

Three novel species of Distoseptispora (Distoseptisporaceae) isolated from bamboo in Jiangxi Province, China

Zhi-Jun Zhai^{1,2}, Jun-Qing Yan^{1,2}, Wei-Wu Li¹, Yang Gao^{1,2}, Hai-Jing Hu^{1,2}, Jian-Ping Zhou^{1,2}, Hai-Yan Song^{1,3}, Dian-Ming Hu^{1,2}

I Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China 2 Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China 3 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P. R. China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China

Corresponding author: Dian-Ming Hu (hudianming1@163.com)

Academic editor: Cecile Gueidan | Received 16 December 2021 | Accepted 24 February 2022 | Published 22 March 2022

Citation: Zhai Z-J, Yan J-Q, Li W-W, Gao Y, Hu H-J, Zhou J-P, Song H-Y, Hu D-M (2022) Three novel species of *Distoseptispora* (Distoseptisporaceae) isolated from bamboo in Jiangxi Province, China. MycoKeys 88: 35–54. https://doi.org/10.3897/mycokeys.88.79346

Abstract

Decaying bamboo in freshwater is a unique eco-environment for fungi. Three new *Distoseptispora* (*Distoseptisporaceae*) species, *D. meilingensis*, *D. yongxiuensis* and *D. yunjushanensis* from submerged decaying bamboo culms in Jiangxi Province, China, were discovered, based on phylogenetic analyses and morphological characters. The combined data of ITS-LSU-SSU-*Tef1* sequences were used to infer the phylogenetic relationship between *D. meilingensis*, *D. yongxiuensis*, *D. yunjushanensis* and related species. Both molecular analyses and morphological data supported *D. meilingensis*, *D. yongxiuensis* and *D. yunjushanensis* as three independent taxa.

Keywords

Hyphomycetes, phylogenetic analysis, Sordariomycetes, taxonomy, three new taxa

Introduction

Distoseptispora was established by Su et al. (2016) as the single genus in *Distoseptisporaceae*. This genus morphologically resembles *Ellisembia* and *Sporidesmium* (Subramanian 1992; Shenoy et al. 2006; Yang et al. 2018), while they are not in sister clades in molecular phylogenetic trees (Su et al. 2016; Luo et al. 2019; Hyde et al. 2020, 2021). Multigene analysis showed that *Distoseptispora* formed a stable and well-supported clade within *Distoseptisporales* as a sister clade to *Aquapteridospora* (Luo et al. 2019; Hyde et al. 2020, 2021). *Aquapteridospora* has been raised as a new family *Aquapteridosporaceae* for the divergence time (110 million years ago (mya)) falling within the family-level range (50–130 mya) (Hyde et al. 2021). *Aquapteridospora* and *Distoseptispora* are similar in having macronematous, mononematous, unbranched conidiophores, mono- or polyblastic, holoblastic, conidiogenous cells and acrogenous, solitary conidia. *Distoseptispora* can easily be distinguished from *Aquapteridospora* by its short conidiophores and obclavate or cylindrical, rostrate, euseptate or distoseptate conidia. Additionally, *Distoseptispora* has terminal conidiogenous cells which lack circular scars (Hyde et al. 2021).

Distoseptispora was regarded as saprobic lignicolous fungal genus, which has the ability to decompose lignocelluloses in wood (Wong et al. 1998; Hyde et al. 2016). In recent years, the number of new taxa in *Distoseptispora* is steadily increasing and currently comprises 35 species, which have been discovered mostly in freshwater and some in terrestrial habitats (Su et al. 2016; Dong et al. 2021; Hyde et al. 2021; Li et al. 2021). Except for the two species, D. adscendens and D. leonensis, which were found from Hungary and Malaysia, respectively (Shoemaker and White 1985; Mckenzie 1995), 19 of the 33 species has been discovered in Thailand, while the remaining 14 species were introduced from China (Table 2). In China, *Distoseptispora* species are almost exclusively reported in Yunnan Province (Su et al. 2016; Luo et al. 2018; Hyde et al. 2019; Phookamsak et al. 2019; Li et al. 2021). Only three species, D. martinii, D. bambusae and D. suoluoensis, have been discovered from Guizhou Province (Xia et al. 2017; Yang et al. 2018; Sun et al. 2020). In this study, we introduce three new species of Distoseptispora, including D. meilingensis, D. yongxiuensis and D. yunjushanensis from Jiangxi Province in subtropical China. We describe the novel species, based on morphological illustrations and phylogenetic analyses. A synopsis of the morphological characters of *Distoseptispora* species is also provided.

Materials and methods

Samples collection, morphological observation and isolation

Dead bamboo samples from different freshwater habitats in Jiangxi Province, China, were taken to the lab for detection of fungi using a Nikon SMZ-1270 microscope (Nikon Corporation, Japan). Micro-morphological characteristics were observed and

captured using a Nikon ECLIPSE Ni-U compound microscope (Nikon Corporation, Japan), equipped with a Nikon DS-Fi3 camera. All measurements were calculated using PhotoRuler Ver. 1.1 software (The Genus Inocybe, Hyogo, Japan) and figures were processed using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, USA). Pure cultures of the fungi were obtained by the single spore isolation method (Chomnunti et al. 2014). The germinating conidia were transferred to potato dextrose agar (PDA) and incubated at 25 °C for two weeks. The fungal cultures were deposited in the Jiangxi Agricultural University Culture Collection (JAUCC) and the holotypic specimens with MycoBank numbers (842065, 842066, 842067) were deposited in the Herbarium of Fungi, Jiangxi Agricultural University (HFJAU).

