Research Article
Print
Research Article
Three new species of Pestalotiopsis (Amphisphaeriales, Sporocadaceae) were identified by morphology and multigene phylogeny from Hainan and Yunnan, China
expand article infoChangzhun Yin, Zhaoxue Zhang§, Shi Wang, Liguo Ma|, Xiuguo Zhang§
‡ Shandong Normal University, Jinan, China
§ Shandong Agricultural University, Taian, China
| Shandong Academy of Agricultural Sciences, Jinan, China
Open Access

Abstract

Pestalotiopsis fungi are widely distributed all over the world, mainly as plant pathogens, endophytes or saprobes from multiple hosts. In this study, the sequence data analysis based on internal transcribed spacer (ITS), partial beta-tubulin (tub2) and partial regions of translation elongation factor 1 alpha (tef1α) combined with morphological characteristics was used to identify strains isolated from the diseased leaves of Aporosa dioica and Rhaphiolepis indica, as well as some rotted leaves from Yunnan and Hainan Provinces in China as three new species, viz., Pestalotiopsis aporosae-dioicae sp. nov., P. nannuoensis sp. nov. and P. rhaphiolepidis sp. nov.

Key words

New species, Pestalotiopsis, taxonomy

Introduction

Pestalotiopsis was separated from Pestalotia by Steyaert in 1942 and belongs to the Sporocadaceae, Amphisphaeriales, Ascomycota (Steyaert 1949). At present, a total of 420 records of Pestalotiopsis have been recorded in the Index Fungorum (http://www.indexfungorum.org/, accessed on 26 Jun 2024). Pestalotioid fungi are a cosmopolitan group of fungi, which have important relationships with different plants as plant pathogens, saprobes or endophytes, and are widely distributed in temperate and tropical regions (Maharachchikumbura et al. 2011, 2012, 2014). As important plant pathogens, pestalotioid species can cause many plant diseases and great economic losses to people (Zhang et al. 2012a; Maharachchikumbura et al. 2013; Jayawardena et al. 2016; Liu et al. 2017; Yang et al. 2017; Diogo et al. 2021; Prasannath et al. 2021). In the past, gray blight disease of tea trees caused by pestalotioid species had caused huge yield losses in southern India (Joshi et al. 2009). In addition, pestalotioid species can also cause the leaf spot of Taxus chinensis in China, leaf blight of Elettaria cardamomum in India, and dieback and stem girdling in young eucalyptus plants in Portugal (Biju et al. 2018; Li et al. 2021; Wang et al. 2021). Therefore, the study of pathogenic pestalotioid species can provide research basis for the treatment and inhibition of diseases and avoid significant economic losses.

At first, Pestalotiopsis resembling those taxa having a relationship with Pestalotia were also referred to as pestalotioid fungi. Pestalotioid fungi are characterized by multiseptate and fusiform conidia with appendages at one end or both, frequently with some melanized cells. (Bonthond et al. 2018; Liu et al. 2019). Traditionally, pestalotioid species have been classified mainly according to color intensity of the median conidial cell and the hosts (Maharachchikumbura et al. 2014). But the development of DNA based phylogenetic analysis has brought the traditional classification system into dispute. Maharachchikumbura et al. (2014) applied molecular data to the classification of Pestalotiopsis. By the difference of multilocus phylogenetic analyses, conidial pigment color, and conidiophores, this group was divided into three genera, Pestalotiopsis, Pseudopestalotiopsis, and Neopestalotiopsis. Neopestalotiopsis differs from Pestalotiopsis and Pseudopestalotiopsis in that two upper median cells are darker than the lowest median cell of the conidia, and its indistinct conidiophores. Pseudopestalotiopsis can be easily distinguished from Pestalotiopsis due to its three darker median cells. In recent years, many novel species have been introduced into this group by the use of phylogeny approaches together with morphology (Akinsanmi et al. 2017; Liu et al. 2017; Nozawa et al. 2017; Ariyawansa and Hyde 2018; Jiang et al. 2018; Tibpromma et al. 2018; Tsai et al. 2018).

We conducted extensive sampling in southern China to investigate fungal diversity and explore fungal resources. This study aimed to identify Pestalotiopsis which was isolated from diseased leaves of Aporosa dioica and Rhaphiolepis indica, as well as some rotted leaves collected from Hainan and Yunnan Provinces by morphological characters and molecular phylogeny, and three new species of Pestalotiopsis were described and illustrated.

Materials and methods

Sample collection and isolation

The isolates used in this study were obtained from diseased or rotted leaves collected in Yunnan and Hainan Provinces from March to May 2023. Cut 5 × 5 mm small square leaves from the fungal infection part of each sample of diseased or rotted leaves and put them into sterile containers respectively. First, immerse all the small square leaves of each sample in 75% ethanol for disinfection for 1 min, and rinse with sterilized water one time after pouring out the ethanol. Then immerse all the small square leaves of each sample in 5% sodium hypochlorite solution for disinfection for 30s, and pour out the sodium hypochlorite solution, rinse them repeatedly with sterilized water three times. After pouring out the sterilized water, pick them up with sterilized tweezers and put them on sterilized filter paper to dry. The sterilized leaves were plated on PDA plates (PDA: 20 g agar, 20 g dextrose, 200 g potato, 1000 ml distilled water, pH 7.0) with sterilized tweezers, then 4 small leaves were placed symmetrically on the surface of each medium, with the disease spot facing down, close to the medium, and the serial number and date were marked on the medium after sealing with a sealing film. The PDA plate was cultured in a constant temperature incubator at 25 °C and the growth of fungi was observed and recorded every day. After 2 to 3 days of culture, the agar with mycelium on the edges of the colony was purified onto a new PDA plate and cultured for 1 to 2 weeks.

Morphological and cultural characterization

The PDA plates were photographed on days 7 and 14 with a digital camera (Canon Powershot G7X). The morphological characteristics of fungi were observed with Olympus SZX10 stereomicroscope and Olympus BX53 microscope, then the fungal structures such as conidiomata, conidiophores, conidiogenous cells, conidia, and appendages, were photographed with an Olympus DP80 high-definition color digital camera. The microstructures are measured with the Digimizer software (https://www.digimizer.com/), and the number of samples measured is generally 20–30. All strains were stored in sterilized 10% glycerol at 4 °C. Voucher specimens have been preserved in the Herbarium of the Department of Plant Pathology, Shandong Agricultural University, Taian, China (HSAUP) and Herbarium Mycologicum Academiae Sinicae, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS). Ex-holotype living cultures have been preserved in the Shandong Agricultural University Culture Collection (SAUCC). A taxonomy and description of the new species has been uploaded to MycoBank (http://www.mycobank.org/).

DNA extraction, PCR amplification, and sequencing

The genomic DNA was extracted from the colonies cultured on PDA by CTAB (cetyl trimethyl ammonium bromide) method and BeaverBeads Plant DNA Kit (Cat. No.: 70409-20; BEAVER Biomedical Engineering Co., Ltd.) (Guo et al. 2000; Wang et al. 2023). Fungal DNA was amplified using polymerase chain reaction (PCR) using three pairs of primers including internal transcribed spacer (ITS), partial beta-tubulin (tub2) and partial regions of translation elongation factor 1 alpha (tef1α) (White et al. 1990; Glass and Donaldson 1995; O’Donnell et al. 1998; Carbone and Kohn 1999). The reaction was amplified at 25 μL reaction volume, including 12.5 μL 2× Hieff Canace® Plus PCR Master Mix (Shanghai, China) (with dye) (Yeasen Biotechnology, Shanghai, China, Cat No. 10154ES03), 1 μL forward primer, 1 μL reverse primer, and 1 μL genomic DNA template, add distilled deionized water to a total volume 25 μL. The PCR amplification products were detected by electrophoresis in 2% agarosegels and the amplification effect was determined by observing the fragments with UV light (Zhang et al. 2022). Then use a Gel Extraction Kit (Cat: AE0101-C) (Shandong Sparkjade Biotechnology Co., Ltd.) for gel recovery. DNA sequencing and primer synthesis were completed by Tsingke Biotechnology Co., Ltd. (Qingdao, China). The bidirectional sequencing results of the three primers were examined and spliced using MEGA v. 7.0 (Kumar et al. 2016). The sequences of all three new species have been uploaded to GenBank, and the Genebank numbers of all strain sequences used in this study are shown in Table 1.

Table 1.

GenBank numbers used in the phylogenetic analysis of Pestalotiopsis.

