Research Article
Print
Research Article
Arthrocatenales, a new order of extremophilic fungi in the Dothideomycetes
expand article infoMarcin Piątek, Monika Stryjak-Bogacka, Paweł Czachura
‡ W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
Open Access

Abstract

The widely treated order Capnodiales is one of the most important orders in the class Dothideomycetes. Recently, the order Capnodiales s. lat. was reassessed and split into seven orders (Capnodiales s. str., Cladosporiales, Comminutisporales, Mycosphaerellales, Neophaeothecales, Phaeothecales and Racodiales) based on multi-locus phylogeny, morphology and life strategies. In this study, two Arthrocatena strains isolated from sooty mould communities on the leaves of Tilia cordata and needles of Pinus nigra in southern Poland were analyzed. Multi-locus phylogenetic analyses (ITS-LSU-SSU-rpb2-tef1) along with morphological examination showed that they belong to Capnobotryella antalyensis, which represents a sister taxon to Arthrocatena tenebrosa. Capnobotryella antalyensis is a rock-inhabiting fungus described from Turkey. The following new combination is proposed: Arthrocatena antalyensis. Phylogenetic analyses also showed that Arthrocatena and related genus Hyphoconis, both known previously only from rocks, form a sister lineage to orders Cladosporiales and Comminutisporales. The new order Arthrocatenales and new family Arthrocatenaceae are proposed to this clade. Representatives of this order are extremophilic fungi that live on rocks and in sooty mould communities.

Key words

Dothideomycetes, molecular phylogeny, new combination, new family, new order, taxonomy

Introduction

The order Capnodiales in the wide sense (s. lat.) is one of the most important orders in the class Dothideomycetes. It contains thousands of species growing in all areas of the world, the majority of known environments, including most extreme ones, and showing diverse nutritional modes and life strategies (Schoch et al. 2006; Muggia et al. 2008; Crous et al. 2009b, 2013a; Bensch et al. 2012; Groenewald et al. 2013; Hujslová et al. 2013; Quaedvlieg et al. 2013, 2014; Egidi et al. 2014; Wijayawardene et al. 2014; Isola et al. 2016; Duarte et al. 2017; Videira et al. 2017; Gleason et al. 2019; Abdollahzadeh et al. 2020; Czachura et al. 2021; Piątek et al. 2023). This wide concept of the order Capnodiales was recently reassessed by Abdollahzadeh et al. (2020) who split it into seven orders (Capnodiales s. str., Cladosporiales, Comminutisporales, Mycosphaerellales, Neophaeothecales, Phaeothecales and Racodiales) based on multi-locus phylogeny, morphology and life strategies. The redefined order Capnodiales s. str. includes species that are almost exclusively sooty moulds while the remaining orders comprise genera and species generally encompassing other nutritional modes and ecologies (Abdollahzadeh et al. 2020), although Cladosporiales and Mycosphaerellales include some species isolated from sooty mould communities too (e.g., Friend 1965; Flessa et al. 2012, 2021; Flessa and Rambold 2013; Crous et al. 2023a, 2023b; Piątek et al. 2023). The phylogenetic placement of several genera and families within the Capnodiales s. lat. is still unresolved (e.g., Quaedvlieg et al. 2014; Ismail et al. 2016; Abdollahzadeh et al. 2020; Pereira and Phillips 2020). This refers, for example, to two phylogenetically closely related genera Arthrocatena and Hyphoconis that accommodate single species, Arthrocatena tenebrosa and Hyphoconis sterilis described as rock-inhabiting fungi from Italian Alps and Mediterranean Spain, respectively (Egidi et al. 2014; Crous et al. 2019a).

Sooty moulds are epiphytes associated with honeydew or sweet plant exudates occurring on the leaves/needles of woody plants (Hughes 1976). Although many species of sooty moulds reside in the order Capnodiales s. str. (Abdollahzadeh et al. 2020) they are also known in other orders and families of the classes Dothideomycetes and Eurotiomycetes (e.g., Friend 1965; Flessa et al. 2012, 2021; Chomnunti et al. 2014; Piątek et al. 2023). Sooty moulds form a multi-species assemblages (Hughes 1976; Hughes and Seifert 2012; Flessa et al. 2012, 2021) containing even 243 species (OTUs) (Dhami et al. 2013) of which many probably remain undescribed.

Fungi isolated from sooty mould communities are sometimes phylogenetically related to rock-inhabiting fungi. Such a relationship was mentioned in the orders Capnodiales (s. lat.) and Chaetothyriales (Chomnunti et al. 2014) and in the genera Lapidomyces (order Mycosphaerellales) and Rachicladosporium (order Cladosporiales) (Crous et al. 2023b; Piątek et al. 2023). Capnobotryella renispora has been described as a sooty mould associated with other sooty mould Capnobotrys neesii growing on Abies veitchii branches in Japan (Sugiyama and Amano 1987) and later found on roof tiles that is a habitat resembling rocks (Titze and de Hoog 1990).

In a recent survey of sooty mould communities occurring on ornamental woody plants in urban environments in southern Poland we isolated two strains that were assigned to the genus Arthrocatena based on initial ITS rDNA sequencing. This study aims to identify isolated Arthrocatena strains using morphology and multi-locus phylogenetic analyses and to clarify the phylogenetic placement of the genera Arthrocatena and Hyphoconis within Capnodiales s. lat.

Materials and methods

Isolates

Fungal isolates studied here were obtained from sooty mould communities on ornamental woody plants cultivated in municipal greenery in cities of southern Poland. The initial isolations were made on malt extract agar (MEA – Blakeslee’s formula), potato dextrose agar (PDA), and rose bengal agar (RBC). The details of microbiological media and method of initial isolation are described in Piątek et al. (2023). Dried specimens obtained from cultures are stored in the fungal collection of the W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków (KRAM F). Cultures are deposited in the culture collection of the Westerdijk Fungal Biodiversity Institute (CBS) and in the W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Morphological analyses

Macroscopic characteristics were documented using 4-week-old colonies growing on MEA and PDA incubated at 25 °C. Microscopic characteristics were examined under a Nikon Eclipse 80i light microscope using slide cultures on PDA incubated at 25 °C, after approximately one month growth (Crous et al. 2019b). The disintegration of chains of arthroconidia was observed on MEA cultures. The microscopic structures were measured and photographed using NIS‐Elements BR 3.0 imaging software. Growth at 15 °C and 25 °C on MEA and PDA was assessed by measuring the colony diameter after 2 weeks and 4 weeks.

DNA isolation, amplification and sequencing

DNA was extracted using DNeasy® Plant Mini Kit (Qiagen, Germany), according to the manufacturer’s protocol. Four loci were amplified: ITS1‐5.8S‐ITS2 rDNA (= ITS), fragment of the large subunit rDNA (28S D1–D2 = LSU), the small subunit rDNA (18S = SSU) and protein-coding gene – partial DNA-directed RNA polymerase II second largest subunit (rpb2). The following primer pairs were used for amplification: ITS1–ITS4 for ITS (White et al. 1990), LSU1Fd–LR5 for LSU (Vilgalys and Hester 1990; Crous et al. 2009b), NS1–NS4 for SSU (White et al. 1990), and fRPB2-5F–fRPB2-7cR for rpb2 (Liu et al. 1999). Polymerase chain reactions were performed in a reaction mixture prepared as described in Piątek et al. (2023). ITS and LSU were amplified as described by Czachura et al. (2021). Amplification of SSU was performed with initial denaturation at 94 °C for 3 min followed by 35 cycles of denaturation at 94 °C for 45 sec, the annealing of primers for 30 sec at 52 °C, the elongation at 72 °C for 1 min and the final extension at 72 °C for 10 min. Amplification conditions for rpb2 were set as follows: an initial denaturation at 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 60 sec, the annealing at 54 °C for 90 sec, the elongation at 72 °C for 2 min and the final extension at 72 °C for 10 min. Amplicons were visualized and verified by gel electrophoresis on 1% agarose gel. Subsequently, the PCR products were enzymatically purified using an Exo-BAP Mix (EURx, Poland) and sequenced bidirectionally by Macrogen Europe B.V. (Amsterdam, the Netherlands). Obtained sequences were assembled and trimmed in Geneious Prime 2020.0.4. Consensus sequences were deposited in the NCBI’s GenBank nucleotide database (https://www.ncbi.nlm.nih.gov/genbank/).

Phylogenetic analyses

The affinity of the isolated strains was first checked in the NCBIs GenBank nucleotide database using the megablast search tool (Zhang et al. 2000). To resolve phylogenetic placement of the isolated strains, the concatenated ITS-LSU-SSU-rpb2-tef1 alignment was assembled. LSU, rpb2 and tef1 sequences of species and strains used for phylogenetic reconstructions were mostly selected from study of Abdollahzadeh et al. (2020). ITS and SSU sequences of the same species and strains were additionally added to the dataset. Finally, the sequences of Arthrocatena tenebrosa, Capnobotryella antalyensis and Hyphoconis sterilis revealed as most closely related to sequences of analyzed strains were also added to the dataset (Table 1).

Table 1.

List of species, with country of origin, host/substrate, strain, GenBank accession numbers and references, used in phylogenetic analyses.

