Research Article
Print
Research Article
Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon
expand article infoChristopher Lambert§|, Lena Schweizer, Blondelle Matio Kemkuignou§, Elodie Gisèle M. Anoumedem, Simeon F. Kouam, Yasmina Marin-Felix§
‡ Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Braunschweig, Germany
§ Technische Universität Braunschweig, Braunschweig, Germany
| Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
¶ University of Yaoundé I, Yaounde, Cameroon
Open Access

Abstract

The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D. brideliae, D. cameroonensis, D. pseudoanacardii and D. rauvolfiae. Moreover, the description of D. isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.

Key words

Endophytes, Phomopsis, Sordariomycetes, 4 new taxa

Introduction

The genus Diaporthe (Diaporthaceae, Diaporthales, Sordariomycetes) is a group of fungi attracting considerable interest for its occurrence as plant pathogens, endophytes and saprobes, and its biotechnological potential as producers of secondary metabolites (Udayanga et al. 2011; Gomes et al. 2013; Chepkirui and Stadler 2017; Marin-Felix et al. 2019). Among plant diseases and disease symptoms causally linked to Diaporthe infections are leaf spots, cankers, dieback and fruit rots as well as decays and wilt (Thompson et al. 2011; Udayanga et al. 2011; Guarnaccia and Crous 2017; Guarnaccia et al. 2018). Historically, Diaporthe included teleomorphic species that produced ostiolate ascomata usually immersed in the substrate and often erumpent through a pseudostroma, unitunicate and clavate to cylindrical asci, and hyaline, fusioid, ellipsoid to cylindrical, septate ascospores, sometimes with appendages. On the other hand, the corresponding anamorphs were accommodated within the genus Phomopsis, which was characterized by ostiolate conidiomata and phialidic conidiogenous cells that may produce three types of hyaline conidia, i.e. alpha, beta and gamma (Udayanga et al. 2011). Synonymization following the one-fungus-one name paradigm linked both individual groups together, with the older name Diaporthe recieving priority over Phomopsis (Rossman et al. 2015). Taxonomical classification of Diaporthe relies on its host specificity, disease symptoms and morphological features such as that of ascomata, stroma and spore shapes (Udayanga et al. 2011, Gomes et al. 2013). Nowadays, morphological and ecological traits were shown to exhibit high degrees of homoplasy, as molecular phylogenetic studies over the years demonstrated – a common feature found in rising numbers of fungal groups (Gomes et al. 2013; Jaklitsch et al. 2016). In consequence, recent taxonomical surveys extend to multilocus sequencing, namely ITS, cal, his3, tef1 and tub2, and employ molecular phylogenetic concatenation-based methods for species description and delimitation (Udayanga et al. 2012a). However, most of the over 1000 records are not sequenced (213 species validated by sequence data and typification in Marin-Felix et al. 2019; 293 species and type strains surveyed by Norphanphoun et al. 2022), hence for the future of this genus, it will be critical to recollect and typify old records to bring an expectable high amount of synonyms together. This is the only option to long-term stabilize the taxonomy of Diaporthe (Dissanayake 2017).

Besides rarely occurring infections in immunocompromised human individuals, members of the genus Diaporthe are most well-known as phytopathogens in agriculture (Iriart et al. 2011; Rakita et al. 2017; Marin-Felix et al. 2019). Among the most economically impactful, infections of grapevines, forest trees and plants of ornamental value have to be named, with D. eres and D. ampelina, and more recently D. rudis from apple trees (Martino et al. 2023) being among the most frequently isolated ones in Europe (Pscheidt 1989; Mostert et al. 2001; Guarnaccia and Crous 2017; Guarnaccia et al. 2018; Yang et al. 2018; Manawasinghe et al. 2019). During pathogenesis, secondary metabolites were occasionally described as important virulence factors, ensuring plant infection (Tsurushima et al. 2005). This and their ubiquitous dispersion are conceivably among the main reasons why Diaporthe and the former Phomopsis spp. have been studied extensively for their capability to produce bioactive natural products (Chepkirui and Stadler 2017; Xu et al. 2021). For instance, Goddard et al. 2014 described the isolation of nine Diaporthe strains (described as Phomopsis spp.) from different vine cultivars with and without showing symptoms of esca decline, a plant trunk disease leading to diebacks of vineyards (Mostert et al. 2001). A set of secondary metabolites was subsequently isolated from cultures growing on petri dishes containing potato dextrose agar and tested for their phytotoxicity. Two compounds, namely cytosporone B and phomopsolide B, induced necrosis on leaf discs similar to eutypine, a phytotoxic polyketide from Eutypa lata, another noteworthy threat for grape plants (Tey-Rulh et al. 1991). Occurrence in inflorescence and crude sap of infected plants even enabled discerning healthy from infected individuals due to the latter containing eutypine, instrumentalizing the association of fungal secondary metabolites with plant infections for phytopathological surveillance (Mahoney et al. 2005). However, toxin productive capabilities of Diaporthe spp. and esca disease symptoms were shown to not strictly correlate with each other (Goddard et al. 2014). Exploring the ecological impact of the more than 300 to-date described natural products will be an important parameter to study the phytopathogenesis of this group of fungi, as has been highlighted by other authors (Pusztahelyi et al. 2015; Chepkirui and Stadler 2017; Xu et al. 2021).

Further embarking on charting the biodiversity of this genus for biotechnological exploitation, we here aimed to describe species diversity in an almost unstudied habitat, the planta from Cameroon. This paper describes the isolation, morphological and molecular characterization of fungal endophytes that were assigned to the genus Diaporthe.

Material and methods

Taxonomy

Hyphal material (1 mm diam) was scratched from actively growing cultures on YM 6.3 agar (malt extract 10 g/L, yeast extract 4 g/L, D-glucose 4 g/L, agar 20 g/L, pH 6.3 before autoclaving) and transferred onto 9-cm-diam petri dishes containing 2% tap water agar supplemented with sterile pine needles (PNA) (Smith et al. 1996), potato dextrose agar (PDA), oatmeal agar (OA) and malt extract agar (MEA) (Crous et al. 2009). The plates were incubated at 21 °C in darkness. Pigment production and colony characters on PDA, OA and MEA were documented after 15 d. Colony colors were rated with the color chart of The Royal Horticultural Society London (1966). Colony diameters were measured after 5, 10 and 15 d. Cultures were examined periodically for development of ascomata and conidiomata. Morphological characters were examined by mounting fungal structures in clear lactic acid and 30 measurements at x1000 magnification were recorded for each isolate using a Nikon eclipse Ni-U (Nikon Europe BV, Amsterdam, Netherlands) microscope with differential interference contrast. Descriptions, nomenclature and illustrations of taxonomic novelties were deposited in MycoBank (www.MycoBank.org).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted using the EZ-10 SPIN column fungal genomic DNA minipreps Kit (Bio Basic Inc. Ontario, Canada) following manufacturer’s instructions. Six different loci were amplified, i.e. the internal transcribed spacer region (ITS), and fragments of the calmodulin (cal), histone 3 (his3), translation elongation factor 1-α (tef1) and beta-tubulin (tub2) genes. The ITS was amplified and sequenced using the primers ITS4 and ITS5 (White et al. 1990), cal with CAL-228 F and CAL-737R (Carbone and Kohn 1999), his3 with CYCH3F and H3-1b (Crous et al. 2004; Glass and Donaldson 1995), tef1 with EF-1-728F and EF-1-986R (Carbone and Kohn 1999) and tub2 with Bt2a and Bt2b (Glass and Donaldson 1995). Amplicons were purified by using an EZ-10 spin column PCR purification Kit (Bio Basic Inc. Ontario, Canada) following the manufacturer’s instructions, and sequenced by employing Sanger sequencing with a commercial provider (Microsynth Seqlab GmbH, Göttingen). Consensus sequences were obtained using Geneious 7.1.9 (http://www.geneious.com, Kearse et al. 2012) and deposited in GenBank (accession numbers in Table 1).

Table 1.

Isolates and reference strains of Diaporthe spp. included in the phylogenetic study. GenBank accession numbers in bold were newly generated in this study. Taxonomic novelties are indicated in bold italic.