Species Isolate Origin Substrate GenBank accession References
ITS tub2 tef1α
Neopestalotiopsis magna MFLUCC 12-0652* France Pteridium sp. KF582795 KF582793 KF582791 (Maharachchikumbura et al. 2014)
Pestalotiopsis abietis CFCC 53013 China Abies fargesii MK397015 MK622282 MK622279 (Gu et al. 2021)
CFCC 53011* China Abies fargesii MK397013 MK622280 MK622277
CFCC 53012 China Abies fargesii MK397014 MK622281 MK622278
P. adusta MFLUCC 10-146 Thailand Syzygium sp. JX399007 JX399038 JX399071 (Maharachchikumbura et al. 2012)
ICMP 6088* Fiji Refrigerator door JX399006 JX399037 JX399070
P. aggestorum LC8186 China Camellia sinensis KY464140 KY464160 KY464150 (Liu et al. 2017)
LC6301* China Camellia sinensis KX895015 KX895348 KX895234
P. anhuiensis CFCC 54791* China Cyclobalanopsis glauca ON007028 ON005056 ON005045 (Jiang et al. 2022b)
P. anacardiacearum IFRDCC 2397* China Mangifera indica KC247154 KC247155 KC247156 (Sajeewa et al. 2013)
P. arengae CBS 331.92* Singapore Arenga undulatifolia KM199340 KM199426 KM199515 (Maharachchikumbura et al. 2014)
P. arceuthobii CBS 434.65* USA Arceuthobium campylopodum KM199341 KM199427 KM199516 (Maharachchikumbura et al. 2014)
P. aporosae-dioicae SAUCC224004* China Aporosa dioica OR733506 OR912985 OR912988 This study
SAUCC224005 China Aporosa dioica OR733505 OR912986 OR912989
P. appendiculata CGMCC 3.23550* China Rhododendron decorum OP082431 OP185516 OP185509 (Gu et al. 2022)
P. australis CBS 114193* New South Wales Grevillea sp. KM199332 KM199383 KM199475 (Maharachchikumbura et al. 2014)
CBS 111503 South Africa Protea neriifolia KM199331 KM199382 KM199557
P. australasiae CBS 114141 New South Wales Protea sp. KM199298 KM199410 KM199501 (Maharachchikumbura et al. 2014)
CBS 114126* New Zealand Knightia sp. KM199297 KM199409 KM199499
P. biciliata CBS 236.38 Italy Paeonia sp. KM199309 KM199401 KM199506 (Maharachchikumbura et al. 2014)
CBS 124463* Slovakia Platanus hispanica KM199308 KM199399 KM199505
P. brachiata LC2988* China Camellia sp. KX894933 KX895265 KX895150 (Liu et al. 2017)
LC8188 China Camellia sp. KY464142 KY464162 KY464152
P. brassicae CBS 170.26* New Zealand Brassica napus KM199379 NA KM199558 (Maharachchikumbura et al. 2014)
P. camelliae MFLUCC 12-0277* China Camellia japonica JX399010 JX399041 JX399074 (Zhang et al. 2012b)
P. camelliae-oleiferae CSUFTCC08* China Camellia oleifera OK493593 OK562368 OK507963 (Li et al. 2021)
CSUFTCC09 China Camellia oleifera OK493594 OK562369 OK507964
P. cangshanensis CGMCC 3.23544* China Rhododendron delavayi OP082426 OP185517 OP185510 (Gu et al. 2022)
P. castanopsidis CFCC 54430* China Castanopsis lamontii OK339732 OK358508 OK358493 (Jiang et al. 2022b)
P. chamaeropis CBS 186.71* Italy Chamaerops humilis KM199326 KM199391 KM199473 (Maharachchikumbura et al. 2012)
P. changjiangensis CFCC 54314* China Castanopsis tonkinensis OK339739 OK358515 OK358500 (Jiang et al. 2022b)
CFCC 52803 China Cyclobalanopsis sp. OK339741 OK358517 OK358502
CFCC 54433 China Castanopsis hainanensis OK339740 OK358516 OK358501
P. chiangmaiensis MFLU 22-0164* Thailand Phyllostachys edulis OP497990 OP752137 OP753374 (Sun et al. 2023)
P. chiaroscuro BRIP 72970* Australia Sporobolus natalensis OK422510 OK423752 OK423753 (Crous et al. 2022)
P. chinensis MFLUCC 12-0273 China Taxus sp. JX398995 NA NA (Maharachchikumbura et al. 2012)
P. clavata MFLUCC 12-0268* China Buxus sp. JX398990 JX399025 JX399056 (Maharachchikumbura et al. 2012)
P. colombiensis CBS 118553* Colombia Eucalyptus urograndis KM199307 KM199421 KM199488 (Maharachchikumbura et al. 2014)
P. cyclobalanopsidis CFCC 54328* China Cyclobalanopsis glauca OK339735 OK358511 OK358496 (Jiang et al. 2022b)
CFCC 55891 China Cyclobalanopsis glauca OK339736 OK358512 OK358497
P. daliensis CGMCC 3.23548* China Rhododendron decorum OP082429 OP185518 OP185511 (Gu et al. 2022)
P. dianellae CPC 32261 Australia Dianella sp. MG386051 MG386164 NA (Crous et al. 2017)
P. digitalis MFLU 14-0208* New Zealand Digitalis purpurea KP781879 KP781883 NA (Liu et al. 2015)
P. dilucida LC3232* China Camellia sinensis KX894961 KX895293 KX895178 (Liu et al. 2017)
LC8184 China Camellia sinensis KY464138 KY464158 KY464148
P. diploclisiae CBS 115449 China Psychotria tutcheri KM199314 KM199416 KM199485 (Maharachchikumbura et al. 2014)
CBS 115587* China Diploclisia glaucescens KM199320 KM199419 KM199486
P. disseminata CBS 143904 New Zealand Persea americana MH554152 MH554825 MH554587 (Liu et al. 2017)
P. diversiseta MFLUCC 12-0287* China Rhododendron sp. JX399009 JX399040 JX399073 (Maharachchikumbura et al. 2012)
P. doitungensis MFLUCC 14-0090* Thailand Dendrobium sp. MK993574 MK975837 MK975832 (Ma et al. 2019)
P. dracontomelonis MFLU 14-0207* Thailand Dracontomelon sp. KP781877 NA KP781880 (Liu et al. 2015)
P. dracaenae HGUP 4037* China Dracaena fragrans MT596515 MT598645 MT598644 (Ariyawansa et al. 2015)
P. dracaenicola MFLUCC 18-0913* Thailand Dracaena sp. MN962731 MN962733 MN962732 (Chaiwan et al. 2020)
P. eleutherococci HMJAU 60189* China Eleutherococcus brachypus NR182556 NA NA (Tian et al. 2022)
P. endophytica MFLU 20-0607* Thailand Magnolia garrettii MW263946 NA MW417119 (De Silva et al. 2021)
P. ericacearum IFRDCC 2439* China Rhododendron delavayi KC537807 KC537821 KC537814 (Zhang et al. 2013)
P. etonensis BRIP 66615* Australia Sporobolus jacquemontii MK966339 MK977634 MK977635 (Crous et al. 2020)
P. ficicola SAUCC230046* China Ficus microcarpa OQ691974 OQ718749 OQ718691 (Zhang et al. 2023)
P. foliicola CFCC 57359 China Castanopsis faberi ON007030 ON005058 ON005047 (Jiang et al. 2022b)
CFCC 57360 China Castanopsis faberi ON007031 ON005059 ON005048
CFCC 54440* China Castanopsis faberi ON007029 ON005057 ON005046
P. furcata MFLUCC 12-0054* Thailand Camellia sinensis JQ683724 JQ683708 JQ683740 (Watanabe et al. 2018)
P. fusoidea CGMCC 3.23545* China Rhododendron delavayi OP082427 OP185519 OP185512 (Gu et al. 2022)
P. formosana NTUCC 17-009* China Poaceae sp. MH809381 MH809385 MH809389 (Akinsanmi et al. 2017)
P. gaultheriae IFRD 411-014* China Gaultheria forrestii KC537805 KC537819 KC537812 (Maharachchikumbura et al. 2014)
P. gibbosa NOF 3175* Canada Gaultheria shallon LC311589 LC311590 LC311591 (Watanabe et al. 2018)
P. grandis-urophylla E-72-02 Brazil Eucalyptus sp. KU926708 KU926716 KU926712 (Carvalho et al. 2019)
E-72-03 Brazil Eucalyptus sp. KU926709 KU926717 KU926713
E-72-04 Brazil Eucalyptus sp. KU926710 KU926718 KU926714
E-72-06 Brazil Eucalyptus sp. KU926711 KU926719 KU926715
P. guangdongensis ZHKUCC 22-0016* China Arenga pinnata ON180762 ON221548 ON221520 (Xiong et al. 2022)
P. guangxiensis CFCC 54308* China Quercus griffithii OK339737 OK358513 OK358498 (Jiang et al. 2022b)
CFCC 54300 China Quercus griffithii OK339738 OK358514 OK358499
P. grevilleae CBS 114127* Australia Grevillea sp. KM199300 KM199407 KM199504 (Maharachchikumbura et al. 2014)
P. guizhouensis CFCC 54803 China Cyclobalanopsis glauca ON007035 ON005063 ON005052 (Jiang et al. 2022b)
CFCC 57364 China Cyclobalanopsis glauca ON007036 ON005064 ON005053
P. hawaiiensis CBS 114491* USA Leucospermum sp. KM199339 KM199428 KM199514 (Maharachchikumbura et al. 2014)
P. hispanica CBS 115391 Portugal Eucalyptus globulus MH553981 MH554640 MH554399 (Maharachchikumbura et al. 2014)
P. hollandica CBS 265.33* The Nethelands Sciadopitys verticillata KM199328 KM199388 KM199481 (Maharachchikumbura et al. 2014)
P. humicola CBS 336.97* Papua New Guinea Soil KM199317 KM199420 KM199484 (Maharachchikumbura et al. 2014)
P. hunanensis CSUFTCC18 China Camellia oleifera OK493600 OK562375 OK507970 (Li et al. 2021)
CSUFTCC15* China Camellia oleifera OK493599 OK562374 OK507969
P. hydei MFLUCC 20-0135 Thailand Litsea elliptica MW266063 MW251112 MW251113 (Huanaluek et al. 2021)
P. iberica CAA 1005 Spain Pinus sylvestris MW732250 MW759034 MW759037 (Monteiro et al. 2021)
CAA 1006 Spain Pinus radiata MW732249 MW759036 MW759039
CAA 1004* Spain Pinus radiata MW732248 MW759035 MW759038
P. intermedia MFLUCC 12-0259* China Unidentified tree JX398993 JX399028 JX399059 (Maharachchikumbura et al. 2012)
P. inflexa MFLUCC 12-0270* China Unidentified tree JX399008 JX399039 JX399072 (Maharachchikumbura et al. 2012)
P. italiana MFLU 14-0214* Italy Cupressus glabra KP781878 KP781882 KP781881 (Liu et al. 2015)
P. jesteri CBS 109350* Papua New Guinea Fragraea bodenii KM199380 NA KM199554 (Maharachchikumbura et al. 2014)
P. jiangxiensis LC4399* China Camellia sp. KX895009 KX895341 KX895227 (Liu et al. 2017)
