al. (2010) EF026118 GQ844778 EF025604
Rosellinia merrillii HAST 89112601 China Hsieh et al. (2010) GU300071 GQ844781 GQ470229
Rosellinia sanctae-cruciana HAST 90072903 China Hsieh et al. (2010) GU292824 GQ844777 GQ470227
Stilbohypoxylon elaeicola HAST 94082615 China Hsieh et al. (2010) GU322440 GQ844827 GQ495933
Stilbohypoxylon elaeidis MFLUCC 15-0295a(HT) Thailand Konta et al. (2020) MT496745 MT502416 MT502420
Stilbohypoxylon quisquiliarum JDR 172 French Guiana Hsieh et al. (2010) EF026119 GQ853020 EF025605
Stilbohypoxylon quisquiliarum HAST 89091608 China Hsieh et al. (2010) EF026120 GQ853021 EF025606
Stromatoneurospora phoenix BCC 82040 Thailand Becker et al. (2020) N/A MT742606 MT700438
Virgaria boninensis JCM 18624 Japan Nonaka et al. (2013) AB740956 N/A N/A
Virgaria nigra NBRC 32656 Japan Nonaka et al. (2013) AB670717 N/A N/A
Wawelia regia CBS:110.10 Netherlands Vu et al. (2019) MH854595 N/A N/A
Xylaria acuminatilongissima HAST 623(HT) China Hsieh et al. (2010) EU178738 GQ853028 GQ502711
Xylaria aethiopica YMJ 1136 Ethiopia Ma et al. (2022a) MH790445 MH785222 MH785221
Xylaria alboareolata HAST 543 Guadeloupe Hsieh et al. (2010) GU300080 GQ844793 GQ478215
Xylaria allantoidea HAST 94042903 China Hsieh et al. (2010) GU324743 GQ848356 GQ502692
Xylaria amphithele HAST 529 Guadeloupe Hsieh et al. (2010) GU300083 GQ844796 GQ478218
Xylaria apoda HAST 90080804 China Hsieh et al. (2010) GU322437 GQ844823 GQ495930
Xylaria arbuscula HAST 89041211 China Hsieh et al. (2010) GU300090 GQ844805 GQ478226
Xylaria arbuscula var. plenofissura HAST 93082814 China Hsieh et al. (2010) GU339495 GQ844804 GQ478225
Xylaria atrodivaricata HAST 95052001(HT) China Hsieh et al. (2010) EU178739 GQ853030 GQ502713
Xylaria atrosphaerica HAST 91111214 China Hsieh et al. (2010) GU322459 GQ848342 GQ495953
Xylaria badia HAST 95070101 China Hsieh et al. (2010) GU322446 GQ844833 GQ495939
Xylaria bambusicola WSP 205(HT) China Hsieh et al. (2010) EF026123 GQ844802 AY951762
Xylaria bambusicola JDR 162 Thailand Hsieh et al. (2010) GU300088 GQ844801 GQ478223
Xylaria bawanglingensis GMB1023(HT) China Li et al. (2024a) OR468975 OR753861 OR477223
Xylaria bawanglingensis GMB1162 China Li et al. (2024a) OR468976 OR753862 OR477224
Xylaria botryodalis GMB1057(HT) China Li et al. (2024a) OR468978 OR753871 OR477225
Xylaria botryodalis GMB1164 China Li et al. (2024a) OR468977 OR753872 OR477226
Xylaria brunneovinosa HAST 720(HT) China Hsieh et al. (2010) EU179862 GQ853023 GQ502706
Xylaria cantareirensis HAST 526 Guadeloupe Hsieh et al. (2010) GU300085 GQ844798 GQ478220
Xylaria castorea PDD 600 New Zealand Hsieh et al. (2010) GU324751 GQ853018 GQ502703
Xylaria cf. castorea HAST 91092303 China Hsieh et al. (2010) GU324752 GQ853019 GQ502704
Xylaria cf. glebulosa HAST 431 Martinique Hsieh et al. (2010) GU322462 GQ848345 GQ495956
Xylaria cf. heliscus HAST 88113010 China Hsieh et al. (2010) GU324742 GQ848355 GQ502691
Xylaria cirrata HAST 664 China Hsieh et al. (2010) KY243920 GQ853024 GQ502707
Xylaria coccophora HAST 786 French Guiana Hsieh et al. (2010) GU300093 GQ844809 GQ487701
Xylaria compunctum CBS 359.61 South Africa Senanayake et al. (2015) KT281903 KY624230 KX271255
Xylaria cranioides HAST 226 China Hsieh et al. (2010) GU300075 GQ844785 GQ478210
Xylaria crinalis FCATAS MHX 751 China Ma and Li (2018) MF774330 N/A N/A
Xylaria crozonensis HAST 398 France Hsieh et al. (2010) GU324748 GQ848361 GQ502697
Xylaria cubensis JDR 860 USA Hsieh et al. (2010) GU991523 GQ848365 GQ502700
Xylaria culleniae JDR 189 Thailand Hsieh et al. (2010) GU322442 GQ844829 GQ495935
Xylaria curta HAST 494 Martinique Hsieh et al. (2010) GU322444 GQ844831 GQ495937
Xylaria curta HAST 92092022 China Hsieh et al. (2010) GU322443 GQ844830 GQ495936
Xylaria dadugangensis GMB1036(HT) China Li et al. (2024a) OR468979 OR753863 OR504178
Xylaria diaoluoshanensis HAFFR115 China Pan et al. (2024) OR702611 N/A OR726655
Xylaria diaoluoshanensis HAFFR117 China Pan et al. (2024) OR702612 OR757125 OR726656
Xylaria digitata HAST 919 Ukraine Hsieh et al. (2010) GU322456 GQ848338 GQ495949
Xylaria discolor YMJ 1280(ET) USA Ju et al. (2012) JQ087405 JQ087411 JQ087414
Xylaria doupengshanensis GMB1037(HT) China Li et al. (2024a) OR468980 OR753864 OR487773
Xylaria doupengshanensis GMB0773 China Li et al. (2024a) OR468981 OR753865 OR487774
Xylaria ellisii DAOM:628556(HT) Canada Ibrahim et al. (2020) MN218820 MN216186 N/A
Xylaria enterogena HAST 785 French Guiana Hsieh et al. (2010) GU324736 GQ848349 GQ502685
Xylaria escharoidea HAST 658(ET) China Hsieh et al. (2010) EU179864 GQ853026 GQ502709
Xylaria fabacearum MFLUCC 16-0456(HT) Thailand Ma et al. (2022) NR171104 MT212202 MT212220
Xylaria fabaceicola MFLUCC 16-0461(HT) Thailand Ma et al. (2022) NR171103 MT212201 MT212219
Xylaria feejeensis HAST 565 Martinique Hsieh et al. (2010) GU322452 GQ848334 GQ495945
Xylaria feejeensis JDR 180 Thailand Hsieh et al. (2010) GU322453 GQ848335 GQ495946