DNA extraction, PCR amplification and sequencing

Fungal genomes were extracted from fresh mycelium using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1987). Four deoxyribonucleic acid (DNA) barcodes (ITS, LSU, SSU and *Tef-1* α) were chosen for polymerase chain reaction (PCR) using the primer pairs ITS1/ITS4 (White et al. 1990), LR0R/LR7 (Hopple and Vilgalys 1999), NS1/NS4 (White et al. 1990) and EF983F/EF2218R (Örstadius et al. 2015), respectively. Amplification reactions were carried out in a volume of 25 µl, containing 12.5 µl 2 × Taq PCR MasterMix (Qingke, Changsha, China), 1 µl each forward and reverse primer (0.2 µM), 1 µl template DNA (circa 50–100 ng) and 9.5 µl ddH₂O. Amplifications were conducted under the following conditions: 3 min at 98 °C, 35 cycles of 10 s at 98 °C, 10 s of annealing at 55 °C and extension at 72 °C for 10 s, with a final 2-min extension at 72 °C. Sequencing reactions were conducted with the corresponding forward and reverse primers commercially by QingKe Biotechnology Co. (Changsha, China). All sequences were edited with Sequencher v.4.14 (GeneCodes Corporation, USA) and have been deposited in the NCBI GenBank database (Table 1).

Data analyses

Reference sequences of 35 *Distoseptispora* species and three *Aquapteridospora* species, based on recent publications (Luo et al. 2019; Hyde et al. 2020; Monkai et al. 2020; Dong et al. 2021, Li et al. 2021) were downloaded from GenBank. Detailed information on fungal strains used in this paper are provided in Table 1.

All obtained sequences were aligned using the online service of MAFFT (Madeira et al. 2019) and refined manually in MEGA v.7.0 (Kumar et al. 2016). Maximum Likelihood (ML) analysis was conducted with RAxML 8.0 using a GTR-GAMMA model of evolution (Stamatakis 2014). Non-parametric bootstrap analysis was implemented using 1,000 replicates to estimate ML bootstrap (BS) values. Bayesian Inference (BI) analysis was carried out with MrBayes v.3.2 under partitioned models (Ronquist et al. 2012). The best-fit models of nucleotide substitutions were selected according to the Akaike Information Criterion (AIC) implemented in jModelTest2.1.1

Table 1. Sequences used in this study.

Taxa	Voucher	LSU	ITS	SSU	Tef-10.
Aquapteridospora aquatica	MFLUCC 17-2371	NG_075413	NR_172447		
Aquapteridospora fusiformis	MFLU 18-1601	MK849798	MK828652	_	MN194056
Aquapteridospora lignicola	MFLU 15-1172	KU221018	_	_	_
Distoseptispora adscendens	HKUCC 10820	DQ408561	_	_	_
Distoseptispora appendiculata	MFLUCC 18-0259	MN163023	MN163009	_	MN174866
Distoseptispora aquatica	GZCC 19-0452	MZ227216	MW133908	MW134689	_
Distoseptispora aquatica	MFLUCC 16-0904	MK849794	MK828649	MK828315	_
Distoseptispora aquatica	MFLUCC 18-0646	MK849793	MK828648		_
Distoseptispora aquatica	MFLUCC 16-1357	MK849796	MK828650	MK828317	_
Distoseptispora aquatica	S-965	MK849792	MK828647	MK828314	MN194051
Distoseptispora bambusae	MFLUCC 20-0091	NG_074430	NR_170068	NG_070348	_
Distoseptispora bambusae	MFLU 20-0261	MT232718	MT232713	MT232716	MT232880
Distoseptispora bambusae	MFLU 17-1653	MT232717	MT232712	_	_
Distoseptispora cangshanensis	MFLUCC 16-0970	MG979761	MG979754	_	MG988419
Distoseptispora caricis	CPC 36498	MN567632	NR_166325	_	_
Distoseptispora clematidis	MFLUCC 17-2145	MT214617	MT310661	MT226728	_
Distoseptispora clematidis	KUN-HKAS 112708	MW879523	MW723056	MW774580	_
Distoseptispora dehongensis	KUMCC 18-0090	MK079662	MK085061	_	MK087659
Distoseptispora euseptata	MFLUCC 20-0154	MW081544	MW081539	_	_
Distoseptispora euseptata	DLUCC S2024	MW081545	MW081540	_	MW084994
Distoseptispora fasciculata	KUMCC 19-0081	NG_075417	NR_172452	_	MW396656
Distoseptispora fluminicola	DLUCC 0391	MG979762	MG979755	_	MG988420
Distoseptispora fluminicola	DLUCC 0999	MG979763	MG979756	_	MG988421
Distoseptispora guttulata	MFLU 17-0852	MF077554	MF077543	MF077532	MF135651
Distoseptispora hydei	MFLUCC 20-0481	MT742830	MT734661	_	_
Distoseptispora leonensis	HKUCC 10822	DQ408566	—	_	—
Distoseptispora lignicola	MFLUCC 18-0198	MK849797	MK828651	MK828318	—
Distoseptispora longispora	HFJAU 0705	MH555357	MH555359	MH555431	—
Distoseptispora martinii	CGMCC 318651	KX033566	KU999975	KX033537	—
Distoseptispora meilingensis	JAUCC 4727	OK562396	OK562390	OK562402	OK562408
Distoseptispora meilingensis	JAUCC 4728	OK562397	OK562391	OK562403	OK562409
Distoseptispora multiseptata	MFLUCC 15-0609	KX710140	KX710145	NG_065693	MF135659
Distoseptispora multiseptata	MFLU 17-0856	MF077555	MF077544	MF077533	—
Distoseptispora neorostrata	MFLUCC 18-0376	MN163017	MN163008	_	_
Distoseptispora obclavata	MFLUCC 18-0329	MN163010	MN163012	_	_
Distoseptispora obpyriformis	DLUCC 0867	MG979765	MG979757	_	MG988423
Distoseptispora palmarum	MFLUCC 18-1446	MK079663	MK085062	MK079661	MK087660
Distoseptispora palmarum	MFLU 18-0588	NG_067856	NR_165897	_	MK087660
Distoseptispora phangngaensis	MFLU 17-0855	MF077556	MF077545	MF077534	MF135653
Distoseptispora phangngaensis	MFLUCC 16-0857	—	NR_166230		—
Distoseptispora rayongensis	MFLUCC 18-0415	NG_073624	NR_171938	NG_073504	_
Distoseptispora rayongensis	MFLU 18-1045	MH457137	MH457172	MH457169	—
Distoseptispora rostrata	MFLUCC 16-0969	MG979766	MG979758	_	MG988424
Distoseptispora rostrata	DLUCC 0885	MG979767	MG979759		MG988425
Distoseptispora rostrata	MFLU 18-0479	NG_064513	NR_157552		—
Distoseptispora saprophytica	MFLUCC 18-1238	NG_075419	NR_172454	_	MW396651
Distoseptispora songkhlata	MFLUCC 18-1234	MW287755	MW286482	_	MW396642
Distoseptispora submersa	MFLUCC 16-0946	MG979768	MG979760	_	MG988426
Distoseptispora suoluoensis	MFLUCC 17-0224	NG_068552	NR_168764	NG_070113	MF135654
Distoseptispora suoluoensis	MFLU 17-0854	MF077558	MF077547	MF077536	_
Distoseptispora tectonae	MFLUCC 15-0981	MW287763	MW286489	_	MW396641
Distoseptispora tectonae	MFLUCC 12-0291	KX751713	KX751711	_	KX751710

