Research Article |
Corresponding author: Starri Heiðmarsson ( starri@nnv.is ) Academic editor: Francesco Dal Grande
© 2023 Maonian Xu, Yingkui Liu, Erik Möller, Scott LaGreca, Patricia Moya, Xinyu Wang, Einar Timdal, Hugo de Boer, Eva Barreno, Lisong Wang, Holger Thüs, Ólafur Andrésson, Kristinn Pétur Magnússon, Elín Soffia Ólafsdóttir, Starri Heiðmarsson.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Xu M, Liu Y, Möller E, LaGreca S, Moya P, Wang X, Timdal E, de Boer H, Barreno E, Wang L, Thüs H, Andrésson Ó, Magnússon KP, Ólafsdóttir ES, Heiðmarsson S (2023) Mycobiont-specific primers facilitate the amplification of mitochondrial small subunit ribosomal DNA: a focus on the lichenized fungal genus Melanelia (Ascomycota, Parmeliaceae) in Iceland. MycoKeys 96: 57-75. https://doi.org/10.3897/mycokeys.96.100037
|
The fungal mitochondrial small subunit (mtSSU) ribosomal DNA is one of the most commonly used loci for phylogenetic analysis of lichen-forming fungi, but their primer specificity to mycobionts has not been evaluated. The current study aimed to design mycobiont-specific mtSSU primers and highlights their utility with an example from the saxicolous lichen-forming fungal genus Melanelia Essl. in Iceland. The study found a 12.5% success rate (3 out of 24 specimens with good-quality mycobiont mtSSU sequences) using universal primers (i.e. mrSSU1 and mrSSU3R), not including off-target amplification of environmental fungi, e.g. Cladophialophora carrionii and Lichenothelia convexa. New mycobiont-specific primers (mt-SSU-581-5’ and mt-SSU-1345-3’) were designed by targeting mycobiont-specific nucleotide sites in comparison with environmental fungal sequences, and assessed for mycobiont primer specificity using in silico PCR. The new mycobiont-specific mtSSU primers had a success rate of 91.7% (22 out of 24 specimens with good-quality mycobiont mtSSU sequences) on the studied Melanelia specimens. Additional testing confirmed the specificity and yielded amplicons from 79 specimens of other Parmeliaceae mycobiont lineages. This study highlights the effectiveness of designing mycobiont-specific primers for studies on lichen identification, barcoding and phylogenetics.
Melanelia, mtSSU, Parmeliaceae, PCR, primer design
In addition to the accepted fungal barcode of nuclear ribosomal internal transcribed spacer (nrITS) locus (
In total, eight universal and conserved regions (i.e. U1 to U8) are recognized in the fungal mtSSU locus (
In our recent phylogenetic diversity analyses of Icelandic cetrarioid lichens (
Using a multiple sequence alignment, shared primer binding sites were identified in the conserved mtSSU regions among mycobiont genera, that are absent from other ascomycetous fungal genera. Special focus was given to 3’ end unique amplification. The multiple sequence alignment was compiled (Suppl. material
EcoPCR (
The current study included 24 Melanelia herbarium specimens collected from 1997 to 2014, consisting of M. agnata (n=8), M. hepatizon (n=12) and M. stygia (n=4), all of which were morphologically identified and verified with fungal nrITS DNA barcoding and chemotaxonomic analyses in a previous study (
The PCR master mix and thermal cycler conditions were followed from our published protocol (
Primera | Locationb | Sequence 5’ – 3’ | Tmc | Reference |
---|---|---|---|---|
Major primers | ||||
mrSSU1(F) | 533-552 | AGCAGTGAGGAATATTGGTC | 58.7 |
|
mt-SSU-581-5’(F) | 581-600 | GGAGGAATGTATAGCAATAG | 53.5 | This study |
mt-SSU-862-5’(F)d | 862-880 | GAAAGCATCYCCTTATGTG | 56.7 | This study |
mt-SSU-1345-3’(R) | 1345-1324 | CGCTTGTAAATATATCTTATTG | 53.4 | This study |
mrSSU3R(R) | 1524-1505 | ATGTGGCACGTCTATAGCCC | 64.2 |
|
Alternative primers | ||||
mt-SSU-574-5’(F) | 574-594 | GCAACTTGRARGAATGTATAG | 56.0 | This study |
mt-SSU-897-3’(R) | 897-880 | CCCTCAACGTCAGTTATC | 56.0 | This study |
mt-SSU-1093-3’(R) | 1093-1073 | TCTAATGATTTCARTTCCAA | 55.3 | This study |
mt-SSU-1372-3’(R) | 1372-1353 | CGACATTAACTGAAGACAGC | 58.1 | This study |
mt-SSU-1492-3’(R) | 1492-1472 | CCATGATGACTTGTCTTAGTC | 56.8 | This study |
mt-SSU-1548-3’(R) | 1548-1529 | ATTTCACACCCTTTTGTAAG | 56.3 | This study |
Ambiguous sequences at both ends of the raw sequencing data were trimmed with the software PhyDE v0.9971. Sequence contigs were assembled from both directions and ambiguous base calling was checked. Sequences were identified by BLAST searches. Successful PCR amplification was defined as on-target/mycobiont-specific amplification and clean mycobiont mtSSU sequences without ambiguous base calling. Success rates in percentages were calculated as the number of specimens with successful PCR amplification divided by the total number of specimens. Multiple sequence alignment was performed using MAFFT (
Multiple sequence alignments at the primer binding sites are shown in Fig.