Xylaria feejeensis HAST 92092013 China Hsieh et al. (2010) GU322454 GQ848336 GQ495947
Xylaria ficicola HMJAU 22818 China Pan et al. (2022) MZ351258 N/A N/A
Xylaria filiformis GUM IRN 1052 Iran Hashemi et al. (2015) KP218907 N/A N/A
Xylaria filiformis FCATAS MHX 750 China Ma and Li (2018) MF774332 N/A N/A
Xylaria fimbriata HAST 491 Martinique Hsieh et al. (2010) GU324753 GQ853022 GQ502705
Xylaria fissilis HAST 367 Martinique Hsieh et al. (2010) GU300073 GQ844783 GQ470231
Xylaria fulvotomentosa HAFFR124 China Pan et al. (2024) OR702619 OR757121 OR726658
Xylaria fulvotomentosa HAFFR129 China Pan et al. (2024) OR702620 OR757122 OR726659
Xylaria glaucae GMB1051(HT) China Li et al. (2024a) OR468984 OR753869 OR484926
Xylaria glaucae GMB1163 China Li et al. (2024a) OR468983 OR753870 OR484927
Xylaria globosa HAST 775 Guadeloupe Hsieh et al. (2010) GU324735 GQ848348 GQ502684
Xylaria grammica HAST 479 China Hsieh et al. (2010) GU300097 GQ844813 GQ487704
Xylaria griseosepiacea HAST 641(HT) China Hsieh et al. (2010) EU179865 GQ853031 GQ502714
Xylaria guizhouensis GMB1059(HT) China Li et al. (2024a) OR468982 OR753873 OR484928
Xylaria guizhouensis GMB1058 China Li et al. (2024a) OR468986 OR753874 OR484929
Xylaria hedyosmicola FCATAS856(HT) China Pan et al. (2022) MZ227121 MZ683407 MZ221183
Xylaria hedyosmicola FCATAS857 China Pan et al. (2022) MZ227023 MZ851780 MZ221184
Xylaria hypoxylon HAST 570 Guadeloupe Hsieh et al. (2010) GU300101 GQ844817 GQ487708
Xylaria hypoxylon JDR 865 Thailand Hsieh et al. (2010) GU322432 GQ844818 GQ487709
Xylaria hypoxylon HAST 152 Belgium Hsieh et al. (2010) GU300096 GQ844812 GQ260187
Xylaria hypoxylon HAST 95082001 China Hsieh et al. (2010) GU300095 GQ844811 GQ487703
Xylaria intracolorata HAST 90080402 China Hsieh et al. (2010) GU324741 GQ848354 GQ502690
Xylaria intraflava HAST 725(HT) China Hsieh et al. (2010) EU179866 GQ853035 GQ502718
Xylaria japonica GMB1079(HT) China Li et al. (2024a) OR468985 OR887270 OR485581
Xylaria japonica GMB1080 China Li et al. (2024a) OR468987 N/A OR485582
Xylaria jichuanii GMB4703(HT) China This study PQ108599 N/A PQ106645
Xylaria jichuanii GMB4707 China This study PQ108600 N/A PQ106646
Xylaria jinshanensis GMB1067(HT) China Li et al. (2024a) OR468988 OR753876 OR484931
Xylaria jinshanensis GMB1165 China Li et al. (2024a) OR468989 OR753877 OR484932
Xylaria karsticola MFLU:23-0049 Thailand Fournier et al. (2011) OQ457210 OQ597842 OQ601533
Xylaria karyophthora DRH059(HT) Guyana Husbands et al. (2018) KY564220 KY564216 N/A
Xylaria kuankuoshuiensis GMB1068(HT) China Li et al. (2024a) OR468990 N/A OR484933
Xylaria laevis HAST 419 Martinique Hsieh et al. (2010) GU324746 GQ848359 GQ502695
Xylaria laevis HAST 95072910 China Hsieh et al. (2010) GU324747 GQ848360 GQ502696
Xylaria lindericola FCATAS852(HT) China Pan et al. (2022) MZ005635 MZ031982 MZ031978
Xylaria lindericola FCATAS853 China Pan et al. (2022) MZ005636 MZ048749 MZ031979
Xylaria liquidambaris HAST 93090701 China Hsieh et al. (2010) GU300094 GQ844810 GQ487702
Xylaria luteostromata var. macrospora HAST 508 Martinique Hsieh et al. (2010) GU324739 GQ848352 GQ502688
Xylaria mali CBS 385.35 USA U’Ren et al. (2016) KU683769 KU684286 KU684205
Xylaria meliacearum JDR 148 Puerto Rico Hsieh et al. (2010) GU300084 GQ844797 GQ478219
Xylaria microceras HAST 414 Guadeloup Hsieh et al. (2010) GU300086 GQ844799 GQ478221
Xylaria montagnei HAST 495 Martinique Hsieh et al. (2010) GU322455 GQ848337 GQ495948
Xylaria multiplex JDR 259 USA Hsieh et al. (2010) GU300099 GQ844815 GQ487706
Xylaria multiplex HAST 580 Martinique Hsieh et al. (2010) GU300098 GQ844814 GQ487705
Xylaria muscula HAST 520 Guadeloupe Hsieh et al. (2010) GU300087 GQ844800 GQ478222
Xylaria nanningensis GMB4702(HT) China This study PQ108601 PQ106653 PQ106647
Xylaria nanningensis GMB4706 China This study PQ108602 PQ106654 PQ106648
Xylaria necrophora DMCC2127 USA Garcia-Aroca et al. (2021) MN846321 MN917805 MN917782
Xylaria necrophora DMCC2477 USA Garcia-Aroca et al. (2021) MH046898 MH113626 MH113628
Xylaria negundinis GMB1082(HT) China Li et al. (2024a) OR468993 OR887273 OR485583
Xylaria negundinis GMB1166 China Li et al. (2024a) OR468992 OR887274 OR485584
Xylaria ochraceostroma HAST 401(HT) China Hsieh et al. (2010) EU179869 GQ853034 GQ502717
Xylaria oligotoma HAST 784 French Guiana Hsieh et al. (2010) GU300092 GQ844808 GQ487700
Xylaria ophiopoda HAST 93082805 China Hsieh et al. (2010) GU322461 GQ848344 GQ495955
Xylaria orbiculati GMB1083(HT) China Li et al. (2024a) OR468995 OR887275 OR485585
Xylaria orbiculati GMB1084 China Li et al. (2024a) OR468994 OR887276 OR485586
Xylaria orientalis GMB4701(HT) China This study PQ108603 PQ106655 PQ106649
Xylaria orientalis GMB4705 China This study PQ108604 PQ106656 PQ106650
Xylaria ovate GMB1085(HT) China Li et al. (2024a) OR468998 OR887277 N/A
Xylaria ovate GMB1086 China Li et al. (2024a) OR468996 OR887278 N/A
Xylaria oxyacanthae JDR 859 USA Hsieh et al. (2010) GU322434 GQ844820 GQ495927