Taxa	Voucher	LSU	ITS	SSU	Tef-10.
Distoseptispora tectonae	S-2023	MW081543	MW081538	_	_
Distoseptispora tectonae	GZ 25	MH555358	MH555361	_	_
Distoseptispora tectonigena	MFLUCC 12-0292	KX751714	NR_154018	_	_
Distoseptispora thailandica	MFLUCC 16-0270	MH260292	MH275060	MH260334	MH412767
Distoseptispora thysanolaenae	KUN-HKAS 112710	MW879524	MW723057	_	_
Distoseptispora thysanolaenae	KUN-HKAS 102247	MK064091	MK045851	_	MK086031
Distoseptispora xishuangbannaensis	KUMCC 17-0290	MH260293	MH275061	MH260335	MH412768
Distoseptispora yongxiuensis	JAUCC 4725	OK562394	OK562388	OK562400	OK562406
Distoseptispora yongxiuensis	JAUCC 4726	OK562395	OK562389	OK562401	OK562407
Distoseptispora yunjushanensis	JAUCC 4723	OK562398	OK562392	OK562404	OK562410
Distoseptispora yunjushanensis	JAUCC 4724	OK562399	OK562393	OK562405	OK562411
Distoseptispora yunnansis	MFLUCC 20-0153	MW081546	MW081541	—	MW084995

"—", sequence is unavailable.

(Darriba et al. 2012) on XSEDE in the CIPRES web portal (Miller et al. 2010). The models for ITS, LSU, SSU and *Tef-1* α datasets used for phylogenetic analysis are GTR+I+G model (-lnL = 4965.1122), GTR+I+G model (-lnL = 2716.7536), TIM2+G (-lnL = 4344.2295) and TrN+I+G (-lnL = 4479.4914), respectively. The datasets were run for 10,000,000 generations, with four chains and trees sampled every 1,000 generations. The first 10% trees were discarded as burn-in. We used three *Aquapteridospora* species as outgroups. The Bayesian consensus tree with posterior probabilities (PP) was visualised with FigTree v.1.4.4 (Rambaut 2018) and was edited in Adobe Illustrator CS6. Our aligned matrices and trees can be obtained from TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29465).

Results

Molecular phylogenetic results

According to the results of BLAST analysis and sequence alignment, the ITS sequence of *D. meilingensis* has 11 different loci from those of *D. yongxiuensis*, the ITS sequence of which shares 99% similarity (five different loci) with that of *D. suoluoensis*. The ITS sequence of *D. yunjushanensis* is 97% similar (22 different loci) to that of *D. obclavata*. The aligned matrix for the combined analysis, ITS + LSU + SSU + *Tef-1* α , had 4015 bp, including ITS 596 bp, LSU 799 bp, SSU 1715 bp and *Tef-1* α 905 bp. The topologies of trees generated by ML and BI analyses are highly similar. The Bayesian tree with BS and PP is shown in Fig. 1. All species of *Distoseptispora* form a monophyletic group (BS/PP = 100/1.00). *D. yongxiuensis* groups together with *D. suoluoensis* (BS/PP = 60/0.99). These two species and collections of *D. meilingensis* form a strong-supported clade (BS/PP = 99/1.00), which is strongly linked with sequences of *D. bambusae* (BS/ PP = 100/1.00). Collections of *D. yunjushanensis* form a moderate-support clade (BS/ PP = 81/1.00) with the lineage consisting of *D. obclavata* and *D. rayongensis*.

Figure 1. Phylogenetic tree of *Distoseptispora*, inferred from the combined regions (ITS-LSU-SSU-*Tef 1* α) using Bayesian Inference (BI) analysis. The *Aquapteridospora* clade was used as the outgroup. The lineages with new species were shown in bold. PP ≥ 0.95 and BS $\ge 75\%$ were indicated around the branches. The new sequences generated in this study are given in bold.

Taxonomy

Distoseptispora meilingensis Z. J. Zhai & D. M. Hu, sp. nov. MycoBank No: 842067

Fig. 2

Etymology. Referring to the collecting site of the Meiling Mountain in Jiangxi Province, China.

Holotype. HFJAU 10009.

Figure 2. *Distoseptispora meilingensis* (HFJAU10009, holotype) **a**, **b** colonies on bamboo culms **c–e** conidiophores with conidia **f** conidiogenous cells **g**, **n** conidiogenous cells with conidia **h–m** conidia **o** germinating conidium **p** culture on PDA from above and reverse. Scale bars: 100 μ m (**a**, **b**), 20 μ m (**c–e**, **o**), 5 μ m (**f–n**).

