Research Article
Print
Research Article
Morphological and molecular identification for four new wood-inhabiting species of Trechispora (Basidiomycota) from China
expand article infoKai-Yue Luo, Jiang-Qing Su, Chang-Lin Zhao
‡ Southwest Forestry University, Kunming, China
Open Access

Abstract

Four new wood-inhabiting fungi, Trechispora albofarinosa, T. bisterigmata, T. pileata and T. wenshanensis spp. nov., are proposed based on a combination of morphological features and molecular evidence. Trechispora albofarinosa is characterized by the farinose basidiomata with flocculence hymenial surface, a monomitic hyphal system with clamped generative hyphae, and ellipsoid, warted basidiospores. Trechispora bisterigmata is characterized by the membranous basidiomata with odontioid hymenial surface, rhizomorphic sterile margin, barrelled basidia and subglobose to broad ellipsoid, smooth basidiospores. Trechispora pileata is characterized by the laterally contracted base, solitary or imbricate basidiomata, fan shaped pileus, radially striate-covered surface with appressed scales, odontioid hymenophore surface, and subglobose to broad ellipsoid, thin-walled, smooth basidiospores. Trechispora wenshanensis is characterized by a cottony basidiomata with a smooth hymenial surface, and ellipsoid, thin-walled, warted basidiospores. Sequences of ITS and LSU marker of the studied samples were generated, and phylogenetic analyses were performed with the maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic tree inferred from the ITS+nLSU sequences highlighted that four new species were grouped into the genus Trechispora.

Key words

East Asia, macrofungi, molecular systematics, taxonomy, 4 new taxa

Introduction

Fungi represent one of the most diverse groups of organisms on earth, with an indispensable role in the processes and functioning of ecosystems (Wu et al. 2020, 2021; Wang et al. 2021; Hyde 2022; Guan and Zhao 2023). Wood-inhabiting fungi play an important role in the carbon cycle (Dai et al. 2015; Wu et al. 2017; Chen and Zhao 2020; Guan et al. 2021; Liu et al. 2022a, b; Luo and Zhao 2022; Mardones et al. 2023; Yuan et al. 2023; Zhang et al. 2023; Zhao et al. 2023a, b; Zhou et al. 2023). The wood-inhabiting fungal order Trechisporales K.H. Larss. is a species-poor order, compared with most other orders within Agaricomycetes, Basidiomycota (Wijayawardene et al. 2022).

Trechispora P. Karst. (Hydnodontaceae) typified by T. onusta P. Karst., which is characterized by resupinate to effused basidiomata; a smooth to hydnoid to poroid hymenophore; ampullaceous septa; short cylindric basidia; and smooth to verrucose or aculeate basidiospores (Karsten 1890; Bernicchia and Gorjón 2010). Currently, MycoBank and Index Fungorum have registered 163 recorded and 156 recorded intraspecific names in Trechispora, respectively. About 100 species are currently accepted in Trechispora worldwide (Karsten 1890; Bondartsev and Singer 1941; Rogers and Jackson 1943; Rogers 1944; Bondartsev 1953; Liberta 1966, 1973; Parmasto 1968; Burdsall and Gilbertson 1982; Gilbertson and Budington 1970; Jülich 1975, 1976; Ryvarden 1975; Ryvarden and Liberta 1978; Hallenberg 1978, 1980; Jülich and Stalpers 1980; Rauschert 1987; Vries 1987; Larsson 1992, 1994, 1995, 1996; Hjortstam and Larsson 1995; Ryvarden 2002; Trichies and Schultheis 2002; Ryvarden et al. 2003; Miettinen and Larsson 2006; Dai 2011; Yuan and Dai 2012; Ordynets et al. 2015; Phookamsak et al. 2019; Xu et al. 2019; Chikowski et al. 2020; Haelewaters et al. 2020; Crous et al. 2021; de Meiras-Ottoni et al. 2021; Zhao and Zhao 2021; Liu et al. 2022a, b; Luo and Zhao 2022; Sommai et al. 2023), of which 38 species of the genus have been found in China (Dai 2011; Yuan and Dai 2012; Xu et al. 2019; Dai et al. 2021; Zhao and Zhao 2021; He et al. 2022; Liu et al. 2022a, b; Luo and Zhao 2022; Deng et al. 2023; Liu et al. 2024a, b).

There have been many studies on the phylogeny of this genus in recent years. A high phylogenetic diversity on the corticioid Agaricomycetes based on two genes, 5.8S and 28S showed that nine taxa of Trechispora nested into trechisporoid clade (Larsson et al. 2004). The molecular systematics suggested that Trechispora belonged to Hydnodontaceae and was related to genera Brevicellicium K.H. Larss. & Hjortstam, Porpomyces Jülich, Sistotremastrum J. Erikss., and Subulicystidium Parmasto (Telleria et al. 2013). Based on the ITS and nLSU datasets, the phylogenetic study of Trechispora reported two new Trechispora species as T. cyatheae Ordynets, Langer & K.H. Larss. and T. echinocristallina Ordynets, Langer & K.H. Larss., on La Réunion Island (Ordynets et al. 2015). The phylogeny of Trechisporales was inferred from a combined ITS-nLSU sequences, which revealed that two related genera Porpomyces, Scytinopogon Singer, grouped closely together with Trechispora and all of them nested within Hydnodontaceae (Liu et al. 2019). Based on ITS dataset, the three new species of Trechispora were described and used to evaluate the phylogenetic relationship with other species of this genus, in which T. murina was retrieved as a sister to T. bambusicola with moderate supports, and T. odontioidea formed a single lineage and then grouped with T. fimbriata and T. nivea, while T. olivacea formed a monophyletic lineage with T. farinacea, T. hondurensis, and T. mollis (Luo and Zhao 2022). Recently, based on the morphological features and molecular evidence, three new species of Trechispora have been reported from Northern and Northeastern Thailand (Sommai et al. 2023).

During investigations into the wood-inhabiting fungi in the Yunnan-Guizhou Plateau of China, samples representing four additional species belonging to genus Trechispora were collected. To clarify the placement and relationships of the four species, we carried out a phylogenetic and taxonomic study on Trechispora, based on the ITS+nLSU.