Xylaria palmicola PDD 604 New Zealand Hsieh et al. (2010) GU322436 GQ844822 GQ495929
Xylaria papulis HAST 89021903 China Hsieh et al. (2010) GU300100 GQ844816 GQ487707
Xylaria petchii HAFFR118 China Pan et al. (2024) OR702617 OR757123 OR735172
Xylaria petchii HAFFR126 China Pan et al. (2024) OR702618 OR757124 OR735173
Xylaria phyllocharis HAST 528 Guadeloupe Hsieh et al. (2010) GU322445 GQ844832 GQ495938
Xylaria polymorpha JDR 1012 USA Hsieh et al. (2010) GU322460 GQ848343 GQ495954
Xylaria polysporicola FCATAS848(HT) China Pan et al. (2022) MZ005592 MZ031980 MZ031976
Xylaria polysporicola FCATAS849 China Pan et al. (2022) MZ005591 MZ031981 MZ031977
Xylaria pseudoanisopleura GMB1088(HT) China Li et al. (2024a) N/A OR887279 OR485587
Xylaria pseudobambusicola GMB1090(HT) China Li et al. (2024a) OR469002 OR887280 OR485590
Xylaria pseudobambusicola GMB1091 China Li et al. (2024a) OR469004 OR887281 OR485591
Xylaria pseudocubensis GMB1089(HT) China Li et al. (2024a) OR468997 OR887282 OR485588
Xylaria pseudocubensis GMB0775 China Li et al. (2024a) OR468999 OR887283 OR485589
Xylaria pseudoglobosa GMB1092(HT) China Li et al. (2024a) OR469001 OR887284 OR485592
Xylaria pseudohemisphaerica GMB1093(HT) China Li et al. (2024a) N/A OR887285 OR485593
Xylaria pseudohypoxylon GMB1094(HT) China Li et al. (2024a) OR469003 OR887286 OR485594
Xylaria pseudohypoxylon GMB0776 China Li et al. (2024a) OR469005 OR887287 OR485595
Xylaria puerensis GMB1095(HT) China Li et al. (2024a) OR469008 OR887288 OR485596
Xylaria puerensis GMB1167 China Li et al. (2024a) OR469007 OR887289 OR485597
Xylaria qianensis GMB1050(HT) China Li et al. (2024a) OR469006 OR753867 OR484924
Xylaria qianensis GMB1049 China Li et al. (2024a) OR469013 OR753868 OR484925
Xylaria qiongzhouensis GMB1096(HT) China Li et al. (2024a) OR469009 OR887290 OR485598
Xylaria qiongzhouensis GMB1097 China Li et al. (2024a) N/A OR887291 OR485599
Xylaria reevesiae HAST 90071609 China Hsieh et al. (2010) GU322435 GQ844821 GQ495928
Xylaria regalis HAST 920 India Hsieh et al. (2010) GU324745 GQ848358 GQ502694
Xylaria rogersii FCATAS913 China Ma et al. (2022a) MZ648825 MZ707119 MZ695799
Xylaria rogersii FCATAS915(HT) China Ma et al. (2022a) MZ648827 MZ707121 MZ695800
Xylaria schimicola FCATAS896(HT) China Ma et al. (2022a) MZ648850 MZ707114 MZ695787
Xylaria schweinitzii HAST 92092023 China Hsieh et al. (2010) GU322463 GQ848346 GQ495957
Xylaria scruposa HAST 497 Martinique Hsieh et al. (2010) GU322458 GQ848341 GQ495952
Xylaria shuqunii GMB1105(HT) China Li et al. (2024a) OR469012 OR887299 OR485603
Xylaria shuqunii GMB1106 China Li et al. (2024a) OR469011 OR887300 OR485604
Xylaria sicula HAST 90071613 China Hsieh et al. (2010) GU300081 GQ844794 GQ478216
Xylaria sinensis GMB1109(HT) China Li et al. (2024a) OR469010 OR887301 OR485607
Xylaria sinensis GMB0778 China Li et al. (2024a) OR469014 OR887302 OR485608
Xylaria striata HAST 304 China Hsieh et al. (2010) GU300089 GQ844803 GQ478224
Xylaria taiyangheensis GMB4704(HT) China This study PQ108605 PQ106657 PQ106651
Xylaria taiyangheensis GMB4708 China This study PQ108606 PQ106658 PQ106652
Xylaria telfairii HAST 90081901 China Hsieh et al. (2010) GU324738 GQ848351 GQ502687
Xylaria theaceicola FCATAS903(HT) China Ma et al. (2022a) MZ648848 MZ707115 MZ695788
Xylaria tongrenensis GMB1169 China Li et al. (2024a) OR469016 OR887304 OR485610
Xylaria tuberoides HAST 475 Martinique Hsieh et al. (2010) GU300074 GQ844784 GQ478209
Xylaria umbellata GMB1116(HT) China Li et al. (2024a) OR469019 OR887305 OR485611
Xylaria umbellata GMB1170 China Li et al. (2024a) OR469020 OR887306 OR485612
Xylaria venosula HAST 94080508 USA Hsieh et al. (2010) EF026149 GQ844806 EF025617
Xylaria venustula HAST 88113002 China Hsieh et al. (2010) GU300091 GQ844807 GQ487699
Xylaria vivantii HAST 519 Martinique Hsieh et al. (2010) GU322438 GQ844824 GQ495931
Xylaria wallichii FCATAS923 China Ma et al. (2022a) MZ648861 MZ707118 MZ695793
Xylaria xishuiensis GMB1120(HT) China Li et al. (2024a) OR469021 N/A OR485613
Xylaria xishuiensis GMB0779 China Li et al. (2024a) OR469023 N/A OR485614
Xylaria yumingii GMB1128(HT) China Li et al. (2024a) OR469022 N/A OR485618
Xylaria yunnanensis GMB1129(HT) China Li et al. (2024a) OR469026 OR887310 OR485619
Xylaria yunnanensis GMB0780 China Li et al. (2024a) OR469025 OR887311 OR485620
Xylaria zangmui GMB1130(HT) China Li et al. (2024a) OR469024 OR753880 OR485621
Xylaria zangmui GMB0781 China Li et al. (2024a) OR469028 OR753881 OR485622
Xylaria zonghuangii GMB1131(HT) China Li et al. (2024a) OR469030 OR753878 OR485623
Xylaria zonghuangii GMB1132 China Li et al. (2024a) OR469027 OR753879 OR485624
Xylosphaera berteroi JDR 256 USA Hsieh et al. (2010) GU324750 GQ848363 GQ502698
Xylosphaera berteroi HAST 90112623 China Hsieh et al. (2010) GU324749 GQ848362 AY951763
Xylosphaera berteroi MFLUCC 14-0150 Thailand Ma et al. (2022b) MZ463147 MZ970707 MZ998966
Xylosphaera ianthinovelutina HAST 553 Martinique Hsieh et al. (2010) GU322441 GQ844828 GQ495934