Primer design and sequence alignments at the priming locations. Conservative regions (i.e. U1 to U8) are marked as previously designated (
The newly designed primers, mt-SSU-581-5’ with mt-SSU-1345-3’, were named according to the primer nomenclature recommendation (
The amplification success was significantly affected by the allowed number of mismatches and positions between archived fungal sequences and primers (Fig.
Comparison of primer specificity between the new and the universal primer pairs using in silico PCR. The number of off-target amplifications is classified as others in grey, while desired amplifications of lichen-forming fungi in Parmeliaceae are marked in white. The number of nucleotide mismatches in the priming sites is shown as Mis_0 to Mis_3, indicating 0 to 3 nucleotide mismatches.
Amplicons resulting from the universal primer pair mrSSU1 and mrSSU3R are around 1000 bp in length (lanes 1–3 in Fig.
PCR amplification and sequencing results of the mtSSU locus in the genus Melanelia A 2% agarose gel electrophoresis of PCR products, where lanes 1-3 contain amplicons from the universal primer pair mrSSU1 and mrSSU3R, and lanes 4-6 are from the mycobiont-specific primer pair mt-SSU-598-5’and mt-SSU-1324-3’. Abbreviations: M-molecular ladder 100 bp; NC-negative control B illustration of sequencing results (M. agnata, voucher number LA29683) using the forward primers: the universal primer mrSSU1 (upper) and the mycobiont-specific primer mt-SSU-581-5’ (lower), respectively.
Using the new primers, the mtSSU region was also successfully amplified from DNA extracts of other genera in Parmeliaceae (Table
PCR amplification summary in different lichen groups using newly designed primers.
Lichens | Number of amplified/sampled specimens |
---|---|
Cetrarioid | |
Cetraria cladea | 18/18 |
Nephromopsis cladea | 6/6 |
Melanelia | 22/24 |
Parmelioid | |
Flavoparmelia | 5/5 |
Melanelixia | 4/5 |
Melanohalea | 9/11 |
Parmotrema | 2/2 |
Xanthoparmelia | 4/4 |
Others | |
Alectoria | 9/9 |
Evernia | 11/11 |
Protousnea | 1/1 |
Usnea | 6/7b |
Therefore, we designed alternative primers (the pair mt-SSU-574-5’ and mt-SSU-897-3’) for the amplification of shorter mtSSU sequences (ca. 400 bp) in Usnea, to avoid amplifying the introns in U4 or U5 region. For Usnea species lacking the intron in the U4 region, we recommend the the primer pair mt-SSU-574-5’ and mt-SSU-1093-3’, which produces amplicons as long as ca. 500 bp. These primers are also useful for old herbarium specimens, for which longer amplicons can not be obtained. The same PCR condition was used for the genus Usnea, except for the adjustment of annealing temperatures: 56–52 °C for touchdown cycles (decrease 1 °C per cycle), and 52 °C for the last 30 to 32 cycles. The primers (mt-SSU-574-5’ and mt-SSU-897-3’/mt-SSU-1093-3’) have been tested with in vitro PCR screening and we got six mycobiont mtSSU sequences out of seven Usnea specimens. The improved success rate is at the cost of variable sites after the U5 zone. The reverse primers, mt-SSU-897-3’ or mt-SSU-1093-3’, can also be used with the mycobiont-specific forward primer mt-SSU-581-5’ for other genera in Parmeliaceae.