Description. Saprobic on culms of bamboo. *Sexual morph*: Undetermined. *Asexual morph*: Hyphomycetous. *Colonies* effuse, brown to dark brown, hairy. *Mycelium* mostly immersed, composed of pale to dark brown, septate, branched, smooth, hyaline to subhyaline hyphae. *Conidiophores* 69–192 × 4–7 µm (\bar{x} = 120.6 × 5.5 µm, n = 25), macronematous, mononematous, erect, cylindrical, straight or slightly flexuous, 5–12-septate, yellowish-brown or brown, robust at the base. *Conidiogenous cells* holoblastic, mono- to polyblastic, integrated, terminal, cylindrical, yellowishbrown or brown. *Conidia* 32–64.5 × (7–)9–12.5 µm (\bar{x} = 43.7 × 9.8 µm, n = 30), acrogenous, solitary, straight or slightly curved, obclavate, 5–7-distoseptate, thickwalled, rounded at the apex, truncate at the base, tapering towards apex, bud scars disjunctors at base, mostly brown when mature.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 17–23 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse brown to dark brown.

Material examine. CHINA, Jiangxi Province, Nanchang City, Meiling Mountain, alt. 305 m, near 28.79°N, 115.72°E, on decaying bamboo culms submerged in a freshwater stream, 16 Aug 2021, Z. J. Zhai, SLT-3 (HFJAU10009, *bolotype*), ex-type living culture, JAUCC 4727 = JAUCC 4728.

Notes. Distoseptispora meilingensis clusters with the clade including *D. suoluoensis* and *D. yongxiuensis* with high support in the phylogenetic tree (Fig. 1). Distoseptispora meilingensis is distinct from *D. suoluoensis* (Yang et al. 2018) and *D. yongxiuensis* by its conidial colour (mostly brown, yellowish-brown to dark olivaceous and yellowish-brown or brown, respectively). Furthermore, *D. meilingensis* has shorter conidia (32–64.5 μ m vs. (65–)80–125(–145) μ m) than those of *D. suoluoensis* (Yang et al. 2018) and slightly shorter conidiophores (69–192 μ m vs. 112–253 μ m) than those of *D. yongxiuensis*. Distoseptispora meilingensis resembles *D. bambusae* in similar habitats and polyblastic conidiogenous cells (Sun et al. 2020). However, *D. meilingensis* can be distinguished from *D. bambusae* in its longer conidiophores (69–192 μ m vs. 40–96 μ m), slightly wider (up to 12.5 μ m vs. up to 9.5 μ m) and brighter (light brown vs. brown) conidia (Sun et al. 2020). A comparison of morphological features of *Distoseptispora* species is provided in Table 2.

Distoseptispora yongxiuensis Z. J. Zhai & D. M. Hu, sp. nov.

MycoBank No: 842066 Fig. 3

Etymology. With reference to Yongxiu, from where the holotype was collected.

Holotype. HFJAU10007

Description. Saprobic on decaying bamboo culms. *Sexual morph*: Undetermined. *Asexual morph*: Hyphomycetous. *Colonies* effuse, brown, hairy, glistening, often inconspicuous. *Mycelium* partly superficial, partly immersed in the substra-

species.
istoseptispora :
across D
compared
district
sts and
tats, ho
s, habi
haracteristic
alc
logic
morphc
ynopsis of
Ś
9
Ť

Table 2. Synop	sis of morphologics	ıl characteristics, habi	itats, hosts and dis	trict compared across Disto:	septispora sl	pecies.		
Species	Conidiophores (µm)	Conidia (µm)	Conidia septation	Conidia characteristics	Habitat	Host	District	References
Distoseptispora meilingensis	69-192 × 4-7	32-64.5 × (7-)9-12.5	5-7-distoseptate	Obclavate, mostly bright brown when mature	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. yongxiuensis	112-253 × 4-9	46-74(-86) × 10-13(-16)	6-9-euseptate	Obclavate or obspathulate, olivaceous to yellowish-brown or brown, guttulate	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. yunjushanensis	100-175 × 5.5-10	39-67.5(-77) × (7-)9.5-13.5(-16.5)	7-13-distoseptate	Obpyriform or obclavate, olivaceous when young, dark brown when mature	Freshwater	Dead bamboo culms	China, Jiangxi	This study
D. adscendens	28-46 × 8-10	(80-)350-500 × 15-18	80-distoseptate	Cylindrical, hemispherical apex, hyaline	Terrestrial	Decaying wood of Fagus sylvatica	Hungary	Shoemaker and White (1985), Réblová (1999)
D. appendiculata	62-86 × 4.5-5.5	67-89 × 10-16	13-17-distoseptate	Obpyriform or obclavate, olivaceous or dark brown, with gelatinous sheath around tip	Freshwater	Unidentified submerged wood	Thailand, Kh- waeng Phra	Luo et al. (2019)
D. aquatica	29-41 × 7-9	110-157 × 13.5-16.5	15–28-distoseptate	Obclavate, dark brown with bluish-green to malachite green tinge	Freshwater	Unidentified submerged wood	China, Yunnan	Su et al. (2016)
D. bambusae	40-96 × 4-5.5	45-74 × 5.5-9.5	5–10-distoseptate	Obclavate, olivaceous or brown	Terrestrial	Dead bamboo culms	China and Thailand	Sun et al. (2020), Monkai et al. (2020)
D. cangshanensis	44-68 × 4-8	58-166(-287) × 10-14	Multi-distoseptate	Obclavate or lanceolate, rostrate, olivaceous or brown	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. caricis	35-90 × 6-7	(55-)65-85(-100) × 15-16(-17)	5-10-distoseptate	Obclavate, brown, septa with central pore, basal cell pale brown, with truncate hilum	Terrestrial	Leaves of <i>Carex</i> sp.	Thailand, Chiang Mai	Crous et al. (2019)
D. clematidis	22-40 × 4-10	120-210 × 12-20	28-35-distoseptate	Oblong, obclavate, cylindrical or rostrate, brown with green tinge, bud scars or disjunctors present at the site of attachment	Terrestrial	Dried branches of Clematis sikkimensis	Thailand, Chiang Rai	Phukhamsakda et al. (2020)
D. dehongensis	$45-80 \times 4-5$	17-30 × 7.5-10	3–5-distoseptate	Obpyriform to obclavate, broad cylindrical or irregular, olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Hyde et al. (2019)
D. euseptata	$19-28 \times 4-5$	$37-54 \times 8-9$	4–7-euseptate	Obpyriform to obclavate, often constricted at septa, olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Li et al. (2021)

