Research Article |
Corresponding author: Yong Wang ( yongwangbis@aliyun.com ) Corresponding author: Yan Li ( yli@gzu.edu.cn ) Academic editor: Chayanard Phukhamsakda
© 2024 Shamin Fu, Jing-E Sun, Entaj Tarafder, Nalin N. Wijayawardene, Yan Hu, Yong Wang, Yan Li.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Fu S, Sun J-E, Tarafder E, Wijayawardene NN, Hu Y, Wang Y, Li Y (2024) Pezizomycotina species associated with rotten plant materials in Guizhou Province, China. MycoKeys 106: 265-285. https://doi.org/10.3897/mycokeys.106.125920
|
Nine Pezizomycotina strains were isolated from rotten dead branches and leaves collected from Guizhou Province. To obtain their accurate taxonomic placement, we provided the morphological characteristics of conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, SSU, LSU and tub2 gene sequences, confirmed our strains represented three novel species, Peglionia falcata, Neoascochyta pseudofusiformis and Neomicrosphaeropsis cylindrica. Peglionia falcata produced falcate conidia and Neoa. pseudofusiformis generated fusiform conidia, while Neom. cylindrica possessed cylindrical conidia. The phylogenetic results also supported them as novel taxa. All the new species in the present study were found as saprophytic on forest litter with high rainfall, which suggest they may have a certain effect on nutrient decomposition and redistribution in forest ecosystems. Thus, it opened a way for further research on related ecological roles and their application production.
Ascomycota, morphology, phylogeny, taxonomy, three new taxa
Pezizomycotina is the largest subphylum of Ascomycota (
The genus Peglionia (
Neomicrosphaeropsis (Didymellaceae) was introduced by
The purpose of this study was to introduce three new Pezizomycotina taxa collected in Guizhou Province, viz. Peglionia falcata, Neoascochyta pseudofusiformis and Neomicrosphaeropsis cylindrica. The present study was of great significance to enrich the diversity of Pezizomycotina in southwest China on the basis of morphological description and phylogeny combined with ITS, LSU, tub2 and rpb2 sequence data analysis. Meanwhile, since all three new species identified are saprophytic fungi, which play an important role in the process of organic matter decomposition, they can be further studied for their ecological effects, which will provide an important theoretical and practical basis for relevant applied research and potential value exploration, based on their roles in natural ecosystems.
Sample collection was carried out in the summer of 2023, in a mountain forest in Yunyan District of Guiyang City, Guizhou Province, which was at a time of high rainy weather, with a large area covered by various kinds of vegetation. Decayed plant tissue samples were collected from the moist soil surface and brought back to the laboratory in self-sealing bags. The specimens were then examined for their macroscopic characteristics using a Nikon SMZ 745 series stereomicroscope and photographed, using a Canon 700D digital camera. Pure cultures were obtained using a single spore isolation method as described in (
Type specimens were deposited in the Herbarium of the Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). Ex-type cultures were deposited in the Culture Collection at the Department of Plant Pathology, Agriculture College, Guizhou University, P.R. China (GUCC). Taxonomic information of the new species was submitted to MycoBank (www.mycobank.org) and accession numbers are provided in the Taxonomy section of this paper.
The fungal strains were cultured on potato dextrose agar (PDA) (c = 40.1 g/l) medium in an incubator at 25 °C for 7 days and the mycelium was scraped with a sterile scalpel. Total DNA was extracted with a (Biomiga#GD2416, San Diego, California, USA) BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416) following the manufacturer’s protocol. Five loci (ITS, tub2, SSU, LSU and rpb2) were selected for the total DNA extracted. Amplification was undertaken of forward and reverse primers, including the internal transcribed spacer regions (ITS), partial beta-tubulin gene (tub2), partial large subunit nrRNA gene (LSU), 18S small subunit ribosomal RNA (SSU) and partial DNA-directed RNA polymerase II second largest subunit (rpb2) gene using the primer pairs ITS5/ITS4 (
Taxa and corresponding GenBank accession numbers of sequences used in the phylogenetic analysis T = ex-holotype strain, F = non-type strain, ET = ex-epitype strain.