Species Country Host/substrate Strain GenBank acc. no. References
ITS LSU SSU rpb2 tef1
Aeminium ludgeri Portugal limestone E14 MG938062 MG938288 Trovão et al. 2019
Aeminium ludgeri Portugal limestone E8 MG938056 MG938284 Trovão et al. 2019
Aeminium ludgeri Portugal limestone E12 MG938054 MG938286 Trovão et al. 2019
Amycosphaerella africana South Africa leaves of Eucalyptus viminalis CBS 680.95 MH862549 KF902048 Quaedvlieg et al. 2014; Vu et al. 2019
Amycosphaerella keniensis Kenya leaf litter of Eucalyptus grandis CBS 111001 MF951290 GQ852610 NG_062384 MF951433 Crous et al. 2009b, 2009c; Videira et al. 2017
Arthrocatena antalyensis (syn. Capnobotryella antalyensis) Poland sooty mould community on Tilia cordata CBS 150720 OR096278 OR096282 OR096280 OR096699 this study
Arthrocatena antalyensis (syn. Capnobotryella antalyensis) Poland sooty mould community on Pinus nigra CBS 150721 OR096279 OR096283 OR096281 OR096700 this study
Arthrocatena antalyensis (syn. Capnobotryella antalyensis) Turkey marble MA 4659 AJ972854 AJ972854 Sert et al. 2007
Arthrocatena antalyensis (syn. Capnobotryella antalyensis) Turkey marble MA 4775 AJ972860 AJ972860 Sert et al. 2007
Arthrocatena tenebrosa Italy rock CCFEE 5413 NR_144971 NG_056969 NG_061095 Ruibal et al. 2009; Egidi et al. 2014
Aureobasidium pullulans France Vitis vinifera AFTOL-ID 912 DQ470956 DQ471004 DQ470906 DQ471075 Spatafora et al. 2006
Austroafricana associata Australia Protea lepidocarpodendron CBS 112224 DQ302968 KF901827 GU296200 GU349025 Crous et al. 2006; Schoch et al. 2009; Quaedvlieg et al. 2014
Batcheloromyces sedgefieldii South Africa Protea repens CBS 112119 NR_137012 KF937222 Crous et al. 2008; Quaedvlieg et al. 2014
Capnobotryella renispora Japan Capnobotrys neesii CBS 214.90 NR_121295 NG_058782 NG_070856 Hambleton et al. 2003; Scott et al. 2007; Crous et al. 2009b
Capnodium alfenasii Brazil Tabebuia sp. CBS 146151 MN749233 MN749165 MN829260 MN829346 Abdollahzadeh et al. 2020
Capnodium blackwelliae USA Myrtus communis CBS 133588 MN749235 MH878118 GU371743 GU349054 Schoch et al. 2009; Vu et al. 2019; Abdollahzadeh et al. 2020
Capnodium coartatum Thailand Psidium sp. MFLUCC 10-0069 JN832614 JN832599 Chomnunti et al. 2011
Capnodium coffeae Zaire Coffea robusta CBS 147.52 MH856967 GU214400 DQ247808 KT216519 DQ471089 Spatafora et al. 2006; Crous et al. 2009b; Ismail et al. 2016; Vu et al. 2019
Capnodium coffeicola Thailand Coffea sp. MFLUCC 15-0206 KU358920 Hongsanan et al. 2015b
Capnodium gamsii Sri Lanka unknown leaf CBS 892.73 MN749237 GU301847 GU371736 GU349045 Schoch et al. 2009; Abdollahzadeh et al. 2020
Capnodium neocoffeicola Thailand Coffea arabica CBS 139614 MN749242 MN749172 MN829267 MN829353 Abdollahzadeh et al. 2020
Capnodium paracoffeicola Thailand Coffea arabica CBS 139616 MN749244 MN749174 MN829269 MN829355 Abdollahzadeh et al. 2020
Capnodiumsalicinum Indonesia Bursaria spinosa CBS 131.34 MH855469 EU019269 DQ677997 KT216553 DQ677889 Schoch et al. 2006b; Crous et al. 2007a; Ismail et al. 2016; Vu et al. 2019
Cercospora beticola Italy Beta vulgaris CBS 116456 NR_121315 DQ678091 NG_062715 KT216555 DQ677932 Groenewald et al. 2005; Schoch et al. 2006b; Ismail et al. 2016
Cercosporella virgaureae South Korea Erigeron annuus CBS 113304 GU214658 KF251805 GU214658 KX348051 Crous et al. 2009b; Verkley et al. 2013; Videira et al. 2016
Chaetocapnodium indonesiacum Indonesia Camellia sinensis CBS 202.30 MH855113 GU301849 GU296178 MN829273 GU349060 Schoch et al. 2009; Vu et al. 2019; Abdollahzadeh et al. 2020
Chaetocapnodium insulare South Africa Phylica arborea CBS 146159 NR_168830 MN749178 MN829274 MN829359 Abdollahzadeh et al. 2020
Chaetocapnodium philippinense Philippines palm MFLUCC 12-0110 NR_168831 KP744503 MN829277 MN829362 Liu et al. 2015; Abdollahzadeh et al. 2020
Chaetocapnodium placitae Australia Eucalyptus placita CBS 124758 GQ303268 GQ303299 MN829278 MN829363 Cheewangkoon et al. 2009; Abdollahzadeh et al. 2020
Chaetocapnodium siamensis Thailand leaves of unidentified plant MFLUCC 13-0778 KP744479 Liu et al. 2015
Chaetocapnodium summerellii Australia Eucalyptus placita CBS 146157 NR_168829 MN749176 MN829271 MN829357 Abdollahzadeh et al. 2020
Chaetocapnodium tanzanicum Tanzania lichen CBS 145.79 NR_168832 MN749182 MN829280 MN829365 Abdollahzadeh et al. 2020
Chaetocapnodium thailandense Thailand CBS 139619 NR_168833 MN749183 MN829281 MN829366 Abdollahzadeh et al. 2020
Chaetothyrina guttulata Thailand Mangifera indica MFLUCC 15-1080 KX372277 KU358917 KU358916 Hongsanan et al. 2017
Chaetothyrina musarum Thailand Musa sp. MFLUCC 15-0383 KX372275 KU710171 KU710174 Singtripop et al. 2016; Hongsanan et al. 2017
Cladosporium allicinum Czech Republic Polygonatum odoratum CBS 813.71 DQ008149 Avila et al. 2005
Cladosporium iridis Netherlands Iris sp. CBS 138.40 EU167591 DQ008148 EU167591 KT223022 Avila et al. 2005; Simon et al. 2009; Ismail et al. 2016
Cladosporium ramotenellum United Kingdom leaves of Arundo sp. CBS 170.54 MH857281 DQ678057 DQ678004 DQ677952 DQ677898 Schoch et al. 2006b; Vu et al. 2019
Comminutispora agavacearum USA Dasylirion leiophyllum CBS 619.95 MH862543 EU981286 MN829337 MN829423 Tsuneda et al. 2008; Vu et al. 2019; Abdollahzadeh et al. 2020
Conidiocarpus asiaticus Thailand Coffea arabica MFLUCC 10-0062 KU358924 JN832612 JN832597 Chomnunti et al. 2011; Hongsanan et al. 2015b
Conidiocarpus caucasicus Iran Citrus sinensis GUMH 937 KC833050 KC833051 Bose et al. 2014
Conidiocarpus siamensis Thailand Mangifera indica MFLUCC 10-0064 JN832609 JN832594 Chomnunti et al. 2011
Cystocoleus ebeneus Austria L161 EU048578 EU048571 Muggia et al. 2008
Cystocoleus ebeneus Austria L348 EU048580 Muggia et al. 2008
Davidiellomyces australiensis Australia leaves of Cyperaceae CPC 29170 KY979737 KY979792 LT799790 Crous et al. 2017; Bezerra et al. 2017
Dissoconium aciculare Germany Astragalus sp. CBS 204.89 AY725520 GU214419 GU214523 KX288435 Crous et al. 2004, 2009b; Videira et al. 2016
Dissoconium aciculare Netherlands Brassica sp. CBS 201.89 AY725519 GU214418 GU214522 KT216557 Crous et al. 2004, 2009b; Ismail et al. 2016
Dissoconium aciculare USA Malus domestica CBS 132080 JQ622083 JQ622091 Li et al. 2012
Dissoconium aciculare USA Malus domestica CBS 132081 AY598874 JQ622097 Batzer et al. 2005; Li et al. 2012
Dothidea insculpta France Clematis vitalba CBS 189.58 AF027764 DQ247802 DQ247810 DQ247792 DQ471081 Jacobs & Rehner 1998; Schoch et al. 2006a; Spatafora et al. 2006
Dothidea sambuci Austria Sambucus nigra AFTOL-ID 274 DQ491505 AY544681 AY544722 Lutzoni et al. 2004; James et al. 2006
Dothiora cannabinae India Daphne cannabina AFTOL-ID 1359 NR_144904 DQ470984 DQ479933 DQ470936 DQ471107 De Hoog et al. 1999; Spatafora et al. 2006
Dothiora phillyreae Spain Phillyrea angustifolia CBS 473.69 NR_155057 EU754146 EU754047 de Gruyter et al. 2009; Crous & Groenewald 2016
Elsinoe phaseoli Cuba Phaseolus lunatus AFTOL-ID 1855 NR_148161 DQ678095 DQ678042 KX887144 DQ677935 Schoch et al. 2006b; Fan et al. 2017
Extremus antarcticus Antarctica rock CCFEE 5312 KF309979 KF310020 Egidi et al. 2014
Fumiglobus pieridicola Canada Pieris japonica UBC F23788 NR_153985 KC833052 NG_065012 Bose et al. 2014
Graphiopsis chlorocephala Germany Paeonia delavayi CBS 121522 EU009457 EU009457 LT799753 Schubert et al. 2007; Bezerra et al. 2017
Graphiopsis chlorocephala New Zealand Paeonia sp. CBS 100405 EU009456 EU009456 KT216520 Schubert et al. 2007; Ismail et al. 2016
Heteroconium citharexyli Ecuador Citharexylum ilicifolium S (type) HM628776 HM628775 Cheewangkoon et al. 2012
Hortaea werneckii Greece sea water-sprayed marble CBS 100496 AY128703 GU301817 GU296152 GU371739 GU349050 De Leo et al. 2003; Schoch et al. 2009
Houjia yanglingensis China Malus domestica CBS 125225 MH863464 GQ433631 Yang et al. 2010; Vu et al. 2019
Houjia yanglingensis China Malus domestica CBS 125226 GQ433629 GQ433630 Yang et al. 2010
Hyalinozasmidium aerohyalinosporum Australia Eucalyptus tectifica CBS 125011 KF901605 KF901930 MF951504 Quaedvlieg et al. 2014; Videira et al. 2017
Hyphoconis sterilis Spain rock TRN287 AY843125 KF310032 AY843257 _ Ruibal et al. 2008; Egidi et al. 2014
Leptoxyphium cacuminum Thailand Gossypium herbaceum MFLUCC 10-0059 JN832603 JN832588 Chomnunti et al. 2011
Leptoxyphium citri Spain Citrus sinensis CBS 451.66 MN749266 KF902094 GU371727 GU349039 Schoch et al. 2009; Quaedvlieg et al. 2014; Abdollahzadeh et al. 2020
Leptoxyphium glochidion China Glochidion wrightii IFRDCC 2651 NR_155316 KF982308 NG_065036 Yang et al. 2014
Leptoxyphium kurandae Australia Eucalyptus sp. CBS 129530 JF951150 JF951170 MN829295 MN829379 Crous et al. 2011a; Abdollahzadeh et al. 2020
Leptoxyphium madagascariense Madagascar Eucalyptus camaldulensis CBS 124766 GQ303277 MH874923 MN829296 MN829380 Cheewangkoon et al. 2009; Vu et al. 2019; Abdollahzadeh et al. 2020
Microcyclosporella mali Slovenia Malus domestica CBS 126136 MH864045 GU570547 KX288436 Frank et al. 2010; Videira et al. 2016; Vu et al. 2019