Materials and methods

Morphology

The specimens studied were deposited at the herbarium of Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. The macromorphological descriptions were based on field notes and photos captured in the field and laboratory. Color, texture, taste and odor of basidiomata were mostly based on authors’ field trips. Color terminology followed Kornerup and Wanscher (1978). All materials were examined under a Nikon 80i microscope. Drawings were made with the aid of a drawing tube. The measurements and drawings of the microscopic structures were made (Wu et al. 2022). The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB = cotton blue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid and indextrinoid, L = spore length (arithmetic average for all spores), W = spore width (arithmetic average for all spores), Q = L/W ratios of the specimens studied, and n = a/b (a = total number of spores measured, from b = number of specimens).

Molecular phylogeny

The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing) was used to obtain genomic DNA from the dried specimens following the manufacturer’s instructions (Zhao and Wu 2017). The nuclear ribosomal ITS region was amplified with the primers ITS5 and ITS4 (White et al. 1990). The nuclear ribosomal LSU gene was amplified with the primers LR0R and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited Company, Yunnan Province, China. All newly-generated sequences were deposited in NCBI GenBank (Table 1).

Table 1.

List of species, specimens and GenBank accession numbers of sequences used in this study.

Species name Specimen No. GenBank accession No. References
ITS LSU
Fibrodontia alba TNM F24944 NR153983 NG060401 Yurchenko and Wu 2014
F. brevidens Wu 9807-16 KC928276 KC928277 Yurchenko and Wu 2014
Trechispora alba CH21384 OR557258 Liu et al. 2024a
T. albofarinosa CLZhao 4356 OQ241383 OQ282703 This study
T. amianthina CBS 202.54 MH868822 Vu et al. 2019
T. araneosa KHL 8570 AF347084 Larsson et al. 2004
T. bambusicola CLZhao 3302 MW544021 MW520171 Zhao and Zhao 2021
T. bambusicola CLZhao 3305 MW544022 MW520172 Zhao and Zhao 2021
T. bispora CBS 142.63 MH858241 MH869842 Larsson et al. 2004
T. bisterigmata CLZhao 2522 OQ241386 This study
T. bisterigmata CLZhao 7870 OQ241387 This study
T. byssinella UC 2023068 KP814481 Unpublished
T. chartacea FLOR56185 MK458775 Liu et al. 2022a
T. clancularis FRDBI 4426619 MW487976 Unpublished
T. cohaerens HHB-19445 MW740327 Unpublished
T. copiosa AMO427 MN701015 MN687973 de Meiras-Ottoni et al. 2021
T. copiosa AMO450 MN701017 MN687974 de Meiras-Ottoni et al. 2021
T. crystallina LWZ 20170729-2 OM523419 OM339238 Liu et al. 2022a
T. cyatheae FR0219443 UDB024016 UDB024017 Ordynets et al. 2015
T. cyatheae FR0219446 UDB024020 UDB024021 Ordynets et al. 2015
T. dentata Dai 22565 OK298491 OM049408 Liu et al. 2022b
T. dimitiella Dai 21181 OK298493 OK298949 Liu et al. 2022b
T. dimitiella Dai 21931 OK298492 OK298948 Liu et al. 2022b
T. echinospora E11/37-10 JX392850 JX392851 Telleria et al. 2013
T. echinospora E11/37-12 JX392853 JX392854 Telleria et al. 2013
T. farinacea 356 AF347089 Larsson et al. 2004
T. farinacea MA-Fungi 79474 JX392855 JX392856 Telleria et al. 2013
T. fimbriata CLZhao 7969 MW544024 MW520174 Zhao and Zhao 2021
T. fimbriata CLZhao 9006 MW544025 MW520175 Zhao and Zhao 2021
T. foetida FLOR 56315 MK458769 Liu et al. 2022a
T. fragilis Dai 20535 OK298494 OK298950 Liu et al. 2022b
T. gelatinosa AMO824 MN701020 MN687977 de Meiras-Ottoni et al. 2021
T. gelatinosa AMO1139 MN701021 MN687978 de Meiras-Ottoni et al. 2021
T. gracilis LWZ 20170814-17 OM523435 OM339253 Liu et al. 2022a
T. havencampii DED8300 NR154418 NG059993 Desjardin and Perry 2015
T. hondurensis HONDURAS19-F016 NR178152 NG081479 Haelewaters et al. 2020
T. hondurensis HONDURAS19-F016a MT571523 MT636540 Haelewaters et al. 2020
T. hymenocystis KHL 8795 AF347090 Unpublished
T. hymenocystis KHL 16444 MT816397 Unpublished
T. incisa GB0090521 KU747093 KU747086 Unpublished
T. incisa GB0090648 KU747095 KU747087 Unpublished
T. invisitata 5425_537 ON963772 Unpublished
T. invisitata UC2023088 KP814425 Unpublished
T. kavinioides KGN 981002 AF347086 Unpublished
T. laevispora Dai 21655 OK298495 OM108710 Liu et al. 2022b
T. larssonii LWZ 20190817-11a OM523442 OM339259 Liu et al. 2022a
T. longiramosa HG 140168 OM523448 OM339264 Liu et al. 2022a
T. mellina URM85756 MH280000 Unpublished
T. microspora FRDBI 18772216 OL828778 Unpublished
T. mollis URM85884 MK514945 MK514945 Unpublished
T. mollis URM85885 MT423667 Unpublished
T. mollusca iNAT 30809943 MZ269232 Unpublished
T. mollusca CFMR:DLL2011-186 KJ140681 Unpublished
T. nivea MA-Fungi 76238 JX392824 JX392825 Telleria et al. 2013
T. nivea MA-Fungi 76257 JX392826 JX392827 Telleria et al. 2013
T. pallescens FLOR56184 MK458767 Unpublished
T. pallescens FLOR56188 MK458774 Unpublished
T. papillosa AMO713 MN701022 MN687979 de Meiras-Ottoni et al. 2021
T. papillosa AMO795 MN701023 MN687981 de Meiras-Ottoni et al. 2021
T. patawaensis VPapp-GF1901 OL314550 OL314546 Unpublished
T. perminispora LWZ2019081639a OM523525 OM339329 Liu et al. 2024a
T. pileata CLZhao 4456 OQ241388 OQ282715 This study
T. praefocata FRDBI 18819116 OL828784 Unpublished
T. regularis KHL 10881 AF347087 Unpublished
T. rigida URM85754 MT406381 MH279999 Unpublished
T. sinensis LWZ 20170816-35 OM523479 OM339287 Liu et al. 2022a
T. stellulata 14153 MW023104 Unpublished
T. stellulata 33962903 ON364078 Unpublished
T. stellulata UC2023099 KP814451 Unpublished
T. stellulata UC2023230 KP814491 Unpublished
T. stevensonii MA-Fungi 70669 JX392841 JX392842 Telleria et al. 2013
T. stevensonii MA-Fungi 70645 JX392843 JX392844 Telleria et al. 2013
T. subfarinacea LWZ2020092133a OM523528 OM339331 Liu et al. 2024a
T. subhelvetica 7089 JN710601 Unpublished
T. subhymenocystis LWZ 20190818-29b OM523492 OM339299 Liu et al. 2022a
T. subregularis VPapp-GF2103 OL331097 OL314548 Unpublished
T. subsinensis LWZ 20190611-9 OM523497 OM339304 Liu et al. 2022a
T. subsphaerospora KHL 8511 AF347080 Unpublished
T. termitophila AMO396 MN701025 MN687983 de Meiras-Ottoni et al. 2021
T. termitophila AMO893 MN701026 MN687984 de Meiras-Ottoni et al. 2021
T. torrendii URM85886 MK515148 MH280004 Unpublished
T. tropica LWZ 20170613-16 OM523503 OM339311 Liu et al. 2022a
T. tuberculata Dai17433 OM523507 OM339314 Liu et al. 2024a
T. wenshanensis CLZhao 11649 OQ241389 OQ282716 This study
T. wenshanensis CLZhao 11715 PP712100 This study
T. wenshanensis CLZhao 22940 PP712101 This study
T. yunnanensis CLZhao 210 NR177488 MN654918 Xu et al. 2019
T. yunnanensis CLZhao 214 MN654922 MN654919 Xu et al. 2019