Current name | Old name | Strain number | T/F | Host | Country | GenBank Accession Numbers | ||||
---|---|---|---|---|---|---|---|---|---|---|
ITS | LSU | tub2 | rpb2 | SSU | ||||||
Circinotrichum circinatum | “Gyrothrix circinata” | CBS 140217 | F | Unidentified | Malawi | ON400747 | ON400800 | − | ON399330 | − |
“Gyrothrix circinata” | CBS 140218 | F | Unidentified | Malawi | ON400748 | ON400801 | − | ON399331 | − | |
“Gyrothrix circinata” | CBS 140229 | F | Unidentified | Zimbabwe | ON400751 | ON400804 | − | ON399335 | − | |
“Gyrothrix circinata” | CBS 140230 | F | Unidentified | Zimbabwe | ON400752 | ON400805 | − | ON399334 | − | |
“Gyrothrix circinata” | CBS 140219 | F | Unidentified | Malawi | ON400749 | ON400802 | − | ON399332 | − | |
“Gyrothrix circinata” | CBS 140220 | F | Unidentified | Malawi | ON400750 | ON400803 | − | ON399333 | − | |
“Gyrothrix circinata” | CBS 148325 | F | Unidentified | USA | ON400745 | ON400798 | − | ON399329 | − | |
“Gyrothrix sp.” | CBS 140235 | F | Unidentified | Brazil | ON400746 | ON400799 | − | ON399336 | − | |
“Gyrothrix circinata” | CBS 148326 | F | Unidentified | Australia | ON400743 | ON400796 | − | ON399328 | − | |
“Gyrothrix circinata” | CBS 148327 | F | Hakea sp. | Australia | ON400744 | ON400797 | − | ON399327 | − | |
“Gyrothrix sp.” | CPC 26309 | F | Erica sp. | France | ON400742 | ON400795 | − | ON399326 | − | |
Circinotrichum maculiforme | Circinotrichum maculiforme | CBS 122758 | F | Unidentified | Spain | KR611875.1 | KR611896.1 | − | ON399337 | − |
Circinotrichum maculiforme | CBS 140016 | ET | Loranthus sp. | Czech Republic | KR611874.1 | KR611895.1 | − | ON399338 | − | |
Circinotrichum maculiforme | CBS 140225 | F | Unidentified | Cuba | ON400753 | ON400806 | − | ON399339 | − | |
Circinotrichum sp. | CPC 29975 | F | Cornus sanguinea | France | ON400754 | ON400807 | − | ON399340 | − | |
“Ceratocladium microspermum” | “Ceratocladium microspermum” | CBS 488.77 | F | Quercus sp. | Slovakia | ON400740 | ON400793 | − | ON399324 | − |
Circiontrichum australiense | “Gyrothrix podosperma” | CBS 148706 | T | Unidentified | Australia | ON400741 | ON400794 | − | ON399325 | − |
Coniocessia nodulisporioides | CBS 125776 | F | Unidentified | Unknown | MH863754.1 | MH875222.1 | − | − | − | |
Coniocessia nodulisporioides | CBS 125777 | F | Unidentified | Unknown | MH863755.1 | MH875223.1 | − | − | − | |
Coniocessia cruciformis | Coniocessia cruciformis | CBS 125769 | F | Triticum aestivum | Iran | MH863750.1 | MH875218.1 | − | − | − |
Pirozynkiomyces brasiliensis | “Gyrothrix circinata” | CBS 112314 | T | Unidentified | Brazil | ON400767 | ON400819 | − | ON399341 | − |
Circinotrichum sinense | Circinotrichum sinense | UAMH 11913 | T | Camellia cuspidata | China | KY994106.1 | KY994107.1 | − | − | − |
Hansfordia pruni | Hansfordia pruni | CBS 125775 | F | Prunus persica | Italy | MH863753.1 | MH875221.1 | − | − | − |
Hansfordia pruni | CBS 125767 | F | Prunus persica | Italy | MH863748.1 | MH875216.1 | − | − | − | |
Hansfordia pruni | CBS 125768 | F | Prunus persica | Italy | MH863749.1 | MH875217.1 | − | − | − | |
Selenodriella fertilis | CBS 772.83 | F | Unidentified | Unknown | KP859055.1 | KP858992.1 | − | − | − | |