We also provide two universal reverse primers (i.e. mt-SSU-1372-3’ and mt-SSU-1492-3’) to replace mt-SSU-1345-3’ when the latter is not working. In this case, we recommend combining a mycobiont-specific forward primer, either mt-SSU-574-5’ or mt-SSU-581-5’, to enhance the specificity for PCR. Two reverse primer mt-SSU-1492-3’ and mt-SSU-1548-3’ were designed to replace the published primer mrSSU3R, for two reasons: 1) the primer mrSSU3R has a much higher melting temperature (Tm 64.2 °C) than the newly designed primers, which have their Tm around 55 °C; 2) mrSSU3R has four consecutive G/C at the 3’ end with a higher risk of non-specific binding.
Notably, the region between U5 and U6 has the highest number of variable sites (Table
Numbers of variable sites between mtSSU universal regions in selected genera. Numbers are shown as variable nucleotide sites/total nucleotide sites.
Lichens | Number of variable sites (bp) | |||
---|---|---|---|---|
U2-U3a | U3-U4a | U4-U5a | U5-U6a | |
Cetrarioid | ||||
Cetraria cladeb | 11/107 | 17/166 | 1/39 | 26/247 |
Nephromopsis cladeb | 6/107 | 9/166 | 4/39 | 19/249 |
Melanelia | 1/107 | 3/166 | 0/39 | 18/233 |
Others | ||||
Alectoria | 2/107 | 14/167 | 1/39 | 37/258 |
Evernia | 4/107 | 9/171 | 0/39 | 21/224 |
Flavoparmelia | 4/107 | 34/166 | 1/39 | 45/241 |
Of all PCR optimization approaches, primer design is a critical but usually neglected factor, since one tends to pick up the primers from existing literature (
Selecting primer binding sites in variable (e.g. the region between U2 and U3 for forward primer, the region between U5 and U6 for reverse primer) instead of conserved regions (e.g. U2, U6) will favour the design of mycobiont-specific primers, while still keeping most variable sites, in comparison with the often used primer pair mrSSU1 (designed at U2) and mrSSU3R (designed at U6). In the latter primer pair, the universal regions (i.e. U2 and U6) are highly conserved, and few nucleotide variations are present at the species level. Amplification of universal sites at U2 and U6 may help sequence alignment, but it will not add a significant number of variable sites. Instead, targeting a shorter amplicon with enhanced primer binding to mycobiont DNA templates will conceivably increase the PCR success, particularly for herbarium specimens which contain degraded DNA templates (
Regions between universal sites (e.g. the region between U5 and U6 in Fig.
Our in vitro PCR tests only compared the effectiveness of new primers with the most commonly used primer pair – mrSSU1 and mrSSU3R, instead of other known mtSSU primers, such as MS1&MS2 (
Co-amplification of non-lichen-forming fungi revealed the intrinsic complexity and habitat ecology of lichen symbiosis (
In addition to our success in the genus Melanelia, the new primers also gave good results on other genera in the family Parmeliaceae, indicating good primer universality in Parmeliaceae. The only exception is the genus Usnea, which is intron-rich and more variable at primer binding sites. This explains why the mtSSU locus was not included in recent phylogenetic studies of the genus Usnea (
The Parmeliaceae sequences amplified with the universal primer pair may be underestimated in the simulation of in silico PCR. Theoretically, the shorter amplicons using newly designed primers are more likely to be amplified than longer amplicons with the universal primers. Some submitted mtSSU sequences may contain neither the forward nor reverse primer binding sites, and thus are not sufficiently long to be served as in silico PCR templates. Therefore, amplification would fail with the universal primers using in silico PCR for these samples. Relying on the number and position of primer-template mismatches alone may be insufficient for in silico PCR; however, the in silico results coincide with the in vitro PCR results. Here, we have validated the higher specificity of the newly designed primers compared to universal primers during in vitro PCR. Therefore, in silico specificity check of primers followed by in vitro analysis is recommended to confirm the appropriate choice of primers, thus preventing the amplification of unspecific sequences and ensuring appropriate amplification of target sequences.