P. jiangsuensis CFCC 59538 China Pinus massoniana OR533577 OR539191 OR539186 (Li et al. 2024)
P. jinchanghensis LC8190 China Camellia sinensis KY464144 KY464164 KY464154 (Liu et al. 2017)
LC6636* China Camellia sinensis KX895028 KX895361 KX895247
P. kandelicola NCYUCC 19-0354 China Kandelia candel MT560723 MT563100 MT563102 (Hyde et al. 2020)
NCYUCC 19-0355* China Kandelia candel MT560722 MT563099 MT563101
P. kaki KNU-PT-1804* Korea Diospyros kaki LC552953 LC552954 LC553555 (Das et al. 2020)
P. kenyana LC6633 China Camellia sinensis KX895027 KX895360 KX895246 (Maharachchikumbura et al. 2014)
CBS 442.67* Kenya Coffea sp. KM199302 KM199395 KM199502
P. knightiae CBS 114138* New Zealand Knightia sp. KM199310 KM199408 KM199497 (Maharachchikumbura et al. 2014)
CBS 111963 New Zealand Knightia sp. KM199311 KM199406 KM199495
P. krabiensis MFLUCC 16-0260* Thailand Pandanus sp. MH388360 MH412722 MH388395 (Tibpromma et al. 2018)
P. leucadendri CBS 121417* South Africa Leucadendron sp. MH553987 MH554654 MH554412 (Liu et al. 2019)
P. licualicola HGUP 4057* China Licuala grandis KC492509 KC481683 KC481684 (Geng et al. 2013)
P. lijiangensis CFCC 50738* China Castanopsis carlesii KU860520 NA NA (Zhou et al. 2018)
P. linearis MFLUCC 12-0271* China Trachelospermum sp. JX398992 JX399027 JX399058 (Maharachchikumbura et al. 2012)
P. linguae ZHKUCC 22-0159 China Pyrrosia lingua OP094104 OP186108 OP186110 (Li et al. 2023)
P. lithocarpi CFCC 55893 China Lithocarpus chiungchungensis OK339743 OK358519 OK358504 (Jiang et al. 2022b)
CFCC 55100* China Lithocarpus chiungchungensis OK339742 OK358518 OK358503
P. longiappendiculata LC3013* China Camellia sinensis KX894939 KX895271 KX895156 (Liu et al. 2017)
P. loeiana MFLU 22-0167* Thailand Unidentified tree OP497988 OP713769 OP737881 (Sun et al. 2023)
P. lushanensis LC8182 China Camellia sp. KY464136 KY464156 KY464146 (Liu et al. 2017)
LC8183 China Camellia sp. KY464137 KY464157 KY464147
LC4344* China Camellia sp. KX895005 KX895337 KX895223
P. macadamiae BRIP 63739b Australia Macadamia integrifolia KX186587 KX186679 KX186620 (Akinsanmi et al. 2017)
BRIP 63741a Australia Macadamia integrifolia KX186586 KX186678 KX186619
BRIP 63738b* Australia Macadamia integrifolia KX186588 KX186680 KX186621
P. malayana CBS 102220* Malaysia Macaranga triloba KM199306 KM199411 KM199482 (Maharachchikumbura et al. 2014)
P. manyueyuanensis NTUPPMCC 18-165* Taiwan Ophocordyceps sp. OR125060 OR126306 OR126313 (Hsu et al. 2024)
P. menhaiensis CGMCC 3.18250* China Ophocordyceps sp. KU252272 KU252488 KU252401 (Li et al. 2024)
P. microspora SS1-033I Canada Cornus canadensis MT644300 NA NA (Zhao and Li 1995)
P. montellica MFLUCC 12-0279 China dead plant material JX399012 JX399043 JX399076 (Maharachchikumbura et al. 2012)
P. monochaeta CBS 144.97* The Nethelands Quercus robur KM199327 KM199386 KM199479 (Maharachchikumbura et al. 2014)
CBS 440.83 The Nethelands Taxus baccata KM199329 KM199387 KM199480
P. multicolor CFCC59981 China Taxus chinensis OQ626676 OQ714336 OQ714341 (Wang et al. 2024)
P. nanjingensis CSUFTCC16* China Camellia oleifera OK493602 OK562377 OK507972 (Li et al. 2021)
P. nanningensis CSUFTCC10* China Camellia oleifera OK493596 OK562371 OK507966 (Li et al. 2021)
P. nannuoensis SAUCC232203* China Unknown host OR733504 OR863909 OR912991 This study
SAUCC232204 China Unknown host OR733503 OR863910 OR912992
P. novae-hollandiae CBS 130973* Australia Banksia grandis KM199337 KM199425 KM199511 (Maharachchikumbura et al. 2014)
P. neolitseae NTUCC 17-011* China Neolitsea villosa MH809383 MH809387 MH809391 (Akinsanmi et al. 2017)
P. oryzae CBS 171.26 Italy Unknown host KM199304 KM199397 KM199494 (Maharachchikumbura et al. 2014)
CBS 353.69* Denmark Oryza sativa KM199299 KM199398 KM199496
CBS 111522 USA Telopea sp. KM199294 KM199394 KM199493
P. pallidotheae MAFF 240993* Japan Pieris japonica AB482220 NA NA (Watanabe et al. 2010)
P. pandanicola MFLUCC 16-0255* Thailand Pandanus sp. MH388361 MH412723 MH388396 (Tibpromma et al. 2018)
P. papuana CBS 331.96* Papua New Guinea Coastal soil KM199321 KM199413 KM199491 (Maharachchikumbura et al. 2014)
CBS 887.96 Papua New Guinea Cocos nucifera KM199318 KM199415 KM199492
P. parva CBS 278.35 Thailand Delonix regia KM199313 KM199405 KM199509 (Maharachchikumbura et al. 2014)
CBS 265.37* Thailand Delonix regia KM199312 KM199404 KM199508
P. phoebes SAUCC230093* China Phoebe zhennan OQ692028 OQ718803 OQ718745 (Zhang et al. 2023)
P. pini MEAN 1092 Portugal Pinus pinea MT374680 MT374705 MT374693 (Silva et al. 2020)
P. photiniicola GZCC 16-0028* China Photinia serrulata KY092404 KY047663 KY047662 (Chen et al. 2017)
P. pinicola KUMCC 19-0183* China Pinus armandii MN412636 MN417507 MN417509 (Tibpromma et al. 2019)
P. portugallica CBS 393.48* Portugal Unknown host KM199335 KM199422 KM199510 (Maharachchikumbura et al. 2014)
P. rhaphiolepis SAUCC367701* China Rhaphiolepis indica OR733502 OR863906 OR912994 This study
SAUCC367702 China Rhaphiolepis indica OR733501 OR863907 OR912995
P. rhizophorae MFLUCC 17-0416* Thailand Rhizophora mucronata MK764283 MK764349 MK764327 (Norphanphoun et al. 2019)
P. rhodomyrti HGUP4230* China Rhodomyrtus tomentosa KF412648 KF412642 KF412645 (Song et al. 2013)
P. rhododendri IFRDCC 2399* China Rhododendron sinogrande KC537804 KC537818 KC537811 (Zhang et al. 2013)
P. rosea MFLUCC 12-0258* China Pinus sp. JX399005 JX399036 JX399069 (Maharachchikumbura et al. 2012)
P. rosarioides CGMCC 3.23549* China Rhododendron decorum OP082430 OP185520 OP185513 (Gu et al. 2022)
P. sabal ZHKUCC 22-0035* China Sabal mexicana ON180775 ON221561 ON221533 (Xiong et al. 2022)
P. sequoiae MFLUCC 13-0399* Italy Sequoia sempervirens KX572339 NA NA (Li et al. 2016)
P. scoparia CBS 176.25* China Chamaecyparis sp. KM199330 KM199393 KM199478 (Maharachchikumbura et al. 2014)
P. shaanxiensis CFCC 57356 China Quercus variabilis ON007027 ON005055 ON005044 (Jiang et al. 2022b)
CFCC 54958* China Quercus variabilis ON007026 ON005054 ON005043
P. shoreae MFLUCC 12-0314* Thailand Shorea obtusa KJ503811 KJ503814 KJ503817 (Song et al. 2014)
P. sichuanensis CGMCC 3.18244* China Camellia sinensis KX146689 KX146807 KX146748 (Wang et al. 2019)
P. silvicola CFCC 57363 China Cyclobalanopsis kerrii ON007034 ON005062 ON005051 (Jiang et al. 2022b)
P. silvicola CFCC 55296* China Cyclobalanopsis kerrii ON007032 ON005060 ON005049 (Jiang et al. 2022b)
CFCC 54915 China Cyclobalanopsis kerrii ON007033 ON005061 ON005050
P. smilacicola MFLU 22-0165* Thailand Smilax sp. OP497991 OP762673 OP753376 (Sun et al. 2023)
P. sonneratiae CFCC 57394* China Sonneratia apetala ON114184 ON086816 ON086812 (Jiang et al. 2022a)
P. spatholobi SAUCC231201* China Spatholobus suberectus OQ692023 OQ718798 OQ718740 (Zhang et al. 2023)
P. spathuliappendiculata CBS 144035* Australia Phoenix canariensis MH554172 MH554845 MH554607 (Liu et al. 2019)
P. spathulata CBS 356.86* Chile Gevuina avellana KM199338 KM199423 KM199513 (Maharachchikumbura et al. 2014)
P. suae CGMCC 3.23546* China Rhododendron delavayi OP082428 OP185521 OP185514 (Gu et al. 2022)
P. taxicola CFCC59976 China Taxus chinensis OQ626673 OQ714333 OQ714338 (Wang et al. 2024)
P. telopeae CBS 113606 Australia Telopea sp. KM199295 KM199402 KM199498 (Maharachchikumbura et al. 2014)
CBS 114161* Australia Telopea sp. KM199296 KM199403 KM199500
CBS 114137 Australia Protea sp. KM199301 KM199469 KM199559
P. thailandica MFLUCC 17-1616* Thailand Rhizophora mucronata MK764285 MK764351 MK764329 (Norphanphoun et al. 2019)
P. terricola CBS 141.69* Pacific islands Soil MH554004 MH554680 MH554438 (Liu et al. 2019)
P. trachicarpicola OP068* China Trachycarpus fortunei JQ845947 JQ845945 JQ845946 (Zhang et al. 2012a)
P. trachycarpicola BJFUCC42 China Taxus chinensis OQ626674 OQ714334 OQ714339 (Zhang et al. 2012a)
P. tumida CFCC 55158* China Rosa chinensis OK560610 OM158174 OL814524 (Peng et al. 2022)
P. unicolor MFLUCC 12-0275 China Unidentified tree JX398998 JX399029 JX399063 (Maharachchikumbura et al. 2012)
MFLUCC 12-0276* China Rhododendron sp. JX398999 JX399030 NA
P. verruculosa MFLUCC 12-0274* China Rhododendron sp. JX398996 NA JX399061 (Maharachchikumbura et al. 2012)
P. yunnanensis HMAS 96359* China Podocarpus macrophyllus AY373375 NA NA (Wei et al. 2013)
P. yanglingensis LC3412 China Camellia sinensis KX894980 KX895312 KX895197 (Liu et al. 2017)
LC4553* China Camellia sinensis KX895012 KX895345 KX895231