Selenodriella fertilis | CPC 16273 | F | Unidentified | Unknown | ON400771 | ON400823 | − | ON399358 | − | |
Selenodriella fertilis | CBS 144589 | F | Unidentified | Unknown | MK442624.1 | MK442560.1 | − | − | − | |
Circinotrichum rigidum | “Circinotrichum rigidum” | CBS 148328 | F | Eucalyptus sp. | Australia | ON400772 | ON400824 | − | ON399359 | − |
Selenodriella brasiliana | “Circinotrichum australiense” | CBS 140227 | T | Unidentified | Brazil | ON400769 | ON400821 | − | ON399356 | − |
“Circinotrichum sp.” | CBS 140236 | F | Unidentified | Brazil | ON400770 | ON400822 | − | ON399357 | − | |
Selenodriella cubensis | Selenodriella cubensis | CBS 683.96 | T | Unidentified | Cuba | KP859053.1 | KP858990.1 | − | − | − |
Peglionia verticiclada | “Gyrothrix verticiclada” | CBS 101171 | F | Unidentified | Venezuela | ON400766 | ON400818 | − | ON399355 | − |
“Gyrothrix verticiclada” | CBS 140226 | F | Unidentified | Venezuela | ON400764 | ON400816 | − | ON399354 | − | |
“Gyrothrix verticiclada” | CBS 127654 | ET | Smilax aspera | Italy | ON400763 | ON400815 | − | ON399352 | − | |
“Gyrothrix verticiclada” | CBS 148329 | F | Eucalyptus sp. | Australia | ON400765 | ON400817 | − | ON399353 | − | |
Peglionia falcata | GUCC 23-0042 | T | Unidentified | China | PP295269 | PP314032 | − | PP396044 | − | |
Peglionia falcata | GUCC 23-0043 | F | Unidentified | China | PP295270 | PP314033 | − | PP396045 | − | |
Peglionia falcata | GUCC 23-0044 | F | Unidentified | China | PP295271 | PP349828 | − | PP396046 | − | |
Microdochium lycopodinum | CBS 125585 | F | Unidentified | Unknown | NR_145223.1 | KP858952.1 | − | KP859125.1 | − | |
Idriella lunata | CBS 204.56 | F | Fragaria chiloensis var. ananassa | USA | MH857584.1 | MH869129.1 | − | − | − | |
Zygosporium pseudomassoni | CBS 146059 | F | Unidentified | Unknown | NR_166342.1 | NG_068340.1 | − | MN556815.1 | − | |
Zygosporium mycophilum | CBS 894.69 | F | Unidentified | Unknown | MH859474.1 | MH871255.1 | − | − | − | |
Monosporascus cannonballus | ATCC 26931 | T | Cucumis melo | USA | NR_111370.1 | − | − | − | − | |
Monosporascus nordestinus | CMM 4846 | F | Trianthema portulacastrum | Brazil | MG735241 | MG748810.1 | − | − | − | |
Monosporascus caatingaensis | CMM 4833 | F | Boerhavia diffusa | Brazil | MG735228.1 | MG748797.1 | − | − | − | |
Diatrypella vulgaris | CBS 128329 | F | Citrus paradisi | Australia | MH864880.1 | MH876328.1 | − | − | − | |
Diatrype disciformis | CBS 197.49 | F | Unidentified | Unknown | − | DQ470964.1 | − | DQ470915.1 | − | |
Acrocordiella occulta | CBS 140500 | F | Unidentified | Unknown | KT949893.1 | MH878156.1 | − | − | − | |
Neomicrosphaeropsis alhagi-pseudalhagi | MFLUCC 17-0825 | T | Alhagi pseudalhagi | Uzbekistan | MH069664 | MH069670 | MH069689 | − | MH069676 | |
Neomicrosphaeropsis elaeagni | MFLUCC 17-0740 | T | Elaeagnus angustifolia | Russia | MH069666 | MH069672 | MH069691 | − | MH069678 | |
Neomicrosphaeropsis italica | MFLUCC 15-0485 | T | Tamarix sp. | Italy | KU900318 | KU729854 | − | − | KU900309 | |
Neomicrosphaeropsis italica | MFLUCC 16-0284 | F | Tamarix sp. | Italy | KU900321 | KU900296 | KX453299 | − | KU900311 | |