Results

Phylogenetic analysis

After exclusion of ambiguously aligned regions and long gaps, the final combined data matrix contained 2,320 characters. Jackrogersella cohaerens (Pers.) L. Wendt, Kuhnert & M. Stadler, Hypoxylon fragiforme (Pers.) J. Kickx f. and Daldinia loculatoides Wollw. & M. Stadler were added as the outgroups (Li et al. 2024a; Pan et al. 2022, 2024). The tree topology derived from Maximum Likelihood (ML) analysis closely resembled that of Bayesian Inference (BI) analysis. The best scoring RAxML tree is shown in Fig. 1.

Figure 1. 

RAxML tree based on a combined ITS, TUB2 and rpb2 gene sequences data set. Bootstrap support values for maximum likelihood (ML) >75% and Bayesian posterior probabilities (BPP) > 0.95 are displayed above or below the respective branches (ML/BI). The newly described species are marked and red. Type materials were marked bold.

In the phylogram (Fig. 1), the new species sequences clustered in two different clades. The folicolous species clustered in a same clade (highlighted red in the Fig. 1). The sequence of Xylaria orientalis sp. nov. (GMB4701, GMB4705) formed a clade in a sister relation with X. crinalis Hai X. Ma, Lar. N. Vassiljeva & Yu Li (FCATAS MHX 751) and X. filiformis Hashemi (Alb. & Schwein.) Fr. (GUM IRN 1052) with a low support value. However, this positioning remained consistent across repeated phylogenetic analyses. Xylaria nanningensis sp. nov. (GMB4702, GMB4706) formed a clad in a sister relationship with X. ficicola Hai X. Ma, Lar. N. Vassiljeva & Yu Li (HMJAU 22818) with a high support value (BS100/0.96PP). This lineage contains X. amphithele San Martin & J. D. Rogers (HAST 529) and X. jichuanii sp. nov. (GMB4703, GMB4707). The sequence of X. taiyangheensis (GMB4704, GMB4708) formed a separate clade with X. phyllocharis Mont. in a sister relationship (BS100/1PP).

Taxonomy

Xylaria jichuanii W.Y. Zeng & Q.R. Li, sp. nov.

MycoBank No: 853632
Fig. 2

Etymology

The epithet “jichuanii” pays tribute to the renowned mycologist, Prof. Jichuan Kang, in recognition of his valuable contributions to the field of mycology.

Figure 2. 

Xylaria jichuanii (GMB4703) A type material B stroma C surface of stroma D transverse section of stroma E longitudinal section of stroma F-H asci with ascospores I a J+, ascus apical apparatus (stained in Melzer’s Reagent) J–L ascospores M colonies of Xylaria jichuanii on OA. Scale bars: 0.5 mm (C–E); 20 µm (F–L).

Type

China. •Guangxi Province, Fangchenggang City, Shiwandashan National Nature Reserve, 21°43'45″N, 107°37'19″E, elev. 459 m, on fallen leaves of unknown plants, August 2023, Wenyu Zeng & Xin Zhou, SWDS1 (GMB4703 Holotype; KUN-HKAS 134915 Isotype; GMBC4703 ex-type).

Description

Saprobic on fallen leaves of an unknown plant. Sexual morph: Stromata 1–4.2 cm total length, solitary, upright or prostrate, cylindrical, unbranched, straight to most often sinuous to contorted, the stipe glabrous, 4–18 mm long, the base slightly swollen; fertile part 5–16 × 1–2 mm, cylindrical, surface blackish, with conspicuous to half-exposed perithecial mounds, externally black, interior white. Perithecia 371–776 μm diam., subglobose to globose, texture soft. Ostioles papillate. Asci 84–144 × 5.6–8.6 μm (x̄= 119 × 7.5 μm, n = 30), 8-spored, unitunicate, cylindrical, apically rounded, with a J+, hat-shaped, apical apparatus bluing in Melzer’s reagent, 4–6 × 4–5.5 μm (x̄ = 4.9 × 5.0 μm, n = 30). Ascospores 13.5–17 × 5–8 μm (x̄ = 15.1 × 6.5 μm, n = 30), uniseriate, unicellular, brown to dark brown, ellipsoid to inequilateral, with broadly rounded ends, smooth, with a straight germ slit, equal to the length of the spores, lacking sheath; surrounded with a hyaline sheath swelling at both ends to form papillate non-cellular appendages, sometimes retaining a cellular appendage within a noncellular appendage, epispore smooth. Asexual morph: Undetermined.

Culture characteristics

Colonies on OA reaching 1.5–2 mm diam. after 2 weeks at 25 °C, white at first, with irregular margins, then extension spreading toward the edge of the Petri dish; the overall color is light white.

Additional material examined

China. •Guangxi Province, Fangchenggang City, Shiwandashan National Nature Reserve, 21°43'55″N, 107°37'24″E, elev. 482 m, on fallen leaves of unknown plants, August 2023, Wenyu Zeng & Xin Zhou, SWDS1-1 (GMB4707; GMBC4707).

Notes

Phylogenetically, it is closely related to Xylaria amphithele and X. petchii. However, X. amphithele differ from the new collection by its smaller (≤50 mm) stromata which are conical to globose at the fertile part, large asci 130–220 μm in total length with the spore-bearing part being 80–120 μm long. Furthermore, X. amphithele has a smaller apical apparatus (3.5–4.5 × 2–3 μm), and smaller perithecia (300–550 μm broad) (Ju and Hsieh 2023). Xylaria petchii differs by having a conical to subglobose fertile part (1–10 × 0.5–2 mm), composed of clusters of perithecia near the top of the stromata, smaller perithecia (250–550 µm in diameter), and smaller ascospores (7.5–10 × 3.5–5 µm) with a sigmoid germ slit (Ju and Hsieh 2023). Morphologically, it is closely related to X. ficicola, which can be easily distinguished from X. jichuanii by its conical to subglobose capitate fertile head, and larger apical apparatus measuring 5–7.5 × 3–3.5 µm. Additionally, it possesses larger ascospores (16–22.7 × 6.5–8.5 µm) with a round hyaline noncellular appendage of up to 5 × 5 μm (Ma et al. 2011).

Xylaria nanningensis W.Y. Zeng & Q.R. Li, sp. nov.

MycoBank No: 853633
Fig. 3

Etymology

The specific epithet refers to its collection location, Nanning City.

Type

China. •Guangxi Province, Nanning City, Liangfengjiang National For-est Park, 22°43'28″N, 108°16'59″E, elev. 97 m, on fallen leaves of unknown plants, August 2023, Wenyu Zeng & Xin Zhou, LFJ1 (GMB4702 Holotype; KUN -HKAS 134916 Isotype; GMBC4702 ex-type).

Figure 3. 

Xylaria nanningensis (GMB4702) A type material B fertile part of stroma C surface of stroma D transverse section of stroma E longitudinal section of stroma F–H asci with ascospores I a J+, ascus apical apparatus (stained in Melzer’s Reagent) J–L ascospores M colonies of Xylaria nanningensis on OA. Scale bars: 0.5 mm (C–E); 10 µm (F–L).