Phylogenetic analyses

According to the latest publication of this genus, the reference sequences used in this study (Table 1) were obtained from the National Center for Biotechnology Information (NCBI) (Li et al. 2024). Reference sequences and sequences obtained from the sequenced strains were aligned and manually corrected by MAFFT 7 online service with the Auto strategy (http://mafft.cbrc.jp/alignment/server/) (Katoh et al. 2019). Based on maximum likelihood (ML) and Bayesian inference (BI) algorithms, the phylogenetic analysis of multilabel data was carried out. Run ML and BI on the CIPRES Science Gateway portal (https://www.phylo.org/) (Miller et al. 2012). ML was performed on RaxML-HPC2 of XSEDE (8.2.12) (Stamatakis 2014), 1000 fast bootstrap repeats were performed using GTRGAMMA model of nucleotide evolution. MrModeltest v.2.3 (Nylander 2001) is used to screen the optimal evolutionary model, and BI was performed on XSEDE (3.2.7a) (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2012; Ronquist et al. 2012). When the mean standard deviation of separation frequency is less than 0.01, output the topology. View and adjust phylogenetic trees in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) and beautify the phylogenetic trees with Adobe Illustrator CC 2019. The names of the isolates in this study are marked in red in the phylogenetic tree.

Result

Phylogenetic analyses

By analyzing the sequence data sets of ITS, tub2 and tef1α, the interspecific relationships of Pestalotiopsis were inferred. The phylogenetic analysis of Pestalotiopsis strains contained 183 sequences, using Neopestalotiopsis magna (MFLUCC 12-0652) as the outgroup. A total of 1579 characters including gaps (523 of ITS, 530 of tub2 and 526 of tef1α) were included in the phylogenetic analysis. There were 915 constant, 185 variable but parsimony non-informative, and 479 parsimony informative characters. In Bayesian inference, GTR + I + G is used as the optimal evolutionary model of ITS and tub2, and HKY + I + G is used as the optimal evolutionary model of tef1α. The final ML optimization likelihood was -15175.820563. The trees obtained by the ML and BI methods are similar, and the ML tree with the best score was shown in Fig. 1, the Maximum Likelihood Bootstrap Values and Bayesian Inference Posterior Probabilities (MLBS/BIPP) are marked at the node position of the phylogenetic tree. On the basis of previous studies, six strains of Pestalotiopsis were imported into the phylogenetic analysis in this study. The six new strains introduced in this study were divided into three monophyletic branches in the phylogenetic tree, representing three new species of Pestalotiopsis, P. aporosae-dioicae sp. nov., P. nannuoensis sp. nov. and P. rhaphiolepidis sp. nov. Finally, the 183 strains were divided into 135 species clades in the phylogenetic map.

Figure 1. 