Neomicrosphaeropsis italica | MFLUCC 15-0484 | F | Tamarix sp. | Italy | KU900319 | KU729853 | KX453298 | − | − | |
Neomicrosphaeropsis italica | MFLUCC 15-0487 | F | Tamarix sp. | Italy | KU900320 | KU729852 | − | − | KU900310 | |
Neomicrosphaeropsis juglandis | MFLUCC 18-0795 | T | Juglans regia | Turkey | MN244223 | MN244206 | MN871954 | − | MN244183 | |
Neomicrosphaeropsis novorossica | MFLUCC 14-0578 | T | Tamarix ramosissima | South European Russia | KX198709 | KX198710 | − | − | KX198711 | |
Neomicrosphaeropsis rossica | MFLUCC 14-0586 | T | Tamarix ramosissima | South European Russia | KU752192 | KU729855 | − | − | KU870914 | |
Neomicrosphaeropsis tamaricicola | MFLUCC 14-0443 | F | Tamarix sp. | Italy | KU900322 | KU729851 | − | − | KU900312 | |
Neomicrosphaeropsis tamaricicola | MFLUCC 14-0439 | F | Tamarix sp. | Italy | KU900323 | KU729858 | − | − | KU900313 | |
Neomicrosphaeropsis tamaricicola | MFLUCC 14-0602 | T | Tamarix sp. | Italy | KM408753 | KM408754 | MH069692 | − | KM408755 | |
Neomicrosphaeropsis cylindrica | GUCC23-0048 | T | Unidentified | China | PP314028 | PP314039 | PP396056 | PP396050 | PP316087 | |
Neomicrosphaeropsis cylindrica | GUCC23-0049 | F | Unidentified | China | PP314030 | PP316086 | PP396057 | PP396051 | PP316089 | |
Neomicrosphaeropsis cylindrica | GUCC23-0050 | F | Unidentified | China | PP314031 | PP316082 | PP396058 | PP396052 | PP316088 | |
Microsphaeropsis minima | Neomicrosphaeropsis minima | MFLUCC 13-0394 | F | Verbascum sp. | Italy | KX572336 | KX572341 | − | − | KX572346 |
Microsphaeropsis cytisina | Neomicrosphaeropsis cytisina | MFLU 16-1364 | T | Cytisus scoparius | Italy | KX611243 | KX611241 | KX611242 | ||
Microsphaeropsis cystisicola | Neomicrosphaeropsis cystisicola | MFLUCC 18-0355 | T | Cytisus sp. | Italy | MH069665 | MH069671 | MH069690 | − | − |
Microsphaeropsis cytisi | Neomicrosphaeropsis cystisi | MFLUCC 13-0396 | T | Cytisus sp. | Italy | KX572337 | KX572342 | − | − | KX572347 |
Microsphaeropsis fusca | CBS 116670 | T | Sarothamnus scoparius | The Netherlands | MN973573 | MT018220 | − | MT018220 | − | |
Microsphaeropsis rafniae | CMW 57792 | T | Rafnia amplexicaulis | South Africa | OR209698 | OR209716 | − | OR211858 | − | |
Microsphaeropsis viridis | CBS 763.73 | F | Populus tremula | France | MN973561 | MN943768 | − | MT018210 | − | |
Microsphaeropsis taxicola | CBS 469.80 | F | Rhus typhina | The Netherlands | MN973565 | MN943772 | − | MT018210 | − | |
Neodidymelliopsis ranunculi | MFLUCC 13-0490 | T | Unidentified | Italy | MN944410 | MT020377 | − | − | KX572348 | |
Neoascochyta adenii | CBS 142108 | T | Adenium obesum | Thailand | KY173423 | KY173514 | KY173607 | − | − | |
Neoascochyta argentina | CBS 112524 | T | Triticum aestivum | Argentina | KT389524 | KT389742 | KT389822 | − | − | |
Neoascochyta cylindrispora | CBS 142456 | T | Homo sapiens | USA | LT592963 | LN907502 | LT593032 | − | − | |
Neoascochyta dactylidis | MFLUCC 13-0495 | T | Dactylis glomerata | Italy | NR_170041 | − | − | − | − | |
Neoascochyta desmazieri | CBS 297.69 | T | Lolium perenne | Germany | KT389508 | KT389726 | KT389806 | − | − | |
Neoascochyta desmazieri | CBS 758.97 | F | Unidentified | Norway | KT389509 | KT389727 | KT389807 | − | − | |