Mycosphaerelloides madeirae Netherlands Quercus robur CBS 116066 AY853188 KX286989 KX288444 Videira et al. 2016
Myriangium hispanicum Acer monspessulanum CBS 247.33 MH855426 GU301854 GU296180 GU371744 GU349055 Schoch et al. 2009; Vu et al. 2019
Neoantennariella phylicae United Kingdom Phylica arborea CBS 146163 NR_168834 MN749211 MN829313 MN829397 Abdollahzadeh et al. 2020
Neoasbolisia phylicae United Kingdom Phylica arborea CBS 146168 NR_168835 MN749215 MN829317 MN829401 Abdollahzadeh et al. 2020
Neocladosporium leucadendri South Africa Leucadendron sp. CBS 131317 NR_152324 JQ044455 LT799755 Crous et al. 2011b; Bezerra et al. 2017
Neodevriesia hilliana New Zealand Macrozamia communis CBS 123187 NR_145098 GU214414 LT799761 Crous et al. 2009b; Bezerra et al. 2017
Neodevriesia modesta Italy rock CBS 137182 NR_144975 KF310026 Egidi et al. 2014
Neodevriesia pakbiae Thailand unidentified fern CBS 139914 NR_137997 KR476775 Crous et al. 2015
Neodevriesia stirlingiae Australia Stirlingia latifolia CBS 133581 NR_120228 KC005799 Crous et al. 2012
Neodevriesia strelitziae South Africa Strelitzia nicolai CBS 122379 NR_175123 GU301810 NG_078729 GU371738 GU349049 Arzanlou et al. 2008; Schoch et al. 2009; Vu et al. 2019
Neodevriesia xanthorrhoeae Australia Xanthorrhoea australis CBS 128219 NR_144962 HQ599606 Crous et al. 2010
Neomycosphaerella pseudopentameridis South Africa Pseudopentameris macrantha CBS 136407 KF777173 KF777226 MF951545 Crous et al. 2013b; Videira et al. 2017
Neophaeotheca salicorniae South Africa Salicornia sp. CBS 141299 NR_145401 KX228327 MN829343 MN829429 Crous et al. 2016; Abdollahzadeh et al. 2020
Neophaeotheca triangularis Belgium wet surface of humidifier of air conditioning unit CBS 471.90 MH862225 EU019279 MN829344 MN829430 Crous et al. 2007a; Vu et al. 2019; Abdollahzadeh et al. 2020
Neoramulariopsis catenulata Rwanda Phaseolus vulgaris CBS 355.73 NR_153920 KX286973 KX288424 Videira et al. 2016
Paradevriesia compacta Spain rock CBS 118294 NR_144955 GU323220 NG_064945 GU371751 GU349088 Ruibal et al. 2005, 2009; Schoch et al. 2009
Paramycosphaerella intermedia New Zealand Eucalyptus saligna CBS 114356 NR_164413 KF902026 Quaedvlieg et al. 2014; Lee et al. 2016
Paramycosphaerella marksii South Africa Eucalyptus grandis CBS 110750 DQ267596 DQ204757 Hunter et al. 2006
Penidiella sp. CPC 16707 MN749304 MN749230 MN829339 MN829425 Abdollahzadeh et al. 2020
Petrophila incerta Spain rock CBS 118608 NR_144956 KF310030 Ruibal et al. 2005; Egidi et al. 2014
Phaeotheca fissurella Canada Pinus contorta CBS 520.89 MH862184 GU117900 NG_065804 MN829342 MN829428 Sterflinger et al. 1999; Yang et al. 2010; Vu et al. 2019
Phaeothecoidiella illinoisensis USA Malus sp. CBS 125223 NR_137740 GU117901 Yang et al. 2010
Phaeothecoidiella missouriensis USA Malus sp. CBS 118959 GU117899 GU117903 Yang et al. 2010
Phaeoxyphiella australiana Australia Agonis sp. CBS 146169 NR_168837 MN749220 MN829322 MN829406 Abdollahzadeh et al. 2020
Phaeoxyphiella phylicae United Kingdom Phylica arborea CBS 146170 NR_168836 MN749219 MN829321 MN829405 Abdollahzadeh et al. 2020
Phloeospora ulmi Austria Ulmus glabra CBS 344.97 KF251202 KF251705 Quaedvlieg et al. 2013
Phragmocapnias betle Thailand Ixora sp. MFLUCC 10-0053 KU358922 JN832606 JN832591 Chomnunti et al. 2011; Hongsanan et al. 2015b
Phragmocapnias plumeriae Thailand Plumeria sp. MFLUCC 15-0205 KU358919 KU358918 Hongsanan et al. 2015b
Polychaeton citri Iran Citrus aurantium CBS 116435 GU214649 GU214469 MN829310 MN829394 Crous et al. 2009b; Abdollahzadeh et al. 2020
Pseudoveronaea ellipsoidea USA Malus domestica CBS 132085 NR_111367 FJ147154 KT921165 Diaz Arias et al. 2010; Ismail et al. 2016
Pseudoveronaea obclavata USA Malus domestica CBS 132086 NR_111168 JQ622102 Batzer et al. 2005; Li et al. 2012
Pseudozasmidium eucalypti Australia Eucalyptus tereticornis CBS 121101 KF901606 KF901931 MF951637 Quaedvlieg et al. 2014; Videira et al. 2017
Rachicladosporium americanum USA leaf litter CBS 124774 NR_175021 GQ303323 MN829336 MN829421 Cheewangkoon et al. 2009; Abdollahzadeh et al. 2020
Rachicladosporium cboliae USA twig CBS 125424 MH863703 GU214484 NG_062827 LT799763 MN829422 Crous et al. 2009b; Bezerra et al. 2017; Vu et al. 2019; Abdollahzadeh et al. 2020
Rachicladosporium eucalypti Ethiopia Eucalyptus globulus CBS 138900 NR_155718 KP004476 Crous et al. 2014
Rachicladosporium pini Netherlands Pinus monophylla CBS 129525 JF951145 JF951165 LT799764 Crous et al. 2011a; Bezerra et al. 2017
Racodium rupestre Austria L346 GU067666 EU048583 EU048575 Muggia et al. 2008; Muggia & Grube 2010
Racodium rupestre United Kingdom L423 GU067668 EU048581 Muggia et al. 2008; Muggia & Grube 2010
Racodium rupestre Italy L424 GU067669 EU048582 Muggia et al. 2008; Muggia & Grube 2010
Ramichloridium luteum China Malus domestica CBS 132088 NR_119684 JQ622099 MF951417 Li et al. 2012; Videira et al. 2017
Ramularia endophylla Netherlands Quercus robur CBS 113265 KF251220 KF251723 Quaedvlieg et al. 2013
Ramularia nyssicola USA Nyssa ogeche x sylvatica CBS 127665 NR_111549 NG_070531 KJ504636 Minnis et al. 2011; Videira et al. 2015a
Ramularia pusilla Germany Poa annua CBS 124973 NR_154917 KP894141 KP894687 Videira et al. 2015b
Readeriella nontingens Australia Eucalyptus oblonga CPC 14444 KF901726 KF902073 Quaedvlieg et al. 2014
Readerielliopsis fuscoporiae French Guiana Fuscoporia wahlbergii CBS 139900 NR_137978 KR476755 MN829326 MN829410 Crous et al. 2015; Abdollahzadeh et al. 2020
Readerielliopsis guyanensis French Guiana decaying leaf CBS 117550 NR_176103 FJ493211 MN829327 MN829411 Crous et al. 2008; Abdollahzadeh et al. 2020
Saxophila tyrrhenica Italy stone monument CCFEE 5935 KP791764 NG_059571 Isola et al. 2016
Schismatomma decolorans AFTOL-ID 307 AY548808 AY548815 AY548809 DQ883715 DQ883725 Lutzoni et al. 2004; Spatafora et al. 2006
Schizothyrium cryptogama USA Malus domestica CBS 125658 FJ425208 FJ147157 KT216548 Diaz Arias et al. 2010; Ismail et al. 2016
Schizothyrium pomi USA Malus domestica CBS 125312 FJ425206 FJ147155 KT216539 Diaz Arias et al. 2010; Ismail et al. 2016
Schizothyrium wisconsinensis USA Malus domestica CBS 125659 FJ425209 FJ147158 KT216549 Diaz Arias et al. 2010; Ismail et al. 2016
Scolecoxyphium blechni United Kingdom Blechnum palmiforme CBS 146174 NR_168838 MN749224 MN829328 MN829412 Abdollahzadeh et al. 2020
Scolecoxyphium blechnicola United Kingdom Blechnum palmiforme CBS 146175 NR_168839 MN749225 MN829329 MN829413 Abdollahzadeh et al. 2020
Scolecoxyphium leucadendri South Africa Leucadendron sp. CBS 146176 NR_168840 MN749226 MN829330 MN829414 Abdollahzadeh et al. 2020
Scolecoxyphium phylicae South Africa Phylica arborea CBS 146177 NR_168841 MN749227 MN829331 MN829415 Abdollahzadeh et al. 2020
Scorias aphidis aphid CBS 325.33 GU214696 MH866910 KT216542 MN829417 Crous et al. 2009b; Ismail et al. 2016; Vu et al. 2019; Abdollahzadeh et al. 2020
Scorias camelliae Indomesia Camellia sinensis CBS 201.30 MH855112 MH866560 MN829333 MN829418 Vu et al. 2019; Abdollahzadeh et al. 2020
Scorias leucadendri South africa Leucadendron muirii CBS 131318 JQ044437 JQ044456 MN829334 MN829419 Crous et al. 2011b; Abdollahzadeh et al. 2020
Scorias mangiferae Thailand Mangifera indica MFLUCC 15-0230 NR_154422 KT588603 Hongsanan et al. 2015a
Scorias spongiosa Thailand Entada sp. MFLUCC 10-0084 JN832601 JN832586 Chomnunti et al. 2011
Septoria lycopersici South Korea Lycopersicon esculentum CBS 128654 MH865102 KF251966 KX348091 Verkley et al. 2013; Videira et al. 2016; Vu et al. 2019
Septoria protearum South Africa Zantedeschia aethiopica CBS 135477 KF251524 KF252029 Verkley et al. 2013
Sporidesmajora pennsylvaniensis USA Malus domestica CBS 125229 NR_156639 MF951122 MF951424 Videira et al. 2017
Stomiopeltis versicolor USA Malus domestica GA3-23C2b FJ438375 FJ147163 Diaz Arias et al. 2010
Teratosphaeria stellenboschiana South Africa Eucalyptus punctata CBS 125215 KF901733 KF937247 Quaedvlieg et al. 2014
Teratosphaeriaceae sp. CPC 16695 MN749303 MN749231 MN829340 MN829426 Abdollahzadeh et al. 2020
Teratosphaeriaceae sp. CPC 17588 MN749305 MN749232 MN829341 MN829427 Abdollahzadeh et al. 2020
Uwebraunia commune South Africa Eucalyptus nitens CBS 110747 AY725535 GU214420 GU214525 KT216558 Crous et al. 2004, 2009b; Ismail et al. 2016
Verrucocladosporium dirinae United Kingdom Dirina massiliensis CBS 112794 EU040244 EU040244 Crous et al. 2007b
Xenodevriesia strelitziicola South Africa Strelitzia sp. CBS 122480 NR_171741 NG_059085 Crous et al. 2009b; Vu et al. 2019
Xenomycosphaerella elongata Venezuela Eucalyptus camaldulensis x urophylla CBS 120735 NR_154469 JF700942 MF951687 Crous et al. 2007c; Quaedvlieg et al. 2011; Videira et al. 2017
Zasmidium pseudotsugae USA Pseudotsuga menziesii rapssd EF114687 EF114704 EF114729 Winton et al. 2007
Zasmidium tsugae USA Tsuga heterophylla ratstk EF114688 EF114705 EF114730 Winton et al. 2007