Our mtSSU sequence data can be incorporated into multi-locus phylogenetic analyses to assess species relationship in the genus Melanelia, for which a phylogeny has yet to be reconstructed. Using the nuclear ribosomal internal transcribed spacer (nrITS) marker, previous fungal barcoding studies have detected multiple haplotypes within Melanelia species, and hypervariability of the nrITS regions suggest the presence of hidden species diversity (
Here we demonstrate an efficient and effective approach for successful PCR amplification. We designed mycobiont-specific mtSSU primers, which significantly enhanced the successful PCR rate from 12.5% to 91.7% for Icelandic Melanelia lichens. Moreover, the primers show strong specificity within the family Parmeliaceae. This study emphasizes the importance of thoughtful primer design in molecular systematics studies of lichen-forming fungi.
The authors have no support to report.
The research was funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration to FP7-MCA-ITN MedPlant (grant number 606895), the Icelandic Research Fund (grant number 185442051), University of Iceland Research Fund (grant number 92257) and the Landsvirkjun Fund (NÝR-31-2021). We thank the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0503) for financial support in field work and sampling.
Voucher information and GenBank accession numbers of the amplified mtSSU loci by newly designed primers. a: Usnea specimens were amplified with alternative primers.
Species | Location | Collection date | Herbarium number | GenBank accession number |
---|---|---|---|---|
Alectoria mexicana | Mexico: Jalisco | 2009-Jan-14 | 0197880 (DUKE) | OP901526 |
Alectoria ochroleuca | Iceland: INo | 2012-Jul-26 | LA32005 (AMNH) | OP901527 |
Alectoria ochroleuca | Iceland: IVe | 2020-Oct-9 | LA32013 (AMNH) | OP901528 |
Alectoria ochroleuca | Iceland: INo | 1997-May-18 | LA28088 (AMNH) | OP901529 |
Alectoria ochroleuca | China: Yunnan | 2012-Sep-10 | L35822 (KUN) | OP901530 |
Alectoria sarmentosa | Norway: Trondelag | 2018-Aug-6 | LF00037 (AMNH) | OP901531 |
Alectoria sarmentosa | Iceland: IVe | 2013-Jul-23 | LA32003 (AMNH) | OP901532 |
Alectoria sarmentosa | Iceland: INo | 2012-Aug-21 | LA32002 (AMNH) | OP901533 |
Alectoria sarmentosa | Iceland: INo | 2006-Jul-3 | LA30049 (AMNH) | OP901534 |
Allocetraria flavonigrescens | China: Yunnan | 2015-Nov-1 | L52601 (KUN) | OP901604 |
Cetrariella fastigiata | Norway: Malselv | 2011-Sep-12 | L177156 (O) | OP901535 |
Cetrariella fastigiata | Norway: Finnmark | 2014-Jul-4 | L195985 (O) | OP901536 |
Cetrariella fastigiata | Norway: Finnmark | 2011-Jun-23 | L170481 (O) | OP901537 |
Cetrariella fastigiata | Norway: Hedmark | 2018-Aug-16 | L208163 (O) | OP901538 |
Cetraria ericetorum | Iceland: INo | 2016-Aug-29 | LA31901 (AMNH) | OP901539 |
Cetraria ericetorum | Iceland: INo | 2010-Sep-10 | LA31538 (AMNH) | OP901540 |
Cetraria islandica | Poland: Jelenia Gora | 2017-Aug-26 | SMNS-STU-F 0005174 (STU) | OP901541 |
Cetraria islandica | Germany: Feldberg | 2017-Aug-15 | SMNS-STU-F 0000549 (STU) | OP901542 |
Evernia divaricata | USA: Utah | 2006-Aug-10 | 0188304 (DUKE) | OP901543 |
Evernia divaricata | Austria: Salzburg | 2019-Sep-2 | SMNS-STU-F 0004925 (STU) | OP901544 |