Neoascochyta desmazieri | CBS 247.79 | F | Gramineae | Austria | KT389507 | KT389725 | KT389805 | − | − | |
Neoascochyta europaea | CBS 820.84 | T | Hordeum vulgare | Germany | KT389511 | KT389729 | KT389809 | − | − | |
Neoascochyta europaea | CBS 819.84 | F | Hordeum vulgare | Germany | KT389510 | KT389728 | KT389808 | − | − | |
Neoascochyta exitialis | CBS 812.84 | F | Hordeum vulgare | Germany | KT389517 | KT389735 | KT389815 | − | − | |
Neoascochyta exitialis | CBS 811.84 | F | Secale cereale | Germany | KT389516 | KT389734 | KT389814 | − | − | |
Neoascochyta exitialis | CBS 389.86 | F | Triticum aestivum | Switzerland | KT389515 | KT389733 | KT389813 | − | − | |
Neoascochyta exitialis | CBS 113693 | F | Allium sp. | Sweden | KT389513 | KT389731 | KT389811 | − | − | |
Neoascochyta exitialis | CBS 110124 | F | Triticum sp. | Netherlands | KT389512 | KT389730 | KT389810 | − | − | |
Neoascochyta fuci | CMG 47/MUM19.41 | T | Fucus sp. | Portugal | MN053014 | − | MN066618 | − | − | |
Neoascochyta fuci | CMG 48 | F | Fucus sp. | Portugal | MN053015 | − | MN066619 | − | − | |
Neoascochyta fusiformis | CBS 876.72 | T | Triticum sp. | South Africa | KT389527 | KT389745 | KT389825 | − | − | |
Neoascochyta graminicola | CBS 816.84 | F | Hordeum vulgare | Germany | KT389523 | KT389741 | KT389821 | − | − | |
Neoascochyta graminicola | CBS 815.84 | F | Hordeum vulgare | Germany | KT389522 | KT389740 | KT389820 | − | − | |
Neoascochyta graminicola | CBS 447.82 | F | Triticum aestivum | Germany | KT389520 | KT389738 | KT389818 | − | − | |
Neoascochyta graminicola | CBS 301.69 | F | Lolium multiflorum | Germany | KT389519 | KT389737 | KT389817 | − | − | |
Neoascochyta graminicola | CBS 102789 | F | Lolium perenne | New Zealand | KT389518 | KT389736 | KT389816 | − | − | |
Neoascochyta humicola | CBS 127323 | T | Unidentified | USA | MN973628 | MN943837 | MT005740 | − | − | |
Neoascochyta longispora | CBS 113420 | T | Cerastium semidecandrum | New Zealand | MN973629 | MN943838 | MT005741 | − | − | |
Neoascochyta mortariensis | CBS 516.81 | T | Gramineae | Italy | KT389525 | KT389743 | KT389823 | − | − | |
Neoascochyta paspali | CBS 560.81 | T | Paspalum dilatatum | New Zealand | FJ427048 | GU238124 | FJ427158 | − | − | |
Neoascochyta paspali | CBS 561.81 | F | Lolium perenne | New Zealand | GU237889 | − | GU237640 | − | − | |
Neoascochyta paspali | ICMP 6614 | F | Paspalum dilatatum | New Zealand | KT309957 | − | KT309539 | − | − | |
Neoascochyta paspali | ICMP 6819 | F | Dactylis glomerata | New Zealand | KT309992 | − | KT309572 | − | − | |
Neoascochyta paspali | ICMP 6615 | F | Lolium perenne | New Zealand | KT309958 | − | KT309540 | − | − | |
Neoascochyta rosicola | MFLUCC 15-0048 | T | Rosa canina | Italy | MG828921 | MG829031 | − | − | − | |
Neoascochyta soli | LC 8165 | T | Unidentified | China | KY742121 | KY742275 | KY742363 | − | − | |
Neoascochyta soli | LC 8166 | F | Unidentified | China | KY742122 | KY742276 | KY742364 | − | − | |
Neoascochyta tardicrescens | CBS 689.97 | T | Unidentified | Norway | KT389526 | KT389744 | KT389824 | − | − | |
Neoascochyta triticicola | CBS 544.74 | T | Triticum aestivum | South Africa | GU237887 | EU754134 | GU237488 | − | − | |