For phylogenetic analyses, sequences were separately aligned for each single-gene dataset using MAFFT algorithm (Katoh et al. 2005) in Geneious 11.1.5. The phylogenetic reconstructions were performed using the concatenated ITS-LSU-SSU-rpb2-tef1 alignment. Maximum likelihood (ML) analysis was conducted using RAxML-NG v. 1.1.1 (Kozlov et al. 2019), with a bootstrap of 1000 replicates. Bayesian inference (BI) analysis was carried out using MrBayes v. 3.2.6 (Ronquist et al. 2012). For both ML and BI analyses, the ModelTest-NG v. 0.2.0 was used to select the best substitution models using Bayesian Information Criterion (BIC) (Darriba et al. 2020). BI analysis was performed by running 2 000 000 generations in four chains, saving the current tree to file every 100 generations. The first 25% of trees were discarded as burn-in. Average standard deviations of split frequencies were <0.01 at the end of the runs. The final phylogenetic trees were visualized using FigTree v1.4.3. The alignment was deposited at figshare.com (https://doi.org/10.6084/m9.figshare.25623660.v1).

Results

Phylogenetic analyses

The concatenated ITS-LSU-SSU-rpb2-tef1 alignment contained sequences belonging to 130 species, including Schismatomma decolorans used as an outgroup. The alignment comprised a total of 4829 characters (ITS: 829, LSU: 819, SSU: 946, rpb2: 1122, tef1: 1113), including alignment gaps. The best matching substitution models selected for single locus alignments in the ML analysis were as follows: GTR+I+G4 for ITS, TIM3+I+G4 for LSU, K80+I+G4 for SSU, TIM2+I+G4 and TPM3uf+I+G4 for rpb2 (three codons), and JC+I+G4, HKY+I+G4 and TIM3+I+G4 for tef1 (three codons). The BI analysis was performed with the following substitution models: GTR+I+G4 for ITS and LSU, K80+I+G4 for SSU, GTR+I+G4 and HKY+I+G4 for rpb2 codons, and JC+I+G4, HKY+I+G4 and HKY+G4 for tef1 codons. ML and BI analyses resulted in similar tree topologies (Suppl. materials 1, 2). The best scoring maximum likelihood phylogenetic tree is shown on Fig. 1. Maximum likelihood bootstrap (MLB) support values above 60% and Bayesian posterior probabilities (BPP) above 0.95 are shown at the nodes.

Figure 1. 

Reduced phylogenetic tree of selected members of the Capnodiales s. lat., Dothideales and Myriangiales, including all described species of the genera Arthrocatena and Hyphoconis, obtained from a maximum likelihood analysis of the combined multi-locus alignment (ITS, LSU, SSU, rpb2, tef1). The positions of new strains, Arthrocatena antalyensis comb. nov. and new order Arthrocatenales are indicated in bold. Ex-type cultures are indicated with superscript T. Numbers above branches indicate maximum likelihood bootstrap (MLB) support values > 60% and Bayesian posterior probabilities (BPP) > 0.95, respectively (MLB/BPP). Schismatomma decolorans was used as an outgroup. The scale bar represents the expected number of changes per site.

The sequences of analyzed strains CBS 150720 and CBS 150721 clustered with sequences of type and additional strain of Capnobotryella antalyensis in a moderately supported clade (only in ML: MLB = 62%), which was sister to Arthrocatena tenebrosa with high support (MLB = 95%, BPP = 1). Capnobotryella antalyensis is recombined here to Arthrocatena. The sequence similarity between different strains of Arthrocatena antalyensis ranges between 97.4% and 98.7% in ITS. The sequence similarity between A. antalyensis and A. tenebrosa is 96.1–96.9% in ITS. Members of Arthrocatena formed a fully supported sister clade to single species lineage representing the genus and species Hyphoconis sterilis. The clustering of Arthrocatena + Hyphoconis was resolved at sister position (MLB = 69%, BPP = 1) to clades representing orders Cladosporiales and Comminutisporales. The new order Arthrocatenales and new family Arthrocatenaceae are proposed to this clade.