Three novel spcies of Distoseptispora from bamboo

	()	()-;F;)			H-Litze	П		
opecies	Comutophores (µm)	Contata (µm)	Contata septation	Contidia characteristics	LIADIUAL	LIOST	DISILICI	Nererences
D. fasciculata	12-16 × 5-6	46-200 × 10-16.5	10-40-distoseptate	Subcylindrical to obclavate, olivaceous when young, dark brown when mature	Freshwater	Unidentified submerged wood	Thailand, Nakhon Si Thammarat	Dong et al. (2021)
D. fluminicola	21-33 × 5.5-6.5	$125-250 \times 13-15$	17-34-distoseptate	Oblong, obclavate, cylindrical or rostrate, brown with green tinge	Freshwater	Unidentified submerged wood	China, Yunnan	Su et al. (2016)
D. guttulata	55-90(-145) × 3.5-5.5	75-130(-165) × 7-11	1 1-1 4(-20)-euseptate	Obclavate or lanceolate, rostrate, mid to dark brown or olivaceous	Freshwater	Unidentified submerged wood	Thailand, Prach- uap Khiri Khan	Yang et al. (2018)
D. bydei	87-145 × 3-7	32-58 × 10-15	7–9-distoseptate	Obpyriform to fusiform, oliva- ceous to brown, with a hyaline, globose, gelatinous sheath around tip	Terrestrial	Dead bamboo culms	Thailand, Phitsanulok	Monkai et al. (2020)
D. leonensis	Up to 175 × 6-7	$(38-)50-75(-85) \times 11-15$	7–12-distoseptate	Obclavate, rostrate, brown	Terrestrial	Dead culms of <i>Freycinetia</i> sp.	Malaysia	McKenzie (1995)
D. lignicola	84-124 × 4-5	$60-108 \times 7-9$	5-9-euseptate	Obclavate, curved, brown	Freshwater	Unidentified submerged wood	Thailand, Sai- Khu Waterfall	Luo et al. (2019)
D. longispora	$17-37 \times 6-10$	189-297 × 16-23	31–56-distoseptate	Obclavate, elongated, brown to yellowish-brown	Freshwater	Unidentified submerged wood	China, Yunnan	Song et al. (2020)
D. martinii	50-110 × 3.5-4.5	15-20 × 11-16	Transversal septa	Transversal ellipsoid, oblate or subglobose, muriform, pale brown to brown	Terrestrial	Unidentified dead branches	China, Guizhou	Xia et al. (2017)
D. multiseptata	29-47 × 4-6	$147 - 185 \times 12 - 14$	Multi-distoseptate	Obclavate, rostrate, dark oliva- ceous green	Freshwater	Unidentified submerged wood	Thailand, Prach- uap Khiri Khan	Hyde et al. (2016)
D. neorostrata	93-117 × 5.5-6.5	109-147 × 13-15	Multi-distoseptate	Obclavate, rostrate, dark oliva- ceous to mid or dark brown	Freshwater	Unidentified submerged wood	Thailand, Khwaeng Phra Khanong Nuea	Luo et al. (2019)
D. obclavata	117.5-162.5 × 5-7	46-66 × 9-11	9-11-distoseptate	Obclavate, olivaceous to pale or dark brown, guttulate	Freshwater	Unidentified submerged wood	Thailand, Khwaeng Phra Khanong Nuea	Luo et al. (2019)
D. obpyriformis	97-119 × 5-7	53-71 × 12-16	9–11-distoseptate	Obpyriform, olivaceous to pale or dark brown, guttulate	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. palmarum	90-165 × 4-7	$35 - 180 \times 7 - 11$	7-27-distoseptate	Oblong, obclavate, greenish- black to brown	Terrestrial	Rachis of <i>Cocos nucifera</i>	Thailand, Trat	Hyde et al. (2019)
D. phangngaensis	18-30(-40) × 4.3-6.5	165–350 × 14–19	Multi-distoseptate	Elongate, obclavate, rostrate, dark olivaceous to mid or dark brown	Freshwater	Unidentified submerged wood	Thailand, Phang Nga	Yang et al. (2018)

44

Zhi-Jun Zhai et al. / MycoKeys 88: 35-54 (2022)