The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using AliView version 1.27 (Larsson 2014). Each dataset was aligned separately at first and then the ITS+nLSU regions were combined with Mesquite version 3.51. The combined dataset was deposited in TreeBASE (submission ID 31349). Sequences of Fibrodontia alba Yurchenko & Sheng H. Wu and F. brevidens (Pat.) Hjortstam & Ryvarden retrieved from GenBank were used as an outgroup in the ITS analysis (Luo and Zhao 2022).

Maximum parsimony analysis in PAUP* version 4.0a169 (http://phylosolutions.com/paup-test/) was applied to ITS+nLSU following a previous study (Zhao and Wu 2017). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1,000 pseudo replicates (Felsenstein 1985). Descriptive tree statistics - tree length (TL), composite consistency index (CI), composite retention index (RI), composite rescaled consistency index (RC) and composite homoplasy index (HI) - were calculated for each maximum parsimonious tree generated. The combined dataset was also analysed using Maximum Likelihood (ML) in RAxML-HPC2 through the CIPRES Science Gateway (Miller et al. 2012). Branch support (BS) for the ML analysis was determined by 1000 bootstrap pseudoreplicates.

MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each dataset for the purposes of Bayesian inference (BI), Bayesian inference was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al. 2012). A total of four Markov chains were run for two runs from random starting trees for 1.7 million generations for ITS+nLSU with tree and parameters sampled every 1,000 generations. The first quarter of all of the generations were discarded as burn-ins. A majority rule consensus tree was computed from the remaining trees. Branches were considered as significantly supported if they received a maximum likelihood bootstrap support value (BS) of > 70%, a maximum parsimony bootstrap support value (BT) of > 70% or a Bayesian posterior probability (BPP) of > 0.95.

Results

Molecular phylogeny

The ITS+nLSU dataset comprised sequences from 88 fungal specimens representing 64 taxa. The dataset had an aligned length of 2271 characters, of which 1376 characters were constant, 190 were variable and parsimony-uninformative and 705 were parsimony-informative. Maximum parsimony analysis yielded 300 equally parsimonious tree (TL = 5543, CI = 0.2979, HI = 0.7021, RI = 0.5278 and RC = 0.1572). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.012925 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 389. The phylogenetic tree inferred from the ITS+nLSU sequences highlighted that four new species were grouped into the genus Trechispora (Fig. 1).

Figure 1. 

Maximum parsimony strict consensus tree illustrating the phylogeny of the four new species and related species in Trechispora, based on ITS+nLSU sequences. Branches are labelled with maximum likelihood bootstrap values > 70%, parsimony bootstrap values > 50% and Bayesian posterior probabilities > 0.95, respectively.

Taxonomy

Trechispora albofarinosa K.Y. Luo & C.L. Zhao, sp. nov.

MycoBank No: 849463
Figs 2, 3

Holotype

China. Yunnan Province, Pu’er, Jingdong County, Huangcaoling, Wuliangshan National Nature Reserve, 24°23′N, 100°45′E, altitude 2350 m a.s.l., on the fallen branch of Pinus, leg. C.L. Zhao, 5 October 2017, CLZhao 4356 (SWFC).

Figure 2. 

Basidiomata of Trechispora albofarinosa (holotype) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Figure 3. 

Microscopic structures of Trechispora albofarinosa (holotype) A basidiospores B basidia and basidioles C a cross section of basidiomata. Scale bars: 5 μm (A); 10 µm (B, C).

Etymology

Albofarinosa (Lat.): referring to the farinose basidiomata with white hymenial surface.

Description

Basidiomata annual, resupinate, farinose, without odor or taste when fresh, up to 3.5 cm long, 1.5 cm wide, and 300–500 µm thick. Hymenial surface flocculence, white when fresh, white to cream on drying. Sterile margin indistinct, white, and up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections with ampullaceous septa, colorless, thick-walled, frequently branched, interwoven, 2–3.5 µm in diameter; IKI–, CB–, tissues unchanged in KOH.

Cystidia and cystidioles absent; basidia clavate, with four sterigmata and a basal clamp connection, 6.5–10 × 3.5–5 µm.

Basidiospores ellipsoid, colorless, thin-walled, aculeate, IKI–, CB–, 2.5–3.5 (–4) × 2–2.5 (–3.5) μm, L = 3.18 µm, W = 2.44 µm, Q = 1.3 (n = 30/1).

Trechispora bisterigmata K.Y. Luo & C.L. Zhao, sp. nov.

MycoBank No: 849464
Figs 4, 5

Holotype

China. Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, 23°56′N, 101°29′E, altitude 2200 m a.s.l., on the trunk of Albizia julibrissin, leg. C.L. Zhao, 20 Aguest 2017, CLZhao 2522 (SWFC).

Figure 4. 

Basidiomata of Trechispora bisterigmata (holotype) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Figure 5. 