Taxonomy

Arthrocatenales Piątek, Stryjak-Bogacka & Czachura, ord. nov.

MycoBank No: 854789

Etymology

Named after the genus Arthrocatena.

Description

Colonies erumpent, spreading, with elevated and folded center, greenish olivaceous, forming concentric rings, margin smooth, entire or undulate. Reverse black. Mycelium composed of branched, septate, pale brown or brown, smooth, straight, flexuose or torulose, thin-walled hyphae. Arthroconidia ellipsoid or broadly ellipsoid, rarely barrel-shaped, brown, smooth, one-septate, intercalary or on side branches, single or in chains. Chlamydospore-like cells spherical, brown, smooth, aseptate, intercalary, in simple or branched chains. Chlamydospores spherical, brown, smooth, muriformly septate, intercalary, single.

Type family

Arthrocatenaceae Piątek, Stryjak-Bogacka & Czachura.

Arthrocatenaceae Piątek, Stryjak-Bogacka & Czachura, fam. nov.

MycoBank No: 854790

Etymology

Named after the genus Arthrocatena.

Description

Colonies erumpent, spreading, with elevated and folded center, greenish olivaceous, forming concentric rings, margin smooth, entire or undulate. Reverse black. Mycelium composed of branched, septate, pale brown or brown, smooth, straight, flexuose or torulose, thin-walled hyphae. Arthroconidia ellipsoid or broadly ellipsoid, rarely barrel-shaped, brown, smooth, one-septate, intercalary or on side branches, single or in chains. Chlamydospore-like cells spherical, brown, smooth, aseptate, intercalary, in simple or branched chains. Chlamydospores spherical, brown, smooth, muriformly septate, intercalary, single.

Type genus

Arthrocatena Egidi & Selbmann.

Arthrocatena antalyensis (Sert & Sterfl.) Piątek, Stryjak-Bogacka & Czachura, comb. nov.

MycoBank No: 854791
Figs 2, 3, 4

Basionym

Capnobotryella antalyensis Sert & Sterfl., Mycol. Res. 111(10): 1237 (2007).

Typus

Turkey, Antalya, isolated from the surface of a child’s grave in Side museum (holotype: ACBR MA 4659).

DNA barcodes (from analysed strains)

Description

Mycelium composed of branched, septate, pale brown or brown, smooth, straight, flexuose or torulose, thin-walled hyphae, 3.5–7.0 µm wide, consisting of elongated, subglobose, broadly ellipsoidal or pyriform cells, sometimes anastomosing; hyphae develop into arthroconidia, chlamydospore-like cells or chlamydospores. Arthroconidia ellipsoid or broadly ellipsoid, rarely barrel-shaped, brown, smooth, one-septate, 9.0–19.0(–23.0) × 6.5–8.5 µm, produced intercalary or rarely on side branches, single or in chains. Chlamydospore-like cells spherical, brown, smooth, aseptate, 7.0–12.0 × 7.0–10.0 µm, produced intercalary, in simple or branched chains. Chlamydospores spherical, brown, smooth, muriformly septate, 12.5–15.0 × 11.0–14.0 µm, produced intercalary, single between chlamydospore-like cells.

Figure 2. 

Morphology of Arthrocatena antalyensis (strain CBS 150720, e–h slide culture on PDA): a, b general view and detailed view of upper side of colony on MEA after 4 weeks of growth at 25 °C c, d general view and detailed view of upper side of colony on PDA after 4 weeks of growth at 25 °C e general view of hyphae f, g straight hyphae (note anastomosing hyphae visible on figure g) h terminal, flexuose and torulose hyphae. Scale bars: 50 µm (e); 10 µm (f–h).

Culture characteristics

Colonies on MEA erumpent, spreading, with elevated and folded center, greenish olivaceous, forming concentric rings, reaching 8 mm diam after 4 weeks growth at 15 °C and 12 mm diam after 4 weeks growth at 25 °C, surface with moderate aerial mycelium, margin smooth and entire, darker than the remaining part. Reverse black. Colonies on PDA erumpent, spreading, with elevated and folded center, greenish olivaceous, forming indistinct concentric rings, reaching 10 mm diam after 4 weeks growth at 15 °C and 14 mm diam after 4 weeks growth at 25 °C, surface with sparse aerial mycelium, margin smooth and undulate, concolours with the remaining part. Reverse black.

Figure 3. 

Morphology of Arthrocatena antalyensis (strain CBS 150720, slide culture on PDA): a general view of hyphae, arthroconidia and chlamydospore b–d arthroconidia e chlamydospore-like cells f–g chlamydospore-like cells and muriformly septate chlamydospores (indicated by arrows). Scale bars: 50 µm (a); 10 µm (b–g).

Specimens examined

Poland, Silesian Province, Katowice County: Katowice-Bogucice, municipal greenery, isolated from sooty mould community on Tilia cordata leaves, 10 Sept. 2018, leg. M. Piątek, W. Bartoszek & P. Czachura (KRAM F-59837; culture: G57 = CBS 150720); Podkarpackie Province, Rzeszów County: Rzeszów–Generała Władysława Andersa, municipal greenery, isolated from sooty mould community on Pinus nigra needles, 17 Sept. 2018, leg. M. Piątek, W. Bartoszek & P. Czachura (KRAM F-59838; culture: G385 = CBS 150721).

Figure 4. 

Morphology of Arthrocatena antalyensis (strain CBS 150720, on MEA): a, b arthroconidia, arrows indicate disintegrating chains of arthroconidia c–e disintegrated arthroconidia. Scale bars: 10 µm (a–e).

Notes

Arthrocatena antalyensis differs from Arthrocatena tenebrosa in having larger arthroconidia (6.0–11.5 × 3.0–5.5 μm in A. tenebrosa; Egidi et al. 2014) and formation of chlamydospore-like cells and muriformly septate chlamydospores.

Discussion

Sooty moulds and communities formed by these fungi are still understudied and for that reason they are probably a rich source of interesting or undescribed species. Here, two Arthrocatena strains isolated from sooty mould communities on leaves of Tilia cordata and needles of Pinus nigra in southern Poland were analyzed. Interestingly, in the multi-locus phylogenetic analyses the sequences of the sooty mould strains grouped together with sequences of type and additional strain of Capnobotryella antalyensis (MA 4659 and MA 4775), a rock-inhabiting fungus described from two sites in Turkey (Sert et al. 2007). Support for branch uniting four strains of C. antalyensis is moderate and genetic differences between them are relatively high but they are assigned to the same species due to similarities in their micromorphological features. Apart from morphological differences Capnobotryella antalyensis is well separated phylogenetically from its sister species Arthrocatena tenebrosa. The affinity of C. antalyensis to A. tenebrosa was previously shown by Laichmanová (2023) on the phylogenetic tree resolving position of some rock-inhabiting fungal strains from Antarctica. On the other hand, on the phylogenetic trees published by Zucconi et al. (2012), Isola et al. (2016) and De Leo et al. (2022) three strains assigned to Capnobotryella antalyensis (MA 4615, MA 4624, MA 4766) formed a distinct lineage within the current genus Neodevriesia. However, none of these strains were originally cited in the protologue of C. antalyensis (Sert et al. 2007) and represent other rock-inhabiting fungus, probably undescribed species of Neodevriesia. The type species of the genus Capnobotryella, C. renispora, is a member of the family Teratosphaeriaceae in the Mycosphaerellales (Crous et al. 2009b; Delgado et al. 2018; Li et al. 2020; this study). Therefore, Capnobotryella antalyensis is reallocated to the genus Arthrocatena.

The phylogenetic placement of Arthrocatena and its sister genus Hyphoconis remained unclear. In a study of Egidi et al. (2014), where these two genera were described, they formed a distinct clade within the order Capnodiales s. lat. that was positioned either as sister to clade now assigned to the order Mycosphaerellales or as sister to clades representing current orders Cladosporiales and Mycosphaerellales. In a study of Hongsanan et al. (2020) the genus Hyphoconis was placed as sister to clade now assigned to the order Cladosporiales. Consequently, Arthrocatena and Hyphoconis were included in Capnodiales incertae sedis when using wide concept of the order (Wijayawardene et al. 2014, 2017; Hongsanan et al. 2020) or Mycosphaerellales incertae sedis when using current concept of the capnodialean orders (Wijayawardene et al. 2022).

Our molecular phylogenetic analyses of the concatenated ITS-LSU-SSU-rpb2-tef1 alignment showed that Arthrocatena and Hyphoconis form a distinct lineage sister to orders Cladosporiales and Comminutisporales. Therefore, a new order Arthrocatenales is described to accommodate these two genera. These three orders have some ecological and morphological peculiarities that differentiate them. Cladosporiales accommodates hundreds of species that are mostly saprobic, rarely lichenicolous, endolithic, endophytic or plant parasitic and distributed over the whole world. They usually produce solitary conidiophores with chains of pigmented conidia, which germinate and grow very quickly on culture media (Abdollahzadeh et al. 2020). Sexual morph is rarely observed in Cladosporiales but, if present, is mycosphaerella-like with pseudothecial ascomata and one-septate ascospores (Bensch et al. 2012; Crous et al. 2014, 2017). Comminutisporales includes only one species, Comminutispora agavacearum (with its asexual morph known as Hyphospora agavacearum), which inhabits dead leaves of Dasylirion leiophyllum and Nolina sp. (Asparagaceae) in Texas and New Mexico, USA. In the sexual stage it produces pseudothecial, uniloculate ascomata and muriformly septate ascospores, while in the asexual stage it forms hyphae with cellular clumps containing numerous endoconidia (Ramaley 1996; Zalar et al. 1999; Abdollahzadeh et al. 2020). Newly described order Arthrocatenales includes only two genera and three species that are extremophilic fungi isolated from rocks or sooty mould communities. All described species in the Arthrocatenales are known only from sterile mycelia (Hyphoconis) that also produce arthroconidia and chlamydospores (Arthrocatena).