Species	Conidiophores (µm)	Conidia (µm)	Conidia septation	Conidia characteristics	Habitat	Host	District	References
D. rayongensis	75-125 × 3.5-5.5	(36–)60–106(–120) × 9–14.5	9–13-euseptate, rarely 14–15-septate	Obclavate or obspathulate, rostrate, pale brown or pale	Freshwater	Unidentified submerged wood	Thailand, Rayong	Hyde et al. (2020)
				ouvaceous, with percurrent proliferation				
D. rostrata	82-126 × 5-7	115-155 × 9-11	(15-)18-23-dis- toseptate	Obclavate or lanceolate, rostrate, olivaceous to pale brown	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. saprophytica	$50-140 \times 3.2-4.2$	$14.5-30 \times 4.5-7.5$	2-6-distoseptate	Subcylindrical to obclavate, olivaceous to brown	Freshwater	Unidentified submerged wood	Thailand, Songkhla	Dong et al. (2021)
D. songkhlaensis	$70-90 \times 4-5.5$	44–125 × 9–14.5	9–16-distoseptate	Obclavate, constricted at septa, olivaceous to brown	Freshwater	Unidentified submerged wood	Thailand, Songkhla	Dong et al. (2021)
D. submersa	55-73 × 7-9	95-123 × 15-19	17–23(–28)-dis- toseptate	Obclavate, brown to dark brown or olivaceous	Freshwater	Unidentified submerged wood	China, Yunnan	Luo et al. (2018)
D. suoluoensis	80-250 × 4.5-5.8	(65-)80-125(-145) × 8-13	8–10-euseptate	Narrowly obclavate or ob- spathulate, yellowish-brown or dark olivaceous, verrucose, with percurrent proliferation	Freshwater	Unidentified submerged wood	China, Guizhou	Yang et al. (2018)
D. tectonae	19.5-95 × 4.5-9	$45-270 \times 11-16$	10–40-distoseptate	Obclavate, brown to dark brown or olivaceous	Terrestrial/ Freshwater	Dead twig of <i>tectona</i> grandis (Lamiaceae)	Thailand, Prach- uap Khiri Khan	Hyde et al. (2016)
D. tectonigena	Up to 110 × 5–11	$(83-)148-225(360-) \times (10-)11-12(-13)$	20-46-distoseptate	Flexuous, cylindrical-obclavate, elongated, verruculose, dark reddish-brown	Terrestrial	Dead twig of <i>Tectona</i> grandis (Lamiaceae)	Thailand, Chiang Rai	Hyde et al. (2016)
D. thailandica	$15-26 \times 3-6$	$130-230 \times 13.5-17$	35–52-distoseptate	Oblong, obclavate, cylindrical or rostrate, reddish-brown to brown	Terrestrial	Dead leaves of <i>Pandanus</i> sp.	Thailand, Prach- uap Khiri Khan	Tibpromma et al. (2018)
D. thysanolaenae	30-80 × 3.5-5.5	21.5-80 × 6.5-12.8	8–14-distoseptate	Elongated obclavate, light to dark brown, flat apex, with con- spicuous spore attachment loci	Terrestrial	Dead culms of <i>Thysa-</i> nolaena maxima	China, Yunnan	Phookamsak et al. (2019)
D. xishuangban- naensis	12-17 × 2-5	160-305 × 8-15	Up to 40-distoseptate	Cylindrical-obclavate, green- brown to brown, tapering towards apex	Terrestrial	Dead leaf sheaths of Pandanus utilis	China, Yunnan	Tibpromma et al. (2018)
D. yunnanensis	$131 - 175 \times 6 - 7$	$58-108 \times 8-10$	6–10-euseptate	Obclavate, rostrate, mid-oliva- ceous to brown	Freshwater	Unidentified submerged wood	China, Yunnan	Li et al. (2021)

Three novel spcies of Distoseptispora from bamboo

Figure 3. *Distoseptispora yongxiuensis* HFJAU 10007, holotype) **a** Colonies on bamboo culm **b**, **d** conidiophores with conidia **c** conidiogenous cell bearing conidium **e** conidiogenous cells with young conidia **f-k** conidia **l** germinating conidium **m** culture on PDA from above and reverse. Scale bars: 100 μ m (**a**), 20 μ m (**b–e**, **l**), 5 μ m (**f–k**).

tum, composed of hyaline to pale brown, septate, branched hyphae. **Conidiophores** 112–253 × 4–9 μ m ($\bar{x} = 198 \times 6.9 \mu$ m, n = 15), macronematous, mononematous, solitary or aggregated at the base, cylindrical, straight or slightly flexuous, 8–13-septate, olivaceous to dark brown, sharply curving near the base, paler at the apical part, rounded at the apex. **Conidiogenous cells** integrated, terminal, monoblastic, rarely polyblastic, cylindrical, olivaceous to dark brown. **Conidia** 46–74(–86) × 10–13(–16) μ m ($\bar{x} = 65.6 \times 12.6 \mu$ m, n = 30), acrogenous, solitary, obclavate or obspathulate, straight or flexuous, rostrate, 6–9-euseptate, olivaceous to yellowish-brown or brown, becoming paler or hyaline towards the apex, guttulate, 2.5–4 μ m wide at the base and 2.5–5 μ m wide at the apex, with a darkened scar at the base.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 24–32 mm diam. at two weeks at 25 °C, in natural light, circular, with dense, light olivaceous mycelium on the surface with entire margin; reverse dark brown to black.

Material examined. CHINA, Jiangxi Province, Jiujiang City, Yongxiu County, alt. 680.5 m, 29.09°N, 115.62°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-70 (HFJAU 10007, *holotype*), extype living culture, JAUCC 4725 = JAUCC 4726.

Notes. In the multi-gene phylogenetic tree (Fig. 1), *D. yongxiuensis* clusters with *D. suoluoensis*. Nonetheless, *D. yongxiuensis* can be distinguished from *D. suoluoensis* by its shorter conidia (46–74(–86) μ m vs. (65–)80–125(–145) μ m) and polyblastic conidiogenous cells (Yang et al. 2018). Additionally, *D. suoluoensis* has the percurrent proliferation of conidia, while it was not observed in *D. yongxiuensis*. *Distoseptispora yongxiuensis* is similar with *D. bambusae* (Sun et al. 2020), *D. palmarum* (Hyde et al. 2019) and *D. meilingensis* for the polyblastic conidiogenous cells, but *D. yongxiuensis* has wider conidia than those of *D. bambusae* (10–13(–16) μ m vs. 5.5–9.5 μ m) (Sun et al. 2020), shorter conidia than those of *D. palmarum* (46–74(–86) μ m vs. 35–180 μ m) (Hyde et al. 2019) and paler (yellowish-brown or brown vs. bright brown) conidia than those of *D. meilingensis*.

Distoseptispora yunjushanensis Z. J. Zhai & D. M. Hu, sp. nov.

MycoBank No: 842065 Fig. 4

Etymology. The epithet refers to the collecting site from the Yunjushan Mountain in China.