Microscopic structures of Trechispora bisterigmata (holotype) A basidiospores B basidia and basidioles C a cross section of basidiomata. Scale bars: 5 μm (A); 10 µm (B, C).

Etymology

Bisterigmata (Lat.): referring to the basidia mainly with two sterigmata.

Description

Basidiomata annual, resupinate, adnate, membranous, without odor or taste when fresh, up to 2.5 cm long, 1.5 cm wide, and 4 mm thick. Hymenial surface odontioid, cream. Sterile margin indistinct, white, rhizomorphic, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, slightly thick-walled, ampullate septa frequently present in subiculum and hymenium with crystals, up to 6 µm wide, branched, interwoven, 2.5–4 µm in diameter; IKI–, CB–, tissues unchanged in KOH.

Cystidia and cystidioles are absent; basidia barrelled, slightly constricted, with two or four sterigmata and a basal clamp connection, 6.5–14.5 × 3.5–5.5 µm.

Basidiospores subglobose to broad ellipsoid, colorless, slightly thick-walled, smooth, IKI–, CB–, (2–) 2.5–4 × 2–3.5 µm, L = 3.03 µm, W = 2.41 µm, Q = 1.23–1.28 (n = 60/2).

Additional specimen examined

(paratype). China. Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, 23°56′N, 101°29′E, altitude 2200 m a.s.l., on the living angiosperm tree, leg. C.L. Zhao, 19 August 2018, CLZhao 7870 (SWFC).

Trechispora pileata K.Y. Luo & C.L. Zhao, sp. nov.

MycoBank No: 849465
Figs 6, 7

Holotype

China. Yunnan Province, Pu’er, Jingdong County, Wuliangshan National Nature Reserve, 24°23′N, 100°45′E, altitude 2350 m a.s.l., on the angiosperm trunk, leg. C.L. Zhao, 6 October 2017, CLZhao 4456 (SWFC).

Figure 6. 

Basidiomata of Trechispora pileata (holotype) A, B the front of the basidiomata C, D the back of the basidiomata. Scale bars: 0.5 cm (A); 1 mm (B); 0.5 cm (C); 1 mm (D).

Figure 7. 

Microscopic structures of Trechispora pileata (holotype) A basidiospores B basidia and basidioles C hyphae of context of pileus D a spine trama of basidiomata. Scale bars: 5 μm (A); 10 µm (B, C).

Etymology

Pileata (Lat.): referring to the pileate basidiomata.

Description

Basidiomata annual, with a laterally contracted base, solitary or imbricate. Pileus fan shaped, cortical to corky, up to 1.5 cm long, 1 cm wide, and 2 mm thick, yellowish to yellowish brown, the surface radially striate covered with appressed scales, azonate; the hymenophore surface odontioid, yellowish brown, up to 1 mm long. Context cream, 1 mm thick. Sterile margin indistinct, slightly buff, and 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven, hyphae in spines 2.5–4 µm in diameter, IKI–, CB–, tissues unchanged in KOH. Hyphae in context colorless, thin- to thick-walled, unbranched, interwoven, 4.5–6 µm in diameter, IKI–, CB–, tissues unchanged in KOH.

Cystidia and cystidioles absent; basidia subcylindrical, constricted, with four sterigmata and a basal clamp connection, 5–7 × 2.5–4 µm.

Basidiospores subglobose to broad ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (2.5–) 2.8–5 (–5.5) × (2.5–) 3–4.7 µm, L = 4 µm, W = 3.56 µm, Q = 1.12 (n = 30/1).

Trechispora wenshanensis K.Y. Luo & C.L. Zhao, sp. nov.

849466 Figs 8, 9

Holotype

China. Yunnan Province, Wenshan, Babao Town, Balao battle site, 23°22′N, 104°15′E, altitude 1300 m a.s.l., on the fallen angiosperm branch, leg. C.L. Zhao, 19 January 2019, CLZhao 11649 (SWFC).

Figure 8. 

Basidiomata of Trechispora wenshanensis (holotype) A the front of the basidiomata B characteristic hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Figure 9. 

Microscopic structures of Trechispora wenshanensis (holotype) A basidiospores B basidia and basidioles C a cross section of basidiomata. Scale bars: 5 μm (A); 10 µm (B, C).

Etymology

Wenshanensis (Lat.): referring to the locality (Wenshan) of the type specimen.

Description

Basidiomata annual, resupinate, adnate, cottony, easily to separate from substrate, without odor or taste when fresh, up to 5.5 cm long, 4 cm wide, and 200–400 µm thick. Hymenial surface smooth, slightly cream when fresh, cream to buff on drying. Sterile margin indistinct, cream, and 1–2 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin- to thick-walled, branched, interwoven, 1–2 µm in diameter; IKI–, CB–, tissues unchanged in KOH.

Cystidia and cystidioles are absent; basidia barrelled, with four sterigmata and a basal clamp connection, 7–10 × 3–5 μm.

Basidiospores ellipsoid, colorless, thin-walled, warted, IKI–, CB–, (2–) 2.5–3.7 (–4) × (1.5–) 2–3 µm, L = 3.02 µm, W = 2.37 µm, Q = 1.25–1.30 (n = 90/3).

Additional specimens examined

(paratypes). China. Yunnan Province, Wenshan, Funing county, Guying village, 23°42′N, 105°53′E, altitude 1000 m a.s.l., on the fallen angiosperm branch, leg. C.L. Zhao, 20 January 2019, CLZhao 11715; Yunnan Province, Lincang, Lancangjiang Forestry Region, 25°37′N, 97°30′E, altitude 1750 m a.s.l., on the fallen angiosperm branch, leg. C.L. Zhao, 21 July 2022, CLZhao 22940 (SWFC).

Discussion

Many recently described wood-inhabiting fungal taxa have been reported in the subtropics and tropics, including in the genus Trechispora (Ordynets et al. 2015; Phookamsak et al. 2019; Xu et al. 2019; Chikowski et al. 2020; Haelewaters et al. 2020; Crous et al. 2021; de Meiras-Ottoni et al. 2021; Zhao and Zhao 2021; Liu et al. 2022a, b; Luo and Zhao 2022; Deng et al. 2023; Sommai et al. 2023). The present study reports four new species in Trechispora, based on a combination of morphological features and molecular evidence.