Description

Saprobic on fallen leaves of unknown plants. Sexual morph: Stromata 1.1–2.8 cm in total length, solitary, upright, unbranched, with capitate fertile apex, head conical to subglobose 0.5–1.2 mm diam × 0.5–1.8 mm thick, consists of closely packed perithecia, surface black, rounded, on a long stipe, slightly swollen at base, rough. Externally black, interior white, texture soft. Stipes thin, glabrous, up to 2 cm long. Perithecia 85–395 μm diam., oval to spherical, embedded, closely arranged, interior white. Ostioles slightly papillate. Asci 114–156 × 6.8–13.6 μm (x̄ = 135 × 10.2 μm, n = 30), 8-spored, unitunicate, cylindrical, apically rounded, with an inverted hat shaped apical apparatus, blue staining in Melzer’s reagent, 5.2–5.7 × 4.9–5.4 μm (x̄ = 5.5 × 5.2 μm, n = 30). Ascospores 15.0–24.1 × 4.4–7.4 μm (x̄ = 19.0 × 5.5 μm, n = 30), uniseriate, unicellular, hyaline when immature, slight brown to dark brown at maturity, ellipsoid-inequilateral, with rounded ends, smooth, each end surround a round sheath, up to 5 × 5 μm, lacking germ slit; epispore smooth. Asexual morph: Undetermined.

Culture characteristics

Colonies on OA reaching 3–4 cm diam. after 2 weeks at 25 °C, white at first, with irregular margins, then extension spreading toward the edge of the Petri dish; the overall color is light white.

Additional material examined

China. •Guangxi Province, Nanning City, Liangfengjiang National Forest Park, 22°43'28″N, 108°16'59″E, elev. 207 m, on fallen leaves of unknown plants, August 2023, Wenyu Zeng & Xin Zhou, LFJ1-1 (GMB4706; GMBC4706).

Notes

In the phylogram (Fig. 1), it is closely related to X. ficicola. The latter can be distinguished by the size of stromata stipe, asci and ascospores (Pan et al. 2022). Xylaria nanningensis has less than 2 cm long stipe (vs. up to 6 cm long in X. ficicola), asci measuring 114–156 × 6.8–13.6 μm (vs. 190–220 × 8–10 μm in X. ficicola) and ascospores measuring 15.0–24.1 × 4.4–7.4 μm (vs. 16–22.7 × 6.5–8.5 μm in X. ficicola). Moreover, the apical apparatus of the new species is slightly smaller (5.2–5.7 × 4.9–5.4 μm vs. 5–7.5 × 3–3.5 μm) (Ma et al. 2011). Morphologically, X. nanningensis is similar to X. guazumae F. San Martín & J.D. Rogers (San and Rogers 1989), but the latter grows on the fallen fruits of Guazuma ulmifolia Lam. (Sterculiaceae) and has relatively smaller ascospores (14–19 × 5.5–6 μm) and smaller rectangular apical ring (2.8–3.2 × 2–2.5 μm) (San and Rogers 1989). Another morphologically close species is X. polysporicola Hai X. Ma & X.Y. Pan, but the latter can be distinguished by its stromata which has acute sterile apex up to 2 mm long, fertile part 2–15 mm long × 0.5–1.6 mm diam. (vs. fertile apex 0.5–1.2 mm long × 0.5–1 mm diam), and smaller ascospores (11.5–15 × 5.5–8 µm) with a straight germ slit (Pan et al. 2022).

Xylaria orientalis W.Y. Zeng & Q.R. Li, sp. nov.

MycoBank No: 853634
Fig. 4

Etymology

The specific epithet refers to the name of host, Hedyosmum orientalis Merr. & Chun.

Type

China. •Guangxi Province, Rongshui County, Jiuwanshan National Na-ture Reserve, 25°10'42″N, 108°44'58″E, elev. 984 m, on fallen leaves of Hedyosmum orientalis (Chloranthaceae), August 2023, Wenyu Zeng & Xin Zhou, JWS2 (GMB4701 Holotype; KUN-HKAS 134917 Isotype; GMBC4701 ex-type).

Figure 4. 

Xylaria orientalis (GMB4701) A type material B stroma C surface of stroma D transverse section of stroma E longitudinal section of stroma F-H asci with ascospores I a J+, ascus apical apparatus (stained in Melzer’s Reagent) J–L ascospores M colonies of Xylaria orientalis on OA. Scale bars: 0.5 mm (C–E); 15 µm (F–L).

Description

Saprobic on fallen leaves of Hedyosmum orientalis. Sexual morph: Stromata 1.7–8.5 cm long, upright, solitary, black, thread-like, unbranched, with a long sterile filiform apex up to 0.2–4 cm long, fertile part 4–13 mm long × 0.5–1 mm wide, glabrous, finely longitudinally striate, the base slightly swollen, with 2/3-exposed to fully exposed perithecial mounds. The exterior is black, interior white, has soft texture. Perithecia subglobose, 350–573 μm diam. Ostioles papillate. Asci 81–115 × 4.6–6.6 μm (x̄ = 98 × 5.6 μm, n = 30), 8-spored, unitunicate, cylindrical, with a J+, tubular to wedge-shaped apical apparatus bluing in Melzer’s reagent, 2.1–4.1 × 2.8–4.0 μm (x̄ = 3.1 × 3.4 μm, n = 30). Ascospores 9.4–11.2 × 3.5–5.0 μm (x̄ = 10.2 × 4.3 μm, n = 30), uniseriate, unicellular, dark brown to black, ellipsoid-inequilateral, with narrowly rounded ends, smooth, straight germ slit of a spore-length, lacking sheath, epispore smooth. Asexual morph: Undetermined.

Culture characteristics

Colonies on OA reaching 12–15 mm diam. after 2 weeks at 25 °C, white at first, with irregular margins, then extension spreading toward the edge of the Petri dish; the overall color is light white.

Additional material examined

China. •Guangxi Province, Rongshui County, Jiuwanshan National Nature Reserve, 25°10'42″N, 108°44'58″E, elev. 765 m, on fallen leaves of Hedyosmum orientalis, August 2023, Wenyu Zeng & Xin Zhou, JWS2-1 (GMB4705; GMBC4705).

Notes

Morphologically and phylogenetically (Fig. 1), Xylaria orientalis is closely related to X. filiformis and X. crinalis, sharing similar stromatal characteristics (Hashemi et al. 2014; Ma and Yu 2018). However, differences are observed in their asci and ascospores. The ascospores of X. orientalis are distinctly dark brown to black, whereas those of X. filiformis are light brown. Additionally, X. filiformis has larger asci 130–155 × 5.5–6.2 μm, and ascospores 12.5–21 × 4.5–5.5 μm (Hashemi et al. 2014). Xylaria crinalis differs by having a few scattered perithecia on the stroma, a more or less conspicuous germ slit, a narrower apical apparatus 1.5–2.5 µm broad, larger ascospores 14–17.5 × 3.5–6 µm, and its occurrence on wood. Morphologically, Xylaria orientalis also shares stromatal characteristics with X. vagans Petch. However, X. vagans is distinguished by its black rhizomorphoid mycelium connecting dead leaves, asci lacking a J+ apical apparatus, and ascospores with broadly rounded ends that lack a germ slit (Ju and Hsieh 2023).

Xylaria taiyangheensis W.Y. Zeng & Q.R. Li, sp. nov.

MycoBank No: 853635
Fig. 5

Etymology

The specific epithet refers to its collection location, Taiyanghe Provincial Nature Reserve.