A Maximum Likelihood phylogram of Pestalotiopsis based on ITS, tub2 and tef1α gene sequences, and MFLUCC 12-0652 of Neopestalotiopsis magna as the tree root of Pestalotiopsis. The Maximum Likelihood Bootstrap Value (left, MLBV≥70%) and Bayesian Inference Posterior Probability (right, BIPP≥0.90), separated by a slash line, are marked at the node. The scale bar at the top left represents 0.1 nucleotide changes at each site. Some shortened branches are represented by double slashes and the number of fold times. The strains in this study are shown in red.

Taxonomy

Pestalotiopsis aporosae-dioicae C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov.

MycoBank No: 851279
Fig. 2

Type

China, Yunnan Province, Jinghong City, Sancha River (22°10'10"N, 100°51'49"E), from diseased leaves of Aporosa dioica, 19 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352667, ex-type living culture SAUCC224004.

Figure 2. 

Pestalotiopsis aporosae-dioicae (holotype: HMAS 352667) a leaves of host Aporosa dioica b, c the front and back of the colony after 14 days of culture on PDA d conidiomata on PDA e, f conidiophores and conidiogenous cells g–m conidia. Scale bars: 10 μm (e–m).

Etymology

Referring to the name of the host plant Aporosa dioica.

Description

Conidiomata in culture on PDA, 600–1000 µm diam, globular, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, hyaline. Conidiogenous cells smooth, clavate, hyaline, aggregative, 16.1–22.2 × 3.9–5.5 μm. Conidia fusiform, 4-septate, slightly curved or straight, 25.6–35.2 × 5.0–7.1 μm; basal cell conical, hyaline, rough, thin-walled, 3.9–9.7 µm; three median cells subcylindrical, light brown or brown, rough, thick-walled, the first median cell from base 4.9–7.0 μm, the second median cell 4.8–7.0 μm, the third median cell 4.6–6.9 μm, together 14.9–20.2 μm; apical cell subcylindrical, hyaline, smooth, thin–walled, 4.7–8.3 µm; basal appendage tubular, single, centric, straight or slightly bent, unbranched, 4.0–13.2 µm; apical appendages tubular, 2–4, straight or bent, unbranched, 8.8–31.7 μm. Sexual morph not observed.

Culture characteristics

After 14 days of dark cultivation at 25 °C on PDA, the colony diameter reached 90 mm, and the growth rate is 6.2–6.6 mm/day. Colonies filamentous to circular, aerial mycelium on surface raised, white, dense, forms multiple rings from the middle to the edge, fruiting bodies black; reverse yellow, brown in parts.

Additional specimen examined

China, Yunnan Province, Jinghong City, Sancha River, from diseased leaves of Aporosa dioica, 19 Mar. 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC224005.

Notes

According to phylogenetic trees based on ITS, tub2 and tef1α, Pestalotiopsis aporosae-dioicae sp. nov. was closely related to P. arengae in a well support branch (ML/BI = 100/1). P. aporosae-dioicae was different from P. arengae by 14/508 bp in ITS, 51/529 bp in tub2, and 10/465 bp in tef1α. Morphologically, P. aporosae-dioicae was different from P. arengae by having thinner conidia (P. aporosae-dioicae: 25.6–35.2 × 5.0–7.1 vs. P. arengae: 25.0–32.0 × 7.0–9.5 µm) and longer basal appendages (P. aporosae-dioicae: 4.0–13.2 vs. P. arengae: 1.5–3.0 μm) (Maharachchikumbura et al. 2014). Therefore, Pestalotiopsis aporosae-dioicae was identified as a new species of Pestalotiopsis by morphological and phylogenetic comparison.

Pestalotiopsis nannuoensis C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov.

MycoBank No: 851280
Fig. 3

Type

China, Yunnan Province, Menghai County, Nannuo Mountain (21°55'25"N, 100°35'41"E), from rotted leaves, 18 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352668, ex-type living culture SAUCC232203.

Figure 3. 

Pestalotiopsis nannuoensis (holotype: HMAS 352668) a, b the front and back of the colony after 14 days of culture on PDA c conidiomata on PDA d–f conidiophores and conidiogenous cells g–k conidia. Scale bars: 10 μm (d–k).

Etymology

Referring to the collection site of the holotype, Nannuo Mountain.

Description

Conidiomata in culture on PDA, 750–900 µm diam, subsphaeroidal, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, hyaline, simple. Conidiogenous cells oval, hyaline, rough, aggregative, 10.6–19.4 × 2.2–3.4 μm. Conidia fusiform or subcylindrical, straight or slightly curved, 4-septate, 21.7–27.2 × 3.6–5.0 μm; basal cell conical, hyaline, rough, thin-walled, 3.9–5.4 µm; three median cells subcylindrical, brown, rough, thick-walled, the first median cell from base 4.4–6.2 μm, the second median cell 4.1–5.3 μm, the median third cell 4.5–5.7 μm, together 13.0–17.2 μm; apical cell conical or subcylindrical, hyaline, smooth, thin-walled, 2.9–4.6 µm; basal appendage tubular, single, centric, straight or slightly bent, unbranched, 6.8–9.2 µm; apical appendages tubular, 1–2, straight or bent, unbranched, 15.6–26.2 μm. Sexual morph not observed.

Culture characteristics

After 7 days of dark cultivation at 25 °C on PDA, the colony diameter reached 75 mm, and the growth rate is 9.5–11.5 mm/day. Colonies filamentous to circular, with filiform margin, aerial mycelium on surface rugged, white, dense, fruiting bodies black; reverse white.

Additional specimen examined

China, Yunnan Province, Menghai County, Nannuo Mountain, from rotted leaves, 18 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC232204.

Notes

Pestalotiopsis nannuoensis sp. nov. formed an independent clade (ML/BI = 100/1) in the phylogenetic tree based on ITS, tub2 and tef1α, and was closely related to P. diversiseta. P. nannuoensis was different from P. diversiseta by 46/508 bp in ITS, 83/529 bp in tub2, and 59/465 bp in tef1α. Morphologically, P. nannuoensis was different from P. diversiseta by having shorter and thinner conidia (P. nannuoensis: 21.7–27.2 × 3.6–5.0 vs. P. diversiseta: 27.0–34.0 × 5.5–8.0 µm), and the number of apical appendages (P. nannuoensis: 1–2 vs. P. diversiseta: 3–5). (Maharachchikumbura et al. 2012). Therefore, Pestalotiopsis nannuoensis was identified as a new species of Pestalotiopsis by morphological and phylogenetic comparison.

Pestalotiopsis rhaphiolepidis C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov.

MycoBank No: 851281
Fig. 4

Type

China, Hainan Province, Jianfeng Town (18°42'35"N, 108°52'35"E), from diseased leaves of Rhaphiolepis indica, 11 Apr 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352669, ex-type living culture SAUCC367701.

Figure 4. 

Pestalotiopsis rhaphiolepidis (holotype: HMAS 352669) a leaves of host Rhaphiolepis indica b, c the front and back of the colony after 14 days of culture on PDA d conidiomata on PDA e–g conidiogenous cells and conidia h–n conidia. Scale bars: 10 μm (e–n).

Etymology

Referring to the name of the host plant Rhaphiolepis indica.

Description

Conidiomata in culture on PDA, 600–1000 µm diam, globular, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, simple, hyaline. Conidiogenous cells fusiform, rough, discrete, 9.8–17.1 × 2.4–3.3 μm. Conidia fusiform, straight or slightly curved, 4-septate, 18.0–23.1 × 3.8–5.1 μm; basal cell conical, hyaline, rough, thin-walled, 3.3–5.1 µm; three median cells subcylindrical, light brown or brown, rough, thick-walled, the first median cell from base 3.0–4.7 μm, the second median cell 3.4–5.3 μm, the third median cell 3.7–5.6 μm, together 10.1–15.6 μm; apical cell subcylindrical or conical, hyaline, smooth, thin-walled, 2.8–4.7 µm; basal appendage tubular, single, centric, straight or slightly bent, unbranched, 4.7–9.8 µm; apical appendages tubular, 2–3, straight or bent, unbranched, 5.2–18.5 μm. Sexual morph not observed.

Culture characteristics

After 7 days of dark cultivation at 25 °C on PDA, the colony diameter reached 90 mm, and the growth rate is 11.8–13.5 mm/day. Colonies filamentous to circular, flat, center raised, aerial mycelium on surface, with irregular edges, white, medium dense, fruiting bodies black; reverse white, multilayer rings from the middle to the edge.

Additional specimen examined

China, Hainan Province, Jianfeng Town, from diseased leaves of Rhaphiolepis indica, 11 Apr 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC367702.