Holotype. HFJAU10005

Description. Saprobic on decaying bamboo culms submerged in freshwater habitats. *Sexual morph*: Undetermined. *Asexual morph*: Hyphomycetous. *Colonies* effuse, olivaceous or dark brown, hairy, velvety. *Mycelium* mostly immersed, consisting of branched, septate, smooth, subhyaline to pale brown hyphae. *Conidiophores* 100–175 μ m × 5.5–10 μ m ($\bar{x} = 129 \times 7.1 \mu$ m, n = 30), single or in groups of 2 or 3, macronematous, mononematous, erect, straight or slightly flexuous, 4–7-septate,

Figure 4. *Distoseptispora yunjushanensis* (HFJAU 10005, holotype) **a**, **b** colonies on bamboo culms **c-f** conidiophores with conidia **g-i** young conidia **j-l** mature conidia **m** conidium with proliferation **n** germinating conidium **o**, **p** culture on PDA from above and reverse. Scale bars: 100 μ m (**a**, **b**), 20 μ m (**c-f**, **m**, **n**), 5 μ m (**g-l**).

unbranched, olivaceous to dark brown, smooth, cylindrical, rounded at the apex. **Conidiogenous cells** monoblastic, integrated, terminal, determinate, pale to dark brown, cylindrical. **Conidia** 39–67.5(–77) μ m × (7–)9.5–13.5(–16.5) μ m ($\bar{x} = 52 \times 12 \mu$ m, n = 30), acrogenous, solitary, obpyriform or obclavate, thick-walled, tapering towards the rounded apex, slightly curved, truncate at the base, 7–13-distoseptate, guttulate, smooth-walled, olivaceous, dark brown when mature, sometimes with the percurrent proliferation which forms another conidium from the conidial apex.

Cultural characteristics. Conidia germinating on PDA within 24 h and germ tubes produced from both ends. Colonies on PDA reaching 12–18 mm diam. at 14 days at 25 °C, in natural light, with fluffy, dense, thin olivaceous mycelium in the centre, becoming sparse and paler at the entire margin; reverse dark brown, pale brown at the smooth margin.

Material examined. CHINA, Jiangxi Province, Jiujiang City, Yongxiu County, Yunjushan Mountain, alt. 672.5 m, 29.23°N, 115.59°E, on decaying bamboo culms submerged in a freshwater stream, 28 Apr 2020, Z. J. Zhai and W. W. Li, YJS-42 (HF-JAU 10005, *holotype*), ex-type living culture, JAUCC 4723 = JAUCC 4724.

Notes. In the phylogenetic analysis, *D. yunjushanensis* clusters with *D. obclavata* and *D. rayongensis* with moderate support (BS/PP = 81/1.00). However, *D. yunjushanensis* is easily distinguished from *D. obclavata* by its comparatively wider (5.5–10 µm vs. 5–7 µm) conidiophores and conidia ((7–)9.5–13.5(–16.5) µm vs. 9–11 µm) (Luo et al. 2019). Moreover, the percurrent proliferation of conidia was not observed in *D. obclavata* (Luo et al. 2019). *Distoseptispora yunjushanensis* has shorter conidia (39–67.5(–77) µm vs. (36–)60–106(–120) µm) and wider conidiophores (5.5–10 µm vs. 3.5–5.5 µm) than those of *D. rayongensis* (Hyde et al. 2020). The morphology of *D. yunjushanensis* is similar to *D. guttulata* and *D. songkhlaensis* in having the obclavate conidia, but differs in having wider (5.5–10 µm vs. 3.5–5.5 µm and 4–5.5 µm) conidiophores, shorter (39–67.5(–77) µm vs. 75–130(–165) µm and 44–125 µm) and proliferating conidia (Yang et al. 2018; Dong et al. 2021). Additionally, *D. yunjushanensis* can be distinguished from *D. guttulata* by its distoseptate conidia (Yang et al. 2018).

Discussion

Previous reports of *Distoseptispora* were mainly concentrated in tropical areas, such as Thailand (Chiang Rai, Phitsanulok, Phang Nga; Luo et al. 2019) and southwest Yunnan, China (Su et al. 2016; Luo et al. 2018). Nonetheless, several new taxa were found sporadically in subtropical China, for example, *Distoseptispora martinii* (Xia et al. 2017), *D. suoluoensis* (Yang et al. 2018) and *D. bambusae* (Sun et al. 2020) in Guizhou Province and *D. euseptata* and *D. yunnansis* in northwest Yunnan (Li et al. 2021). The ongoing discovery of this taxa from other geographic regions in subtropical China will deepen our understanding of the species in this genus. In this study, we introduced another three new species of *Distoseptispora* from Jiangxi Province of subtropical China. It is interesting to note that all these species in subtropical China, except *D. yunjushanensis* and

D. martinii, formed a well-supported monophyletic clade in the phylogenetic tree and this clade was at the basal position (Fig. 1). *Distoseptispora yunjushanensis* and *D.martinii* were otherwise phylogenetically placed within other clades (Fig. 1) and, therefore, we suppose that other lineages might also comprise more *Distoseptispora* species distributed in subtropical China. Further discovery of *Distoseptispora* species in more extensive areas in subtropical and other regions of China are needed to be addressed if the phylogenetic position of species reflects their geographical and ecological distribution.

Distoseptisporaceae is a holomorphic group of *Sordariomycetes* that are saprobic on decaying wood and plant debris in terrestrial and freshwater habitats (Su et al. 2016). The genus *Distoseptispora* seems not to have specific habitat preferences, as most species were reported from submerged wood in freshwater habitats, while some were introduced from terrestrial habitats (Table 2). So far, only five species of *Distoseptispora* have been found on bamboo, two of them (*Distoseptispora bambusae* and *D. hydei*, Table 2) from terrestrial habitats, the other three (this study) from freshwater. There may be more species in this genus existing on bamboo waiting to be discovered and further studies are needed to clarify if a specific species in *Distoseptispora* is specific to its host.