Type

China. •Yunnan Province, Puer City, Taiyanghe Provincial Nature Reserve, 22°38'24″N, 101°15'13″E, elev. 1032 m, on twigs of Goniothalamus cheliensis Hu, July 2023, Wenyu Zeng & Xin Zhou, TYH5 (GMB4704 Holotype; KUN-HKAS 134918 Isotype; GMBC4704 ex-type).

Figure 5. 

Xylaria taiyangheensis (GMB4704) A type material B stroma C surface of stroma D transverse section of stroma E longitudinal section of stroma F–H asci with ascospores I a J+, ascus apical apparatus (stained in Melzer’s Reagent) J–L ascospores M colonies of Xylaria taiyangheensis on OA. Scale bars: 0.5 mm (C–E); 15 µm (F–L).

Description

Saprobic on twigs of Goniothalamus cheliensis. Sexual morph: Stromata 0.7–2.7 cm in total length, cylindrical at fertile part, unbranched, long and smooth stipe, 10–24 mm long, fertile part 5–13 mm long × 0.5–1 mm diam., surface black, with 2/3-exposed to fully exposed perithecial mounds, interior white, homogeneous. Perithecia 247–365 μm broad, closely arranged. Ostioles papillate. Asci 79–107 × 6.5–11.3 μm (x̄ = 93 × 8.9 μm, n = 30), 8-spored, unitunicate, cylindrical, apically rounded, with a urn-shaped apical apparatus, blue staining in Melzer’s reagent, 4.1–7.1 × 4.6–6.5 μm (x̄ = 5.6 × 5.5 μm, n = 30). Ascospores 11.6–20.3 × 4.0–7.0 μm (x̄ = 15.9 × 5.5 μm, n = 30), uniseriate, unicellular, brown, ellipsoid to inequilateral, with broadly rounded ends, smooth, without germ slit, lacking appendages and sheaths, epispore smooth. Asexual morph: Undetermined.

Culture characteristics

Colonies on OA reaching 1–1.5 cm diam. after 2 weeks at 25 °C white at first, with irregular margins, then extension spreading toward the edge of the petri dish; the overall color is light white.

Additional material examined

China. •Yunnan Province, Puer City, Taiyanghe Provincial Nature Reserve, 22°38'24″N, 101°15'13″E, elev. 962 m, on twigs of unknown plants, July 2023, Wenyu Zeng & Xin Zhou, TYH5-1 (GMB4708; GMBC4708).

Notes

Phylogenetically, it is closely related to X. phyllocharis. However, X. phyllocharis differs in having stromata with a slight perithecial mound, smaller ascomata (100–250 μm in breadth), and smaller ascospores (9–12.5 × 4.5–7 μm) with a straight germ slit (Ju and Hsieh 2023). Morphologically, X. taiyangheensis and X. noduliformis show similar stromata, but the latter has smaller ascospores (9–11 × 5.5–7 µm) with a straight germ slit (Ju and Hsieh 2023). Moreover, X. noduliformis differs from the new collection by its host, and association with petioles.

Discussion

The phylogenetic tree (Fig. 1) reveals that Xylaria does not share a common ancestor and evolved from different ancestral lineages. The Xylaria species positions in the phylogram (Fig. 1) are consistent with previous studies (Hsieh et al. 2010; U’Ren et al. 2016; Ma et al. 2022a; Li et al. 2024a).

Phylogenetic analysis in this study reveals that Xylaria jichuanii, X. nanningensis, X. orientalis and X. taiyangheensis form a distinct cluster within the phylogenetic tree. The three folicolous species of this study Xylaria jichuanii, X. nanningensis, and X. orientalis clustered with X. amphithele, X. crinalis, X. filiformis, X. ficicola, X. diaoluoshanensis, X. fulvotomentosa, X. hedyosmicola, X. petchii, X. polysporicola and Entalbostroma erumpens, all of which are related to fallen leaves, except for X. crinalis which is wood-inhabiting (Pan et al. 2024). The wood-inhabiting species of this study X. taiyangheensis clustered with the leaf-inhabiting X. phyllocharis, forming a distinct clade in the phylogram, highlighting the possible influence of substrate on the evolution of these taxa. These findings corroborate the conclusions of Ju and Hsieh (2023) and Pan et al. (2024), affirming consistency in systematic analysis results. This may indicate that species of Xylaria, which associated on plant leaves and petioles, may have a similar evolutionary process.

The fallen leaves and petioles serve as a growth substrate for some Xylaria species. However, these species are often overlooked because of their small stromata. They typically have a small number of stromata, and multiple species may grow on the same leaf, making collection challenging (Ju and Hsieh 2023; Pan et al. 2024). Xylaria petchii C. G. Lloyd, X. diaoluoshanensis Xiao Y. Pan and X. fulvotomentosa Xiao Y. Pan, on the fallen leaves were introduced within Hainan tropical rainforest national park (Pan et al. 2024). Ju and Hsieh (2023) provided a compilation of Xylaria species associated with fallen leaves and petioles worldwide, as well as new species. A total of 44 Xylaria species found on fallen leaves and petioles have been officially documented globally. To date, fourteen taxa, including X. betulicola Hai X. Ma, Lar.N. Vassiljeva & Yu Li, X. diminuta F. San Martín & J.D. Rogers, X. ficicola Hai X. Ma, Lar.N. Vassiljeva & Yu Li, X. foliicola G. Huang & L. Guo, X. aristata Mont. var. aristata, X. hedyosmicola Hai X.Ma & X.Y. Pan, X. simplicissima (Pers.) Y.M. Ju & H.M. Hsieh, X. lindericola Hai X. Ma & X.Y. Pan, X. polysporicola Hai X. Ma & X.Y. Pan, X. sicula Pass. & Beltr. f. major Ciccarone, X. minuscula Y.M. Ju & H.M. Hsieh, X. diaoluoshanensis, X. fulvotomentosa and X. petchii have been discovered on fallen leaves in China (Hsieh et al. 2010; Ma et al. 2011; Zhu and Guo 2011; Huang et al. 2014, 2015; Ma et al. 2022a; Ju and Hsieh 2023; Pan et al. 2024). Here three new Xylaria species associated on fallen leaves and petioles were introduced. Recent publications have shown that a high number of Xylaria species associated with fallen leaves in tropical and subtropical regions, with most findings confirming new species (Ju and Hsieh 2023; Pan et al. 2024). A more thorough examination of Xylaria species growing on leaves and petioles is needed.