Evernia mesomorpha | Norway: Innlandet | 2009-Sep-17 | L158139 (O) | OP901545 |
Evernia mesomorpha | Norway: Viken | 2014-Oct-25 | L200008 (O) | OP901546 |
Evernia mesomorpha | Canada: Ontario | 2015-July-13 | 0405706 (DUKE) | OP901547 |
Evernia mesomorpha | China: Yunnan | 2018-Sep-27 | L64081 (KUN) | OP901548 |
Evernia mesomorpha | China: Inner Mongolia | 2011-Jun-1 | L24002 (KUN) | OP901549 |
Evernia mesomorpha | China: Yunnan | 2017-Jul-8 | L58746 (KUN) | OP901550 |
Evernia prunastri | Norway: Hordaland | 2011-Jul-27 | L194342 (O) | OP901551 |
Evernia prunastri | USA: Idaho | 2009-Oct-4 | 0154766 (DUKE) | OP901552 |
Evernia prunastri | Spain: Castellon | 2007 | LF00002 (AMNH) | OP901553 |
Flavocetraria cucullata | Iceland: INo | 2002-Jul-29 | LA28953 (AMNH) | OP901554 |
Flavocetraria cucullata | Iceland: INo | 2000-Aug-1 | LA28174 (AMNH) | OP901555 |
Flavocetraria cucullata | Norway: Buskerud | 2015-Jun-16 | L200903 (O) | OP901556 |
Flavocetraria cucullata | Norway: Buskerud | 2013-Sep-29 | L184721 (O) | OP901557 |
Flavoparmelia caperata | Spain: Galicia | - | LF00008 (AMNH) | OP901558 |
Flavoparmelia caperata | Spain: Vigo | - | LF00013 (AMNH) | OP901559 |
Flavoparmelia soredians | Spain: Pontevedra | 2015-Aug-10 | LF00004 (AMNH) | OP901560 |
Flavoparmelia soredians | Spain: Pontevedra | 2015-Aug-10 | LF00005 (AMNH) | OP901561 |
Flavoparmelia soredians | Spain: Castellon | 2017 | LF00007 (AMNH) | OP901562 |
Melanelia agnata | Iceland: IMi | 1999 | LA29195 (AMNH) | OP901563 |
Melanelia agnata | Iceland: IMi | 2002-Aug-7 | LA29683 (AMNH) | OP901564 |
Melanelia agnata | Iceland: INo | 2005-Jun-28 | LA27562 (AMNH) | OP901565 |
Melanelia agnata | Iceland: IAu | 2008-Oct-1 | LA30974 (AMNH) | OP901566 |
Melanelia agnata | Iceland: INo | 2012-Jun-27 | LA31859 (AMNH) | OP901567 |
Melanelia agnata | Iceland: IMi | 1999-Aug-11 | LA27454 (AMNH) | OP901568 |
Melanelia agnata | Iceland: IMi | 2000-Aug-11 | LA26648 (AMNH) | OP901569 |
Melanelia agnata | Iceland: IMi | 1998-Aug-1 | LA33428 (AMNH) | OP901570 |
Melanelia hepatizon | Iceland: IAu | 2003-Jul-24 | LA30501 (AMNH) | OP901571 |
Melanelia hepatizon | Iceland: IAu | 1997-Jul-19 | LA27296 (AMNH) | OP901572 |
Melanelia hepatizon | Iceland: IVe | 2007-Aug-23 | LA30676 (AMNH) | OP901573 |
Melanelia hepatizon | Iceland: INv | 2007-Aug-24 | LA30674 (AMNH) | OP901574 |
Melanelia hepatizon | Iceland: IVe | 2007-Aug-23 | LA30675 (AMNH) | OP901575 |
Melanelia hepatizon | Iceland: INv | 2007-Aug-24 | LA30673 (AMNH) | OP901576 |
Melanelia hepatizon | Iceland: INo | 2014-Jun-26 | LA20781 (AMNH) | OP901577 |
Melanelia hepatizon | Iceland: IAu | 1998-Aug-25 | LA30117 (AMNH) | OP901578 |
Melanelia hepatizon | Iceland: INv | 2012-Jul-25 | LA31861 (AMNH) | OP901579 |
Melanelia hepatizon | Iceland: INo | 2012-Jun-25 | LF00036 (AMNH) | OP901580 |
Melanelia stygia | Iceland: IAu | 1998-Aug-25 | LA19972 (AMNH) | OP901581 |
Melanelia stygia | Iceland: IAu | 2000-Jul-20 | LA28243 (AMNH) | OP901582 |
Melanelia stygia | Iceland: IAu | 2014-Jun-10 | LA20775 (AMNH) | OP901583 |
Melanelia stygia | Iceland: IAu | 2013-Jul-19 | LA16894 (AMNH) | OP901584 |
Melanelixia fuliginosa | Iceland: IVe | 2005-Jul-21 | LA27514 (AMNH) | OP901585 |
Melanelixia fuliginosa | Iceland: INv | 2005-Jul-6 | LA27518 (AMNH) | OP901586 |