Neoascochyta yunnanensis | YCW1883 | T | Camellia sinensis | China | OP648090 | OP837280 | OP854553 | |||
Neoascochyta zhejiangensis | YCW1361 | T | Camellia sinensis | China | OP648091 | OP083837281 | OP854554 | |||
Neoascochyta pseudofusiformis | GUCC 23-0045 | T | Unidentified | China | PP314026 | PP314037 | PP396053 | PP396047 | PP345789 | |
Neoascochyta pseudofusiformis | GUCC 23-0046 | F | Unidentified | China | PP314027 | PP314038 | PP396054 | PP396048 | PP301319 | |
Neoascochyta pseudofusiformis | GUCC 23-0047 | F | Unidentified | China | PP314029 | PP314036 | PP396055 | PP396049 | PP301320 | |
Vandijckomycella joseae | CBS 143011 | T | Unidentified | Unknown | NR_168247 | NG_068687 | − | − | − | |
Vandijckomycella snoekiae | CBS 144954 | T | Unidentified | Unknown | NR_168248 | NG_068688 | MN824765 | − | − |
After primary BLAST alignment, all our nine isolates could not be affiliated to any of the currently-known species. Thus, the related sequences were added to the sequence alignment for phylogenetic analyses. Available sequences of species in relative genera containing ex-type or representative isolates were downloaded from GenBank (Table
Trees resulting from ML analysis of the combined ITS, rpb2 and LSU sequence alignment for forty-nine isolates in Coniocessiaceae and Microdochiaceae. RAxML and MP bootstrap support values (ML, MP ≥ 70%) and Bayesian posterior probability (PP ≥ 0.95) are denoted on the nodes (ML/MP/PP). The tree was rooted to Acrocordiella occulta (CBS 140500). New species are highlighted in red. The scale bar indicates 0.06 expected changes per site. T = ex-holotype strain, ET = ex-epitype strain.
Trees resulting from ML analysis of the combined ITS, tub2 and LSU sequence alignment for thirty-seven isolates in Neoascochyta. RAxML and MP bootstrap support values (ML, MP ≥ 65%) and Bayesian posterior probability (PP ≥ 0.65) are denoted on the nodes (ML/MP/PP). The tree was rooted to Vandijckomycella joseae (CBS 143011) and Vandijckomycella snoekiae (CBS 144954). New species are highlighted in red. The scale bar indicates 0.03 expected changes per site. T = ex-holotype strain.
Trees resulting from ML analysis of the combined ITS, SSU and LSU sequence alignment for twelve isolates in Neomicrosphaeropsis and eight isolates in Microsphaeropsis. RAxML and MP bootstrap support values (ML, MP ≥ 60%) and Bayesian posterior probability (PP ≥ 0.65) are denoted on the nodes (ML/MP/PP). The tree was rooted to Neodidymelliopsis ranunculi (MFLUCC13-0490). New species are highlighted in red. The scale bar indicates 0.002 expected changes per site. T = ex-holotype strain.
In the phylogenetic analyses, the MP, ML and Bayesian results obtained similar topologies, thus the ML topologies were edited and shown as Figs
The combined data matrix of Neoascochyta (ITS–LSU–tub2) yielded 1784 characters (ITS: 489, LSU: 959 and tub2: 336). The MP analysis, based on 194 parsimony informative characters (1480 characters were constant and 110 variable characters), produced the phylogenetic tree with the following parameters: TL = 562; CI = 0.6975; HI = 0.3025; RI = 0.8932; and RC = 0.6230. The result (Fig.
In Fig.
The DNA base differences of our isolates and related taxa in different loci.