Notes

According to phylogenetic trees based on ITS, tub2 and tef1α, Pestalotiopsis rhaphiolepidis sp. nov. was closely related to P. inflexa in a well support branch (ML/BI = 98/1). P. rhaphiolepidis was different from P. inflexa by 9/508 bp in ITS, 30/529 bp in tub2, and 16/465 bp in tef1α. Morphologically, P. rhaphiolepidis was different from P. inflexa by having shorter and thinner conidia (P. rhaphiolepidis: 18.0–23.1 × 3.8–5.1 vs. P. inflexa: 24.0–31.0 × 6.0–9.0 µm) and shorter apical appendages (P. rhaphiolepidis: 5.2–18.5 vs. P. inflexa: 20.0–30.0 μm) (Maharachchikumbura et al. 2011). Therefore, Pestalotiopsis rhaphiolepidis was identified as a new species of Pestalotiopsis by morphological and phylogenetic comparison.

Discussion

Pestalotiopsis fungi are widely distributed and have been found all over the world, with 12,072 samples and 59,207 sequences were included in the GlobalFungi database (https://globalfungi.com/, accessed on 26 Jun 2024; Asia, 58.81%, North America, 20.84%, Europe, 5.86%, Africa, 5.38%, South America, 4.49%, Australia, 3.59%, Pacific Ocean, 0.78%, Atlantic Ocean, 0.21%, Antarctica, 0.05%). In this study, we obtained six strains of Pestalotiopsis from diseased and rotted leaves collected from Yunnan and Hainan Provinces in China. Based on phylogenetic analysis and morphological characteristics, we identified six strains as three new species of Pestalotiopsis, P. aporosae-dioicae, P. nannuoensis and P. rhaphiolepidis. It is worth noting that the plant hosts of Pestalotiopsis fungi are abundant, such as Theaceae, Arecaceae, and Fagaceae (Maharachchikumbura et al. 2014; Jiang et al. 2022b). We first reported the new hosts of Aporosa dioica (Phyllanthaceae) and Rhaphiolepis indica (Rosaceae) by identifying the Pestalotiopsis fungi. This suggests that there were more potential new species of Pestalotiopsis to be discovered in these two host plants. Pestalotiopsis nannuoensis was found on rotted leaves and its host is unknown. Pestalotiopsis fungi are mostly plant pathogens, and the relationship between the three newly discovered species and their hosts and their effects on cash crops needs further study (Zhang et al. 2012a; Maharachchikumbura et al. 2013; Jayawardena et al. 2016; Liu et al. 2017; Yang et al. 2017; Diogo et al. 2021; Prasannath et al. 2021).

Since Steyaert introduced Pestalotiopsis into Sporocadaceae (Amphisphaeriales, Ascomycota) in 1949, more and more species of Pestalotiopsis have been discovered (Steyaert 1949; Akinsanmi et al. 2017; Liu et al. 2017; Nozawa et al. 2017; Ariyawansa and Hyde 2018; Jiang et al. 2018; Tibpromma et al. 2018; Tsai et al. 2018). However, due to the similarity of the spore structure, the classification of Pestalotiopsis is unclear, and the traditional identification method was very complicated work. With the development of molecular technology, the identification method combining morphology and phylogeny has been accepted by more and more taxonomists. Maharachchikumbura et al. (2014) applied phylogenetic analysis in the classification of Pestalotiopsis to make the classification more clearly. Therefore, phylogenetic analyses based on ITS, tub2 and tef1α, including maximum likelihood (ML) and Bayesian inference (BI), have been widely used. Meanwhile, the size of spores, length, position, origin and number of branches of apical appendages and basal appendages are important for the classification of Pestalotiopsis fungi. Taking several subjects in this study as examples, Pestalotiopsis aporosae-dioicae and P. rhaphiolepidis can be identified as new species by morphological comparison with other species in a well-supported clade (Maharachchikumbura et al. 2011, 2014). Although Pestalotiopsis nannuoensis was an independent clade, it had the basic characteristics of Pestalotiopsis, and was significantly different from several closely related species in spore size and number of apical appendages, so it was also identified as a new species (Maharachchikumbura et al. 2012). Based on the results of this study, we believe that we will isolate more potential Pestalotiopsis fungi in the future. With the development of biotechnology and the deepening of the research on Pestalotiopsis fungi, it has become an important research focus and direction to sequence the genome of Pestalotiopsis fungi, annotate its structure and function, and explore the types and applications of secondary metabolites.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This research was funded by National Natural Science Foundation of China (nos. 31400019, U2002203, 32300011, 32370001).

Author contributions

Conceptualization: CY. Data curation: CY. Formal analysis: ZZ. Funding acquisition: XZ. Investigation: CY. Methodology: CY. Project administration: XZ. Resources: CY. Software: CY. Supervision: LM, SW. Validation: ZZ. Visualization: CY. Writing - original draft: CY. Writing - review and editing: CY.