Melanelixia fuliginosa | Iceland: INv | 2013-Jul-8 | LA16895 (AMNH) | OP901587 |
Melanelixia fuliginosa | Iceland: INo | 2014-Jun-25 | LA20777 (AMNH) | OP901588 |
Melanelixia subaurifera | Iceland: IAu | 2001-May-26 | LA27950 (AMNH) | OP901597 |
Melanohalea exasperata | Iceland: IAu | 1997-Aug-6 | LA27384 (AMNH) | OP901589 |
Melanohalea exasperata | Iceland: IAu | 2001-May-25 | LA27958 (AMNH) | OP901590 |
Melanohalea exasperatula | Iceland: INo | 2012-Sep-5 | LA31766 (AMNH) | OP901591 |
Melanohalea infumata | Iceland: INo | 2007-Jun-8 | LA30618 (AMNH) | OP901592 |
Melanohalea infumata | Iceland: INo | 2007-Apr-29 | LA30623 (AMNH) | OP901593 |
Melanohalea olivacea | Iceland: INo | 2010-Jun-29 | LA31446 (AMNH) | OP901594 |
Melanohalea septentrionalis | Iceland: IAu | 1997-Aug-6 | LA27382 (AMNH) | OP901595 |
Melanohalea septentrionalis | Iceland: IAu | 2001-May-25 | LA27954 (AMNH) | OP901596 |
Nephromopsis pseudocomplicata | China: Yunnan | 2017-Aug-20 | L60353 (KUN) | OP901598 |
Parmotrema perlatum | Spain: Asturias | - | LF00024 (AMNH) | OP901599 |
Parmotrema pseudotinctorum | Spain: Lanzarote | 2013 | LF00020 (AMNH) | OP901600 |
Protousnea magellanica | Chile: Araucania | 2017-Dec-3 | 0402940 (DUKE) | OP901601 |
Tuckermannopsis chlorophylla | Iceland: IAu | 1996-Jul-12 | LA18869 (AMNH) | OP901602 |
Usnea flammea a | Portugal: Alentejo | 2015 | LF00029 (AMNH) | OP901603 |
Usnea longissimi a | Russia: Khabarovsk Krai | 2013-Jul-30 | 0339139 (DUKE) | OP901605 |
Usnea pangiana a | Japan: Kyushu | 2014-Nov-12 | 0346943 (DUKE) | OP901606 |
Usnea cavernosa a | USA: Michigan | 2013-Jun-28 | 0338717 (DUKE) | OP901607 |
Usnea himalayana a | Taiwan: Taichung | 2009-Oct-4 | 0311007 (DUKE) | OP901608 |
Usnea trichodeoides a | Russia: Khabarovsk Krai | 2013-Jul-30 | 0339133 (DUKE) | OP901609 |
Usnocetraria oakesiana | Norway: Buskerud | 2016-Jun-21 | L222316 (O) | OP901610 |
Usnocetraria oakesiana | Norway: Buskerud | 2016-Jun-21 | L222312 (O) | OP901611 |
Vulpicida canadensis | USA: California | 2013-Jul-28 | 0332704 (DUKE) | OP901612 |
Vulpicida juniperinus | Norway: Hedmark | 2019-Jul-11 | L19277 (O) | OP901613 |
Vulpicida juniperinus | Norway: Hordaland | 2019-Jul-27 | L19175 (O) | OP901614 |
Vulpicida juniperinus | Norway: Sogn og Fjordane | 2019-Apr-27 | L19052 (O) | OP901615 |
Vulpicida pinastri | Canada: Ontario | 2015-Jul-13 | 015998 (DUKE) | OP901616 |
Vulpicida pinastri | Norway: Sor-Trondelag | 2019-Aug-24 | L19217 (O) | OP901617 |
Vulpicida pinastri | Norway: Nordland | 2019-Aug-6 | L19202 (O) | OP901618 |
Xanthoparmelia camtschadalis | Spain: Castellon | 2007 | LF00025 (AMNH) | OP901619 |
Xanthoparmelia protomatrae | Spain: Castellon | 2011 | LF00027 (AMNH) | OP901620 |
Xanthoparmelia subdiffluens | Spain: Castellon | 2007 | LF00026 (AMNH) | OP901621 |
Xanthoparmelia tinctina | Spain: Castellon | 2011 | LF00028 (AMNH) | OP901622 |
Multiple sequence alignment for fungal mtSSU primer design in the family Parmeliaceae (except for Usnea)
Data type: alignment
Priming sites for alternative mtSSU primers, Nanodrop results and in silico PCR amplicons
Data type: figures, table (word document)
Multiple sequence alignment for fungal mtSSU primer design of the genus Usnea
Data type: alignment