Species Isolates1 GenBank accession numbers2 References
ITS tub2 his3 tef1 cal
Diaporthe acaciarum CBS 138862T KP004460 KP004509 KP004504 Crous et al. (2014b)
D. acaciigena CBS 129521T KC343005 KC343973 KC343489 KC343731 KC343247 Gomes et al. (2013)
D. acericola MFLUCC 17-0956T KY964224 KY964074 KY964180 KY964137 Dissanayake et al. (2017a)
D. acerigena CFCC 52554T MH121489 MH121449 MH121531 MH121413 Yang et al. (2018)
D. acerina CBS 137.27 KC343006 KC343974 KC343490 KC343732 KC343248 Gomes et al. (2013)
D. acuta PSCG 047T MK626957 MK691225 MK726161 MK654802 MK691125 Guo et al. (2020)
D. acutispora CGMCC 3.18285T KX986764 KX999195 KX999235 KX999155 KX999274 Gao et al. (2017)
D. aestuarium BRIP 59930aT OM918686 OM960613 OM960595 Tan and Shivas (2022)
D. africana CBS 150080T OR198681 OR225229 OR225231 OR225227 OR225233 Matio Kemkuignou et al. (2023)
D. afzeliae SDBR-CMU467T OQ600199 OQ678279 OQ646886 OQ603502 OQ646882 Monkai et al. (2023)
D. aitkeniae BRIP 58827aT OR019750 OR039647 OR039640 Thompson et al. (2023)
D. alangii CFCC 52556T MH121491 MH121573 MH121451 MH121533 MH121415 Yang et al. (2018)
D. albosinensis CFCC 53066T MK432659 MK578059 MK443004 MK578133 MK442979 Yang et al. (2020)
D. alleghaniensis CBS 495.72T FJ889444 KC843228 KC343491 GQ250298 KC343249 Gomes et al. (2013)
D. alnea CBS 146.46T KC343008 KC343976 KC343492 KC343734 KC343250 Gomes et al. (2013)
D. ambigua CBS 114015T KC343010 KC343978 KC343494 KC343736 KC343252 Gomes et al. (2013)
D. ampelina CBS 114016T AF230751 JX275452 GQ250351 JX197443 Gomes et al. (2013)
D. amygdali CBS 126679T KC343022 KC343990 KC343506 KC343748 KC343264 Gomes et al. (2013)
D. amygdali CGMCC 3.15183 KC153098 KC153089 Gao et al. (2014)
D. anacardii CBS 720.97T KC343024 KC343992 KC343508 KC343750 KC343266 Gomes et al. (2013)
D. angelicae CBS 111592T KC343026 KC343994 KC343511 KC343752 KC343268 Gomes et al. (2013)
D. anhuiensis CNUCC 201902T MN219727 MN227009 MN224550 MN224669 MN224556 Zhou and Hou (2019)
D. annellsiae BRIP 59731aT OM918687 OM960614 OM960596 Tan and Shivas (2022)
D. antonovae BRIP 58824bT OR019751 OR039648 OR039641 Thompson et al. (2023)
D. apiculata LC 3418T KP267896 KP293476 KP293550 KP267970 Gao et al. (2016)
D. aquatica IFRDCC 3051T JQ797437 Hu et al. (2012)
D. araucanorum CBS 145285T MN509711 MN509722 MN509733 MN974277 Zapata et al. (2020)
D. arctii CBS 136.25 KC343031 KC343999 KC343515 KC343757 KC343273 Gomes et al. (2013)
D. arecae CBS 161.64T KC343032 KC344000 KC343516 KC343758 KC343274 Gomes et al. (2013)
D. arengae CBS 114979T KC343034 KC344002 KC343518 KC343760 KC343276 Gomes et al. (2013)
D. arezzoensis MFLU 19-2880T MT185503 MT454055 Li et al. (2020)
D. aseana MFLUCC 12-0299aT KT459414 KT459432 KT459448 KT459464 Hyde et al. (2016)
D. asheicola CBS 136967T KJ160562 KJ160518 KJ160594 KJ160542 Lombard et al. (2014)
D. aspalathi CBS 117169T KC343036 KC344004 KC343520 KC343762 KC343278 Van Rensburg et al. (2006)
D. atlantica CECT 21217T ON159893 ON364040 ON398810 ON398831 ON364019 Toghueo et al. (2023)
D. australafricana CBS 111886T KC343038 KC344006 KC343522 KC343764 KC343280 Gomes et al. (2013)
D. australiana BRIP 66145T MN708222 MN696530 MN696522 Wrona et al. (2020)
D. australpacifica BRIP 60163dT OM918688 OM960615 OM960597 Tan and Shivas (2022)
D. averrhoae SCHM 3605T AY618930 Chang et al. (2005)
D. baccae CBS 136972T KJ160565 MF418509 MF418264 KJ160597 Lombard et al. (2014)
D. batatas CBS 122.21 KC343040 KC344008 KC343524 KC343766 KC343282 Gomes et al. (2013)
D. bauhiniae CFCC 53071T MK432648 MK578051 MK442995 MK578124 MK442970 Yang et al. (2021a)
D. beasleyi BRIP 59326aT OM918689 OM960616 OM960598 Tan and Shivas (2022)
D. beckhausii CBS 138.27 KC343041 KC344009 KC343525 KC343767 KC343283 Gomes et al. (2013)
D. beilharziae BRIP 54792T JX862529 KF170921 JX862535 Thompson et al. (2015)
D. benedicti ATCC MYA-4970T KM669929 KM669785, KM669862 Lawrence et al. (2015)
D. berteroae BRIP 57900aT OR019752 OR039649 OR039642 Thompson et al. (2023)
D. betulae CFCC 50469T KT732950 KT733020 KT732999 KT733016 KT732997 Du et al. (2016)
D. betulicola CFCC 51128T KX024653 KX024657 KX024661 KX024655 KX024659 Du et al. (2016)
D. betulina CFCC 52562T MH121497 MH121579 MH121457 MH121539 MH121421 Yang et al. (2018)
D. biconispora CGMCC 3.17252T KJ490597 KJ490418 KJ490539 KJ490476 Huang et al. (2015)
D. bohemiae CBS 143347T MG281015 MG281188 MG281361 MG281536 MG281710 Guarnaccia et al. (2018)
D. bombacis SDBR-CMU468T OQ600198 OQ678278 OQ646885 OQ603501 OQ646881 Monkai et al. (2023)
D. bounty BRIP 59361aT OM918690 OM960617 OM960599 Tan and Shivas (2022)
D. brasiliensis CBS 133183T KC343042 KC344010 KC343526 KC343768 KC343284 Gomes et al. (2013)
D. breyniae CBS 148910T ON400846 ON409186 ON409187 ON409188 ON409189 Matio Kemkuignou et al. (2022)
D. brideliae CBS 148911T OR348649 OR468827 OR468807 OR468817 OR468837 Present study
D. brumptoniae BRIP 59403aT OM918702 OM960629 OM960611 Tan and Shivas (2022)
D. butterlyi BRIP 59194aT OR019753 OR039650 OR039643 Thompson et al. (2023)
D. caatingaensis CBS 141542T KY085927 KY115600 KY115605 KY115603 KY115597 Crous et al. (2016a)
D. cameroonensis CBS 148913T OR348650 OR468826 OR468806 OR468816 OR468836 Present study
STMA 18289 OR348651 OR468825 OR468805 OR468815 OR468835 Present study
STMA 18290 OR348652 OR468824 OR468804 OR468814 OR468834 Present study
D. camelliae-oleiferae HNZZ 027T MZ509555 MZ504718 MZ504696 MZ504707 MZ504685 Yang et al. (2021b)
D. camelliae-sinensis SAUCC 194.92T MT822620 MT855817 MT855588 MT855932 MT855699 Sun et al. (2021)
D. camporesii JZB 320143T MN533805 MN561316 Hyde et al. (2020)
D. canthii CBS 132533T JX069864 KC843230 KC843120 KC843174 Crous et al. (2012)
D. careyae SDBR-CMU469T OQ600196 OQ678276 OQ646883 OQ646879 Monkai et al. (2023)
D. carpini CBS 114437 KC343044 KC344012 KC343528 KC343770 KC343286 Gomes et al. (2013)
D. carriae BRIP 59932aT OM918691 OM960618 OM960600 Tan and Shivas (2022)
D. caryae CFCC 52563T MH121498 MH121580 MH121458 MH121540 MH121422 Yang et al. (2018)
D. cassines CBS 136440T KF777155 KF777244 Crous et al. (2013)
D. caulivora CBS 127268T KC343045 KC344013 KC343529 KC343771 KC343287 Gomes et al. (2013)
D. celastrina CBS 139.27T KC343047 KC344015 KC343531 KC343773 KC343289 Gomes et al. (2013)
D. celeris CBS 143349T MG281017 MG281190 MG281363 MG281538 MG281712 Guarnaccia et al. (2018)
D. celticola CFCC 53074T MK573948 MK574643 MK574603 MK574623 MK574587 Cao et al. (2022)
D. celtidis NCYU 19-0357T MW114346 MW148266 MW192209 Tennakoon et al. (2021)
D. ceratozamiae CBS 131306T JQ044420 Crous et al. (2011a)
D. cercidis CFCC 52565T MH121500 MH121582 MH121460 MH121542 MH121424 Yang et al. (2018)
D. cerradensis CMRP 4331T MN173198 MW751671 MW751663 MT311685 MW751655 Iantas et al. (2021)
D. cf. heveae 1 CBS 852.97 KC343116 KC344084 KC343600 KC343842 KC343358 Gomes et al. (2013)
D. cf. heveae 2 CBS 681.84 KC343117 KC344085 KC343601 KC343843 KC343359 Gomes et al. (2013)
D. chamaeropis CBS 454.81 KC343048 KC344016 KC343532 KC343774 KC343290 Gomes et al. (2013)
D. charlesworthii BRIP 54884mT KJ197288 KJ197268 KJ197250 Thompson et al. (2015)
D. chensiensis CFCC 52567T MH121502 MH121584 MH121462 MH121544 MH121426 Yang et al. (2018)
D. chiangmaiensis MFLUCC 18-0544T OK393703 OL439483 de Silva et al. (2022)
D. chimonanthi SCHM 3614T AY622993 Chang et al. (2005)
D. chinensis MFLUCC 19-0101T MW187324 MW245013 MW205017 MW294199 de Silva et al. (2021)
D. chongqingensis PSCG 435T MK626916 MK691321 MK726257 MK654866 MK691209 Guo et al. (2020)
D. chromolaenae MFLUCC 17-1422T MH094275 Mapook et al. (2020)
D. chrysalidocarpi SAUCC 194.35T MT822563 MT855760 MT855532 MT855876 MT855646 Huang et al. (2021)
D. cichorii MFLUCC 17-1023T KY964220 KY964104 KY964176 KY964133 Dissanayake et al. (2017a)
D. cinnamomi CFCC 52569T MH121504 MH121586 MH121464 MH121546 Yang et al. (2018)
D. cinerascens CBS 719.96 KC343050 KC344018 KC343534 KC343776 KC343292 Gomes et al. (2013)
D. cissampeli CBS 141331T KX228273 KX228384 KX228366 Crous et al. (2016b)
D. citri CBS 135422T KC843311 KC843187 MF418281 KC843071 KC843157 Udayanga et al. (2014b)
D. citriasiana CBS 134240T JQ954645 KC357459 MF418282 JQ954663 KC357491 Huang et al. (2013)
D. citrichinensis CBS 134242T JQ954648 MF418524 KJ420880 JQ954666 KC357494 Huang et al. (2013)
D. clematidina MFLUCC 17-2060T MT310657 MT394623 MT394669 MT394624 Phukhamsakda et al. (2020)
D. collariana MFLUCC 17-2636T MG806115 MG783041 MG783040 MG783042 Perera et al. (2018)
D. compacta LC3083T KP267854 KP293434 KP293508 KP267928 Gao et al. (2016)
D. conica CFCC 52571T MH121506 MH121588 MH121466 MH121548 MH121428 Yang et al. (2018)
D. constrictospora CGMCC 3.20096T MT385947 MT424702 MW022487 MT424718 Dissanayake et al. (2020)
D. convolvuli CBS 124654 KC343054 KC344022 KC343538 KC343780 KC343296 Gomes et al. (2013)
D. coryli CFCC 53083T MK432661 MK578061 MK443006 MK578135 MK442981 Yang et al. (2020)
D. corylicola CFCC 53986 MW839880 MW883977 MW836717 MW815894 MW836684 Gao et al. (2021)
D. crataegi CBS 114435 KC343055 KC344023 KC343539 KC343781 KC343297 Gomes et al. (2013)
D. crotalariae CBS 162.33T KC343056 KC344024 KC343540 KC343782 KC343298 Gomes et al. (2013)
D. crousii CAA823T MK792311 MK837932 MK871450 MK828081 MK883835 Hilário et al. (2020)
D. cucurbitae DAOM 42078T KM453210 KP118848 KM453212 KM453211 Udayanga et al. (2015)
D. cuppatea CBS 117499T AY339322 JX275420 KC343541 AY339354 JX197414 Van Rensburg et al. (2006)
D. cynaroidis CBS 122676 KC343058 KC344026 KC343542 KC343784 KC343300 Gomes et al. (2013)
D. cytosporella CBS 137020T KC843307 KC843221 MF418283 KC843116 KC843141 Udayanga et al. (2014b)
D. decedens CBS 109772 KC343059 KC344027 KC343543 KC343785 KC343301 Gomes et al. (2013)
D. delonicis MFLU 16-1059T MT215490 MT212209 Perera et al. (2020)
D. detrusa CBS 109770 KC343061 KC344029 KC343545 KC343787 KC343303 Gomes et al. (2013)
D. diospyricola CBS 136552T KF777156 Crous et al. (2013)
D. discoidispora ICMP 20662T KJ490624 KJ490445 KJ490566 KJ490503 Huang et al. (2015)
D. drenthii BRIP 66524T MN708229 MN696537 MN696526 Wrona et al. (2020)
D. durionigena VTCC 930005T MN453530 MT276159 MT276157 Crous et al. (2021)
D. eleagni CBS 504.72 KC343064 KC344032 KC343548 KC343790 KC343306 Gomes et al. (2013)
D. elaeagni-glabrae CGMCC 3.18287T KX986779 KX999212 KX999251 KX999171 KX999281 Gao et al. (2017)
D. ellipsospora CGMCC 3.20099T MT385949 MT424704 MW022488 MT424684 MT424720 Dissanayake et al. (2020)
D. endocitricola ZHKUCC 20-0012 T MT355682 MT409290 MT409336 MT409312 Dong et al. (2021)
D. endophytica CBS 133811T KC343065 KC344033 KC343549 KC343791 KC343307 Gomes et al. (2013)
D. eres CBS 138594T KJ210529 KJ420799 KJ420850 KJ210550 KJ434999 Udayanga et al. (2014a)
D. eres CFCC 51632 (type strain of D. camptothecicola) KY203726 KY228893 KY228881 KY228887 KY228877 Yang et al. (2017b)
D. eres CGMCC 3.17089 (type strain of D. longicicola) KF576267 KF576291 KF576242 Gao et al. (2015)
D. eres MFLUCC 16-0113 (type strain of D. momicola) KU557563 KU557587 KU557631 KU557611 Dissanayake et al. (2017b)
D. eres CGMCC 3.15181 (strain originally named D. mahothocarpi Nom. Inval.) KC153096 KC153087 Gao et al. (2014)
D. eres CGMCC 3.17084 (type strain of D. ellipicola) KF576270 KF576291 KF576245 Gao et al. (2015)
D. eres CGMCC 3.17081 (type strain of D. biguttusis) KF576282 KF576306 KF576257 Gao et al. (2015)
D. etinsideae BRIP 64096aT OM918692 OM960619 OM960601 Tan and Shivas (2022)
D. eucalyptorum CBS 132525T JX069862 Crous et al. (2012)
D. eugeniae CBS 444.82 KC343098 KC344066 KC343582 KC343824 KC343340 Gomes et al. (2013)
D. fibrosa CBS 109751 KC343099 KC344067 KC343583 KC343825 KC343341 Gomes et al. (2013)
D. fici-septicae MFLU 18-2588T MW114348 MW148268 MW192211 Tennakoon et al. (2021)
D. foeniculina CBS 111553T KC343101 KC344069 KC343585 KC343827 KC343343 Gomes et al. (2013)
D. foeniculina CBS 129528 JF951146 KC843205 KC843100 KC843124 Crous et al. (2011b), Udayanga et al. (2014b)
D. foikelawen CBS 145289T MN509713 MN509724 MN509735 MN974278 Zapata et al. (2020)
D. forlicesenica MFLUCC 17-1015T KY964215 KY964099 KY964171 Dissanayake et al. (2017a)
D. fraxini-angustifoliae BRIP 54781T JX862528 KF170920 JX852534 Tan et al. (2013)
D. fraxinicola CFCC 52582T MH121517 MH121559 MH121435 Yang et al. (2018)
D. fructicola MAFF 246408T LC342734 LC342736 LC342737 LC342735 LC342738 Crous et al. (2019)
D. fujianensis JZB 320149T MW010212 MW056008 MW20523 MW205212 Manawasinghe et al. (2021)
D. fukushii MAFF 625034 JQ807469 JQ807418 Baumgartner et al. (2013)
D. fulvicolor PSCG 051T MK626859 MK691236 MK726163 MK654806 MK691132 Guo et al. (2020)
D. fusicola CGMCC 3.17087T KF576281 KF576305 KF576256 KF576233 Gao et al. (2015)
D. fusiformis JZB 320156T MW010218 MW056014 MW205234 MW205218 Manawasinghe et al. (2021)
D. ganjae CBS 180.91T KC343112 KC344080 KC343596 KC343838 KC343354 Gomes et al. (2013)
D. ganzhouensis CFCC 53087T MK432665 MK578065 MK443010 MK578139 MK442985 Yang et al. (2021a)
D. gardeniae CBS 288.56 KC343113 KC344081 KC343597 KC343839 KC343355 Gomes et al. (2013)
D. garethjonesii MFLUCC 12-0542aT KT459423 KT459441 KT459457 KT459470 Hyde et al. (2016)
D. glabrae SCHM 3622T AY601918 Chang et al. (2005)
D. globoostiolata MFLUCC 23-0025T OQ600200 OQ678280 OQ603503 Monkai et al. (2023)
D. gossiae BRIP 59730aT OM918693 OM960620 OM960602 Tan and Shivas (2022)
D. goulteri BRIP 55657aT KJ197290 KJ197270 KJ197252 Thompson et al. (2015)
D. grandiflori SAUCC194.84T MT822612 MT855809 MT85558 MT855924 MT855691 Sun et al. (2021)
D. griceae BRIP 67014aT OM918694 OM960621 OM960603 Tan and Shivas (2022)
D. guangdongensis ZHKUCC 20-0014T MT355684 MT409292 MT409338 MT409314 Dong et al. (2021)
D. guangxiensis JZB 320094T MK335772 MK500168 MK523566 MK736727 Manawasinghe et al. (2019)
D. guizhouensis GZAAS 20-0338T OM060254 OL961762 OL961761 OL961763 Bhunjun et al. (2022)
D. gulyae BRIP 54025T JF431299 KJ197271 JN645803 Thompson et al. (2015)
D. guttulata CGMCC 3.20100T MT385950 MT424705 MW022491 MT424685 MW022470 Dissanayake et al. (2020)
D. hartii BRIP 60285eT OR019754 OR039651 OR039644 Thompson et al. (2023)
D. helianthi CBS 592.81T KC343115 KC344083 KC343599 KC343841 JX197454 Gomes et al. (2013)
D. helicis CBS 138596T KJ210538 KJ420828 KJ420875 KJ210559 KJ435043 Udayanga et al. (2014a)
D. heliconiae SAUCC 194.77T MT822605 MT855802 MT855573 MT855917 MT855684 Sun et al. (2021)
D. heterophyllae CBS 143769T MG600222 MG600226 MG600220 MG600224 MG600218 Marin-Felix et al. (2019)
D. heterostemmatis SAUCC 194.85T MT822613 MT855810 MT855581 MT855925 MT855692 Sun et al. (2021)
D. hickoriae CBS 145.26T KC343118 KC344086 KC343602 KC343844 KC343360 Gomes et al. (2013)
D. hispaniae CBS 143351T MG281123 MG281296 MG281471 MG281644 MG281820 Guarnaccia et al. (2018)
D. hongkongensis CBS 115448T KC343119 KC344087 KC343603 KC343845 KC343361 Gomes et al. (2013)
D. hordei CBS 481.92 KC343120 KC344088 KC343604 KC343846 KC343362 Gomes et al. (2013)
D. howardiae BRIP 59697aT OM918695 OM960622 OM960604 Tan and Shivas (2022)
D. hsinchuensis NTUPPMCC 18-153-1T MZ268409 MZ268430 MZ268493 MZ268472 MZ268451 Ariyawansa et al. (2021)
D. huangshanensis CNUCC 201903T MN219730 MN227011 MN224558 MN224678 Zhou and Hou (2019)
D. hubeiensis JZB 320123T MK335809 MK500148 MK523570 MK500235 Manawasinghe et al. (2019)
D. humulicola CT2018-1T MN152927 MN180213 MN180207 MN180204 Allan-Perkins et al. (2020)
D. hunanensis HNZZ 023T MZ509550 MZ504713 MZ504691 MZ504702 MZ504680 Yang et al. (2021b)
D. hungariae CBS 143353T MG281126 MG281299 MG281474 MG281647 MG281823 Guarnaccia et al. (2018)
D. iberica CECT 21218T ON159902 ON364049 ON398819 ON398841 ON364028 Toghueo et al. (2023)
D. ilicicola FPH 2015502T MH171064 MH171074 MH171084 Lin et al. (2018)
D. impulsa CBS 114434 KC343121 KC344089 KC343605 KC343847 KC343363 Gomes et al. (2013)
D. incompleta CGMCC 3.18288T KX986794 KX999226 KX999265 KX999186 KX999289 Gao et al. (2017)
D. inconspicua CBS 133813T KC343123 KC344091 KC343607 KC343849 KC343365 Gomes et al. (2013)
D. infecunda CBS 133812T KC343126 KC344094 KC343610 KC343852 KC343368 Gomes et al. (2013)
D. infertilis CBS 230.52T KC343052 KC344020 KC343536 KC343778 KC343294 Guarnaccia and Crous (2017)
D. irregularis CGMCC 3.20092T MT385951 MT424706 MT424686 MT424721 Dissanayake et al. (2020)
D. isoberliniae CBS 137981T KJ869133 KJ869245 Crous et al. (2014a)
STMA18291 OR348654 OR468822 OR468802 OR468812 OR468832 Present study
STMA18245 OR348653 OR468823 OR468803 OR468813 OR468833 Present study
D. italiana MFLUCC 18-0090T MH846237 MH853688 MH853686 MH853690 Hyde et al. (2019)
D. jinxiu CGMCC3.20269T MW477881 MW480877 MW480865 MW480873 MW480869 Wang et al. (2021)
D. juglandia CBS 121004T KC343134 KC344102 KC343618 KC343860 KC343376 Gomes et al. (2013)
D. juglandicola CFCC 51134T MW477881 KX024634 KX024628 KX024616 Yang et al. (2017a)