Based on ITS+nLSU topology (Fig. 1), four new species were grouped into the genus Trechispora, in which T. albofarinosa was sister to T. araneosa (Höhn. & Litsch.) K.H. Larss., However, morphologically, T. araneosa can be delimited from T. albofarinosa by its odontioid to poroid hymenial surface and larger basidiospores (5–6.5 × 4–5 µm; Larsson 1995). The second new species T. bisterigmata grouped closely with T. cohaerens (Schwein.) Jülich & Stalpers and T. laevispora Z.B. Liu, Y.D. Wu & Yuan Yuan. However, morphologically, T. cohaerens is different from T. bisterigmata by its thin-walled hyphal (Jülich and Stalpers 1980); T. laevispora can be delimited from T. bisterigmata by having the smooth hymenial surface, and thin-walled basidiospores (Liu et al. 2022b). The third species T. pileata formed a monophyletic lineage. The species T. wenshanensis grouped closely with T. mellina (Bres.) K.H. Larss. However, morphologically, T. mellina can be delimited from T. wenshanensis by having the longer basidia (15–20 × 4.5–5 µm) and smooth basidiospores (Chikowski et al. 2020).

Morphologically, Trechispora albofarinosa resembles T. olivacea K.Y. Luo & C.L. Zhao and T. yunnanensis C.L. Zhao by sharing the farinosa basidiomata. However, T. olivacea differs from T. albofarinosa by olivaceous hymenial surface and thick-walled basidiospores (Luo and Zhao 2022); T. yunnanensis can be delimited from T. albofarinosa due to its thick-walled, larger basidiospores (7–8.5 × 5–5.5 µm; Xu et al. 2019). The new species T. albofarinosa is similar to T. bambusicola C.L. Zhao, T. fimbriata C.L. Zhao, T. fissurata C.L. Zhao and T. murina K.Y. Luo & C.L. Zhao in its presence of ellipsoid basidiospores. T. bambusicola can be delimited from T. albofarinosa by odontioid hymenial surface with aculei cylindrical to conical (0.3–0.5 mm long), and thick-walled basidiospores (Zhao and Zhao 2021); T. fimbriata can be delimited from T. albofarinosa due to its hydnoid hymenial surface, and thick-walled basidiospores (Zhao and Zhao 2021); T. fissurata is different from T. albofarinosa by hydnoid hymenial surface and thick-walled, broadly basidiospores (3.3–4 × 2.8–3.5 µm; Zhao and Zhao 2021); T. murina can be delimited from T. albofarinosa due to its grandinioid hymenial surface and thick-walled basidiospores (Luo and Zhao 2022).

Trechispora bisterigmata is similar to T. fastidiosa (Pers.) Liberta by sharing the membranous basidiomata. However, T. fastidiosa differs from T. bisterigmata by smooth hymenial surface and larger basidiospores (6–7 × 4.5–5.5 µm; Bernicchia and Gorjón 2010). T. bisterigmata resembles T. bambusicola C.L. Zhao, T. canariensis Ryvarden & Liberta and T. christiansenii (Parmasto) Liberta in its monomitic hyphal system and presence of the crystals. However, T. bambusicola differs from T. bisterigmata by its odontioid hymenial surface and ornamented basidiospores (Zhao and Zhao 2021); T. canariensis differs from T. bisterigmata due to its larger basidia (15–20 × 5–6 μm) and thin-walled, larger basidiospores (5–7 × 3–3.5 μm; Ryvarden and Liberta 1978); T. christiansenii can be delimited from T. bisterigmata by its larger basidia (15–20 × 6–7 μm) and larger basidiospores (5.5–7 × 4–4.5 μm; Liberta 1966).

Trechispora pileata is similar to T. byssinella (Bourdot) Liberta, T. kavinioides B. de Vries, T. silvae-ryae (J. Erikss. & Ryvarden) K.H. Larss. and T. subsphaerospora (Litsch.) Liberta by sharing smooth basidiospores. However, T. byssinella differs from T. pileata by having narrower ellipsoid basidiospores (Bernicchia and Gorjón 2010); T. kavinioides can be delimited from T. pileata by its odontioid hymenial surface, and narrower ellipsoid to lacrymiform basidiospores (Bernicchia and Gorjón 2010); T. silvae-ryae is different from T. pileata by dimitic hyphal system (Bernicchia and Gorjón 2010); T. subsphaerospora differs from T. pileata by having angular basidiospores (Bernicchia and Gorjón 2010). In addition, the delimitation characteristics of the genus have full resupinate basidiomata, but this new species has the pileate basidiomata with a laterally contracted base. Based on the phylogenetic analyses, this new species groups with Trechispora species, therefore, we propose that the genus Trechispora accommodate this new species in the present study.

Trechispora wenshanensis resembles T. fastidiosa and T. laevispora Z.B. Liu, Y.D. Wu & Yuan Yuan by sharing a smooth hymenial surface. However, T. fastidiosa differs from T. wenshanensis by larger basidiospores (6–7 × 4.5–5.5 µm; Bernicchia and Gorjón 2010); T. laevispora differs from T. wenshanensis by fimbriate margin of the basidiomata and smooth basidiospores (Liu et al. 2022b). The new species T. wenshanensis is similar to T. bambusicola C.L. Zhao, T. fimbriata C.L. Zhao, T. fissurata C.L. Zhao, T. murina K.Y. Luo & C.L. Zhao and T. yunnanensis C.L. Zhao due to its ellipsoid basidiospores. However, T. bambusicola can be delimited from T. wenshanensis by odontioid hymenial surface, and thick-walled basidiospores (Zhao and Zhao 2021); T. fimbriata differs from T. wenshanensis due to its hydnoid hymenial surface, and thick-walled basidiospores (Zhao and Zhao 2021); T. fissurata is different from T. wenshanensis by hydnoid hymenial surface, and thick-walled, broadly basidiospores (3.3–4 × 2.8–3.5 µm; Zhao and Zhao 2021); T. murina can be delimited from T. wenshanensis due to its grandinioid hymenial surface, and thick-walled basidiospores (Luo and Zhao 2022); T. yunnanensis is different from T. wenshanensis by farinaceous hymenial surface and thick-walled, larger basidiospores (7–8.5 × 5–5.5 µm; Xu et al. 2019).