The southwestern region of China boasts the world’s largest karst habitat area, harbouring abundant and distinctive fungal species. Recent reports of new Xylaria species from China, particularly from Karst regions, underscore the significance of these environments as focal points of fungal diversity (Li et al. 2024a; Zhu et al. 2024). Pan et al. (2022, 2024), Li et al. (2024a, 2024b) and Zhu et al. (2024) reported more than 80 new species of Xylariales include 45 Xylaria species from the karst region of China. Four new pale-spored species of Xylaria were introduced from Southwest China (Ma et al. 2022a). Zhu et al. (2024) reported two new species, X. aleuriticola and X. microcarpa on fallen fruits, and one new record from south China. Through examination of fallen leaves and twigs of plants in these unique habitats, we identified four new Xylaria species from the Karst regions of Yunnan and Guangxi provinces, China. This extensive documentation underscores the remarkable diversity and ecological significance of the Xylariales in karst environments. These findings not only broaden our comprehension of Xylaria diversity in the region but also underscores the importance of continuous exploration and documentation efforts, particularly in ecologically distinctive areas such as the Karst Region in South China.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (32170019 and 32000009); the Guizhou Medical University High Level Talent Launch Fund Project (2023-058); the Guizhou Provincial Scientific and Technologic Innovation Base (No. [2023]003); the High-level Innovation Talents of Guizhou (No. GCC [2023]048); National Natural Science Foundation of China (12132006); the Guizhou Provincial Natural Science Foundation for High-Level Innovative Talents and Teams (2016-5676, 2015-4021).

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author contributions

Conceptualization: Jichuan Kang, Qirui Li. Collection and morphological examinations: Wenyu Zeng, Xin Zhou, Yulin Ren. Molecular sequencing, and phylogenetic analyses: Xin Zhou, Bei Wang. Specimen identification: Wenyu Zeng, Qirui Li. Original draft preparation: Wenyu Zeng, Kamran Habib, Qirui Li. Review and editing, supervision: Xiangchun Shen, Yingqian Kang and Jichuan Kang. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Wenyu Zeng https://orcid.org/0009-0001-6826-7591