Species | Strain number | ITS (1–761 characters) | LSU (762–1646 characters) | rpb2 (1647–2366 characters) |
---|---|---|---|---|
Peglionia falcata | GUCC-0042 | 0 | 0 | 0 |
Peglionia falcata | GUCC-0043 | 0 | 0 | 0 |
Peglionia falcata | GUCC-0044 | 0 | 0 | 0 |
Peglionia verticiclada | CBS 127654 | 20 (gaps: 4) | 13 (gap: 0) | 69 (gap: 0) |
Peglionia verticiclada | CBS 101171 | 19 (gaps: 4) | 17 (gap: 1) | 65 (gap: 0) |
Peglionia verticiclada | CBS 683.96 | 36 (gaps: 7) | 25 (gaps: 2) | / |
Peglionia verticiclada | CBS 140227 | 39 (gaps: 6) | 26 (gaps: 2) | 84 (gap: 0) |
Species | Strain number | ITS (1–489 characters) | LSU (490–1448 characters) | tub2 (1449–1784 characters) |
Neoascochyta pseudofusiformis | GUCC23-0045 | 0 | 0 | 0 |
Neoascochyta pseudofusiformis | GUCC23-0046 | 0 | 0 | 0 |
Neoascochyta pseudofusiformis | GUCC23-0047 | 0 | 0 | 0 |
Neoascochyta soli | LC 8166 | 24 (gap: 3) | 16 (gap: 0) | 35 (gap: 1) |
Neoascochyta argentina | CBS 112524 | 18 (gap: 0) | 2 (gap: 0) | 29 (gap: 1) |
Neoascochyta tardicrescens | CBS 689.97 | 23 (gap: 0) | 2 (gap: 0) | 30 (gap: 1) |
Neoascochyta mortariensis | CBS 516.81 | 20 (gap: 0) | 2 (gap: 0) | 30 (gap: 1) |
Neoascochyta rosicola | MFLUCC 15-0048 | 24 (gaps: 0) | 3 (gap: 0) | / |
Species | Strain number | ITS (1–484 characters) | LSU (485–1317) | SSU (1318–2328 characters) |
Neomicrosphaeropsis cylindrica | GUCC 23-0048 | 0 | 0 | 0 |
Neomicrosphaeropsis cylindrica | GUCC 23-0049 | 0 | 0 | 0 |
Neomicrosphaeropsis cylindrica | GUCC 23-0050 | 0 | 0 | 0 |
Neomicrosphaeropsis rossica | MFLUCC 14-0586 | 4 (gap:0) | 4 (gap: 0) | 1 (gap: 1) |
Neomicrosphaeropsis novorossica | MFLUCC 14-0578 | 5 (gap:0) | 3 (gap: 0) | 1 (gap: 0) |
Neomicrosphaeropsis alhagi-pseudalhagi | MFLUCC 17-0825 | 5 (gaps:0) | 2 (gap: 0) | 0 |
In reference to the fungus, which produced falcate conidia.
Peglionia falcata is characterised by dry falcate meriform spores (24.1 × 2.9 μm; L/W = 8.005).
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead branch, 19 July 2023, S.M. Fu, HGUP 23-0013 (holotype), ex-type culture GUCC23-0042.
Colonies on PDA, after 8 d, 20–25 mm diam., scarce aerial mycelium, dark brown, white to the periphery, margin entire, reverse dark brown. Occasionally, when a seta bears only two apical branches, one or both can be once forked. Conidiogenous cells polyblastic, obclavate to lageniform, hyaline to subhyaline. Conidia adherent in a continuous white layer on the conidiogenous cells, dry falcate, non-septate, hyaline. Chlamydospores (in culture) in chains, subglobose to irregularly-shaped, subhyaline to brown. Sexual morph not observed. Colonies hypophyllous, scattered, up to 1 mm wide, occasionally larger by confluence, velvety, black when sterile and whitish within when sporulating profusely. Conidiogenous cells obclavate to lageniform, hyaline to subhyaline, distally with a somewhat irregular contour, 5–16.5 × 4–7 µm (x̄ = 9.8 × 5.3 μm, n = 20). Conidia adherent in a continuous white layer on the conidiogenous cells, falcate, non-septate, hyaline,18–30 × 2.5–3.5 µm (x̄ = 24.1 × 2.9 μm, n = 30).
On rotten dead branches.
China, Guizhou Province, Guiyang City
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead branch, 19 July 2023, S.M. Fu, HGUP 23-0013, living culture GUCC23-0042, GUCC23-0043 and GUCC23-0044.
In morphology, Peglionia falcata differs to P. verticiclada by its larger conidiogenous cells (4–7 μm wide vs. 3–5 μm wide in P. verticiclada) and larger conidia (18–30 μm vs. 17–22 μm in P. verticiclada) (
In reference to the fungus, which produced fusiform conidia morphologically similar to Neoascochyta fusiformis.
Neoascochyta pseudofusiformis is characterised by oval to fusiform conidia (3.6 × 1.9; L/W = 1.896) with moderate growth rate.
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead branch, 19 July 2023, S.M. Fu, HGUP 23-0014 (holotype), ex-type culture GUCC23-0045.