Author ORCIDs

Changzhun Yin https://orcid.org/0009-0000-0034-2199

Zhaoxue Zhang https://orcid.org/0000-0002-4824-9716

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

  • Akinsanmi OA, Nisa S, Jeff-Ego OS, Shivas RG, Drenth A (2017) Dry flower disease of macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Disease 101(1): 45–53. https://doi.org/10.1094/PDIS-05-16-0630-RE
  • Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li G-J, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui Y-Y, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li Q-R, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang J-F, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang C-H, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho H-M, Hofstetter V, Jeewon R, Kang JC, Wen T-C, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo Santiago ALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei S-F, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen H-A, Chen X-H, Miettinen O, Spirin V (2015) Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75(1): 27–274. https://doi.org/10.1007/s13225-015-0346-5
  • Biju CN, Peeran MF, Gowri R (2018) Identification and characterization of Neopestalotiopsis clavispora associated with leaf blight of small cardamom (Elettaria cardamomum Maton). Journal of Phytopathology 166(7–8): 532–546. https://doi.org/10.1111/jph.12715
  • Carvalho DCC, Oliveira RM, Marques MG, Milan MD, Pinho DB, Dianese ÉC (2019) Molecular, morphophysiological and pathogenic characterization of eucalypt Pestalotiopsis grandis-urophylla isolates, a new species. Tropical Plant Pathology 44(2): 132–139. https://doi.org/10.1007/s40858-019-00277-0
  • Chen YY, Maharachchikumbura SSN, Liu JK, Hyde KD, Nanayakkara RR, Zhu GS, Liu ZY (2017) Fungi from Asian Karst formations I. Pestalotiopsis photinicola sp. nov., causing leaf spots of Photinia serrulata. Mycosphere 8(1): 103–110. https://doi.org/10.5943/mycosphere/8/1/9
  • Crous PW, Wingfield MJ, Burgess TI, Hardy GESTJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, Van der spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolařík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSF, Da silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Horta jung M, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand A-C, Paloi S, Pattison N, Pawłowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N, Van Tri M, Wiederhold NP, Wrzosek M, Zothanzama J, Groenewald JZ (2017) Fungal Planet description sheets: 558–624. Persoonia 38(1): 240–384. https://doi.org/10.3767/003158517X698941
  • Crous PW, Wingfield MJ, Chooi YH, Gilchrist CLM, Lacey E, Pitt JI, Roets F, Swart WJ, Cano-Lira JF, Valenzuela-Lopez N, Hubka V, Shivas RG, Stchigel AM, Holdom DG, Jurjević Ž, Kachalkin AV, Lebel T, Lock C, Martín MP, Tan YP, Tomashevskaya MA, Vitelli JS, Baseia IG, Bhatt VK, Brandrud TE, De Souza JT, Dima B, Lacey HJ, Lombard L, Johnston PR, Morte A, Papp V, Rodríguez A, Rodríguez-Andrade E, Semwal KC, Tegart L, Abad ZG, Akulov A, Alvarado P, Alves A, Andrade JP, Arenas F, Asenjo C, Ballarà J, Barrett MD, Berná LM, Berraf-Tebbal A, Bianchinotti MV, Bransgrove K, Burgess TI, Carmo FS, Chávez R, Čmoková A, Dearnaley JDW, Santiago ALCMA, Freitas-Neto JF, Denman S, Douglas B, Dovana F, Eichmeier A, Esteve-Raventós F, Farid A, Fedosova AG, Ferisin G, Ferreira RJ, Ferrer A, Figueiredo CN, Figueiredo YF, Reinoso-Fuentealba CG, Garrido-Benavent I, Cañete-Gibas CF, Gil-Durán C, Glushakova AM, Gonçalves MFM, González M, Gorczak M, Gorton C, Guard FE, Guarnizo AL, Guarro J, Gutiérrez M, Hamal P, Hien LT, Hocking AD, Houbraken J, Hunter GC, Inácio CA, Jourdan M, Kapitonov VI, Kelly L, Khanh TN, Kisło K, Kiss L, Kiyashko A, Kolařík M, Kruse J, Kubátová A, Kučera V, Kučerová I, Kušan I, Lee HB, Levicán G, Lewis A, Liem NV, Liimatainen K, Lim HJ, Lyons MN, Maciá-Vicente JG, Magaña-Dueñas V, Mahiques R, Malysheva EF, Marbach PAS, Marinho P, Matočec N, McTaggart AR, Mešić A, Morin L, Muñoz-Mohedano JM, Navarro-Ródenas A, Nicolli CP, Oliveira RL, Otsing E, Ovrebo CL, Pankratov TA, Paños A, Paz-Conde A, Pérez-Sierra A, Phosri C, Pintos Á, Pošta A, Prencipe S, Rubio E, Saitta A, Sales LS, Sanhueza L, Shuttleworth LA, Smith J, Smith ME, Spadaro D, Spetik M, Sochor M, Sochorová Z, Sousa JO, Suwannasai N, Tedersoo L, Thanh HM, Thao LD, Tkalčec Z, Vaghefi N, Venzhik AS, Verbeken A, Vizzini A, Voyron S, Wainhouse M, Whalley AJS, Wrzosek M, Zapata M, Zeil-Rolfe I, Groenewald JZ (2020) Fungal Planet description sheets: 1042–1111. Persoonia 44(1): 301–459. https://doi.org/10.3767/persoonia.2020.44.11
  • De Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, Hyde KD (2021) Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 12(1): 163–237. https://doi.org/10.5943/mycosphere/12/1/3
  • Diogo E, Gonçalves CI, Silva AC, Valente C, Bragança H, Phillips AJL (2021) Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycological Progress 20(11): 1441–1456. https://doi.org/10.1007/s11557-021-01741-5
  • Geng K, Zhang B, Hyde KD, Kang JC, Wang Y (2013) A new species of Pestalotiopsis from leaf spots of Licuala grandis from Hainan, China. Phytotaxa 88(3): 49–54. https://doi.org/10.11646/phytotaxa.88.3.2
  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Gu R, Bao DF, Shen HW, Su XJ, Li YX, Luo ZL (2022) Endophytic Pestalotiopsis species associated with Rhododendron in Cangshan Mountain, Yunnan Province, China. Frontiers in Microbiology 13: 1016782. https://doi.org/10.3389/fmicb.2022.1016782
  • Hsu SY, Xu YC, Lin YC, Chuang WY, Lin SR, Stadler M, Tangthirasunun N, Cheewangkoon R, AL-Shwaiman HA, Elgorban AM, Ariyawansa HA (2024) Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan. MycoKeys 101: 275–312. https://doi.org/10.3897/mycokeys.101.113090
  • Huanaluek N, Jayawardena RS, Maharachchikumbura SSN, Harishchandra DL (2021) Additions to pestalotioid fungi in Thailand: Neopestalotiopsis hydeana sp. nov. and Pestalotiopsis hydei sp. nov. Phytotaxa 479(1): 23–43. https://doi.org/10.11646/phytotaxa.479.1.2
  • Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu J-K, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S (2020) The numbers of fungi: Is the descriptive curve flattening? Fungal Diversity 103(1): 219–271. https://doi.org/10.1007/s13225-020-00458-2
  • Jayawardena RS, Liu M, Maharachchikumbura SSN, Zhang W, Xing QK, Hyde KD, Nilthong S, Li XH, Yan JY (2016) Neopestalotiopsis vitis sp. nov.causing grapevine leaf spot in China. Phytotaxa 258(1): 63–74. https://doi.org/10.11646/phytotaxa.258.1.4
  • Jiang N, Bonthond G, Fan XL, Tian CM (2018) Neopestalotiopsis rosicola sp. nov. causing stem canker of Rosa chinensis in China. Mycotaxon 133(2): 271–283. https://doi.org/10.5248/133.271
  • Jiang N, Tian LY, Xue H, Piao CG, Li Y (2022a) Pestalotiopsis sonneratiae sp. nov. from China. Mycotaxon 137(4): 725–735. https://doi.org/10.5248/137.725
  • Jiang N, Voglmayr H, Xue H, Piao CG, Li Y (2022b) Morphology and Phylogeny of Pestalotiopsis (Sporocadaceae, Amphisphaeriales) from Fagaceae Leaves in China. Microbiology Spectrum 10(6): e03272–e22. https://doi.org/10.1128/spectrum.03272-22
  • Joshi SD, Sanjay R, Baby UI, Mandal A (2009) Molecular characterization of Pestalotiopsis spp. associated with tea (Camellia sinensis) in southern India using RAPD and ISSR markers. Indian Journal of Biotechnology 8: 377–383. https://doi.org/10.1089/hyb.2009.0056.MAb
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathne MC, De Crop E, De Oliveira RJV, de Souza CAF, de Souza JI, Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejhad M, Gilmore SP, Góes-Neto A, Gorczak M, Haitjema CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jerônimo GH, Jesus AL, Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee HB, Li WJ, Li XH, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Lücking R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie EHC, Mongkolsamrit S, Mortimer PE, Nguyen TTT, Niskanen T, Norphanphoun C, O’Malley MA, Parnmen S, Pawłowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspé O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Srikitikulchai P, Stadler M, Suetrong S, Takahashi H, Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK, Thongbai B, Thummarukcharoen T, Tian Q, Tibpromma S, Verbeken A, Vizzini A, Vlasák J, Voigt K, Wanasinghe DN, Wang Y, Weerakoon G, Wen HA, Wen TC, Wijayawardene NN, Wongkanoun S, Wrzosek M, Xiao YP, Xu JC, Yan JY, Yang J, Da Yang S, Hu Y, Zhang JF, Zhao J, Zhou LW, Peršoh D, Phillips AJL, Maharachchikumbura SSN (2016) Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78(1): 1–237. https://doi.org/10.1007/s13225-016-0366-9
  • Li LL, Yang Q, Li H (2021) Morphology, phylogeny, and pathogenicity of pestalotioid species on Camellia oleifera in China. Journal of Fungi (Basel, Switzerland) 7(12): 1080. https://doi.org/10.3390/jof7121080
  • Li H, Manawasinghe IS, Zhang YX, Senanayake IC (2023) Taxonomic and phylogenic appraisal of Pestalotiopsis linguae sp. nov., and a new record of P. nanjingensis from Pyrrosia lingua (Polypodiaceae) in Southern China. Phytotaxa 587(3): 229–250. https://doi.org/10.11646/phytotaxa.587.3.3