D. kadsurae CFCC 52586T MH121521 MH121600 MH121479 MH121563 MH121439 Yang et al. (2018)
D. kochmanii BRIP 54033T JF431295 JN645809 Thompson et al. (2011)
D. kongii BRIP 54031T JF431301 KJ197272 JN645797 Thompson et al. (2011)
D. krabiensis MFLUCC 17-2481T MN047101 MN431495 MN433215 Dayarathne et al. (2020)
D. lenispora CGMCC 3.20101T MT385952 MT424707 MW022493 MT424687 MW022472 Dissanayake et al. (2020)
D. leptostromiformis CBS 558.93 KC343244 KC344212 KC343728 KC343970 KC343486 Gomes et al. (2013)
D. leucospermi CBS 111980T JN712460 KY435673 KY435653 KY435632 KY435663 Crous et al. (2011c)
D. limonicola CBS 142549T MF418422 MF418582 MF418342 MF418501 MF418256 Guarnaccia and Crous (2017)
D. liquidambaris SCHM 3621T AY601919 Chang et al. (2005)
D. litchicola BRIP 54900T JX862533 KF170925 JX862539 Tan et al. (2013)
D. litchii SAUCC 194.22T MT822550 MT855747 MT855519 MT855863 MT855635 Sun et al. (2021)
D. lithocarpi CGMCC 3.15175T KC153104 KF576311 KC153095 Gao et al. (2014)
D. litoricola MFLUCC 16-1195T MF190139 Senanayake et al. (2017)
D. longicolla FAU 599T KJ590728 KJ610883 KJ659188 KJ590767 KJ612124 Udayanga et al. (2015)
D. longispora CBS 194.36T KC343135 KC344103 KC343619 KC343861 KC343377 Gomes et al. (2013)
D. lonicerae MFLUCC 17-0963T KY964190 KY964073 KY964146 KY964116 Dissanayake et al. (2017a)
D. lovelaceae BRIP 60163aT OM918696 OM960623 OM960605 Tan and Shivas (2022)
D. lusitanicae CBS 123212T KC343136 KC344104 KC343620 KC343862 KC343378 Gomes et al. (2013)
D. lutescens SAUCC 194.36T MT822564 MT855761 MT855533 MT855877 MT855647 Sun et al. (2021)
D. macadamiae BRIP 66526T MN708230 MN696539 MN696528 Wrona et al. (2020)
D. machili SAUCC 194.111T MT822639 MT855836 MT855606 MT855951 MT855718 Huang et al. (2021)
D. macintoshii BRIP 55064aT KJ197289 KJ197269 KJ197251 Thompson et al. (2015)
D. malorum CBS142383T KY435638 KY435668 KY435648 KY435627 KY435658 Santos et al. (2017)
D. manihotia CBS 505.76 KC343138 KC344106 KC343622 KC343864 KC343380 Gomes et al. (2013)
D. marina MFLU 17-2622T MN047102 Dayarathne et al. (2020)
D. maritima DAOMC 250563T KU552025 KU574615 KU552023 Tanney et al. (2016)
D. masirevicii BRIP 57892aT KJ197277 KJ197257 KJ197239 Thompson et al. (2015)
D. mayteni CBS 133185T KC343139 KC344107 KC343623 KC343865 KC343381 Gomes et al. (2013)
D. maytenicola CBS 136441T KF777157 KF777250 Crous et al. (2013)
D. mclennaniae BRIP 60072aT OM918697 OM960624 OM960606 Tan and Shivas (2022)
D. mediterranea DAL-34 MT007489 MT006686 MT007095 MT006989 MT006761 Beluzán et al. (2021)
D. megalospora CBS 143.27 KC343140 KC344108 KC343624 KC343866 KC343382 Gomes et al. (2013)
D. melastomatis SAUCC 194.55T MT822583 MT855780 MT855551 MT855896 MT855664 Sun et al. (2021)
D. meliae CFCC 53089T MK432657 MK578057 ON081662 ON081654 Cao et al. (2022)
D. melitensis CBS 142551T MF418424 MF418584 MF418344 MF418503 MF418258 Guarnaccia and Crous (2017)
D. melonis CBS 507.78T KC343142 KC344110 KC343626 KC343868 KC343384 Gomes et al. (2013)
D. micheliae SCHM 3603 AY620820 Chang et al. (2005)
D. middletonii BRIP 54884eT KJ197286 KJ197266 KJ197248 Thompson et al. (2015)
D. millettiae GUCC 9167T MK398674 MK502089 MK480609 MK502086 Long et al. (2019)
D. minima CGMCC 3.20097T MT385953 MT424708 MW022496 MT424688 MT424722 Dissanayake et al. (2020)
D. minusculata CGMCC 3.20098T MT385957 MT424712 MW022499 MT424692 MW022475 Dissanayake et al. (2020)
D. miriciae BRIP 54736jT KJ197283 KJ197263 KJ197245 Thompson et al. (2015)
D. monetii MF-Ha18-049T MW008494 MW008505 MZ671965 MW008516 MZ671939 Gomzhina and Gannibal (2022)
D. moorei BRIP 61500bT OR019755 OR039652 OR039645 Thompson et al. (2023)
D. moriniae BRIP 60190aT OM918698 OM960625 OM960607 Tan and Shivas (2022)
D. multigutullata ICMP 20656T KJ490633 KJ490454 KJ490575 KJ490512 Huang et al. (2015)
D. musigena CBS 129519T KC343143 KC344111 KC343627 KC343869 KC343385 Gomes et al. (2013)
D. myracrodruonis URM 7972T MK205289 MK205291 MK213408 MK205290 da Silva et al. (2019)
D. neatei BRIP 60289aT OR019756 OR039653 OR039646 Thompson et al. (2023)
D. nebulae PMM 1681T KY511337 KY511369 MH708552 Lesuthu et al. (2019)
D. neilliae CBS 144.27T KC343144 KC344112 KC343628 KC343870 KC343386 Gomes et al. (2013)
D. neoarctii CBS 109490 KC343145 KC344113 KC343629 KC343871 KC343387 Gomes et al. (2013)
D. neoraonikayaporum MFLUCC 14-1136T KU712449 KU743988 KU749369 KU749356 Doilom et al. (2017)
D. nigra JZB 320170T MN653009 MN887113 MN892277 Hyde et al. (2020)
D. nobilis CBS 587.79 KC343153 KC344121 KC343637 KC343879 KC343395 Gomes et al. (2013)
D. nomurai CBS 157.29 KC343154 KC344122 KC343638 KC343880 KC343396 Gomes et al. (2013)
D. norfolkensis BRIP 59718aT OM918699 OM960626 OM960608 Tan and Shivas (2022)
D. nothofagi BRIP 54801T JX862530 KF170922 JX862536 Tan et al. (2013)
D. novem CBS 127271T KC343157 KC344125 KC343641 KC343883 KC343399 Gomes et al. (2013)
D. novem CBS 117165 DQ286285 DQ286259 Petrović et al. (2018)
D. obtusifoliae CBS 143449T MG386072 MG386137 Crous et al. (2017)
D. ocoteae CBS 141330T KX228293 KX228388 Crous et al. (2016b)
D. oculi HHUF 30565T LC373515 LC373519 LC373517 Ozawa et al. (2019)
D. oncostoma CBS 589.78 KC343162 KC344130 KC343646 KC343888 KC343404 Gomes et al. (2013)
D. oraccinii LC 3166T KP267863 KP293443 KP293517 KP267937 Gao et al. (2016)
D. orixae HKAS 121465T OK283041 OK432278 OK484486 OK432279 OK484485 Lu et al. (2022)
D. osmanthi GUCC 9165T MK398675 MK502090 MK480610 MK502087 Long et al. (2019)
D. ovalispora ICMP 20659T KJ490628 KJ490449 KJ490570 KJ490507 Huang et al. (2015)
D. ovoidea CGMCC 3.17092T KF576264 KF576288 KF576239 KF576222 Gao et al. (2015)
D. oxe CBS 133186T KC343164 KC344132 KC343648 KC343890 KC343406 Gomes et al. (2013)
D. pachirae COAD 2074T MG559537 MG559541 MG559539 MG559535 Milagres et al. (2018)
D. padi var. padi CBS 114200 KC343169 KC344137 KC343653 KC343895 KC343411 Gomes et al. (2013)
D. padina CFCC 52590T MH121525 MH121604 MH121483 MH121567 MH121443 Yang et al. (2018)
D. pandanicola MFLUCC 17-0607T MG646974 MG646930 Tibpromma et al. (2018)
D. paranensis CBS 133184 KC343171 KC344139 KC343655 KC343897 KC343413 Gomes et al. (2013)
D. parapterocarpi CBS 137986T KJ869138 KJ869248 Crous et al. (2014a)
D. parva PSCG 034T MK626919 MK691248 MK726210 MK654858 Guo et al. (2020)
D. pascoei BRIP 54847T JX862532 KF170924 JX862538 Tan et al. (2013)
D. passiflorae CBS 132527T JX069860 KY435674 KY435654 KY435633 KY435664 Crous et al. (2012)
D. passifloricola CBS 141329T KX228292 KX228387 KX228367 Crous et al. (2016b)
D. patagonica CBS 145291T MN509717 MN509728 MN509739 MN974279 Zapata et al. (2020)
D. penetriteum LC 3353 KP714505 KP714529 KP714493 KP714517 Gao et al. (2016)
D. perjuncta CBS 109745T KC343172 KC344140 KC343656 KC343898 KC343414 Gomes et al. (2013)
D. perniciosa CBS 124030 KC343149 KC344117 KC343633 KC343875 KC343391 Gomes et al. (2013)
D. perseae CBS 151.73 KC343173 KC344141 KC343657 KC343899 KC343415 Gomes et al. (2013)
D. pescicola MFLUCC 16-0105T KU557555 KU557579 KU557623 KU557603 Dissanayake et al. (2017b)
D. phaseolorum CBS 113425 KC343174 KC344142 KC343658 KC343900 KC343416 Gomes et al. (2013)
D. phillipsii CAA 817T MK792305 MN000351 MK871445 MK828076 MK883831 Hilário et al. (2020)
D. phragmitis CBS 138897T KP004445 KP004507 KP004503 Crous et al. (2014b)
D. phyllanthicola SCHM 3680T AY620819 Chang et al. (2005)
D. platzii BRIP 60353aT OM918700 OM960627 OM960609 Tan and Shivas (2022)
D. podocarpi-macrophylli CGMCC 3.18281T KX986774 KX999207 KX999246 KX999167 KX999278 Gao et al. (2017)
D. poincianellae URM 7932T MH989509 MH989537 MH989539 MH989538 MH989540 Crous et al. (2018a)
D. pometiae SAUCC 194.72T MT822600 MT855797 MT855568 MT855912 MT855679 Huang et al. (2021)
D. portugallica CBS 144228T MH063905 MH063917 MH063899 MH063911 MH063893 Guarnaccia and Crous (2018)
D. pseudoanacardii CBS 148909T OR348655 OR468821 OR468801 OR468811 OR468831 Present study
STMA 18247 OR348656 OR468820 OR468800 OR468810 OR468830 Present study
STMA 18292 OR348657 OR468819 OR468799 OR468809 OR468829 Present study
D. pseudoalnea CFCC 54190T MZ727037 MZ753487 MZ781302 MZ816343 MZ753468 Jiang et al. (2021)
D. pseudobiguttulata ICMP 20657T KJ490582 KJ490403 KJ490524 KJ490461 Huang et al. (2015)
D. pseudoinconspicua URM 7874T MH122538 MH122524 MH122517 MH122533 MH122528 Crous et al. (2018b)
D. pseudomangiferae CBS 101339T KC343181 KC344149 KC343665 KC343907 KC343423 Gomes et al. (2013)
D. pseudooculi HHUF 30617T LC373515 LC373519 LC373517 Ozawa et al. (2019)
D. pseudophoenicicola CBS 462.69T KC343184 KC344152 KC343668 KC343910 KC343426 Gomes et al. (2013)
D. pseudotsugae MFLU 15-3228T KY964225 KY964108 KY964181 KY964138 Dissanayake et al. (2017a)
D. psoraleae CBS 136412T KF777158 KF777251 KF777245 Crous et al. (2013)
D. psoraleae-pinnatae CBS 136413T KF777159 KF777252 Crous et al. (2013)
D. pterocarpi MFLUCC 10-0571 JQ619899 JX275460 JX275416 JX197451 Udayanga et al. (2012b)
D. pterocarpicola MFLUCC 10-0580a JQ619887 JX275441 JX275403 JX197433 Udayanga et al. (2012b)
D. pulla CBS 338.89T KC343152 KC344120 KC343636 KC343878 KC343394 Gomes et al. (2013)
D. pungensis SAUCC 194.112T MT822640 MT855837 MT855607 MT855952 MT855719 Sun et al. (2021)
D. pustulata CBS 109742 KC343185 KC344153 KC343669 KC343911 KC343427 Gomes et al. (2013)
D. pyracanthae CBS142384T KY435635 KY435666 KY435645 KY435625 KY435656 Santos et al. (2017)
D. quercicola CSUFTCC 104T ON076567 ON081667 ON081659 ON081670 Cao et al. 2022
D. racemosae CBS 143770T MG600223 MG600227 MG600221 MG600225 MG600219 Marin-Felix et al. (2019)
D. raonikayaporum CBS 133182T KC343188 KC344156 KC343672 KC343914 KC343430 Gomes et al. (2013)
D. rauvolfiae CBS 148912T OR348658 OR468818 OR468798 OR468808 OR468828 Present study
D. ravennica MFLUCC 15–0479T KU900335 KX432254 KX365197 Dissanayake et al. (2017a)
D. rhodomyrti CFCC 53101T MK432643 MK578046 MK442990 MK578119 MK442965 Cao et al. (2022)
D. rhoina CBS 146.27 KC343189 KC344157 KC343673 KC343915 KC343431 Gomes et al. (2013)
D. rizhaoensis CFCC 57562T OP955930 OP959773 OP959785 OP959767 OP959782 Zhu et al. (2023)
D. rosae MFLUCC 17-2658T MG828894 MG843878 MG829273 Wanasinghe et al. (2018)
D. rosicola MFLU 17-0646T MG828895 MG843877 MG829270 MG829274 Wanasinghe et al. (2018)
D. rosiphthora COAD 2913T MT311196 MT313692 MT313690 Pereira et al. (2021)
D. rossmaniae CAA 762T MK792290 MK837914 MK871432 MK828063 MK883822 Hilário et al. (2020)
D. rostrata CFCC 50062T KP208847 KP208855 KP208851 KP208853 KP208849 Fan et al. (2015)
D. rudis CBS 113201 KC343234 KC344202 KC343718 KC343960 KC343476 Udayanga et al. (2014b)
D. rumicicola MFLUCC 18-0739T MH84623 MK049555 MK049554 Hyde et al. (2019)
D. saccarata CBS 116311T KC343190 KC344158 KC343674 KC343916 KC343432 Gomes et al. (2013)
D. sackstonii BRIP 54669bT KJ197287 KJ197267 KJ197249 Thompson et al. (2015)
D. salicicola BRIP 54825T JX862531 KF170923 JX862537 Tan et al. (2013)
D. salinicola MFLU 18-0553T MN047098 MN077073 Dayarathne et al. (2020)
D. samaneae SDBR-CMU470T OQ600197 OQ678277 OQ646880 OQ603500 OQ646884 Monkai et al. (2023)
D. sambuci CFCC 51986 KY852495 KY852511 KY852503 KY852507 KY852499 Yang et al. (2018)
D. sapindicola CFCC 55344T MW881507 MW898937 MW898940 MW898934 MW898943 Si et al. (2022)
D. schimae CFCC 53103T MK432640 MK578043 MK442987 MK578116 MK442962 Yang et al. (2021a)
D. schini CBS 133181T KC343191 KC344159 KC343675 KC343917 KC343433 Gomes et al. (2013)
D. schisandrae CFCC 51988T KY852497 KY852513 KY852505 KY852509 KY852501 Yang et al. (2018)
D. schoeni MFLU 15-1279T KY964226 KY964109 KY964182 KY964139 Dissanayake et al. (2017a)
D. sclerotioides CBS 296.67T KC343193 KC344161 KC343677 KC343919 KC343435 Gomes et al. (2013)
D. scobina CBS 251.38 KC343195 KC344163 KC343679 KC343921 KC343437 Gomes et al. (2013)
D. searlei BRIP 66528T MN708231 MN696540 Wrona et al. (2020)
D. sennae CFCC 51636T KY203724 KY228891 KY228885 KY228875 Yang et al. (2017c)
D. sennicola CFCC 51634T KY203722 KY228889 KY228883 KY228873 Yang et al. (2017c)
D. serafiniae BRIP 55665aT KJ197274 KJ197254 KJ197236 Thompson et al. (2015)
D. shaanxiensis CFCC 53106 MK432654 MK443001 MK578130 MK442976 Yang et al. (2020)
D. shawiae BRIP 64534aT OM918701 OM960628 OM960610 Tan and Shivas (2022)
D. shennongjiaensis CNUCC201905T MN216229 MN227012 MN224559 MN224672 MN224551 Zhou and Hou (2019)
D. siamensis MFLUCC 10-0573a JQ619879 JX275429 JX275393 Udayanga et al. (2012b)
D. silvicola CFCC 54191T MZ727041 MZ753491 MZ753481 MZ816347 MZ753472 Jiang et al. (2021)
D. sinensis CGMCC 3.19521T MK637451 MK660447 MK660449 Feng et al. (2019)
D. smilacicola CFCC 54582T OP955933 OP959776 OP959788 OP959770 OP959779 Zhu et al. (2023)
D. sojae CBS 139282T KJ590719 KJ610875 KJ659208 KJ590762 KJ612116 Udayanga et al. (2015)
D. spartinicola CBS 140003T KR611879 KR857695 KR857696 Crous et al. (2015a)
D. spinosa PSCG 383T MK626849 MK691234 MK726156 MK654811 MK691129 Guo et al. (2020)
D. sterilis CBS 136969T KJ160579 KJ160528 MF418350 KJ160611 KJ160548 Lombard et al. (2014)
D. stewartii CBS 193.36 FJ889448 GQ250324 Santos et al. (2010)
D. stictica CBS 370.54 KC343212 KC344180 KC343696 KC343938 KC343454 Gomes et al. (2013)
D. subclavata ICMP 20663T KJ490630 KJ490451 KJ490572 KJ490509 Huang et al. (2015)
D. subcylindrospora KUMCC 17-0151T MG746629 MG746631 MG746630 Hyde et al. (2018)
D. subellipicola KUMCC 17-0153T MG746632 MG746634 MG746633 Hyde et al. (2018)
D. subordinaria CBS 101711 KC343213 KC344181 KC343697 KC343939 KC343455 Gomes et al. (2013)
D. taoicola MFLUCC 16-0117T KU557567 KU557591 KU557635 Dissanayake et al. (2017b)
D. tarchonanthi CBS 146073T MT223794 MT223733 MT223759 Crous et al. (2020)
D. tecomae CBS 100547 KC343215 KC344183 KC343699 KC343941 KC343457 Gomes et al.(2013)
D. tectonae MFLUCC 12-0777T KU712430 KU743977 KU749359 KU749345 Doilom et al. (2017)
D. tectonendophytica MFLUCC 13-0471T KU712439 KU743986 KU749367 KU749354 Doilom et al. (2017)
D. tectonigena MFLUCC 12-0767T KU712429 KU743976 KU749371 KU749358 Doilom et al. (2017)
D. terebinthifolii CBS 133180T KC343216 KC344184 KC343700 KC343942 KC343458 Gomes et al. (2013)
D. thunbergiae MFLUCC 10-0756a JQ619893 JX275449 JX275409 JX197440 Udayanga et al. (2012b)
D. thunbergiicola MFLUCC 12-0033T KP715097 KP715098 Liu et al. (2015)
D. tibetensis CFCC 51999T MF279843 MF279873 MF279828 MF279858 MF279888 Fan et al. (2018)
D. torilicola MFLUCC 17-1051T KY964212 KY964096 KY964168 KY964127 Dissanayake et al. (2017a)
D. toxica CBS 534.93T KC343220 KC344188 KC343704 KC343946 KC343462 Gomes et al.(2013)
D. toxicodendri FFPRI 420987 LC275192 LC275224 LC275216 LC275216 LC275200 Ando et al. (2017)
D. trevorrowii BRIP 70737aT OM918703 OM960630 OM960612 Tan and Shivas (2022)
D. tulliensis BRIP 62248a KR936130 KR936132 KR936133 Crous et al. (2015b)
D. tuyouyouiae BRIP 75017aT OQ917074 OQ889559 OQ889558 Tan and Shivas (2023)
D. ueckeri FAU 656 KJ590726 KJ610881 KJ659215 KJ590747 KJ612122 Huang et al. (2015)
D. ukurunduensis CFCC 52592T MH121527 MH121485 MH121569 MH121445 Yang et al. (2018)
D. undulata CGMCC 3.18293T KX986798 KX999230 KX999269 KX999190 Gao et al. (2017)
D. unshiuensis CGMCC3.17569T KJ490587 KJ490408 KJ490529 KJ490466 Huang et al. (2015)
D. vaccinii CBS 160.32T AF317578 KC344196 KC343712 GQ250326 KC343470 Gomes et al. (2013)
D. vacuae CAA 830T MK792309 MK837931 MK871449 MK828080 MK883834 Hilário et al. (2020)
D. vangoghii MF-Ha18-046T MW008492 MW008503 MZ671963 MW008514 MZ671937 Gomzhina and Gannibal (2022)
D. vangueriae CBS 137985T KJ869137 KJ869247 Crous et al. (2014a)
D. vawdreyi BRIP 57887a KR936126 KR936128 KR936129 Crous et al. (2015b)
D. velutina CGMCC 3.18286T KX986790 KX999223 KX999261 KX999182 Gao et al. (2017)
D. verniciicola CFCC 53109T MK573944 MK574639 MK574599 MK574619 MK574583 Yang et al. (2021a)
D. vexans CBS 127.14 KC343229 KC344197 KC343713 KC343955 KC343471 Gomes et al.(2013)
D. viciae JZB 320179T OP626092 OP627281 OP627279 OP627280 Abeywickrama et al. (2023)
D. viniferae JZB 320071T MK341551 MK500112 MK500107 MK500119 Manawasinghe et al. 2019
D. virgiliae CBS 138788T KP247573 KP247582 Machingambi et al. (2015)
D. vitimegaspora STE-U 2675 AF230749 Mostert et al. (2001)
D. vochysiae LGMF 1583T MG976391 MK007527 MK033323 MK007526 MK007528 Noriler et al. (2019)
D. woolworthii CBS 148.27 KC343245 KC344213 KC343729 KC343971 KC343487 Gomes et al. (2013)
D. xishuangbanica CGMCC 3.18282T KX986783 KX999216 KX999255 KX999175 Gao et al. (2017)
D. xunwuensis CFCC 53085T MK432663 MK578063 MK443008 MK578137 MK442983 Yang et al. (2021a)
D. yunnanensis CGMCC 3.18289T KX986796 KX999228 KX999267 KX999188 KX999290 Gao et al. (2017)
D. zaobaisu PSCG 031T MK626922 MK691245 MK726207 MK654855 Guo et al. (2020)
D. zaofenghuang CGMCC3.20271T MW477883 MW480875 MW480871 MW480867 Wang et al. (2021)
Diaporthella corylina CBS 121124 KC343004 KC343972 KC343488 KC343730 KC343246 Gomes et al. (2013)