Kamran Habib https://orcid.org/0000-0003-2572-0306

Xin Zhou https://orcid.org/0009-0002-4204-1225

Yulin Ren https://orcid.org/0009-0003-9063-425X

Xiangchun Shen https://orcid.org/0000-0002-4333-9106

Yingqian Kang https://orcid.org/0000-0003-0189-9655

Jichuan Kang https://orcid.org/0000-0002-6294-5793

Qirui Li https://orcid.org/0000-0001-8735-2890

Data availability

The datasets generated during and/or analyzed during the current study are available in the MycoBank repository (included in the manuscript), and GenBank (included in Table 1). And also, the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Becker K, Wongkanoun S, Wessel AC, Bills GF, Stadler M, Luangsa‐Ard JJ (2020) Phylogenetic and chemotaxonomic studies confirm the affinities of Stromatoneurospora phoenix to the coprophilous Xylariaceae. Journal of Fungi 6(3): 144. https://doi.org/10.3390/jof6030144
  • Daranagama DA, Camporesi E, Tian Q, Liu X, Chamyuang S, Stadler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Diversity 73: 203–238. https://doi.org/10.1007/s13225-015-0329-6
  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. American Journal of Botany 90(11): 1661–1667. https://doi.org/10.3732/ajb.90.11.1661
  • Dayarathne MC, Jones EB, Maharachchikumbura SS, Devadatha B, Sarma VV, Khongphinitbunjong K, Chomnunti P, Hyde KD (2020) Morpho‐molecular characterization of microfungi associated with marine based habitats. Mycosphere 11(1): 1–188. https://doi.org/10.5943/mycosphere/11/1/1
  • Dong W, Hyde KD, Jeewon R, Liao CF, Zhao HJ, Kularathnage ND, Li H, Yang YH, Pem D, Shu YX, Gafforov Y, Manawasinghe IS, Doilom M (2023) Mycosphere notes 449–468: Saprobic and endophytic fungi in China, Thailand, and Uzbekistan. Mycosphere 14(1): 2208–2262. https://doi.org/10.5943/mycosphere/14/1/26
  • Elias LM, Fortkamp D, Sartori SB, Ferreira MC, Gomes LH, Azevedo JL, Montoya QV, Rodrigues A, Ferreira AG, Lira SP (2018) The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose. Brazilian Journal of Microbiology 49: 840–847. https://doi.org/10.1016/j.bjm.2018.03.003
  • Fournier J, Lechat C, Courtecuisse R (2020) The genus Xylaria sensu lato (Xylariaceae) in Guadeloupe and Martinique (French West Indies) III. Taxa with slender upright stromata. Ascomycete. Org : Revue Internationale pour la Taxinomie des Ascomycota 12(3): 81–164. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Garcia-Aroca T, Price PP, Tomaso-Peterson M, Allen TW, Wilkerson TH, Spurlock TN, Faske TR, Bluhm B, Conner K, Sikora E, Guyer R, Kelly H, Squiers BM, Doyle VP (2021) Xylaria necrophora, sp. nov., is an emerging root‐associated pathogen responsible for taproot decline of soybean in the southern United States. Mycologia 113: 326–347. https://doi.org/10.1080/00275514.2020.1846965
  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Hall TA (1999) BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  • Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Molecular Phylogenetics and Evolution 54(3): 957–969. https://doi.org/10.1016/j.ympev.2009.12.015
  • Hyde KD, Norphanphoun C, Ma J, Yang HD, Zhang JY, Du TY, Gao Y, Gomes de Farias AR, Gui H, He SC, He YK, Li CJY, Liu XF, Lu L, Su HL, Tang X, Tian XG, Wang SY, Wei DP, Xu RF, Xu RJ, Yang Q, Yang YY, Zhang F, Zhang Q, Bahkali AH, Boonmee S, Chethana KWT, Jayawardena RS, Lu YZ, Karunarathna SC, Tibpromma S, Wang Y, Zhao Q (2023) Mycosphere notes 387–412 – novel species of fungal taxa from around the world. Mycosphere 14(1): 663–744. https://doi.org/10.5943/mycosphere/14/1/8
  • Ibrahim A, Tanney JB, Fei F, Seifert KA, Cutler GC, Capretta A, Miller JD, Sumarah MW (2020) Metabolomic‐guided discovery of cyclic nonribosomal peptides from Xylaria ellisii sp. nov., a leaf and stem endophyte of Vaccinium angustifolium. Scientific Reports 10(1): 4599. https://doi.org/10.1038/s41598-020-61088-x
  • Jakob A, Breg Valjavec M, Čarni A (2022) Turnover of plant species on an ecological gradient in karst Dolines is reflected in plant traits: Chorotypes, life forms, plant architecture and strategies. Diversity 14(8): 597. https://doi.org/10.3390/d14080597
  • Johnston PR, Rogers JD, Park D, Martin NA (2016) Entalbostroma erumpens gen. et sp. nov. (Xylariaceae) from Phormium in New Zealand. Mycotaxon 131(4): 765–771. https://doi.org/10.5248/131.765
  • Ju YM, Hsieh HM, Rogers JD, Fournier J, Jaklitsch WM, Courtecuisse R (2012) New and interesting penzigioid Xylaria species with small, soft stromata. Mycologia 104: 766–776. https://doi.org/10.3852/11-313
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Nonaka K, Ishii T, Shiomi K, Ōmura S, Masuma R (2013) Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycoscience 54: 394–399. https://doi.org/10.1016/j.myc.2013.01.004
  • Konta S, Hyde KD, Phookamsak R, Xu JC, Maharachchikumbura SSN, Daranagama DA, McKenzie EHC, Boonmee S, Tibpromma S, Eungwanichayapant PD, Samarakoon MC (2020) Polyphyletic genera in Xylariaceae (Xylariales): Neoxylaria gen. nov. and Stilbohypoxylon. Mycosphere 11: 2629–2651. https://doi.org/10.5943/mycosphere/11/1/17
  • Li SL, Liu CQ, Chen JA, Wang SJ (2021) Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agriculture, Ecosystems & Environment 306(2): 107173. https://doi.org/10.1016/j.agee.2020.107173
  • Li QR, Kamran H, Wu YP, Long SH, Zhang X, Hu HM, Wu QZ (2024a) Revisiting Xylaria diversity in Southern China: Descriptions of 40 new species. Journal of Systematics and Evolution, 1–75. https://doi.org/10.1111/jse.13058
  • Li QR, Kamran H, Long SH, Wu YP, Zhang X, Hu HM, Wu QZ, Liu LL, Zhou SX, Shen XC, Kang JC (2024b) Unveiling fungal diversity in China: New species and records within the Xylariaceae. Mycosphere 15(1): 275–364.
  • Ma HX, Song ZK, Pan XY, Qu Z, Yang ZE, Li Y, Zhu AH (2022a) Four new pale-spored species of Xylaria (Xylariaceae, Xylariales) with a key to worldwide species on fallen fruits and seeds. Biology (Basel) 11(6): 885. https://doi.org/10.3390/biology11060885
  • Ma X, Chomnunti P, Doilom M, Daranagama DA, Kang J (2022b) Multigene phylogeny reveals endophytic Xylariales novelties from Dendrobium species from Southwestern China and Northern Thailand. Journal of Fungi 8: 248. https://doi.org/10.3390/jof8030248
  • Marčić Z, Jerković A, Ćaleta M, Buj I, Zanella D, Horvatić S, Mustafić P (2022) Early development of the endemic Delminichthys krbavensis (Leuciscidae, Cypriniformes) from a karstic field in croatia. Diversity 14(5): 393. https://doi.org/10.3390/d14050393
  • Melekhina EN, Kanev VA, Deneva SV (2022) Karst ecosystems of Middle Timan, Russia: Soils, plant communities, and soil oribatid mites. Diversity 14(9): 718. https://doi.org/10.3390/d14090718
  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 Nov 2010. IEEE, New York, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. https://doi.org/10.1006/mpev.1996.0376
  • Pan XY, Song ZK, Qu Z, Liu TD, Ma HX (2022) Three new Xylaria species (Xylariaceae, Xylariales) on fallen leaves from Hainan Tropical Rainforest National Park. MycoKeys 86: 47–63. https://doi.org/10.3897/mycokeys.86.71623
  • Pan XY, Chen ZZ, Lei JR, Chen XH, Wu TT, Li HY, Chen YQ (2024) Two new and one first recorded species of Xylaria isolated from fallen leaves in Hainan tropical rainforest national park in China. Diversity 16(3): 179. https://doi.org/10.3390/d16030179
  • Peláez F, González V, Platas G, Sánchez Ballesteros J, Rubio V (2008) Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences. Fungal Diversity: An International Journal of Mycology 31: 111–134.
  • Pi YH, Long SH, Wu YP, Liu LL, Lin Y, Long QD, Kang JC, Kang YQ, Chang CR, Shen XC, Wijayawardene NN, Zhang X, Li QR (2021) A taxonomic study of Nemania from China, with six new species. MycoKeys 83: 39–67. https://doi.org/10.3897/mycokeys.83.69906
  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology 53: 579–590. https://doi.org/10.1007/s00248-006-9117-x
  • Rambaut A (2012) FigTree: Tree figure drawing tool 2006‐2012, version 1.4.0. Edinburgh: Institute of Evolutionary Biology, University of Edinburgh.
  • Rogers JD (1986) Provisional keys to Xylaria species in continental United States. Mycotaxon 26: 85–97.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  • Samarakoon MC, Hyde KD, Maharachchikumbura SS, Stadler M, Gareth JEB, Promputtha I, Suwannarach N, Camporesi E, Bulgakov TS, Liu JK (2022) Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Diversity 112: 1–88. https://doi.org/10.1007/s13225-021-00495-5
  • San MGF, Rogers JD (1989) A preliminary account of Xylaria of Mexico. Mycotaxon 34: 283–373.
  • Senanayake I, Calabon MS (2020) Morphological approaches in studying fungi: Collection; examination; isolation; sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  • Senanayake IC, Maharachchikumbura SS, Hyde KD, Bhat JD, Jones EG, McKenzie EH, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73: 73–144. https://doi.org/10.1007/s13225-015-0340-y
  • Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus‐One Name” (1F1N) concept. Mycology 4: 5–21. https://doi.org/10.1080/21501203.2013.782478
  • U’Ren JM, Miadlikowska J, Zimmerman NB, Lutzoni F, Stajich JE, Arnold AE (2016) Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Molecular Phylogenetics and Evolution 98: 210–232. https://doi.org/10.1016/j.ympev.2016.02.010
  • Voglmayr H, Tello S, Jaklitsch WM, Friebes G, Baral HO, Fournier J (2022) About spirals and pores: Xylariaceae with remarkable germ loci. Persoonia—Molecular Phylogeny and Evolution of Fungi 49: 58–98. https://doi.org/10.3767/persoonia.2022.49.02
  • Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T (2019) Large‐scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsaard JJ, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycological Progress 17: 115–154. https://doi.org/10.1007/s11557-017-1311-3
  • Wu YP, Pi YH, Long SH, Liu LL, Zhang X, Long QD, Lin Y, Kang YQ, Kang JC, Wijayawardene NN, Li QR (2022) Morphology and phylogeny reveal two novel Xylaria (Xylariaceae) species from China. Phytotaxa 550(2): 14. https://doi.org/10.11646/phytotaxa.550.2.3
  • Xie X, Liu LL, Shen XC, Kang YQ, Hyde KD, Kang JC, Li QR (2020) Contributions to species of Xylariales in China‐3. Collodiscula tubulosa (Xylariaceae). Phytotaxa 428: 122–130. https://doi.org/10.11646/phytotaxa.428.2.6
  • Zhang YX, Chen JW, Manawasinghe IS, Lin YH, Jayawardena RS, McKenzie EHC, Hyde KD, Xiang MM (2023) Identification and characterization of Colletotrichum species associated with ornamental plants in Southern China. Mycosphere 14(2): 262–302. https://doi.org/10.5943/mycosphere/14/si2/5
  • Zhu AH, Song ZK, Wang JF, Guan HW, Qu Z, Ma HX (2024) Multi-gene phylogenetic and taxonomic contributions to Xylaria (Ascomycota) associated with fallen fruits from China. MycoKeys 106: 23–41. https://doi.org/10.3897/mycokeys.106.124944

Supplementary material

Supplementary material 1 

Alignment file

Wenyu Zeng, Kamran Habib, Xin Zhou, Yulin Ren, Xiangchun Shen, Bei Wang, Yingqian Kang, Jichuan Kang, Qirui Li

Data type: fasta

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (568.22 kb)
login to comment