  • Li H, Peng BY, Xie JY, Bai YQ, Li DW, Zhu LH (2024) Pestalotiopsis jiangsuensis sp. nov. causing needle blight on Pinus massoniana in China. Journal of Fungi 10(3): 230. https://doi.org/10.3390/jof10030230
  • Liu JK, Hyde KD, Jones EG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura S, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D’souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72(1): 1–197. https://doi.org/10.1007/s13225-015-0324-y
  • Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW (2019) Sporocadaeceae, a family of coelomycetous fungi with appendage bearing conidia. Studies in Mycology 92(1): 287–415. https://doi.org/10.1016/j.simyco.2018.11.001
  • Ma XY, Maharachchikumbura SS, Chen BW, Hyde KD, Mckenzie EH, Chomnunti P, Kang JC (2019) Endophytic pestalotiod taxa in Dendrobium orchids. Phytotaxa 419(3): 268–286. https://doi.org/10.11646/phytotaxa.419.3.2
  • Maharachchikumbura SSN, Guo LD, Chukeatirote E, Ekachai C, Bahkali AH, Hyde KD (2011) Pestalotiopsis—Morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50(1): 167–187. https://doi.org/10.1007/s13225-011-0125-x
  • Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity 56(1): 95–129. https://doi.org/10.1007/s13225-012-0198-1
  • Maharachchikumbura SSN, Guo LD, Chukeatirote E, McKenzie EHC, Hyde KD (2013) A destructive new disease of Syzygium samarangense in Thailand caused by the new species Pestalotiopsis samarangensis. Tropical Plant Pathology 38(3): 227–235. https://doi.org/10.1590/S1982-56762013005000002
  • Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: Enabling high‐impact science for phylogenetics researchers with limited resources. Association for Computing Machinery 8: 1–8. https://doi.org/10.1145/2335755.2335836
  • Monteiro P, Gonçalves MFM, Pinto G, Silva B, Martín-García J, Diez JJ, Alves A (2021) Three novel species of fungi associated with pine species showing needle blight-like disease symptoms. European Journal of Plant Pathology 162(1): 183–202. https://doi.org/10.1007/s10658-021-02395-5
  • Norphanphoun C, Jayawardena RS, Chen Y, Wen TC, Meepol W, Hyde KD (2019) Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. Mycosphere 10(1): 531–578. https://doi.org/10.5943/mycosphere/10/1/9
  • Nozawa S, Yamaguchi K, Van Hop D, Phay N, Ando K, Watanabe K (2017) Identification of two new species and asexual morph from the genus Pseudopestalotiopsis. Mycoscience 58(5): 328–337. https://doi.org/10.1016/j.myc.2017.02.008
  • Nylander JAA (2001) MrModelTest v. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95(5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044
  • Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA (2021) Neopestalotiopsis species associated with flower diseases of Macadamia integrifolia in Australia. Journal of Fungi 7(9): 771. https://doi.org/10.3390/jof7090771
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Sajeewa SN (2013) Pestalotiopsis anacardiacearum sp. nov. (Amphisphaeriaceae) has an intricate relationship with Penicillaria jocosatrix the mango tip borer. Phytotaxa 99(2): 49–57. https://doi.org/10.11646/phytotaxa.99.2.1
  • Silva AC, Diogo E, Henriques J, Ramos AP, Sandoval-Denis M, Crous PW, Bragança H (2020) Pestalotiopsis pini sp. nov., an emerging pathogen on stone pine (Pinus pinea L.). Forests 11(8): 805. https://doi.org/10.3390/f11080805
  • Song Y, Tangthirasunun N, Maharachchikumbura SNN, Jiang YL, Xu JJ, Hyde KD, Wang Y (2014) Novel Pestalotiopsis species from Thailand point to the rich undiscovered diversity of this chemically creative genus. Cryptogamie. Mycologie 35(2): 139–149. https://doi.org/10.7872/crym.v35.iss2.2014.139
  • Steyaert RL (1949) Contribution a l’etude monographique de Pestalotia de Not. et Monochaetia Sacc. (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bulletin du Jardin botanique de l’État a Bruxelles 19: 285–354. https://doi.org/10.2307/3666710
  • Sun YR, Jayawardena RS, Sun JE, Wanga Y (2023) Pestalotioid species associated with medicinal plants in southwest China and Thailand. Microbiology Spectrum 11(1): e0398722. https://doi.org/10.1128/spectrum.03987-22
  • Tian S, Xu R, Bhunjun CS, Su W, Hyde KD, Li Y, Fu YP, Phukhamsakda C (2022) Combination of morphological and molecular data support Pestalotiopsis eleutherococci (Sporocadaceae) as a new species. Phytotaxa 566(1): 105–120. https://doi.org/10.11646/phytotaxa.566.1.6
  • Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena R, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu J, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Microfungi associated with Pandanaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6
  • Tibpromma S, Mortimer PE, Karunarathna SC, Zhan F, Xu J, Promputtha I, Yan K (2019) Morphology and multi-gene phylogeny reveal Pestalotiopsis pinicola sp. nov. and a new host record of Cladosporium anthropophilum from edible pine (Pinus armandii) seeds in Yunnan province, China. Pathogens (Basel, Switzerland) 8(4): 285. https://doi.org/10.3390/pathogens8040285
  • Tsai I, Maharachchikumbura SSN, Hyde KD, Ariyawansa HA (2018) Molecular phylogeny, morphology and pathogenicity of Pseudopestalotiopsis species of Ixora in Taiwan. Mycological Progress 17(8): 941–952. https://doi.org/10.1007/s11557-018-1404-7
  • Wang YC, Xiong F, Lu QH, Hao XY, Zheng MX, Wang L, Li NN, Ding CQ, Wang XC, Yang YJ (2019) Diversity of Pestalotiopsis-Like Species Causing Gray Blight Disease of Tea Plants (Camellia sinensis) in China, Including two Novel Pestalotiopsis Species, and Analysis of Their Pathogenicity. Plant Disease 103(10): 2548–2558. https://doi.org/10.1094/PDIS-02-19-0264-RE
  • Wang RB, Chen SZ, Zheng BW, Liu PQ, Li B, Weng QY, Chen QH (2021) Occurrence of leaf spot disease caused by Neopestalotiopsis clavispora on Taxus chinensis in China. Forest Pathology 49(5): e12540. https://doi.org/10.1111/efp.12540
  • Wang S, Liu X, Xiong C, Gao S, Xu W, Zhao L, Song C, Liu X, James TY, Li Z, Zhang X (2023) ASF1 regulates asexual and sexual reproduction in Stemphylium eturmiunum by DJ-1 stimulation of the PI3K/AKT signaling pathway. Fungal Diversity 123(1): 159–176. https://doi.org/10.1007/s13225-023-00528-1
  • Wang Y, Tsui KM, Chen S, You C (2024) Diversity, pathogenicity and two new species of pestalotioid fungi (Amphisphaeriales) associated with Chinese Yew in Guangxi, China. MycoKeys 102: 201–224. https://doi.org/10.3897/mycokeys.102.113696
  • Watanabe K, Nozawa S, Hsiang T, Callan B (2018) The cup fungus Pestalopezia brunneopruinosa is Pestalotiopsis gibbosa and belongs to Sordariomycetes. PLOS ONE 13(6): e0197025. https://doi.org/10.1371/journal.pone.0197025
  • Wei JG, Phan CK, Wang L, Xu T, Luo JT, Sun X, Guo LD (2013) Pestalotiopsis yunnanensis sp. nov., an endophyte from Podocarpus macrophyllus (Podocarpaceae) based on morphology and ITS sequence data. Mycological Progress 12(3): 563–568. https://doi.org/10.1007/s11557-012-0863-5
  • Xiong YR, Manawasinghe IS, Maharachchikumbura SSN, Lu L, Dong ZY, Xiang MM, Xu B (2022) Pestalotioid species associated with palm species from Sothern China. Current Research in Environmental & Applied Mycology 12(1): 285–321. https://doi.org/10.5943/cream/12/1/18 [Journal of Fungal Biology]
  • Yang LN, Miao XY, Bai QR, Wang MQ, Gu ML, Zhao TC (2017) Neopestalotiopsis clavispora causing leaf spot on Phedimus aizoon var. latifolius, a new disease in China. Plant Disease 101(11): 1952. https://doi.org/10.1094/PDIS-03-17-0422-PDN
  • Zhang YM, Maharachchikumbura SSN, Mckenzie EHC, Hyde KD (2012a) A novel species of Pestalotiopsis causing leaf spots of Trachycarpus fortunei. Cryptogamie. Mycologie 33(3): 311–318. https://doi.org/10.7872/crym.v33.iss3.2012.311
  • Zhang YM, Maharachchikumbura SSN, Wei JG, McKenzie EHC, Hyde KD (2012b) Pestalotiopsis camelliae, a new species associated with grey blight of Camellia japonica in China. Sydowia 64(2): 335–344. https://doi.org/10.3109/13693786.2012.695458
  • Zhang ZX, Liu RY, Liu SB, Mu TC, Zhang XG, Xia JW (2022) Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. MycoKeys 88: 171–192. https://doi.org/10.3897/mycokeys.88.82229
  • Zhang ZX, Zhang J, Li DH, Xia JW, Zhang XG (2023) Morphological and phylogenetic analyses reveal three new species of Pestalotiopsis (Sporocadaceae, Amphisphaeriales) from Hainan, China. Microorganisms 11(7): 1627. https://doi.org/10.3390/microorganisms11071627
  • Zhao GC, Li N (1995) Thirty-four species of Pestalotiopsis in Yunnan. Journal of Northeast Forestry University 23(4): 21–27.
  • Zhou YK, Li FP, Hou CL (2018) Pestalotiopsis lijiangensis sp. nov., a new endophytic fungus from Yunnan, China. Mycotaxon 133(3): 513–522. https://doi.org/10.5248/133.513

Supplementary material

Supplementary material 1 

Original and spliced sequences of three genes of all strains of the genus Pestalotiopsis for phylogenetic analysis

Changzhun Yin, Zhaoxue Zhang, Shi Wang, Liguo Ma, Xiuguo Zhang

Data type: zip

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (46.89 kb)
login to comment