Arthrocatena has been reported, in different and mostly metabarcoding studies, from gut of feather mites in Spain (Doña et al. 2019), plants in China, Estonia and Italy (Wu et al. 2019; Giampetruzzi et al. 2020; Küngas et al 2020), indoor dust in the USA (Cox et al. 2022), tsetse fly in Tanzania (Kim et al. 2022) or rocks in Antarctica (Laichmanová 2023). This suggests that the ecological spectrum and distribution of Arthrocatenales may be wider than currently known. However, cultures and multi-locus phylogenetic analyses are necessary to resolve species assignments of fungi detected in the metabarcoding studies.

Acknowledgements

We are grateful to Wacław Bartoszek (Kraków, Poland) for help in the field work.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This study was funded by the National Science Centre, Poland, under the project 2017/27/B/NZ9/02902.

Author contributions

MP: conceptualization, investigation, formal analyses, visualisation, writing – original draft preparation; MSB: investigation, formal analyses, visualisation, writing – review and editing; PC: investigation, writing – review and editing. All authors have read and approved the final version of the manuscript.

Author ORCIDs

Marcin Piątek https://orcid.org/0000-0002-4968-2861

Monika Stryjak-Bogacka https://orcid.org/0000-0003-2845-9975

Paweł Czachura https://orcid.org/0000-0002-3562-8776

Data availability

The data that support the findings of this study are available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and in culture collections and fungal herbarium, as shown in Table 1 and the text.