Molecular phylogenetic inference

To further put the sampled strains and obtained sequences into their taxonomic context, a molecular phylogenetic inference using the taxon selection and program settings presented by Matio Kemkuignou et al. (2022) was performed. Briefly, five MAFFT alignments (Katoh and Standley 2013) were calculated featuring all surveyed sequences of the respective loci (Table 1) and curated by using Gblocks (Talavera and Castresana 2007; see Suppl. material 1: table S1). Maximum-likelihood (ML) analysis using RAxML (-HPC BlackBox v8.2.12 with default parameters, Stamatakis 2014) as implemented in the CIPRES portal (www.phylo.org) was performed for the combined aligned data, which was obtained concatenating the single locus alignments in SequenceMatrix 1.8 (Vaidya et al. 2011). The phylogenetic tree is shown in Fig. 1. After evaluation of the inferred tree, the alignment was then split into two sections (Fig. 1 shown in reddish-pink and green) and re-aligned using MAFFT. Instead of automatic filtering for conserved positions, alignments were now manually curated, correcting for alignment mistakes and subjected to the earlier described maximum-likelihood molecular phylogenetic inference using IQTree, with the option to approximate Bayesian posterior probability values (-abayes). In addition, single locus trees were calculated and checked visually for congruence with the multi-locus phylogenetic inference among the closest related sequences clustering with the here reported sequences. Support values regarded as significant (bootstrap (bs) >70%; posterior probabilities (pp) >95%) were mapped on the final maximum likelihood tree for each analysis. All alignments are deposited in the supplementary material; all used sequences, as well as the GenBank numbers for the newly generated ones, can be found in Table 1.

Figure 1. 

Maximum Likelihood phylogram (lLn = -56509.790498) obtained from the combined ITS, cal, his3, tef1 and tub2 sequences of our strain and reference strains of Diaporthe spp. Diaporthella corylina CBS 121124 was used as outgroup. Bootstrap support values ≥70 are indicated along branches. Branch lengths are proportional to distance. Figure legend refers to nucleotide substitutions per site.

Results

The lengths of the fragments of the five loci used in the combined dataset were 458 bp (ITS), 331 bp (cal), 296 bp (his3), 157 bp (tef1) and 510 bp (tub2). The length of the final alignment was 1752 bp. The phylogenetic tree obtained from the RAxML analysis of the combined dataset is shown in Fig. 1. In this tree our endophytic strains isolated from different Cameroonian host plants were located within a clade considered to represent the genus Diaporthe. As the surveyed isolates clustered in two larger clades of Diaporthe, the subsequent molecular phylogenetic inference was split into two to allow for a more accurate and efficient analysis.

The first restricted clade analysis featured 561 bp (ITS), 453 bp (cal), 373 bp (his3), 434 bp (tef1), 820 bp (tub2) for each respective locus, spanning in total 121 taxa and 2641 sites in total (Fig. 2). The second restricted clade analysis, on the other hand, resulted in an alignment featuring 550 bp (ITS), 426 bp (cal), 400 bp (his3), 362 bp (tef1), 719 bp (tub2) for each respective locus, consisting of, in total, 49 taxa and 2457 sites (Fig. 3). The first analysis showed the formation of two large clades in sister position to each other (100 bs / 1 pp), in which the isolates STMA 18289, STMA 18290, CBS 148913 and CBS 148911 clustered within an unsupported smaller one. The former three strains formed a well-supported clade (100 bs /1 pp), while strain CBS 148911 was located in an independent lineage apart from the other Diaporthe spp. The second phylogenetic inference revealed two highly supported clades, in which strains STMA 18291 and STMA 18245, and STMA 18247, STMA 18292 and CBS 148909 nested in, respectively. The first two resolved close to D. isoberliniae (100 bs / 1 pp), while the latter formed a well-supported clade (82 bs / 1 pp) within a cluster formed by D. anacardii, D. macadamiae, D. nebulae and D. velutina. The position of strain CBS 148912 did not receive bootstrap support, but was located in an independent lineage showing a higher nucleotide difference compared to other closely related species.

Figure 2. 

Maximum-Likelihood phylogram (lLn = -13511.2844) obtained from the combined ITS, cal, his3, tef1 and tub2 sequences of our strain and related Diaporthe spp. Diaporthe amygdali CBS 126679T and D. eres CBS 138594T were used as outgroup. Bootstrap support values ≥ 70/Bayesian posterior probability scores ≥ 0.95 are indicated along branches. Branch lengths are proportional to distance. Novelties are indicated in bold. Type material of the different species is indicated with T. Figure legend refers to nucleotide substitutions per site.

Figure 3. 

Maximum Likelihood phylogram obtained (lLn = -10678.2613) from the combined ITS, cal, his3, tef1 and tub2 sequences of our strain and related Diaporthe spp. Diaporthe amygdali CBS 126679T and D. eres CBS 138594T were used as outgroup. Bootstrap support values ≥ 70/Bayesian posterior probability scores ≥ 0.95 are indicated along branches. Branch lengths are proportional to distance. Novelties and emended taxa are indicated in bold. Type material of the different species is indicated with T. Figure legend refers to nucleotide substitutions per site.

Taxonomy

Diaporthe brideliae L. Schweizer, C. Lamb. & Y. Marín, sp. nov.

MycoBank No: 843234
Fig. 4

Etymology

Name refers to the host genus that this fungus was isolated from, Bridelia.

Figure 4. 

Diaporthe brideliae (ex-type strain CBS 148911) A conidioma in PNA B conidiomata in OA C conidiophores and conidia D alpha and beta conidia. Scale bars: 100 μm (A); 500 μm (B); 5 μm (C, D).

Description

Conidiomata pycnidial in culture on PNA, globose or irregular, dark brown to black, solitary or in groups, embedded, erumpent, 240–500 μm diam, white to cream or yellow conidial drops exuded from ostioles; conidiomatal wall pale olivaceous green to brown, composed of 1–3 layers, textura angularis. Conidiophores cylindrical to subcylindrical, base pale olivaceous to pale yellow, apex hyaline to subhyaline, straight, densely aggregated, smooth-walled, aseptate or 1(–2) septate, (6–)12–22.5 × 1–3 μm. Conidiogenous cells phialidic, cylindrical, tapering towards the apex, hyaline, mostly terminal, rarely lateral, (7–)8–15.5 × 1–3 μm. Paraphyses not observed. Alpha conidia ovoid to ellipsoidal, hyaline, apex acutely rounded, base acutate, biguttulate, aseptate, (3–)4–6.5 × 1.5–2.5 μm. Beta conidia filiform, curved, tapering towards apex, hyaline, not guttulate, aseptate, 18–32.5 × 1–2 μm. Gamma conidia not observed.