Key to 42 accepted species of Trechispora in China

1 Basidiomata with clavarioid 2
Basidiomata without clavarioid 6
2 Basidiomata grayish brown to pale purple 3
Basidiomata pure white to pale yellow 4
3 Basidiomata with dense branches and long terminal branches T. longiramosa
Basidiomata with loose branches T. laxa
4 Basidiomata with flattened branches 5
Basidiomata without flattened branches T. tongdaoensis
5 Basidiomata branches polychotomous T. alba
Basidiomata branches dichotomous T. khokpasiensis
6 Basidiomata pileate T. pileata
Basidiomata resupinate to effused 7
7 Hymenophore poroid 8
Hymenophore smooth, colliculose, irpicoid, grandinioid, odontioid, hydnoid 13
8 Hyphal system dimitic T. dimitiella
Hyphal system monomitic 9
9 Subicular hyphae thick-walled 10
Subicular hyphae thin-walled 11
10 Ampullate septa present on subicular hyphae T. mollusca
Ampullate septa absent on subicular hyphae T. suberosa
11 Crystals in subiculum as numerous rodlets T. candidissima
Crystals in subiculum as rhomboidal plates or various shapes 12
12 Sphaerocysts present in cords and the adjacent part of subiculum T. hymenocystis
Sphaerocysts absent T. subhymenocystis
13 Basidiospores smooth 14
Basidiospores ornamented 16
14 Basidiomata with rhizomorph T. bisterigmata
Basidiomata without rhizomorph 15
15 Basidiospores subglobose, angular to turbinate T. confinis
Basidiospores ellipsoid T. laevispora
16 Basidiomata < 50 µm thick 17
Basidiomata > 50 µm thick 19
17 Crystals absent T. gracilis
Crystals present 18
18 Crystals aggregated, rhomboidal fakes T. perminispora
Crystals butterfly-like, easily broken into irregular shapes T. subaraneosa
19 Hymenophore smooth 20
Hymenophore colliculose, irpicoid, grandinioid, odontioid, hydnoid 27
20 Basidiospores slightly cyanophilous T. incisa
Basidiospores acyanophilous 21
21 Basidiospores > 6.5 µm long T. yunnanensis
Basidiospores < 6.5 µm long 22
22 Generative hyphae < 2 µm in diameter T. wenshanensis
Generative hyphae > 2 µm in diameter 23
23 Generative hyphae thin-walled 24
Generative hyphae thick-walled 25
24 Hymenophore farinaceous T. larssonii
Hymenophore arachnoid T. subfarinacea
25 Generative hyphae > 3.5 µm in diameter T. latehypha
Generative hyphae < 3.5 µm in diameter 26
26 Basidiospores ellipsoid, thin-walled T. albofarinosa
Basidiospores broadly ellipsoid to globose, thick-walled T. olivacea
27 Hymenial surface colliculose, irpicoid or grandinioid 28
Hymenial surface odontioid or hydnoid 30
28 Generative hyphae thick-walled T. murina
Generative hyphae thin-walled 29
29 Growth on bamboo T. taiwanensis
Growth on other plant T. crystallina
30 Tramal hyphae thin-walled or slightly thick-walled 31
Tramal hyphae distinctly thick-walled 35
31 Crystals absent in trama T. tropica
Crystals present in trama 32
32 Basidiospores subglobose to globose T. odontioidea
Basidiospores ellipsoid or broadly ellipsoid 33
33 Tramal hyphae 3–6 µm wide, spines of basidiospores constricted T. constricta
Tramal hyphae 2–4 µm wide, spines of basidiospores not constricted 34
34 Cystidia present T. chaibuxiensis
Cystidia absent T. nivea
35 Hymenophore aculei > 0.4 mm long 36
Hymenophore aculei < 0.4 mm long 39
36 Margin smooth T. fissurata
Margin fimbriate 37
37 Basidiomata irpicoid T. dentata
Basidiomata odontioid or hydnoid 38
38 Hymenophore aculei sparse, cream to buff-yellow when fresh T. fimbriata
Hymenophore aculei dense, white when fresh T. fragilis
39 Generative hyphae ampullate septa absent T. bambusicola
Generative hyphae ampullate septa present 40
40 Basidiospores with sharp spines T. subfissurata
Basidiospores without sharp spines 41
41 Spines of basidiospores constricted T. subsinensis
Spines of basidiospores not constricted T. sinensis

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project Nos: 32170004, U2102220), Forestry Innovation Programs of Southwest Forestry University (Project No: LXXK-2023Z07), and the Yunnan Province College Students Innovation and Entrepreneurship Training Program (Project no. s202310677034), and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111).

Author contributions

Conceptualization, C.–L.Z.; methodology, C.–L.Z. and K.–Y.L.; software, C.–L.Z. and K.–Y.L.; validation, C.–L.Z. and K.–Y.L.; formal analysis, C.–L.Z., K.–Y.L. and J.–Q.S.; investigation, C.–L.Z., K.–Y.L. and J.–Q.S.; resources, C.–L.Z.; writing–original draft preparation, C.–L.Z. and K.–Y.L; writing–review and editing, C.–L.Z. and K.–Y.L; visualization, C.–L.Z. and K.–Y.L; supervision, C.–L.Z.; project administration, C.–L.Z.; funding acquisition, C.–L.Z. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Jiang-Qing Su https://orcid.org/0009-0008-5480-4502