References

  • Arzanlou M, Crous PW, Groenewald JZ (2008) Devriesia strelitziae. Fungal Planet, no. 22.
  • Avila A, Groenewald JZ, Trapero A, Crous PW (2005) Characterisation and epitypification of Pseudocercospora cladosporioides, the causal organism of Cercospora leaf spot of olives. Mycological Research 109(8): 881–888. https://doi.org/10.1017/S0953756205003503
  • Batzer JC, Gleason ML, Harrington TC, Tiffany LH (2005) Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97(6): 1268–1286. https://doi.org/10.1080/15572536.2006.11832735
  • Bezerra JDP, Sandoval-Denis M, Paiva LM, Silva GA, Groenewald JZ, Souza-Motta CM, Crous PW (2017) New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov. IMA Fungus 8(1): 77–97. https://doi.org/10.5598/imafungus.2017.08.01.06
  • Bose T, Reynolds DR, Berbee ML (2014) Common, unsightly and until now undescribed: Fumiglobus pieridicola sp. nov., a sooty mold infesting Pieris japonica from western North America. Mycologia 106(4): 746–756. https://doi.org/10.3852/13-288
  • Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko-Ko TW, Hongsanan S, Jones EB, Kodsueb R, Phookamsak R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Diversity 51(1): 103–134. https://doi.org/10.1007/s13225-011-0145-6
  • Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu XH, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5
  • Cox J, Stone T, Ryan P, Burkle J, Jandarov R, Mendell MJ, Niemeier-Walsh C, Reponen T (2022) Residential bacteria and fungi identified by high-throughput sequencing and childhood respiratory health. Environmental Research 204(Part D): 112377. https://doi.org/10.1016/j.envres.2021.112377
  • Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Studies in Mycology 50: 195–214.
  • Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Studies in Mycology 55: 99–131. https://doi.org/10.3114/sim.55.1.99
  • Crous PW, Summerell BA, Carnegie A, Mohammed C, Himaman W, Groenewald JZ (2007c) Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia and Eucalyptus. Fungal Diversity 26: 143–185.
  • Crous PW, Summerell BA, Mostert L, Groenewald JZ (2008) Host specificity and speciation of Mycosphaerella and Teratosphaeria species associated with leaf spots of Proteaceae. Persoonia 20(1): 59–86. https://doi.org/10.3767/003158508X323949
  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009b) Phylogenetic lineages in the Capnodiales. Studies in Mycology 64: 17–47S7. https://doi.org/10.3114/sim.2009.64.02
  • Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI, Andjic V, Barber PA, Groenewald JZ (2009c) Unravelling Mycosphaerella: Do you believe in genera? Persoonia 23(1): 99–118. https://doi.org/10.3767/003158509X479487
  • Crous PW, Groenewald JZ, Pascoe IG, Edwards J (2010) Devriesia xanthorrhoeae. Fungal Planet 67. Persoonia 25: 154–155.
  • Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, Alfenas AC, Alfenas RF, Burgess TI, Carnegie AJ, Hardy GE, Hiscock N, Hüberli D, Jung T, Louis-Seize G, Okada G, Pereira OL, Stukely MJ, Wang W, White GP, Young AJ, McTaggart AR, Pascoe IG, Porter IJ, Quaedvlieg W (2011a) Fungal Planet description sheets: 69–91. Persoonia 26(1): 108–156. https://doi.org/10.3767/003158511X581723
  • Crous PW, Summerell BA, Shivas RG, Romberg M, Mel’nik VA, Verkley GJ, Groenewald JZ (2011b) Fungal Planet description sheets: 92–106. Persoonia 27(1): 130–162. https://doi.org/10.3767/003158511X617561
  • Crous PW, Shivas RG, Wingfield MJ, Summerell BA, Rossman AY, Alves JL, Adams GC, Barreto RW, Bell A, Coutinho ML, Flory SL, Gates G, Grice KR, Hardy GE, Kleczewski NM, Lombard L, Longa CM, Louis-Seize G, Macedo F, Mahoney DP, Maresi G, Martin-Sanchez PM, Marvanová L, Minnis AM, Morgado LN, Noordeloos ME, Phillips AJ, Quaedvlieg W, Ryan PG, Saiz-Jimenez C, Seifert KA, Swart WJ, Tan YP, Tanney JB, Thu PQ, Videira SI, Walker DM, Groenewald JZ (2012) Fungal Planet description sheets: 128–153. Persoonia 29(1): 146–201. https://doi.org/10.3767/003158512X661589
  • Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, Shin HD, Nakashima C, Groenewald JZ (2013a) Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. https://doi.org/10.3114/sim0005
  • Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster M, de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, De Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL, Manamgoda DS, Minnis AM, Kleczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Maússe-Sitoe SND, Chen S, Lechat C, Hairaud M, Lesage-Meessen L, Pawłowska J, Wilk M, Śliwińska-Wyrzychowska A, Mętrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Tellería MT, Dueñas M, Martín MP, Marincowitz S, de Beer ZW, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ (2013b) Fungal Planet description sheets: 154–213. Persoonia 31(1): 188–296. https://doi.org/10.3767/003158513X675925
  • Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Gareth Jones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MP, Damm U, Decock CA, den Breeÿen A, de Vries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadeh Fazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJ, Swart WJ, Tan YP, Vanderbank M, Wood AR, Zhang Y, Groenewald JZ (2014) Fungal Planet description sheets: 281–319. Persoonia 33(1): 212–289. https://doi.org/10.3767/003158514X685680
  • Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas M, Dutta AK, Gené J, Gouliamova DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MT, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Armengol J, Barnes I, Cano-Lira JF, Castañeda Ruiz RF, Contu M, Courtecuisse PR, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EL, Geering AD, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He XL, Haryadi D, Khemmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malysheva EF, Marín-Felix Y, Martín MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivas RG, Silva V, Stoilova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner HG, Wong PT, Wood AR, Groenewald JZ (2015) Fungal Planet description sheets: 320–370. Persoonia 34(1): 167–266. https://doi.org/10.3767/003158515X688433
  • Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PW, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JH, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GE, Held BW, Jurjević Ž, Kaewgrajang T, Latha KP, Lombard L, Luangsa-Ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin HD, Silva BD, Silva GA, Smith MT, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ. (2016) Fungal Planet description sheets: 400–468. Persoonia 36: 316–458. https://doi.org/10.3767/003158516X692185
  • Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, van der Spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolařík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSF, da Silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Jung MH, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La Spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand AC, Paloi S, Pattison N, Pawłowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N (2017) Fungal Planet description sheets: 558–624. Persoonia 38(1): 240–384. https://doi.org/10.3767/003158517X698941
  • Crous PW, Schumacher RK, Akulov A, Thangavel R, Hernández-Restrepo M, Carnegie AJ, Cheewangkoon R, Wingfield MJ, Summerell BA, Quaedvlieg W, Coutinho TA, Roux J, Wood AR, Giraldo A, Groenewald JZ (2019a) New and interesting fungi. 2. Fungal Systematics and Evolution 3(1): 57–134. https://doi.org/10.3114/fuse.2019.03.06
  • Crous PW, Verkley GJM, Groenewald JZ, Houbraken J (2019b) Fungal biodiversity, 2nd edition. Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands.
  • Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Abell SE, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Marney TS, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Danteswari C, Darmostuk V, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strašiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ (2023a) Fungal Planet description sheets: 1550–1613. Persoonia 51(1): 280–417. https://doi.org/10.3767/persoonia.2023.51.08
  • Crous PW, Osieck ER, Shivas RG, Tan YP, Bishop-Hurley SL, Esteve-Raventós F, Larsson E, Luangsa-ard JJ, Pancorbo F, Balashov S, Baseia IG, Boekhout T, Chandranayaka S, Cowan DA, Cruz RHSF, Czachura P, De la Peña-Lastra S, Dovana F, Drury B, Fell J, Flakus A, Fotedar R, Jurjević Ž, Kolecka A, Mack J, Maggs-Kölling G, Mahadevakumar S, Mateos A, Mongkolsamrit S, Noisripoom W, Plaza M, Overy DP, Piątek M, Sandoval-Denis M, Vauras J, Wingfield MJ, Abell SE, Ahmadpour A, Akulov A, Alavi F, Alavi Z, Altés A, Alvarado P, Anand G, Ashtekar N, Assyov B, Banc-Prandi G, Barbosa KD, Barreto GG, Bellanger JM, Bezerra JL, Bhat DJ, Bilański P, Bose T, Bozok F, Chaves J, Costa-Rezende DH, Danteswari C, Darmostuk V, Delgado G, Denman S, Eichmeier A, Etayo J, Eyssartier G, Faulwetter S, Ganga KGG, Ghosta Y, Goh J, Góis JS, Gramaje D, Granit L, Groenewald M, Gulden G, Gusmão LFP, Hammerbacher A, Heidarian Z, Hywel-Jones N, Jankowiak R, Kaliyaperumal M, Kaygusuz O, Kezo K, Khonsanit A, Kumar S, Kuo CH, Læssøe T, Latha KPD, Loizides M, Luo SM, Maciá-Vicente JG, Manimohan P, Marbach PAS, Marinho P, Marney TS, Marques G, Martín MP, Miller AN, Mondello F, Moreno G, Mufeeda KT, Mun HY, Nau T, Nkomo T, Okrasińska A, Oliveira JPAF, Oliveira RL, Ortiz DA, Pawłowska J, Pérez-De-Gregorio MÀ, Podile AR, Portugal A, Privitera N, Rajeshkumar KC, Rauf I, Rian B, Rigueiro-Rodríguez A, Rivas-Torres GF, Rodriguez-Flakus P, Romero-Gordillo M, Saar I, Saba M, Santos CD, Sarma PVSRN, Siquier JL, Sleiman S, Spetik M, Sridhar KR, Stryjak-Bogacka M, Szczepańska K, Taşkın H, Tennakoon DS, Thanakitpipattana D, Trovão J, Türkekul İ, van Iperen AL, van ’t Hof P, Vasquez G, Visagie CM, Wingfield BD, Wong PTW, Yang WX, Yarar M, Yarden O, Yilmaz N, Zhang N, Zhu YN, Groenewald JZ (2023b) Fungal Planet description sheets: 1478–1549. Persoonia 50(1): 158–310. https://doi.org/10.3767/persoonia.2023.50.05
  • Czachura P, Owczarek-Kościelniak M, Piątek M (2021) Salinomyces polonicus: A moderately halophilic kin of the most extremely halotolerant fungus Hortaea werneckii. Fungal Biology 125(6): 459–468. https://doi.org/10.1016/j.funbio.2021.01.003
  • Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T (2020) ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37(1): 291–294. https://doi.org/10.1093/molbev/msz189
  • de Gruyter J, Aveskamp MM, Woudenberg JH, Verkley GJ, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research 113(4): 508–519. https://doi.org/10.1016/j.mycres.2009.01.002
  • De Hoog S, Zalar P, Urzì C, De Leo F, Yurlova N, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Studies in Mycology 43: 31–37.
  • De Leo F, Marchetta A, Urzì C (2022) Black fungi on stone-built heritage: Current knowledge and future outlook. Applied Sciences (Basel, Switzerland) 12(8): 3969. https://doi.org/10.3390/app12083969
  • Delgado G, Miller A, Piepenbring M (2018) South Florida microfungi: Castanedospora, a new genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota). Cryptogamie. Mycologie 39(1): 109–127. https://doi.org/10.7872/crym/v39.iss1.2018.109
  • Díaz Arias MM, Batzer JC, Harrington TC, Wong AW, Bost SC, Cooley DR, Ellis MA, Hartman JR, Rosenberger DA, Sundin GW, Sutton TB, Travis JW, Wheeler MJ, Yoder KS, Gleason ML (2010) Diversity and biogeography of sooty blotch and flyspeck fungi on apple in the eastern and midwestern United States. Phytopathology 100(4): 345–355. https://doi.org/10.1094/PHYTO-100-4-0345
  • Doña J, Proctor H, Serrano D, Johnson KP, Oploo AO, Huguet-Tapia JC, Ascunce MS, Jovani R (2019) Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Molecular Ecology 28(2): 203–218. https://doi.org/10.1111/mec.14581
  • Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Diversity 65(1): 127–165. https://doi.org/10.1007/s13225-013-0277-y
  • Fan XL, Barreto RW, Groenewald JZ, Bezerra JD, Pereira OL, Cheewangkoon R, Mostert L, Tian CM, Crous PW (2017) Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Studies in Mycology 87(1): 1–41. https://doi.org/10.1016/j.simyco.2017.02.001
  • Flessa F, Rambold G (2013) Diversity of the Capnocheirides rhododendri-dominated fungal community in the phyllosphere of Rhododendron ferrugineum L. Nova Hedwigia 97(1–2): 19–53. https://doi.org/10.1127/0029-5035/2013/0110
  • Flessa F, Peršoh D, Rambold G (2012) Annuality of Central European deciduous tree leaves delimits community development of epifoliar pigmented fungi. Fungal Ecology 5(5): 554–561. https://doi.org/10.1016/j.funeco.2011.12.005