Culture characters

Colonies on PDA covering the surface of the Petri dish in 2 weeks, grayed white (156B–C) with a grayed orange (174B) ring and grayed orange (163A) margins, velvety to cottony, flat to raised in some zones, margins filamentous to fimbriate; reverse center gray brown (199A) with a yellow orange or grayed orange (167A) zones. Colonies on MEA covering the surface of the Petri dish in 2 weeks, yellow green (153B) with white to grayed yellow (160C) margins, velvety to cottony, flat to raised in some zones, margins filamentous to fimbriate; reverse black (202A) with gray brown (199A) mycelia and yellow green (153B) margins. Colonies on OA covering the surface of the Petri dish in 2 weeks, grayed green (198B) to white mycelium with a yellow green (151B) ring, cottony, flat to raised in some zones, margins filamentous; reverse yellow green (153B) with grayed yellow (161C) margins.

Specimen examined

Cameroon, Kala Mountain, from Bridelia ndellensis, 03 Jan. 2019, S.C.N. Wouamba (holotype: CBS H-24921, culture ex-type CBS 148911 = STMA 18286).

Notes

Diaporthe brideliae is the only report in Bridelia (Phyllanthaceae) from Cameroon. The phylogenetically most related species are D. chinensis, D. siamensis and D. yunnanensis. Diaporthe chinensis can be distinguished by the absence of beta conidia, which are produced by the other three species. Diaporthe siamensis is the only species mentioned here that produces gamma conidia (Udayanga et al. 2012b). Diaporthe brideliae can be distinguished from D. yunnanensis by the production of smaller conidiomata (up to 500 μm diam in D. brideliae vs. 880 μm diam in D. yunnanensis).

Diaporthe cameroonensis L. Schweizer, C. Lamb. & Y. Marín, sp. nov.

MycoBank No: 843235
Fig. 5

Etymology

Named for the country where it was isolated from, Cameroon.

Figure 5. 

Diaporthe cameroonensis (ex-type strain CBS 148913) A conidioma in PNA B conidiomata in OA C conidiophores and conidia D alpha conidia. Scale bars: 100 μm (A); 500 μm (B); 5 μm (C, D).

Description

Conidiomata pycnidial in culture on PNA, globose or irregular, dark brown to black, solitary or in groups, embedded, erumpent, 220–550 μm diam, white to cream conidial drops exuded from ostioles; conidiomatal wall pale olivaceous green to olivaceous brown, composed of 1–3 layers, textura angularis. Conidiophores cylindrical to subcylindrical, tapering towards apex, base subhyaline to pale yellow or pale olivaceous, apex hyaline to subhyaline, straight, densely aggregated, smooth-walled, 1(–3) septate, 12.5–28 × 1–3.5 μm. Conidiogenous cells phialidic, cylindrical to subcylindrical, tapering towards apex, hyaline, terminal, 6–11(–12) × 1.5–3 μm. Paraphyses not observed. Alpha conidia ellipsoidal, hyaline, apex rounded, base rounded to slightly acutate, biguttulate, aseptate, 4.5–6 × (1–)1.5–2.5 μm. Beta and gamma conidia not observed.

Culture characters

Colonies on PDA covering the surface of the Petri dish in 2 weeks, grayed yellow (161C–D) with transparent margins and white mycelia, cottony to slightly feathery, flat to raised in some zones, lobate, margins filamentous to fimbriate; reverse grayed yellow (161A–D) with transparent margins. Colonies on MEA covering the surface of the Petri dish in 2 weeks, grayed white (156A–B) with transparent margins and yellow white (158D) mycelia, or grayed-orange (165A) with white mycelia and yellow green (153D) margins, cottony to slightly feathery, flat to raised in some zones, margins filamentous to fimbriate; reverse grayed yellow (161A–D) with transparent margins or grayed orange (165A–B) with yellow green (153D) margins. Colonies on OA covering the surface of the Petri dish in 2 weeks, white with grayed white (156C) patches and grayed green (197D) or gray brown (199D) margins, or yellow green (152B) with brown (200A) patches and yellow-white (158A) mycelia, cottony to slightly feathery, flat to raised in some zones, margins filamentous to fimbriate; reverse grayed green (195A) with yellow green centre (152C) or fully yellow green (152C–D).

Specimens examined

Cameroon, Kala Mountain, from Atractogyne gabonii, 02 Jan. 2019, E. G. M. Anoumedem (holotype CBS H-24922; culture ex-type CBS 148913 = STMA 18288); from Trema guineensis,11 Apr. 2019, E. G. M. Anoumedem (STMA 18289); from Trema guineensis, 11 Apr. 2019, E. G. M. Anoumedem (STMA 18290).

Notes

Different strains belonging to this new species formed a well-supported independent clade (100 bs / 1 pp) apart from all surveyed Diaporthe spp. This species was isolated from Trema (Cannabaceae) and Atractogyne (Rubiaceae). To the best of our knowledge, this is the first Diaporthe species to be isolated from Atractogyne. Diaporthe pseudoanacardii, which is introduced further below, has also been isolated from Trema collected in Cameroon. However, both species can easily be distinguished by the length of their conidiogenous cells (12.5–28 μm in D. cameroonensis vs (7.5–)10–45 μm in D. pseudoanacardii) and conidia (4.5–6 μm in D. cameroonensis vs (5–)6–8(–9) μm in D. pseudoanacardii).

Diaporthe pseudoanacardii L. Schweizer, C. Lamb. & Y. Marín, sp. nov.

MycoBank No: 843236
Fig. 6

Etymology

Named after its close phylogenetic relation to Diaporthe anacardii.

Figure 6. 

Diaporthe pseudoanacardii A, B conidioma in PNA C conidiomata in OA D, E conidiophores and conidia F alpha conidia A, C, E, F ex-type strain CBS 148909 B, D STMA 18292. Scale bars: 200 μm (A, B); 1000 μm (C); 5 μm (D–F).

Description

Conidiomata pycnidial in culture on PNA, globose or irregular, dark brown to black, solitary or in groups, embedded, erumpent, 190–700(–820) μm diam, white to yellow or cream conidial drops and cirrus exuded from ostioles; conidiomatal wall pale olivaceous to olivaceous brown, composed of 1–2 layers, textura angularis. Conidiophores cylindrical to subcylindrical, base subhyaline to pale yellow or pale olivaceous, apex hyaline to subhyaline, straight, densely aggregated, smooth-walled, 1–2(–3) septate, rarely aseptate, (7.5–)10–45 × 1–3.5(–4) μm. Conidiogenous cells phialidic, cylindrical, tapering towards apex, hyaline to subhyaline, terminal or lateral, 7–28 × 1–3.5(–4) μm. Paraphyses not observed. Alpha conidia ovoid to ellipsoidal, hyaline, apex acutely rounded, base acutate, granular to guttulate, aseptate, (5–)6–8(–9) × 1.5–3 μm. Beta and gamma conidia not observed.

Culture characters

Colonies on PDA covering the surface of the Petri dish in 2 weeks, white to grayed yellow (162C–D) or grayed white (156A–B), sometimes with transparent margins and white, yellow green (153B–C) and grayed green (195A–B) zones, granulous to cottony or slightly feathery, flat to raised in some zones, margins filamentous to fimbriate; reverse grayed yellow (161C–D or 162D) and brown (200A) or black (202A–B) center, sometimes with transparent margins. Colonies on MEA reaching 59–85 in 2 weeks, white or grayed yellow (161B–C) with normally a white ring, sometimes with grayed green zones (197A–D) and transparent margins, cottony to slightly feathery, lobate, flat to raised in some zones, margins filamentous to fimbriate; reverse grayed green (197A) to brown (200A) with grayed yellow (161B) margins, or grayed green (197A) with grayed yellow (160D) and yellow green (152B) zones and black (202A) margin, or grayed yellow (161 A–B) and transparent margins. Colonies on OA covering the surface of the Petri dish in 2 weeks, grayed green (195A–D) with white margins and yellow (4A–B) or grayed yellow (160D) center, or grayed white (156A–C) with grayed orange (163B–C) center and yellow white (158B–C) margins, cottony to slightly feathery, raised, margins filamentous to fimbriate; reverse yellow green (147B) with gray brown (199B) margins or entire gray brown (199A–B) or grayed green (195A with 198A centre).

Specimens examined

Cameroon, Kala Mountain, from Trema guineensis, 11 Apr. 2019, E.G.M. Anoumedem (holotype CBS H-24923; culture ex-type CBS 148909 = STMA 18283); Tonga, West Region, from Pittosporum manii, 19 Jun. 2019, E.G.M. Anoumedem (STMA 18247, STMA 18292).

Notes

This species resolved in a well-supported clade (82 bs / 1 pp) together with D. anacardii, D. macadamiae, D. nebulae and D. velutina. Diaporthe pseudoanacardii can be easily distinguished from all the other species by the absence of beta conidia. All these species are reported from Africa (Gomes et al. 2013; Lesuthu et al. 2019; Wrona et al. 2020), except of D. velutina, which was found in Asia (Gao et al. 2017).

Diaporthe rauvolfiae Y. Marín, C. Lamb., Kouam & L. Schweizer, sp. nov.

MycoBank No: 843237
Fig. 7

Etymology

Name refers to the host genus that this fungus was isolated from, Rauvolfia.

Figure 7. 

Diaporthe rauvolfiae (ex-type strain CBS 148912) A conidioma in PNA B conidiomata in OA C conidiophores and conidia D alpha, beta and alpha conidia. Scale bars: 200 μm (A); 500 μm (B); 5 μm (C, D).

Description

Conidiomata pycnidial in culture on PNA, globose or irregular, dark brown to black, solitary or in groups, embedded, erumpent, 210–450(–530) μm diam, white to cream conidial drops exuded from ostioles; conidiomatal wall yellowish brown to olivaceous brown or brown, composed of 1–2 layers, textura angularis. Conidiophores cylindrical to subcylindrical, tapering towards apex, base subhyaline to pale yellow or pale olivaceous, apex hyaline to subhyaline, densely aggregated, smooth-walled, (0–)1–2 septate, 9–19.5 × 1.5–3.5 μm. Conidiogenous cells phialidic, cylindrical to subcylindrical, tapering towards apex, hyaline, mostly terminal, 6.5–13.5 × 1.5–3 μm. Paraphyses not observed. Alpha conidia broadly fusiform to obovoid, hyaline, apex rounded or acute, base acutate, biguttulate to multiguttulate, aseptate, 6.5–9 × 2–3 μm. Beta conidia filiform, curved, tapering towards apex, hyaline, not guttulate, aseptate, 20–36.5 × 1–2 μm. Gamma conidia less frequent, fusiform to obovoid, straight to slightly curved, rarely sinuose, acutate ends or one acutate and other round, hyaline, multiguttulate, aseptate, (8–)9–13 × 1.5–2.5 μm.

Culture characters

Colonies on PDA reaching 72–76 mm in 2 weeks, grayed yellow (160B–C) with white ring and transparent margins, cottony to slightly feathery, raised, lobate, margins filamentous; reverse grayed yellow (160B–C) with white ring and transparent margins. Colonies on MEA covering the surface of the Petri dish in 2 weeks, white to grayed white (156B), cottony to slightly feathery, raised, margins filamentous; reverse grayed green (197A) to gray brown (199A) with black (202A) center. Colonies on OA covering the surface of the Petri dish in 2 weeks, grayed white (156B–D), cottony to slightly feathery, raised, margins filamentous; reverse gray brown (199A).

Specimen examined

Cameroon, Tonga, West Region, from Rauvolfia vomitoria, 19 Jun. 2019, E.G.M. Anoumedem (holotype CBS H-24924, culture ex-type CBS 148912 = STMA 18287).

Notes

Diaporthe rauvolfiae was located in an independent branch far from other species of Diaporthe (Fig. 3). This species is characterized by the production of alpha, beta and gamma conidia, which were not observed in other species reported from Cameroon except of D. isoberliniae. This latter species differs from D. rauvolfiae in the length of the conidiophores (13–42 μm in D. isoberliniae vs 9–19.5 μm in D. rauvolfiae), beta conidia (11.5–27.5 μm in D. isoberliniae vs 20–36.5 μm in D. rauvolfiae) and gamma conidia (10–18.5(–21) μm in D. isoberliniae vs (8–)9–13 μm in D. rauvolfiae). Both species are not phylogenetically related (Fig. 3).

Diaporthe isoberliniae Crous, Persoonia 32: 221. 2014. emend. L. Schweizer, C. Lamb. & Y. Marín

MycoBank No: 808909
Fig. 8

Description

Conidiomata pycnidial in culture on PNA, globose or irregular, dark brown to black, solitary or in groups, embedded, erumpent, 200–460 μm diam, white to cream or yellow conidial drops exuded from ostioles; conidiomatal wall yellowish brown to olivaceous brown or brown, composed of 1–6 layers, textura angularis. Conidiophores cylindrical to subcylindrical, base subhyaline to pale olivaceous, apex hyaline, densely aggregated, smooth-walled, 1–3-septate, 13–42 × 1.5–4 μm. Conidiogenous cells phialidic, cylindrical to subcylindrical, tapering towards apex, hyaline, terminal or lateral, (5.5–)6.5–14 × 1.5–3 μm. Paraphyses not observed. Alpha conidia ellipsoidal to obovoid, or fusoid-ellipsoid, hyaline, apex rounded or subobtuse, base acutate or subtruncate, biguttulate to multiguttulate, aseptate, 5.5–9(–10) × 2–3(–3.5) μm. Beta conidia less frequent, filiform, curved, tapering towards apex, hyaline, not guttulate, aseptate, 11.5–27.5 × 1–2 μm. Gamma conidia less frequent, broadly fusiform, straight to slightly curved, rarely sinuose, apex acutate or filiform, base filiform, hyaline, multiguttulate, aseptate, 10–18.5(–21) × 1.5–2.5 μm.

Figure 8. 

Diaporthe isoberliniae A, B conidioma in PNA C conidiomata in OA D–F conidiophores and conidia G alpha conidia H beta conidia I–L Gamma conidia A, C, D–I STMA 18291 B, J–L STMA 18245. Scale bars: 100 μm (A, B); 500 μm (C), 10 μm (D, E), 5 μm (F–L).

Culture characters

Colonies on PDA reaching 63–72 mm or covering the surface of the Petri dish in 2 weeks, white with a grayed yellow (160C) ring and transparent margins, lobate, cottony to slightly feathery, flat to raised in some zones or fully raised, lobate, margins filamentous to fimbriate; reverse grayed yellow (160B–D). Colonies on MEA covering the surface of the Petri dish in 2 weeks, grayed yellow (161A) with a white ring and white to transparent margins, cottony to slightly feathery, flat to raised in some zones or fully raised, margins filamentous to fimbriate; reverse grayed yellow (162A–C) with transparent margins and sometimes with gray brown (199A) center. Colonies on OA covering the surface of the Petri dish in 2 weeks, white to grayed white (156A) with grayed yellow (161A–B) margins or grayed yellow (161C) with brown (200A) dots and white center and margins, cottony to slightly feathery, raised, margins filamentous to fimbriate; reverse grayed green (197B) to/or gray brown (199C–D).