Chang-Lin Zhao https://orcid.org/0000-0002-8668-1075

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Bernicchia A, Gorjón SP (2010) Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Alassio, Italy.
  • Bondartsev AS (1953) The Polyporaceae of the European USSR and Caucasia. Israel Program for Scientific Translations, Jerusalem, 1–896.
  • Bondartsev AS, Singer R (1941) Zur Systematik der Polyporaceen. Annales Mycologici 39(1): 43–65.
  • Burdsall Jr HH, Gilbertson RL (1982) New species of Corticiaceae (Basidiomycotina, Aphyllophorales) from Arizona. Mycotaxon 15: 333–340.
  • Chen JZ, Zhao CL (2020) Morphological and molecular identification of four new resupinate species of Lyomyces (Hymenochaetales) from southern China. MycoKeys 65: 101–118. https://doi.org/10.3897/mycokeys.65.48660
  • Chikowski RS, Larsson KH, Gibertoni TP (2020) Taxonomic novelties in Trechispora (Trechisporales, Basidiomycota) from Brazil. Mycological Progress 19(12): 1403–1414. https://doi.org/10.1007/s11557-020-01635-y
  • Dai YC, Cui BK, Si J, He SH, Hyde KD, Yuan HS, Liu XY, Zhou LW (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycological Progress 14(8): 62. https://doi.org/10.1007/s11557-015-1084-5
  • Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW et al. (2021) Diversity and systematics of the important macrofungi in Chinese forests. Junwu Xuebao 40: 770–805.
  • de Meiras-Ottoni A, Larsson KH, Gibertoni TB (2021) Additions to Trechispora and the status of Scytinopogon (Trechisporales, Basidiomycota). Mycological Progress 20(2): 203–222. https://doi.org/10.1007/s11557-021-01667-y
  • Deng PT, Yan J, Liu XF, He ZM, Lin Y, Lu MX, Zhang P (2023) Three coralloid species of the genus Trechispora (Trechisporales, Basidiomycota) in China: Two newly discovered taxa and one reported for the first time. MycoKeys 99: 153–170. https://doi.org/10.3897/mycokeys.99.109375
  • Desjardin DE, Perry BA (2015) A new species of Scytinopogon from the island of Principe, Republic of Sao Tome and Principe, West Africa. Mycosphere 6(4): 433–440. https://doi.org/10.5943/mycosphere/6/4/5
  • Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using bootstrap. Evolution; International Journal of Organic Evolution 39(4): 783–791. https://doi.org/10.2307/2408678
  • Guan QX, Li YF, Zhao CL (2021) Morphological and phylogenetic evidence for recognition of two new species of Hyphoderma (Basidiomycota) from southern China, with a key to all Chinese Hyphoderma. MycoKeys 83: 145–160. https://doi.org/10.3897/mycokeys.83.69909
  • Haelewaters D, Dima B, Abdel-Hafiz AII, Abdel-Wahab M, Abul-Ezz SR, Acar I, Aguirre-Acosta E, Aime MC, Aldemir S, Ali M, Ayala-Vásquez O, Bakhit MS, Bashir H, Battistin E, Bendiksen E, Castro-Rivera R, Çolak ÖF, De Kesel A, de la Fuente JI, Dizkırıcı A, Hussain S, Jansen GM, Kaygusuz O, Khalid AN, Khan J, Kiyashko AA, Larsson E, MartínezGonzález CR, Morozova OV, Niazi AR, Noordeloos ME, Pham THG, Popov ES, Psurtseva NV, Schoutteten N, Sher H, Türkekul I˙, Verbeken A, Ahmad H, Afshan NS, Christe P, Fiaz M, Glaizot O, Liu J, Majeed J, Markotter W, Nagy A, Nawaz H, Papp V, Péter Á, Pfliegler WP, Qasim T, Riaz M, Sándor AD, Szentiványi T, Voglmayr H, Yousaf N, Krisai-Greilhuber I (2020) Fungal systematics and evolution: FUSE 6. Sydowia 72: 231–356.
  • Hallenberg N (1978) Wood-fungi (Corticiaceae, Coniophoraceae, Lachnocladiaceae, Thelephoraceae) in N. Iran. I. Iranian Journal of Plant Pathology 14: 38–87.
  • Hallenberg N (1980) New taxa of Corticiaceae from N. Iran (Basidiomycetes). Mycotaxon 11(2): 447–475.
  • He MQ, Zhu XY, Li TH, Cui BK, Wang K Bau Tolgor, Zhao RL (2022) Macrofungal classification system and information platform http://www.nmdc.cn/macrofungi/ is launched. Mycosystema 41(6): 899–905.
  • Hjortstam K, Larsson KH (1995) Annotated check-list to genera and species of corticioid fungi (Aphyllophorales, Basidiomycotina) with special regards to tropical and subtropical areas. Windahlia 21: 1–75.
  • Jülich W (1975) Studies in resupinate basidiomycetes - III. Persoonia 8(3): 291–305.
  • Jülich W (1976) Studies in resupinate basidiomycetes - IV. Persoonia 8(4): 431–442.
  • Jülich W, Stalpers JA (1980) The resupinate non-poroid Aphyllophorales of the temperate northern hemisphere. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen 74: 1–335.
  • Karsten PA (1890) Fragmenta mycologica XXIX. Hedwigia 29: 147–149.
  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kornerup A, Wanscher J (1978) Metheun Hand Book of Colour, 3rd edn. Metheun, London, 144–148.
  • Larsson KH (1992) The genus Trechispora (Corticiaceae, Basidiomycetes). Göteborg: Dept. of Systematic Botany.
  • Larsson KH (1995) Taxonomy of Trechispora farinacea and proposed synonyms I. Species with a grandinioid or hydnoid hymenophore. Symbolae Botanicae Upsalienses 30(3): 101–118.
  • Liu SL, Ma HX, He SH, Dai YC (2019) Four new corticioid species in Trechisporales (Basidiomycota) from East Asia and notes on phylogeny of the order. MycoKeys 48: 97–113. https://doi.org/10.3897/mycokeys.48.31956
  • Liu SL, He SH, Wang XW, May TW, He G, Chen SL, Zhou LW (2022a) Trechisporales emended with a segregation of Sistotremastrales ord. nov. (Basidiomycota). Mycosphere 13(1): 862–954. https://doi.org/10.5943/mycosphere/13/1/11
  • Liu ZB, Wu YD, Zhao H, Lian YP, Wang YR, Wang CG, Mao W-L, Yuan Y (2022b) Outline, divergence times, and phylogenetic analyses of Trechisporales (Agaricomycetes, Basidiomycota). Frontiers in Microbiology 13: 818358. https://doi.org/10.3389/fmicb.2022.818358
  • Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian E, Lu Y-Z, Zhang J-Y, Ma J, Dutta AK, Acharya K, Du T-Y, Xu J, Kim JS, Lim YW, Gerlach A, Zeng N-K, Han Y-X, Razaghi P, Raza M, Cai L, Calabon MS, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashetti AC, Pawar KS, Jiang S, Zhang C, Zhang H, Qing Y, Bau T, Peng X-C, Wen T-C, Ramirez NA, Niveiro N, Li M-X, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo C-H, da Silva TM, Souza-Motta CM, Bezerra JDP, He G, Ji X-H, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou L-W (2024a) Fungal diversity notes 1717–1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1–216. https://doi.org/10.1007/s13225-023-00529-0