  • Flessa F, Harjes J, Cáceres MES, Rambold G (2021) Comparative analyses of sooty mould communities from Brazil and Central Europe. Mycological Progress 20(7): 869–887. https://doi.org/10.1007/s11557-021-01700-0
  • Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: Novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24(1): 93–105. https://doi.org/10.3767/003158510X510560
  • Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P (2020) Differences in the endophytic microbiome of olive cultivars infected by Xylella fastidiosa across seasons. Pathogens (Basel, Switzerland) 9(9): 723. https://doi.org/10.3390/pathogens9090723
  • Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park JH, Jama AN, Groenewald M, Braun U, Crous PW (2013) Species concepts in Cercospora: Spotting the weeds among the roses. Studies in Mycology 75(1): 115–170. https://doi.org/10.3114/sim0012
  • Hongsanan S, Hyde KD, Bahkali AH, Camporesi E, Chomnunti P, Ekanayaka H, Gomes AAM, Hofstetter V, Jones EBG, Pinho DB, Pereira OL, Tian Q, Wanasinghe DN, Xu JC, Buyck B (2015a) Fungal Biodiversity Profiles 11–20. Cryptogamie. Mycologie 2015(3): 355–380. https://doi.org/10.7872/crym/v36.iss3.2015.355
  • Hongsanan S, Tian Q, Hyde KD, Chomnunti P (2015b) Two new species of sooty moulds, Capnodium coffeicola and Conidiocarpus plumeriae in Capnodiaceae. Mycosphere: Journal of Fungal Biology 6(6): 814–824. https://doi.org/10.5943/mycosphere/6/6/14
  • Hongsanan S, Zhao RL, Hyde KD (2017) A new species of Chaetothyrina on branches of mango, and introducing Phaeothecoidiellaceae fam. nov. Mycosphere: Journal of Fungal Biology 8(1): 137–146. https://doi.org/10.5943/mycosphere/8/1/13
  • Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana KWT, Samarakoon MC, Ertz D, Bao DF, Doilom M, Liu JK, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, Norphanphoun C, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-González R, Aptroot A, Kashiwadani H, Harishchandra D, Sérusiaux E, Aluthmuhandiram JVS, Abeywickrama PD, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Suetrong S, Chaiwan N, Dayarathne MC, Yang J, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere: Journal of Fungal Biology 11(1): 1553–2107. https://doi.org/10.5943/mycosphere/11/1/13
  • Hughes SJ, Seifert KA (2012) Taxonomic and nomenclatural notes on sooty mould names based on species mixtures: Hormiscium handelii and Torula lechleriana. Mycoscience 53(1): 17–24. https://doi.org/10.1007/s10267-011-0133-4
  • Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Diversity 58(1): 33–45. https://doi.org/10.1007/s13225-012-0176-7
  • Hunter GC, Wingfield BD, Crous PW, Wingfield MJ (2006) A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in Mycology 55: 147–161. https://doi.org/10.3114/sim.55.1.147
  • Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, Gleason ML (2016) Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple. Mycologia 108(2): 292–302. https://doi.org/10.3852/15-036
  • Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L (2016) Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Diversity 76(1): 75–96. https://doi.org/10.1007/s13225-015-0342-9
  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113): 818–822. https://doi.org/10.1038/nature05110
  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33(2): 511–518. https://doi.org/10.1093/nar/gki198
  • Kim JY, Choi JH, Nam SH, Fyumagwa R, Yong TS (2022) Parasites and blood-meal hosts of the tsetse fly in Tanzania: A metagenomics study. Parasites & Vectors 15(1): 224. https://doi.org/10.1186/s13071-022-05344-1
  • Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics (Oxford, England) 35(21): 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
  • Küngas K, Bahram M, Põldmaa K (2020) Host tree organ is the primary driver of endophytic fungal community structure in a hemiboreal forest. FEMS Microbiology Ecology 96(2): fiz199. https://doi.org/10.1093/femsec/fiz199
  • Lee SY, Lim YS, Jung HY (2016) Molecular phylogeny and morphology of Mycosphaerella nawae, the causal agent of circular leaf spot on persimmon. Mycobiology 44(4): 191–201. https://doi.org/10.5941/MYCO.2016.44.4.191
  • Li HY, Sun GY, Zhai XR, Batzer JC, Mayfield DA, Crous PW, Groenewald JZ, Gleason ML (2012) Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States. Persoonia 28(1): 113–125. https://doi.org/10.3767/003158512X651157
  • Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: Based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628
  • Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SNN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D’souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72(1): 1–197. https://doi.org/10.1007/s13225-015-0324-y
  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. American Journal of Botany 91(10): 1446–1480. https://doi.org/10.3732/ajb.91.10.1446
  • Minnis AM, Rossman AY, Olsen RT (2011) Mycosphaerella nyssicola revisited: A species distinct from M. punctiformis. Mycotaxon 115(1): 311–322. https://doi.org/10.5248/115.311
  • Muggia L, Grube M (2010) Fungal composition of lichen thalli assessed by single strand conformation polymorphism. Lichenologist (London, England) 42(4): 461–473. https://doi.org/10.1017/S0024282909990752
  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycological Research 112(1): 50–56. https://doi.org/10.1016/j.mycres.2007.08.025
  • Pereira DRS, Phillips AJL (2020) A new leaf spot disease of Chamaerops humilis caused by Palmeiromyces chamaeropicola gen. et sp. nov. Phytopathologia Mediterranea 59(2): 353–363.
  • Piątek M, Stryjak-Bogacka M, Czachura P, Owczarek-Kościelniak M (2023) The genus Rachicladosporium: Introducing new species from sooty mould communities and excluding cold adapted species. Scientific Reports 13(1): 22795. https://doi.org/10.1038/s41598-023-49696-9
  • Quaedvlieg W, Kema GH, Groenewald JZ, Verkley GJ, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: A new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26(1): 57–69. https://doi.org/10.3767/003158511X571841
  • Quaedvlieg W, Verkley GJ, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Studies in Mycology 75(1): 307–390. https://doi.org/10.3114/sim0017
  • Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 33(1): 1–40. https://doi.org/10.3767/003158514X681981
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21(1): 93–110. https://doi.org/10.3767/003158508X371379
  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Studies in Mycology 64: 123–133S7. https://doi.org/10.3114/sim.2009.64.06
  • Schoch CL, Kohlmeyer J, Volkmann-Kohlmeyer B, Tsui CK, Spatafora JW (2006a) The halotolerant fungus Glomerobolus gelineus is a member of the Ostropales. Mycological Research 110(3): 257–263. https://doi.org/10.1016/j.mycres.2005.10.001
  • Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15S10. https://doi.org/10.3114/sim.2009.64.01
  • Schubert K, Braun U, Groenewald JZ, Crous PW (2007) Cladosporium leaf-blotch and stem rot of Paeonia spp. caused by Dichocladosporium chlorocephalum gen. nov. Studies in Mycology 58: 95–104. https://doi.org/10.3114/sim.2007.58.04
  • Simon UK, Groenewald JZ, Crous PW (2009) Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses. Persoonia 22(1): 49–55. https://doi.org/10.3767/003158509X425350
  • Singtripop D, Hongsanan S, Li J, Indeewari de Silva N, Phillips AJL, Jones EBG, Bahkali AH, Hyde KD (2016) Chaetothyrina mangiferae sp. nov., a new species of Chaetothyrina. Phytotaxa 255(1): 21–33. https://doi.org/10.11646/phytotaxa.255.1.2
  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6): 1018–1028. https://doi.org/10.1080/15572536.2006.11832630
  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Studies in Mycology 43: 5–22.
  • Sugiyama J, Amano N (1987) Two metacapnodiaceous sooty moulds from Japan: their identity and behavior in pure culture. In: Sugiyama J (Ed.) Pleomorphic fungi: the diversity and its taxonomic implications. Kodansha, Tokyo, and Elsevier, Amsterdam, 141–156. https://doi.org/10.1016/B978-0-444-98966-6.50011-3
  • Trovão J, Tiago I, Soares F, Paiva DS, Mesquita N, Coelho C, Catarino L, Gil F, Portugal A (2019) Description of Aeminiaceae fam. nov., Aeminium gen. nov. and Aeminium ludgeri sp. nov. (Capnodiales), isolated from a biodeteriorated art-piece in the Old Cathedral of Coimbra, Portugal. MycoKeys 45: 57–73. https://doi.org/10.3897/mycokeys.45.31799
  • Tsuneda A, Davey ML, Hambleton S, Currah RS (2008) Endosporium, a new endoconidial genus allied to the Myriangiales. Botany 86(9): 1020–1033. https://doi.org/10.1139/B08-054
  • Verkley GJ, Quaedvlieg W, Shin HD, Crous PW (2013) A new approach to species delimitation in Septoria. Studies in Mycology 75: 213–305. https://doi.org/10.3114/sim0018
  • Videira SI, Groenewald JZ, Kolecka A, van Haren L, Boekhout T, Crous PW (2015a) Elucidating the Ramularia eucalypti species complex. Persoonia 34(1): 50–64. https://doi.org/10.3767/003158515X685670
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 171(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols, a guide to methods and applications. Academic Press Inc., San Diego, CA, and London, UK, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Dai DQ, D’souza MJ, Diederich P, Dissanayake A, Doilom M, Hongsanan S, Jones EBG, Groenewald JZ, Jayawardena R, Lawrey JD, Liu JK, Lücking R, Madrid H, Manamgoda DS, Muggia L, Nelsen MP, Phookamsak R, Suetrong S, Tanaka K, Thambugala KM, Wanasinghe DN, Wikee S, Zhang Y, Aptroot A, Ariyawansa HA, Bahkali AH, Bhat JD, Gueidan C, Chomnunti P, de Hoog GS, Knudsen K, Li WJ, McKenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Piątek M, Raja HA, Shivas RG, Slippers B, Taylor JE, Tian Q, Wang Y, Woudenberg JHC, Cai L, Jaklitsch WM, Hyde KD (2014) Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69(1): 1–55. https://doi.org/10.1007/s13225-014-0309-2
  • Wijayawardene NN, Hyde KD, Tibpromma S, Wanasinghe DN, Thambugala KM, Tian Q, Wang Y (2017) Towards incorporating asexual fungi in a natural classification: Checklist and notes 2012–2016. Mycosphere: Journal of Fungal Biology 8(9): 1457–1555. https://doi.org/10.5943/mycosphere/8/9/10
  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK, Erdoğdu M, Selçuk F, Rajeshkumar KC, Aptroot A, Błaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska J, Pem D, Pfliegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez-Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2022) Outline of Fungi and fungus-like taxa – 2021. Mycosphere: Journal of Fungal Biology 13(1): 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  • Wu Q, Wei D, Dong L, Liu Y, Ren C, Liu Q, Chen C, Chen J, Pei J (2019) Variation in the microbial community contributes to the improvement of the main active compounds of Magnolia officinalis Rehd. et Wils in the process of sweating. Chinese Medicine 14(1): 45. https://doi.org/10.1186/s13020-019-0267-4
  • Yang HL, Sun GY, Batzer JC, Crous PW, Groenewald JZ, Gleason ML (2010) Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA. Persoonia 24(1): 29–37. https://doi.org/10.3767/003158510X492101
  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Studies in Mycology 43: 49–56.
  • Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). International Biodeterioration & Biodegradation 70: 40–46. https://doi.org/10.1016/j.ibiod.2011.11.018

Supplementary materials

Supplementary material 1 

Phylogenetic tree of selected members of the Capnodiales s. lat., Dothideales and Myriangiales obtained from a maximum likelihood analysis of the combined multi-locus alignment (ITS, LSU, SSU, rpb2, tef1)

Marcin Piątek, Monika Stryjak-Bogacka, Paweł Czachura

Data type: tif

Explanation note: The positions of new strains, Arthrocatena antalyensis comb. nov. and new order Arthrocatenales are indicated in bold. Schismatomma decolorans was used as an outgroup. The scale bar represents the expected number of changes per site.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (2.17 MB)
Supplementary material 2 

Phylogenetic tree of selected members of the Capnodiales s. lat., Dothideales and Myriangiales obtained from a Bayesian inference analysis of the combined multi-locus alignment (ITS, LSU, SSU, rpb2, tef1)

Marcin Piątek, Monika Stryjak-Bogacka, Paweł Czachura

Data type: tif

Explanation note: The positions of new strains, Arthrocatena antalyensis comb. nov. and new order Arthrocatenales are indicated in bold. Schismatomma decolorans was used as an outgroup. The scale bar represents the expected number of changes per site.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (2.23 MB)
login to comment