Specimens examined

Cameroon, Tonga, West Region, from Pittosporum manii, 19 Jun. 2019, E. G. M. Anoumedem (STMA 18245); ibid. STMA 18291.

Notes

Diaporthe isoberliniae was described based on a specimen isolated from Zambia on Isoberlinia angolensis (Fabaceae) (Crous et al. 2014b). To the best of our knowledge, this species had not been recollected since then. We isolated two strains belonging to D. isoberliniae from Cameroon on Pittosporum manii (Pittosporaceae). The description of this species is here emended with beta and gamma conidia, as the shared observations are the first to report on them. The isolate STMA 18245 did not produce beta conidia, but produced gamma conidia, while isolate STMA 18291 produced beta conidia more frequently than gamma conidia. The type strain produced fusoid-ellipsoid alpha conidia of similar sizes, while these are ellipsoid to obovoid in our two Cameroonian strains.

Diaporthe isoberliniae is related to D. pungensis. This latter species can be distinguished by the absence of gamma conidia and the production of shorter conidiophores (11–14.5 μm in D. pungensis vs 13–42 μm in D. isoberliniae) (Sun et al. 2021).

Discussion

This study reports on the isolation and assignment of a group of fungi isolated from plant material to the genus Diaporthe. A characterization by sequencing was followed-up with a concatenation-based molecular phylogenetic inference, which afforded heterogenous sequence placements among a phylogenetic dataset featuring DNA sequence data substantially derived from type strains. Taken together with an analysis of the taxon placements in single-locus trees (data not shown), we concluded that the placement pattern among each strain was unique, which combined with the traditional morphological descriptions let us to propose the erection of four new species to accommodate the isolated strains. Secluding species description to either morphology, ecological observations (such as host occurrence or lifestyle) or molecular data alone has been shown to be problematic in Diaporthe, indicating that the commonly observed morphological features that are recorded and observed by taxonomists are not under strict evolutionary selection pressure (Gao et al. 2015, Fan et al. 2018). Additionally, only a limited set of loci are sequenced even for typified Diaporthe spp., which act as a strong limiting factor for comprehensive molecular phylogenetic analysis. That this undersampling may become problematic is best exemplified by highlighting that the ITS region, long treated as unequivocal fungal barcode, is a poor choice for species delimitation and should be utilized with caution. More specifically, multiple copies may occur in fungal genomes potentially showing significant differences, which, if accidentally sequenced independent from each other, may erroneously lead taxonomists to treat specimens, which are in truth only one species, as separate ones. The fact that this scenario is plausible for Diaporthe has recently been reported by Hilário et al. (2021), who found multiple ITS paralogues for a newly sequenced genome of D. novem. A similar finding was already described and discussed for the xylarialean genus Hypoxylon (Stadler et al. 2020). Most interestingly, Hilário et al. (2021) reported indications for a hybrid species, which could, if this was also assumed to be the case for other members of the genus as well, explain the convoluted systematic status of Diaporthe in its current form (Fan et al. 2018). This makes it all the more necessary to treat molecular data cautiously, especially since not all loci commonly used to infer phylogenies are well covered across all described species of Diaporthe. A careful in-depth phylogenetic analysis of species assigned to the D. amygdali “complex”, rigorously applying Genealogical Concordance Phylogenetic Species Recognition (GCPSR) and coalescence based evolutionary principles by Hilário et al. (2021), for example, showed an unexpectedly high genetic heterogeneity. This complex consisted of seven species forming nine statistically supported clades in concatenation-based phylogenies of ITS, cal, his3, tef1 and tub2 – loci also used in this paper – which, however, could not be resolved into reasonably distinct lineages representing individual species in either single-locus trees, or coalescent-based analysis. While this hopefully remains an extreme example inside the systematics of Diaporthe, this finding clearly shows that 1) adding new species based on single-locus sequencing will further destabilize Diaporthe taxonomy and 2) molecular phylogeneticists have to be aware of the possibility that the inferred supermatrix tree may not reflect the evolutionary history of the underlying loci, possibly leading to artificial lineage resolutions. A later study by Norphanphoun et al. (2022) attempted to classify a large collection of Diaporthe species into molecularly distinctly resolving species complexes. They showed that different loci harbored distinct resolution power for members of each complex (Norphanphoun et al. 2022) – a phenomenon that we also observed for our strains (data not shown) – which raises doubt that molecular data alone is enough to justify the classification of species complexes, even if it is just for the mere purpose of easing communication. In our study, we followed a polyphasic strategy combining multi-locus sequencing with morphological characterization, which clearly showed that the collected strains are separable by multiple phenotypic traits – a necessity in this convoluted genus. Given that intraspecific variation is repeatedly shown to be unexpectedly high, this should be complemented by screening for additional well-established discriminative characters, such as secondary metabolite production for chemotaxonomic purposes in the future. Furthermore, aiming for the generation of high-quality genome sequences would enable studies on the genetics governing ecology, lifestyle and speciation. The genomic toolbox to meaningfully embark on this has already been established for other complicated genera such as Penicillium and Aspergillus (Frisvad and Larsen 2015, Kocsubé et al. 2016, Tsang et al. 2018). This would help to find reasons for the frequently reported paraphyly, poor phylogenetic resolution and by consequence, enable the establishment of sound species boundaries for the inevitable revision of the genus (Dissanayake 2017; Gao et al. 2017; Marin-Felix et al. 2019; Hilário et al. 2021). A recent study published by Hongsanan et al. (2023) formalized necessary taxonomic changes with data that is already available today, indicating the huge potential of a more sophisticated follow-up analysis. Lastly, an additional epitypification campaign is imperative to further stabilize the taxonomy of Diaporthe and allies, hopefully enabling species differentiation between saprobes and important phytopathogens for e.g. diagnostic purposes.

Acknowledgements

We are grateful to V. Nana (National Herbarium of Cameroon) for the botanical identifications and S.C.N. Wouamba for the isolation of the strain CBS 148911.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was financed by a personal PhD stipend from the German Academic exchange service (DAAD) to B.M.K. (programme ID- 57440921); a stipend granted by the Life-Science Foundation (LSS) located in Munich to C.L.; postdoctoral stipendium from Alexander-von-Humboldt Foundation, Germany, and financial support of the “COPFUN project” (Project-ID 490821847) funded by Deutsche Forschungsgemeinschaft (DFG) to Y.M.F. The World Academy of Sciences (TWAS) (grant 18‐178 RG/CHE/AF/AC_G‐FR 3240303654), and the Alexander von Humboldt Foundation (AvH) through the equipment subsidies (Ref 3.4 - 8151/20 002), the Research Group Linkage (grant IP-CMR-1121341) and the hub project CECANOPROF (3.4-CMR-Hub).

Author contributions

Christopher Lambert: Methodology, Writing – original draft. Lena Schweizer: Methodology. Blondelle Matio Kemkuignou: Methodology. Elodie Gisele M. Anoumedem: Methodology. Simeon F. Kouam: Funding acquisition. Yasmina Marin-Felix: Methodology, Supervision, Writing – original draft and revision.