Colonies on PDA, 70–75 mm diam. after 7 d, margin regular, covered by floccose aerial mycelium, greyish-olivaceous, with flat and greenish-black flat mycelium near the margin; reverse black olivaceous. Mycelium is light to dark grey, separated, smooth, thin to thick wall. Acicular conidium, grey to dark grey, solitary or conjunctival, immersed in culture (WA), glabrous, subglobular, 100–250 × 90–130 μm, with a single pore neck; The angular textured cylindrical wall consists of 2 to 4 layers of flat polygonal cells 10–50 μm thick. The meristem cells are biparental, transparent, smooth-walled, pot or spherical, 3 × 5 μm wide. The conidia are 0–1 septum, transparent, smooth, thick-walled, mostly fusiform or slightly allantoic, 3.0–4.5 × 1.5–2.5 μm (x̄ = 3.6 × 1.9 μm, n = 30).
On rotten dead branches.
China, Guizhou Province, Guiyang City
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead branches, 19 July 2023, S.M. Fu, HGUP 23-0014, living culture GUCC23-0045, GUCC23-0046 and GUCC23-0047.
The present taxon differs morphologically to related species by conidial size range (3.0–4.5 × 1.5–2.5 μm vs. 16.5–27 × 5–8.5 μm in N. argentina and 2.5–3.5 × 1.0–1.5 μm in N. tardicrescens) (
In reference to the fungus, which produced cylindrical conidia.
Neomicrosphaeropsis cylindrica is characterised by broadly cylindrical conidia (15.4 × 3.4; L/W = 4.574) with moderate growth rate.
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead leaves, 19 July 2023, S.M. Fu, HGUP 23-0015 (holotype), ex-type culture GUCC23-0048.
Saprobic on dead leaves. Colony on PDA, 35–38 mm diameter, after 7 days, dense low-altitude hypha, light yellow, centre with abundant stigma; Turning light yellow to rose light yellow, the centre of concentric circles is darker; on MEA, after 7 days, 28–30 mm, the edge is intact, dense hypoxic mycelium, the edge is yellowish; reverse rose-yellowish to yellowish at margin with abundant scattered on stigma; Conidia cylindrical, spherical to kettle-shaped, 200–350 μm in diameter, tan to black, solitary, population centre abundant, banded, glabrous, without papillae; the cell wall is angular textured, light brown, bifid, cylindrical, thin-walled, transparent. Conidia occasionally septate, 12.5–18.5 × 2.4–4.0 μm (x̄ = 15.4 × 3.4 μm, n = 30), cylindrical, transparent, thin-walled.
Not observed.
On rotten dead leaves.
China, Guizhou Province, Guiyang City.
China, Guizhou Province, Guiyang City, 26°57'N, 106°72'E, from rotten dead leaf, 19 July 2023, S.M. Fu, HGUP 23-0015, living culture GUCC23-0048, GUCC23-0049 and GUCC23-0050.
Neomicrosphaeropsis cylindrica (GUCC 23-0048) formed a clade with N. rossica (MFLUCC 14-0586) and N. alhagi-pseudalhagi (MFLUCC 17-0825) (Fig.
According to
The authors have declared that no competing interests exist.
No ethical statement was reported.
This research is supported by the following projects: National Natural Science Foundation of China (No. 31972222, 31660011), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), Talent project of Guizhou Science and Technology Cooperation Platform ([2017]5788-5, [2019]5641, [2019]13), Guizhou Science, Technology Department of International Cooperation Base project ([2018]5806), the project of Guizhou Provincial Education Department ([2021]001) and Guizhou Science and Technology Innovation Talent Team Project ([2020]5001).
Conceptualization: YH. Data curation: SF. Formal analysis: NNW. Funding acquisition: YW, YL. Investigation: ET. Methodology: JES. Supervision: YW. Writing - original draft: SF.
Shamin Fu https://orcid.org/0009-0000-2829-7967
Jing-E Sun https://orcid.org/0000-0002-5226-5743
Entaj Tarafder https://orcid.org/0000-0002-3680-3433
Nalin N. Wijayawardene https://orcid.org/0000-0003-0522-5498
Yong Wang https://orcid.org/0000-0003-3831-2117
All of the data that support the findings of this study are available in the main text.