  • Liu SL, Zhao P, Cai L, Shen S, Wei HW, Na Q, Han M, Wei R, Ge Y, Ma H, Karunarathna SC, Tibprommab S, Zhang B, Dai D, Lin L, Fan X-L, Luo Z-L, Shen H-W, Lu L, Lu W, Xu R-F, Tohtirjap A, Wu F, Zhou L-W (2024b) Catalogue of fungi in China 1. New taxa of plantinhabiting fungi. Mycology, 1–59. https://doi.org/10.1080/21501203.2024.2316066
  • Luo KY, Zhao CL (2022) A molecular systematics and taxonomy research on Trechispora (Hydnodontaceae, Trechisporales): Concentrating on three new Trechispora species from East Asia. Journal of Fungi (Basel, Switzerland) 8(10): 1020. https://doi.org/10.3390/jof8101020
  • Mardones M, Carranza-Velázquez J, Mata-Hidalgo M, Amador-Fernández X, Urbina H (2023) Taxonomy and phylogeny of the genus Ganoderma (Polyporales, Basidiomycota) in Costa Rica. MycoKeys 100: 5–47. https://doi.org/10.3897/mycokeys.100.106810
  • Miettinen O, Larsson KH (2006) Trechispora elongata species nova from North Europe. Mycotaxon 96: 193–198.
  • Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES Science Gateway: Enabling high-impact science for phylogenetics researchers with limited resources. Association for Computing Machinery 39: 1–8. https://doi.org/10.1145/2335755.2335836
  • Nylander JAA (2004) MrModeltest v.2. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
  • Parmasto E (1968) Conspectus Systematis Corticiacearum. Institutum Zoologicum et Botanicum Academiae Scientiarum R.P.S.S, Tartu, 1–97.
  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspe O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang G-N, Jiang H-B, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He M-Q, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang Q-J, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh S-Y, Huang S-K, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu X-D, Lu Y-Z, Lim YW, Chen Y, Tkalčec Z, Zhang Z-F, Luo Z-L, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang L-Z, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao R-L, Lumyong S, Boonmee S, Wen T-C, Mortimer PE, Xu J (2019) Fungal diversity notes 929–1035, taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w
  • Rauschert S (1987) Nomenklatorische Studien bei Höheren Pilzen IV. Nichtblätterpilze (Aphyllophorales) mit Ausschluss der Porlinge. Feddes Repertorium 98(11–12): 657–664. https://doi.org/10.1002/fedr.19870981116
  • Rogers DP, Jackson HS (1943) Notes on the synonymy of some North American Thelephoraceae and other resupinates. Farlowia 1(2): 263–328. https://doi.org/10.5962/p.315982
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ryvarden L (1975) Studies in the Aphyllophorales of Africa 3. Three new polypores from Zaïre. Bulletin du Jardin Botanique National de Belgique 45(1/2): 197–203. https://doi.org/10.2307/3667599
  • Ryvarden L (2002) A note on the genus Hydnodon Banker. Some neotropical wood-inhabiting fungi. Synop Fungorum 15: 31–33.
  • Ryvarden L, Liberta AE (1978) Contribution to the Aphyllophoralles of the Canary Islands 4. Two new species of Trechispora and Xenmastella. Canadian Journal of Botany 56(20): 2617–2619. https://doi.org/10.1139/b78-314
  • Ryvarden L, Stokland L, Larsson KH (2003) A critical checklist of Corticoid and Poroid fungi of Norway. Synop Fungorum 17: 1–209.
  • Sommai S, Pinruan U, Khamsuntorn P, Lueangjaroenkit P, Somrithipol S, Luangsa-ard J (2023) Three new species of Trechispora from Northern and Northeastern Thailand. Mycological Progress 22(6): 42. https://doi.org/10.1007/s11557-023-01886-5
  • Trichies G, Schultheis B (2002) Trechispora antipus sp. nov., une seconde espèce bisporique du genre Trechispora (Basidiomycota, Stereales). Mycotaxon 82: 453–458.
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vries BWL de (1987) Some new corticioid fungi. Mycotaxon 28(1): 77–90.
  • Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • Wang CG, Vlasák J, Dai YC (2021) Phylogeny and diversity of Bjerkandera (Polyporales, Basidiomycota), including four new species from South America and Asia. MycoKeys 79: 149–172. https://doi.org/10.3897/mycokeys.79.63908
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A Guide to Methods And Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wijayawardene NN, Phillips AJL, Pereira DS, Dai DQ, Aptroot A, Monteiro JS, Druzhinina IS, Cai F, Fan X, Selbmann L, Coleine C, Castañeda-Ruiz RF, Kukwa M, Flakus A, Fiuza PO, Kirk PM, Kumar KCR, leperuma Arachchi IS, Suwannarach N, Tang L-Z, Boekhout T, Tan CS, Jayasinghe RPPK, Thines M (2022) Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity 114(1): 463–490. https://doi.org/10.1007/s13225-022-00500-5
  • Wu SH, Chen YP, Wei CL, Floudas D, Dai YC (2017) Two new species of Phanerochaete (Basidiomycota) and redescription of P. robusta. Mycological Progress 17(4): 425–435. https://doi.org/10.1007/s11557-017-1368-z
  • Wu F, Tohtirjap A, Fan LF, Zhou LW, Alvarenga RLM, Gibertoni TB, Dai Y-C (2021) Global diversity and updated phy-logeny of Auricularia (Auriculariales, Basidiomycota). Journal of Fungi (Basel, Switzerland) 7(11): 933. https://doi.org/10.3390/jof7110933
  • Yuan HS, Dai YC (2012) Wood-inhabiting fungi in southern China. 6. Polypores from Guangxi autonomous region. Annales Botanici Fennici 49(5–6): 341–351. https://doi.org/10.5735/085.049.0605
  • Yuan Y, Bian LS, Wu YD, Chen JJ, Wu F, Liu HG, Zeng GY, Dai YC (2023) Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycology 14(3): 204–226. https://doi.org/10.1080/21501203.2023.2238779
  • Zhang QY, Liu HG, Papp V, Zhou M, Dai YC, Yuan Y (2023) New insights into the classification and evolution of Favolaschia (Agaricales, Basidiomycota) and its potential distribution, with descriptions of eight new species. Mycosphere 14(1): 777–814. https://doi.org/10.5943/mycosphere/14/1/10
  • Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16(1): 93–100. https://doi.org/10.1007/s11557-016-1259-8
  • Zhao W, Zhao CL (2021) The phylogenetic relationship revealed three new wood-inhabiting fungal species from genus Trechispora. Frontiers in Microbiology 12: 650195. https://doi.org/10.3389/fmicb.2021.650195
  • Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023a) Multi-gene phylogeny and taxonomy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi (Basel, Switzerland) 9(3): 1–41. https://doi.org/10.3390/jof9030320
  • Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y (2023b) Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics. Genome Biology and Evolution 15(8): 1–15. https://doi.org/10.1093/gbe/evad136
login to comment