Author ORCIDs

Christopher Lambert https://orcid.org/0000-0002-1899-8214

Lena Schweizer https://orcid.org/0000-0003-1296-5486

Simeon F. Kouam https://orcid.org/0000-0003-0191-0527

Yasmina Marin-Felix https://orcid.org/0000-0001-8045-4798

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

  • Abeywickrama PD, Qian N, Jayawardena RS, Li Y, Zhang W, Guo K, Zhang L, Zhang G, Yan J, Li X, Guo Z, Hyde KD, Peng Y, Zhao W (2023) Endophytic fungi in green manure crops; friends or foe? Mycosphere: Journal of Fungal Biology 14(1): 1–106. https://doi.org/10.5943/mycosphere/14/1/1
  • Allan-Perkins E, Li D-W, Schultes N, Yavuz S, LaMondia J (2020) The identification of a new species, Diaporthe humulicola, a pathogen causing Diaporthe leaf spot on common hop. Plant Disease 104(9): 2377–2390. https://doi.org/10.1094/PDIS-08-19-1770-RE
  • Ando Y, Masuya H, Aikawa T, Ichihara Y, Tabata M (2017) Diaporthe toxicodendri sp. nov., a causal fungus of the canker disease on Toxicodendron vernicifluum in Japan. Mycosphere : Journal of Fungal Biology 8(5): 1157–1167. https://doi.org/10.5943/mycosphere/8/5/6
  • Ariyawansa HA, Tsai I, Wang J-Y, Withee P, Tanjira M, Lin S-R, Suwannarach N, Kumla J, Elgorban AM, Cheewangkoon R (2021) Molecular phylogenetic diversity and biological characterization of Diaporthe species associated with leaf spots of Camellia sinensis in Taiwan. Plants 10(7): 1434. https://doi.org/10.3390/plants10071434
  • Baumgartner K, Fujiyoshi PT, Travadon R, Castlebury LA, Wilcox WF, Rolshausen PE (2013) Characterization of species of Diaporthe from wood cankers of grape in eastern North American vineyards. Plant Disease 97(7): 912–920. https://doi.org/10.1094/PDIS-04-12-0357-RE
  • Beluzán F, Olmo D, León M, Abad-Campos P, Armengol J (2021) First report of Diaporthe amygdali associated with twig canker and shoot blight of nectarine in Spain. Plant Disease 105(10): 3300. https://doi.org/10.1094/PDIS-10-20-2283-PDN
  • Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, McKenzie EHC, Maharachchikumbura SSN, Buyck B, Zhao CL, Fan YG, Zhang JY, Dissanayake AJ, Marasinghe DS, Jayawardena RS, Kumla J, Padamsee M, Chen YY, Liimatainen K, Ammirati JF, Phukhamsakda C, Liu JK, Phonrob W, Randrianjohany É, Hongsanan S, Cheewangkoon R, Bundhun D, Khuna S, Yu WJ, Deng LS, Lu YZ, Hyde KD, Lumyong S (2022) The numbers of fungi: Are the most speciose genera truly diverse? Fungal Diversity 114(1): 387–462. https://doi.org/10.1007/s13225-022-00501-4
  • Chang CQ, Cheng YH, Xiang MM, Jiang ZD (2005) New species of Phomopsis on woody plants in Fujian Province. Junwu Xuebao 24: 6–11.
  • Crous PW, Groenewald JZ, Risede JM, Simoneau P, Hyde KD (2004) Calonectria species and their Cylindrocladium anamorphs: Species with sphaeropedunculate vesicles. Studies in Mycology 50: 415–430. https://doi.org/10.3114/sim.55.1.213
  • Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009) Fungal Biodiversity. CBS Laboratory Manual Series 1. Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.
  • Crous PW, Summerell BA, Shivas RG, Romberg M, Mel’nik VA, Verkley GJM, Groenewald JZ (2011a) Fungal Planet description sheets: 92–106. Persoonia 27(1): 130–162. https://doi.org/10.3767/003158511X617561
  • Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, Alfenas AC, Alfenas RF, Burgess TI, Carnegie AJ, Hardy GESJ, Hiscock N, Hüberli D, Jung T, Louis-Seize G, Okada G, Pereira OL, Stukely MJC, Wang W, White GP, Young AJ, McTaggart AR, Pascoe IG, Porter IJ, Quaedvlieg W (2011b) Fungal Planet description sheets: 69–91. Persoonia 26(1): 108–156. https://doi.org/10.3767/003158511X581723
  • Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM, Palm ME, Marincowitz S, Groenewald JZ (2011c) Fungal pathogens of Protaceae. Persoonia 27(1): 20–45. https://doi.org/10.3767/003158511X606239
  • Crous PW, Summerell BA, Shivas RG, Burgess TI, Decock CA, Dreyer LL, Granke LL, Guest DI, Hardy GSJ, Hausbeck MK, Hüberli D, Jung T, Koukol O, Lennox CL, Liew ECY, Lombard L, McTaggart AR, Pryke JS, Roets F, Saude C, Shuttleworth LA, Stukely MJC, Vánky K, Webster BJ, Windstam ST, Groenewald JZ (2012) Fungal Planet description sheets: 107–127. Persoonia 28(1): 138–182. https://doi.org/10.3767/003158512X652633
  • Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster M, de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, De Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL, Manamgoda DS, Minnis AM, Kleczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Maússe-Sitoe SND, Chen S, Lechat C, Hairaud M, Lesage-Meessen L, Pawłowska J, Wilk M, Śliwińska-Wyrzychowska A, Mętrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Tellería MT, Dueñas M, Martín MP, Marincowitz S, de Beer ZW, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ (2013) Fungal Planet description sheets: 154–213. Persoonia 31(1): 188–296. https://doi.org/10.3767/003158513X675925
  • Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, Guarro J, Wingfield MJ, Wood AR, Alfenas AC, Braun U, Cano-Lira JF, García D, Marin-Felix Y, Alvarado P, Andrade JP, Armengol J, Assefa A, den Breeÿen A, Camele I, Cheewangkoon R, De Souza JT, Duong TA, Esteve-Raventós F, Fournier J, Frisullo S, García-Jiménez J, Gardiennet A, Gené J, Hernández-Restrepo M, Hirooka Y, Hospenthal DR, King A, Lechat C, Lombard L, Mang SM, Marbach PAS, Marincowitz S, Marin-Felix Y, Montaño-Mata NJ, Moreno G, Perez CA, Pérez Sierra AM, Robertson JL, Roux J, Rubio E, Schumacher RK, Stchigel AM, Sutton DA, Tan YP, Thompson EH, Vanderlinde E, Walker AK, Walker DM, Wickes BL, Wong PTW, Groenewald JZ (2014a) Fungal Planet description sheets: 214–280. Persoonia 32(1): 184–306. https://doi.org/10.3767/003158514X682395
  • Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Garethjones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MPA, Damm U, Decock CA, Denbreeÿen A, Devries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadehfazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJC, Swart WJ, Tan YP, Vanderbank M, Wood AR, Zhang Y, Groenewald JZ (2014b) Fungal Planet description sheets: 281–319. Persoonia 33(1): 212–289. https://doi.org/10.3767/003158514X685680
  • Crous PW, Wingfield MJ, Richardson DM, Leroux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GESTJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTH, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ (2016b) Fungal Planet description sheets: 400–468. Persoonia 36(1): 316–458. https://doi.org/10.3767/003158516X692185
  • Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, Lombard L, Martín MP, Sandoval-Denis M, Alexandrova AV, Barnes CW, Baseia IG, Bezerra JDP, Guarnaccia V, May TW, Hernández-Restrepo M, Stchigel AM, Miller AN, Ordoñez ME, Abreu VP, Accioly T, Agnello C, Agustin Colmán A, Albuquerque CC, Alfredo DS, Alvarado P, Araújo-Magalhães GR, Arauzo S, Atkinson T, Barili A, Barreto RW, Bezerra JL, Cabral TS, Camello Rodríguez F, Cruz RHSF, Daniëls PP, da Silva BDB, de Almeida DAC, de Carvalho Júnior AA, Decock CA, Delgat L, Denman S, Dimitrov RA, Edwards J, Fedosova AG, Ferreira RJ, Firmino AL, Flores JA, García D, Gené J, Giraldo A, Góis JS, Gomes AAM, Gonçalves CM, Gouliamova DE, Groenewald M, Guéorguiev BV, Guevara-Suarez M, Gusmão LFP, Hosaka K, Hubka V, Huhndorf SM, Jadan M, Jurjević Ž, Kraak B, Kučera V, Kumar TKA, Kušan I, Lacerda SR, Lamlertthon S, Lisboa WS, Loizides M, Luangsa-ard JJ, Lysková P, Mac Cormack WP, Macedo DM, Machado AR, Malysheva EF, Marinho P, Matočec N, Meijer M, Mešić A, Mongkolsamrit S, Moreira KA, Morozova OV, Nair KU, Nakamura N, Noisripoom W, Olariaga I, Oliveira RJV, Paiva LM, Pawar P, Pereira OL, Peterson SW, Prieto M, Rodríguez-Andrade E, Rojo De Blas C, Roy M, Santos ES, Sharma R, Silva GA, Souza-Motta CM, Takeuchi-Kaneko Y, Tanaka C, Thakur A, Smith MT, Tkalčec Z, Valenzuela-Lopez N, van der Kleij P, Verbeken A, Viana MG, Wang XW, Groenewald JZ (2017) Fungal Planet description sheets: 625–715. Persoonia 39: 270–467. https://doi.org/10.3767/persoonia.2017.39.11
  • Crous PW, Luangsa-ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP, Morozova OV, Stchigel AM, Summerell BA, Brandrud TE, Dima B, García D, Giraldo A, Guarro J, Gusmão LFP, Khamsuntorn P, Noordeloos ME, Nuankaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta CM, Thangavel R, van Iperen AL, Abreu VP, Accioly T, Alves JL, Andrade JP, Bahram M, Baral H-O, Barbier E, Barnes CW, Bendiksen E, Bernard E, Bezerra JDP, Bezerra JL, Bizio E, Blair JE, Bulyonkova TM, Cabral TS, Caiafa MV, Cantillo T, Colmán AA, Conceição LB, Cruz S, Cunha AOB, Darveaux BA, da Silva AL, da Silva GA, da Silva GM, da Silva RMF, de Oliveira RJV, Oliveira RL, De Souza JT, Dueñas M, Evans HC, Epifani F, Felipe MTC, Fernández-López J, Ferreira BW, Figueiredo CN, Filippova NV, Flores JA, Gené J, Ghorbani G, Gibertoni TB, Glushakova AM, Healy R, Huhndorf SM, Iturrieta-González I, Javan-Nikkhah M, Juciano RF, Jurjević Ž, Kachalkin AV, Keochanpheng K, Krisai-Greilhuber I, Li Y-C, Lima AA, Machado AR, Madrid H, Magalhães OMC, Marbach PAS, Melanda GCS, Miller AN, Mongkolsamrit S, Nascimento RP, Oliveira TGL, Ordoñez ME, Orzes R, Palma MA, Pearce CJ, Pereira OL, Perrone G, Peterson SW, Pham THG, Piontelli E, Pordel A, Quijada L, Raja HA, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo SS, Sandoval-Denis M, Santos TAB, Seifert KA, Silva BDB, Smith ME, Soares AM, Sommai S, Sousa JO, Suetrong S, Susca A, Tedersoo L, Telleria MT, Thanakitpipattana D, Valenzuela-Lopez N, Visagie CM, Zapata M, Groenewald JZ (2018a) Fungal Planet description sheets: 785–867. Persoonia 41(1): 238–417. https://doi.org/10.3767/persoonia.2018.41.12
  • Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Gené J, Guarro J, Baseia IG, García D, Gusmão LFP, Souza-Motta CM, Thangavel R, Adamčík S, Barili A, Barnes CW, Bezerra JDP, Bordallo JJ, Cano-Lira JF, de Oliveira RJV, Ercole E, Hubka V, Iturrieta-González I, Kubátová A, Martín MP, Moreau P-A, Morte A, Ordoñez ME, Rodríguez A, Stchigel AM, Vizzini A, Abdollahzadeh J, Abreu VP, Adamčíková K, Albuquerque GMR, Alexandrova AV, Álvarez Duarte E, Armstrong-Cho C, Banniza S, Barbosa RN, Bellanger J-M, Bezerra JL, Cabral TS, Caboň M, Caicedo E, Cantillo T, Carnegie AJ, Carmo LT, Castañeda-Ruiz RF, Clement CR, Čmoková A, Conceição LB, Cruz RHSF, Damm U, da Silva BDB, da Silva GA, da Silva RMF, Santiago ALCMA, de Oliveira LF, de Souza CAF, Déniel F, Dima B, Dong G, Edwards J, Félix CR, Fournier J, Gibertoni TB, Hosaka K, Iturriaga T, Jadan M, Jany J-L, Jurjević Ž, Kolařík M, Kušan I, Landell MF, Leite Cordeiro TR, Lima DX, Loizides M, Luo S, Machado AR, Madrid H, Magalhães OMC, Marinho P, Matočec N, Mešić A, Miller AN, Morozova OV, Neves RP, Nonaka K, Nováková A, Oberlies NH, Oliveira-Filho JRC, Oliveira TGL, Papp V, Pereira OL, Perrone G, Peterson SW, Pham THG, Raja HA (2018b) Fungal Planet description sheets: 716–784. Persoonia 40(1): 240–393.https://doi.org/10.3767/persoonia.2018.40.10
  • Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, Jurjević Ž, Decock C, Denman S, Lombard L, Lawrence DP, Stack AJ, Gordon TR, Bostock RM, Burgess T, Summerell BA, Taylor PWJ, Edwards J, Hou LW, Cai L, Rossman AY, Wöhner T, Allen WC, Castlebury LA, Visagie CM, Groenewald JZ (2020) New and Interesting Fungi. 3. Fungal Systematics and Evolution 6(1): 157–231. https://doi.org/10.3114/fuse.2020.06.09
  • Crous PW, Hernández-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kölling G, Marais E, Wingfield MJ, Yilmaz N, Adan OCG, Akulov A, Duarte EÁ, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken JAMP, Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spetik M, Thangavel R, Thanh HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, Groenewald JZ (2021) New and Interesting Fungi. 4. Fungal Systematics and Evolution 7(1): 255–343. https://doi.org/10.3114/fuse.2021.07.13
  • da Silva RMF, Soares AM, Pádua APSL, Firmino AL, Souza-Motta CM, da Silva GA, Plautz Jr HL, Bezerra JDP, Paiva LM, Ryvarden L, Oliani LC, de Mélo MAC, Magalhães OMC, Pereira OL, Oliveira RJV, Gibertoni TB, Oliveira TGS, Svedese VM, Fan XL (2019) Mycological Diversity Description II. Acta Botanica Brasílica 33(1): 163–173. https://doi.org/10.1590/0102-33062018abb0411
  • Dayarathne MC, Jones EBG, Maharachchikumbura SSN, Devadatha B, Sarma VV, Khongphinitbunjong K, Chomnunti P, Hyde KD (2020) Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere: Journal of Fungal Biology 11(1): 1–188. https://doi.org/10.5943/mycosphere/11/1/1
  • de Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, Hyde KD (2021) Morphomolecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere : Journal of Fungal Biology 11(1): 163–237. https://doi.org/10.5943/mycosphere/12/1/3
  • de Silva NI, Hyde KD, Lumyong S, Phillips AJL, Bhat DJ, Maharachchikumbura SSN, Thambugala KM, Tennakoon DS, Suwannarach N, Karunarathna SC (2022) Morphology, phylogeny, host association and geography of fungi associated with plants of Annonaceae, Apocynaceae and Magnoliaceae. Mycosphere: Journal of Fungal Biology 13(1): 955–1076. https://doi.org/10.5943/mycosphere/13/1/12
  • Dissanayake AJ, Camporesi E, Hyde KD, Zhang W, Yan JY, Li XH (2017a) Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy. Mycosphere: Journal of Fungal Biology 8(5): 853–877. https://doi.org/10.5943/mycosphere/8/5/4
  • Dissanayake AJ, Zhang W, Liu M, Hyde KD, Zhao WS, Li XH, Yan JY (2017b) Diaporthe species associated with peach tree dieback in Hubei, China. Mycosphere: Journal of Fungal Biology 8(5): 533–549. https://doi.org/10.5943/mycosphere/8/5/2
  • Dissanayake AJ, Chen Y-Y, Liu J-K (2020) Unravelling Diaporthe species associated with woody hosts from karst formations (Guizhou) in China. Journal of Fungi (Basel, Switzerland) 6(4): 251. https://doi.org/10.3390/jof6040251
  • Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu J-K, Bhat DJ, Taylor JE, Bahkali AH, McKenzie EHC, Hyde KD (2017) Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Diversity 82(1): 107–182. https://doi.org/10.1007/s13225-016-0368-7
  • Dong Z, Manawasinghe IS, Huang Y, Shu Y, Phillips AJL, Dissanayake AJ, Hyde KD, Xiang M, Luo M (2021) Endophytic Diaporthe associated with Citrus grandis cv. Tomentosa in China. Frontiers in Microbiology 11: 3621. https://doi.org/10.3389/fmicb.2020.609387
  • Du Z, Fan XL, Hyde KD, Yang Q, Liang Y-M, Tian C-M (2016) Phylogeny and morphology reveal two new species of Diaporthe from Betula spp. China. Phytotaxa 269(2): 90–102. https://doi.org/10.11646/phytotaxa.269.2.2
  • Fan XL, Hyde KD, Udayanga D, Wu X-Y, Tian C-M (2015) Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14(10): 82. https://doi.org/10.1007/s11557-015-1104-5
  • Fan X, Yang Q, Bezerra JDP, Alvarez LV, Tian C-M (2018) Diaporthe from walnut tree (Juglans regia) in China, with insight of the Diaporthe eres complex. Mycological Progress 17(7): 841–853. https://doi.org/10.1007/s11557-018-1395-4
  • Gao H, Pan M, Tian C, Fan X (2021) Cytospora and Diaporthe species associated with hazelnut canker and dieback in Beijing, China. Frontiers in Cellular and Infection Microbiology 11: 664366. https://doi.org/10.3389/fcimb.2021.664366
  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Goddard ML, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E (2014) Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. Journal of Agricultural and Food Chemistry 62(34): 8602–8607. https://doi.org/10.1021/jf501141g
  • Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31(1): 1–41. https://doi.org/10.3767/003158513X666844
  • Guarnaccia V, Groenewald JZ, Woodhall J, Armengol J, Cinelli T, Eichmeier A, Ezra D, Fontaine F, Gramaje D, Gutierrez-Aguirregabiria A, Kaliterna J, Kiss L, Larignon P, Luque J, Mugnai L, Naor V, Raposo R, Sándor E, Váczy KZ, Crous PW (2018) Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia 40(1): 135–153. https://doi.org/10.3767/persoonia.2018.40.06
  • Guo YS, Crous PW, Bai Q, Fu M, Yang MM, Wang XH, Du YM, Hong N, Xu WX, Wang GP (2020) High diversity of Diaporthe species associated with pear shoot canker in China. Persoonia 45(1): 132–162. https://doi.org/10.3767/persoonia.2020.45.05
  • Hilário S, Amaral IA, Gonçalves MFM, Lopes A, Santos L, Alves A (2020) Diaporthe species associated with twig blight and dieback of Vaccinium corymbosum in Portugal, with description of four new species. Mycologia 112(2): 293–308. https://doi.org/10.1080/00275514.2019.1698926
  • Hongsanan S, Norphanphoun C, Senanayake IC, Jayawardena RS, Manawasinghe IS, Abeywickrama PD, Khuna S, Suwannarach N, Senwanna C, Monkai J, Hyde KD, Gentekaki E, Bhunjun CS (2023) Annotated notes on Diaporthe species. Mycosphere : Journal of Fungal Biology 14(1): 918–1189.
  • Huang F, Udayanga D, Wang X, Hou X, Mei X, Fu Y, Hyde KD, Li H (2015) Endophytic Diaporthe associated with Citrus, a phylogenetic reassessment with seven new species from China. Fungal Biology 119(5): 331–347. https://doi.org/10.1016/j.funbio.2015.02.006
  • Hyde KD, Hongsanan S, Jeewon R et al. (2016) Fungal diversity notes 367–492, taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. https://doi.org/10.1007/s13225-016-0373-x
  • Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Cáceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo Z-L, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, Soares AMS, Plautz Jr HL, Sotão HMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang S-N, Bao D-F, Samarakoon MC, Pem D, Karunarathna A, Lin C-G, Yang J, Perera RH, Kumar V, Huang S-K, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao Y, Konta S, Niskanen T, Liimatainen K, Dai Y-C, Ji X-H, Tian X-M, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu Y-Z, Jiang H-B, Zhang J-F, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei D, Réblová M, Fournier J, Nekvindová J, do Nascimento Barbosa R, dos Santos JEF, de Oliveira NT, Li G-J, Ertz D, Shang Q-J, Phillips AJL, Kuo C-H, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng X-Y, Fryar S, Tkalčec Z, Liang J, Li G, Wen T-C, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao R-L, Zhao Q, Kirk PM, Liu J-K, Yan JY, Mortimer PE, Xu J, Doilom M (2019) Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96(1): 1–242. https://doi.org/10.1007/s13225-019-00429-2
  • Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu N-G, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao D-F, Li J, Samarakoon MC, Chaiwan N, Lin C-G, Phutthacharoen K, Zhang S-N, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang H-B, Yang J, Zeng M, Huanraluek N, Liu J-KJ, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang S-K, Thiyagaraja V, Lu Y-Z, Jayawardena RS, Dong W, Yang E-F, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfliegler WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J (2020) Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100(1): 5–277. https://doi.org/10.1007/s13225-020-00439-5
  • Iantas J, Savi DC, Schibelbein Rd S, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, Glienke C (2021) Endophytes of brazilian medicinal plants with activity against phytopathogens. Frontiers in Microbiology 12: 714750. https://doi.org/10.3389/fmicb.2021.714750
  • Iriart X, Binois R, Fior A, Blanchet D, Berry A, Cassaing S, Amazan E, Papot E, Carme B, Aznar C, Couppié P (2011) Eumycetoma caused by Diaporthe phaseolorum (Phomopsis phaseoli): A case report and a mini-review of Diaporthe/Phomopsis spp invasive infections in humans. Clinical Microbiology and Infection 17(10): 1492–1494. https://doi.org/10.1111/j.1469-0691.2011.03568.x
  • Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions. Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37(1): 82–105. https://doi.org/10.3767/003158516X690475
  • Jiang N, Voglmayr H, Piao C-G, Li Y (2021) Two new species of Diaporthe (Diaporthaceae, Diaporthales) associated with tree cankers in the Netherlands. MycoKeys 85: 31–56. https://doi.org/10.3897/mycokeys.85.73107
  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software v. 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  • Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong SB, Frisvad JC, Samson RA (2016) Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles. Studies in Mycology 85(1): 199–213. https://doi.org/10.1016/j.simyco.2016.11.006
  • Lawrence DP, Travadon R, Baumgartner K (2015) Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia 107(5): 926–940. https://doi.org/10.3852/14-353
  • Lesuthu P, Mostert L, Spies CFJ, Moyo P, Regnier T, Halleen F (2019) Diaporthe nebulae sp. nov. and first report of D. cynaroidis, D. novem, and D. serafiniae on grapevines in South Africa. Plant Disease 103(5): 808–817. https://doi.org/10.1094/PDIS-03-18-0433-RE
  • Li WJ, McKenzie EHC, Liu JK, Bhat DJ, Dai D-Q, Camporesi E, Tian Q, Maharachchikumbura SSN, Luo Z-L, Shang Q-J, Zhang J-F, Tangthirasunun N, Karunarathna SC, Xu J-C, Hyde KD (2020) Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Diversity 100(1): 279–801. https://doi.org/10.1007/s13225-020-00440-y
  • Lin S, Taylor NJ, Peduto Hand F (2018) Identification and characterization of fungal pathogens causing fruit rot of deciduous holly. Plant Disease 102(12): 2430–2445. https://doi.org/10.1094/PDIS-02-18-0372-RE
  • Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D’souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72(1): 1–197. https://doi.org/10.1007/s13225-015-0324-y
  • Lombard L, van Leeuwen GCM, Guarnaccia V, Polizzi G, Rijswick PCJ, Rosendahl KCHM, Gabler J, Crous PW (2014) Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53(2): 287–299. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14034
  • Lu QT, Zhang JY, Sun YR, Tang X, Lu YZ, Zhang Z (2022) Diaporthe orixae sp. nov., an endophytic species isolated from Orixa japonica in southern China. Phytotaxa 544(1): 37–51. https://doi.org/10.11646/phytotaxa.544.1.3
  • Machingambi NM, Dreyer LL, Oberlander KC, Roux J, Roets F (2015) Death of endemic Virgilia oroboides trees in South Africa caused by Diaporthe virgiliae sp. nov. Plant Pathology 64(5): 1149–1156. https://doi.org/10.1111/ppa.12341
  • Mahoney N, Molyneux RJ, Smith LR, Schoch TK, Rolshausen PE, Gubler WD (2005) Dying-arm disease in grapevines: Diagnosis of infection with Eutypa lata by metabolite analysis. Journal of Agricultural and Food Chemistry 53(21): 8148–8155. https://doi.org/10.1021/jf0510236
  • Manawasinghe IS, Dissanayake AJ, Li X, Liu M, Wanasinghe DN, Xu J, Zhao W, Zhang W, Zhou Y, Hyde KD, Brooks S, Yan J (2019) High genetic diversity and species complexity of Diaporthe associated with grapevine dieback in China. Frontiers in Microbiology 10: 1936. https://doi.org/10.3389/fmicb.2019.01936
  • Manawasinghe IS, Jayawardena RS, Li HL, Zhou YY, Zhang W, Phillips AJL, Wanasinghe DN, Dissanayake AJ, Li XH, Li YH, Hyde KD, Yan JY (2021) Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on Tea in Fujian, China. Mycosphere: Journal of Fungal Biology 12(1): 430–518. https://doi.org/10.5943/mycosphere/12/1/6
  • Mapook A, Hyde KD, McKenzie EHC, Jones EBG, Bhat DJ, Jeewon R, Stadler M, Samarakoon MC, Malaithong M, Tanunchai B, Buscot F, Wubet T, Purahong W (2020) Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity 101(1): 1–175. https://doi.org/10.1007/s13225-020-00444-8
  • Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher RK, Spies CFJ, Thangavel R, Taylor PWJ, Wilson AM, Wingfield BD, Wood AR, Crous PW (2019) Genera of phytopathogenic fungi: GOPHY 2. Studies in Mycology 92(1): 47–133. https://doi.org/10.1016/j.simyco.2018.04.002
  • Martino I, Agustí-Brisach C, Nari L, Gullino ML, Guarnaccia V (2023) Characterization and pathogenicity of fungal species associated with dieback of apple trees in Northern Italy. Plant Disease PDIS-04-23-0645-RE. https://doi.org/10.1094/PDIS-04-23-0645-RE
  • Matio Kemkuignou B, Schweizer L, Lambert C, Anoumedem EGM, Kouam SF, Stadler M, Marin-Felix Y (2022) New polyketides from the liquid culture of Diaporthe breyniae sp. nov. MycoKeys 90: 85–118. https://doi.org/10.3897/mycokeys.90.82871
  • Matio Kemkuignou B, Lambert C, Stadler M, Kouam SF, Marin-Felix Y (2023) Unprecedented antimicrobial and cytotoxic polyketides from cultures of Diaporthe africana sp. nov. Journal of Fungi (Basel, Switzerland) 9(7): 781. https://doi.org/10.3390/jof9070781
  • Milagres CA, Belisário R, Silva MA, Lisboa DO, Pinho DB, Furtado GQ (2018) A novel species of Diaporthe causing leaf spot in Pachira glabra. Tropical Plant Pathology 43(5): 460–467. https://doi.org/10.1007/s40858-018-0242-0
  • Monkai J, Hongsanan S, Bhat DJ, Dawoud TM, Lumyong S (2023) Integrative taxonomy of novel Diaporthe species associated with medicinal plants in Thailand. Journal of Fungi (Basel, Switzerland) 9(6): 603. https://doi.org/10.3390/jof9060603
  • Mostert L, Crous PW, Kang J-C, Phillips AJL (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: Morphological, cultural, molecular and pathological characterization. Mycologia 93(1): 146–167. https://doi.org/10.1080/00275514.2001.12061286
  • Noriler SA, Savi DC, Ponomareva L, Rodrigues R, Rohr J, Thorson JS, Glienke C, Shaaban KA (2019) Vochysiamides A and B: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia 138: 104–273. https://doi.org/10.1016/j.fitote.2019.104273
  • Norphanphoun C, Gentekaki E, Hongsanan S, Jayawardena R, Senanayake IC, Manawasinghe IS, Abeywickrama PD, Bhunjun CS, Hyde KD (2022) Diaporthe: Formalizing the species-group concept. Mycosphere: Journal of Fungal Biology 13(1): 752–819. https://doi.org/10.5943/mycosphere/13/1/9
  • Ozawa K, Mochizuki K, Takagi D, Ishida K, Sunada A, Ohkusu K, Kamei K, Hashimoto A, Tanaka K (2019) Identification and antifungal sensitivity of two new species of Diaporthe isolated. Journal of Infection and Chemotherapy 25(2): 96–103. https://doi.org/10.1016/j.jiac.2018.10.008
  • Perera RH, Hyde KD, Dissanayake AJ, Jones EB, Liu JK, Wei D, Liu ZY (2018) Diaporthe collariana sp. nov., with prominent collarettes associated with Magnolia champaca fruits in Thailand. Studies in Fungi 3(1): 141–151. https://doi.org/10.5943/sif/3/1/16
  • Perera RH, Hyde KD, Maharachchikumbura SSN, Jones EBG, McKenzie EHC, Stadler M, Lee HB, Samarakoon MC, Ekanayaka AH, Camporesi E, Liu JK, Liu ZY (2020) Fungi on wild seeds and fruits. Mycosphere: Journal of Fungal Biology 11(1): 2108–2480. https://doi.org/10.5943/mycosphere/11/1/14
  • Petrović K, Riccioni L, Dordević V, Tubic SB, Miladinović J, Ceran M, Rajković D (2018) Diaporthe pseudolongicolla - the new pathogen on soybean seed in Serbia. Ratarstvo i Povrtarstvo 55(2): 103–109. https://doi.org/10.5937/ratpov55-18582
  • Phukhamsakda C, McKenzie EHC, Phillips AJL, Jones EBG, Bhat DJ, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102(1): 1–203. https://doi.org/10.1007/s13225-020-00448-4
  • Rakita RM, O’Brien KD, Bourassa L (2017) Diaporthe soft tissue infection in a heart transplant patient. Transplant Infectious Disease 19(3): 1–3. https://doi.org/10.1111/tid.12680
  • Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW, Gryzenhout M, Jaklitsch WM, Mejia LC, Stoykov D, Udayanga D, Voglmayr H, Walker DM (2015) Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 6(1): 145–154. https://doi.org/10.5598/imafungus.2015.06.01.09
  • Santos JM, Correia VG, Phillips AJL (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis, their use in teleomorph induction in vitro and biological species definition. Fungal Biology 114(2–3): 255–270. https://doi.org/10.1016/j.funbio.2010.01.007
  • Santos L, Phillips AJL, Crous PW (2017) Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov. Mycosphere: Journal of Fungal Biology 8(5): 485–511. https://doi.org/10.5943/mycosphere/8/5/1
  • Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SSN, Jeewon R, Philips AJL, Bhat JD, Perera RH, Li QR, Ji WJ, Tangthirasunun N, Noprhanphoun C, Karunarathna SC, Camporesi E, Manawasighe IS, Al-Sadi AM, Hade KD (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86: 217–296. https://doi.org/10.1016/j.simyco.2017.07.003
  • Smith H, Wingfield MJ, Crous PW, Coutinho TA (1996) Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62(2): 86–88. https://doi.org/10.1016/S0254-6299(15)30596-2
  • Stadler M, Lambert C, Wibberg D, Kalinowski J, Cox RJ, Kolařík M, Kuhnert E (2020) Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycological Progress 19(3): 35–245. https://doi.org/10.1007/s11557-019-01552-9
  • Sun W, Huang S, Xia J, Zhang X, Li Z (2021) Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys 77: 65–95. https://doi.org/10.3897/mycokeys.77.59852
  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56(4): 564–577. https://doi.org/10.1080/10635150701472164
  • Tan YP, Shivas RG (2022) Nomenclatural novelties. Index of Australian Fungi 2: 1–12.
  • Tan YP, Edwards J, Grice KRE, Shivas RG (2013) Molecular phylogenetic analysis reveals six new Diaporthe species from Australia. Fungal Diversity 61(1): 251–260. https://doi.org/10.1007/s13225-013-0242-9
  • Tanney JB, McMullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biology 120(11): 1448–1457. https://doi.org/10.1016/j.funbio.2016.05.007
  • Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, Phillips AJL, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108(1): 1–215. https://doi.org/10.1007/s13225-021-00474-w
  • Tey-Rulh P, Philippe I, Renaud JM, Tsoupras G, de Angelis P, Fallot J, Tabacchi R (1991) Eutypine, a phytotoxin produced by Eutypa lata the causal agent of dying-arm disease of grapevine. Phytochemistry 30(2): 471–473. https://doi.org/10.1016/0031-9422(91)83707-R
  • The Royal Horticultural Society London (1966) R.H.S. Colour Chart. London, UK.
  • Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EAB, Shivas RG (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27(1): 80–89. https://doi.org/10.3767/003158511X617110
  • Thompson SM, Tan YP, Shivas RG, Neate SM, Morin L, Bissett A, Aitken EAB (2015) Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia 35(1): 39–49. https://doi.org/10.3767/003158515X687506
  • Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu JC, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC (2018) Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 33: 25–67. https://doi.org/10.3897/mycokeys.33.23670
  • Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I (2023) Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Frontiers in Microbiology 14: 1105299. https://doi.org/10.3389/fmicb.2023.1105299
  • Tsang CC, Tang JYM, Lau SKP, Woo PCY (2018) Taxonomy and evolution of Apsergillus, Penicillium and Talaromyces in the omics era – Past, present and future. Computational and Structural Biotechnology Journal 16: 197–210. https://doi.org/10.1016/j.csbj.2018.05.003
  • Tsurushima T, Don LD, Kawashima K, Murakami J, Nakayashiki H, Tosa Y, Mayama S (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Molecular Plant Pathology 6(6): 605–613. https://doi.org/10.1111/j.1364-3703.2005.00309.x
  • Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD (2011) The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50(1): 189–225. https://doi.org/10.1007/s13225-011-0126-9
  • Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012a) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity 56(1): 157–171. https://doi.org/10.1007/s13225-012-0190-9
  • Udayanga D, Liu XZ, Mckenzie EHC, Chukeatirote E, Hyde KD (2012b) Multi-locus phylogeny reveals three new species of Diaporthe from Thailand. Cryptogamie. Mycologie 33(3): 295–309. https://doi.org/10.7872/crym.v33.iss3.2012.295
  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014a) Insights into the genus Diaporthe: Phylogenetic species delimitation in the D. eres species complex. Fungal Diversity 67(1): 203–229. https://doi.org/10.1007/s13225-014-0297-2
  • Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014b) Species limits in Diaporthe: Molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia 32(1): 83–101. https://doi.org/10.3767/003158514X679984
  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The Diaporthe sojae species complex, phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biology 119(5): 383–407. https://doi.org/10.1016/j.funbio.2014.10.009
  • Vaidya G, Lohmann DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  • Van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Studies in Mycology 55: 65–74. https://doi.org/10.3114/sim.55.1.65
  • Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Gareth Jones EB, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarakoon MC, Goonasekara ID, Mapook A, Li W-J, Senanayake IC, Li J, Norphanphoun C, Doilom M, Bahkali AH, Xu J, Mortimer PE, Tibell L, Tibell S, Karunarathna SC (2018) Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89(1): 1–236. https://doi.org/10.1007/s13225-018-0395-7
  • Wang X, Guo Y, Du Y, Yang Z, Huang X, Hong N, Xu W, Wang G (2021) Characterization of Diaporthe species associated with peach constriction canker, with two novel species from China. MycoKeys 80: 77–90. https://doi.org/10.3897/mycokeys.80.63816
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Gelfand M, Sninsky JI, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Wrona CJ, Mohankumar V, Schoeman MH, Tan YP, Shivas RG, Jeff-Ego OS, Akinsanmi A (2020) Phomopsis husk rot of macadamia in Australia and South Africa caused by novel Diaporthe species. Plant Pathology 69(5): 911–921. https://doi.org/10.1111/ppa.13170
  • Xu TC, Lu YH, Wang JF, Song Z-Q, Hou T-G, Liu S-S, Liu C-S, Wu S-H (2021) Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. Microorganisms 9(2): 1–49. https://doi.org/10.3390/microorganisms9020217
  • Yang Q, Fan XL, Du Z, Tian CM (2017a) Diaporthe juglandicola sp. nov. (Diaporthales, Ascomycetes) evidenced by morphological characters and phylogenetic analysis. Mycosphere: Journal of Fungal Biology 8(5): 817–826. https://doi.org/10.5943/mycosphere/8/5/3
  • Yang Q, Fan XL, Du Z, Liang Y-M, Tian C-M (2017b) Diaporthe camptothecicola sp. nov. on Camptotheca acuminata in China. Mycotaxon 132(3): 591–601. https://doi.org/10.5248/132.591
  • Yang Q, Fan XL, Du Z, Tian C-M (2017c) Diaporthe species occurring on Senna bicapsularis in southern China, with descriptions of two new species. Phytotaxa 302(2): 145–155. https://doi.org/10.11646/phytotaxa.302.2.4
  • Yang Q, Fan X-L, Guarnaccia V, Tian C-M (2018) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914
  • Yang Q, Tang J, Zhou GY (2021b) Characterization of Diaporthe species on Camellia oleifera in Hunan Province, with descriptions of two new species. MycoKeys 84: 15–33. https://doi.org/10.3897/mycokeys.84.71701
  • Zapata M, Palma MA, Aninat MJ, Piontelli E (2020) Polyphasic studies of new species of Diaporthe from native forest in Chile, with descriptions of Diaporthe araucanorum sp. nov., Diaporthe foikelawen sp. nov. and Diaporthe patagonica sp. nov. International Journal of Systematic and Evolutionary Microbiology 70(5): 3379–3390. https://doi.org/10.1099/ijsem.0.004183

Supplementary material

Supplementary material 1 

Phylogenetic study data

Christopher Lambert, Lena Schweizer, Blondelle Matio Kemkuignou, Elodie Gisèle M. Anoumedem, Simeon F. Kouam, Yasmina Marin-Felix

Data type: docx

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (354.32 kb)
login to comment