Acknowledgements

We are grateful to Deng-Mei Fan and Yi Yang (Agricultural college, Jiangxi Agricultural University) for the valuable advice in the context of this study. This study was supported by the National Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Natural Science Foundation of Jiangxi Province (20151BAB214002) and Science and Technology Plan Project of Jiangxi Province (GJJ160417).

References

- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5
- Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsa-Ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, Delapeña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Cabo M, Cafa G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, Decastro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massolajr NS,

Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, Desouza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951–1041. Persoonia 43(1): 223–425. https://doi.org/10.3767/persoonia.2019.43.06

- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): e772. https://doi.org/10.1038/nmeth.2109
- Dong W, Hyde KD, Jeewon R, Doilom M, Yu XD, Wang GN, Liu NG, Hu DM, Nalumpang S, Zhang H (2021) Towards a natural classification of annulatascaceae-like taxa II: Introducing five new genera and eighteen new species from freshwater. Mycosphere : Journal of Fungal Biology 12(1): 1–88. https://doi.org/10.5943/mycosphere/12/1/1
- Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
- Hopple JJJ, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus *Coprinus* and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: Divergent domains, outgroups, and monophyly. Molecular Phylogenetics and Evolution 13(1): 1–19. https://doi.org/10.1006/mpev.1999.0634
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, deSilva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu HX, Yang J, Zeng XY, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar MA, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, Silva GA, Lima CLF, Oliveira RJV, Souza CAF, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liimatainen K, Liu ZY, Liu XZ, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen TC, Xu JC, Zhang ZK, Zhao YC, Zhou JL, Zhu L (2016) Fungal diversity notes 367-490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1-270. https://doi. org/10.1007/s13225-016-0373-x
- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SS, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Cáceres ME, Karunarathna SC, Hongsanan S, Phookamsak R, Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E,

Hofstetter V, Gibertoni TB, Soares AMS, Plautz HL, Sotão HMP, Xavier WKS, Bezerra JDP, Oliveira TGL, Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblová M, Fournier J, Nekvindová J, Barbosa RN, Santos JEF, Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkalčec Z, Liang JM, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC, Doilom M (2019) Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96(1): 1–242. https://doi.org/10.1007/s13225-019-00429-2

- Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsaard J, Lumyong S, Luo ZL, Maras-inghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of *Sordariomycetes*. Mycosphere : Journal of Fungal Biology 11(1): 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
- Hyde KD, Bao DF, Hongsanan S, Chethana KWT, Yang J, Suwannarach N (2021) Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. Fungal Diversity 107(1): 71–105. https://doi.org/10.1007/s13225-021-00469-7
- Kumar S, Stecher G, Tamura K (2016) Mega7: Molecular evolutionary genetic analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi. org/10.1093/molbev/msw054
- Li WL, Liu ZP, Zhang T, Dissanayake AJ, Luo ZL, Su HY, Liu JK (2021) Additions to *Distoseptispora* (Distoseptisporaceae) associated with submerged decaying wood in China. Phytotaxa 520(1): 75–86. https://doi.org/10.11646/phytotaxa.520.1.5
- Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel *Distoseptispora* (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere: Journal of Fungal Biology 9(3): 444–461. https://doi.org/10.5943/ mycosphere/9/3/2
- Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Diversity 99(1): 451–660. https://doi.org/10.1007/s13225-019-00438-1

- Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47(W1): W636–W641. https://doi.org/10.1093/ nar/gkz268
- Mckenzie EHC (1995) Dematiaceous Hyphomycetes on Pandanaceae. V. *Sporidesmium* sensu lato. Mycotaxon 56: 9–29.
- Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), Institute of Electrical and Electronics Engineers, New Orleans, Louisiana, 1–8. https://doi.org/10.1109/GCE.2010.5676129
- Monkai J, Boonmee S, Ren GC, Wei DP, Phookamsak R, Mortimer PE (2020) Distoseptispora hydei sp. nov. (Distoseptisporaceae), a novel lignicolous fungus on decaying bamboo in Thailand. Phytotaxa 459(2): 93–107. https://doi.org/10.11646/phytotaxa.459.2.1
- Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Gareth Jones E, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo Z, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929-1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1–273. https://doi.org/10.1007/s13225-019-00421-w
- Phukhamsakda C, Mckenzie EHC, Phillips AJL, Jones EBG, Bhat DJ, Marc S, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD (2020) Microfungi associated with *Clematis* (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102(1): 1–203. https://doi.org/10.1007/s13225-020-00448-4
- Rambaut A (2018) FigTree v1.4.4: Tree figure drawing tool. https://github.com/rambaut/ figtree/releases
- Réblová M (1999) Studies in *Chaetosphaeria* sensu lato III. *Umbrinosphaeria* gen. nov. and *Miyoshiella* with *Sporidesmium* anamorphs. Mycotaxon 71: 13–43.
- Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

- Shenoy BD, Jeewon R, Wu WPP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that *Sporidesmium* and morphologically similar genera are polyphyletic. Mycological Research 110(8): 916–928. https://doi.org/10.1016/j.mycres.2006.06.004
- Shoemaker RA, White GP (1985) *Lasiosphaeria caesariata* with *Sporidesmium hormiscioides* and *L. triseptata* with *S. adscendens.* Sydowia 38: 278–283.
- Song HY, Sheikha AF, Zhai ZJ, Zhou JP, Chen MH, Huo GH, Huang XG, Hu DM (2020) Distoseptispora longispora sp. nov. from freshwater habitats in China. Mycotaxon 135(3): 513–523. https://doi.org/10.5248/135.513
- Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312–1313. https://doi. org/10.1093/bioinformatics/btu033
- Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bahkali AH, Bhat JD, McKeenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80(1): 375–409. https://doi.org/10.1007/s13225-016-0362-0
- Subramanian CV (1992) A reassessment of *Sporidesmium* (hyphomycetes) and some related taxa. Proceedings of the Indian National Science Academy B58: 179–190.
- Sun YR, Goonasekara ID, Thambugala KM, Jayawardena RS, Wang Y, Hyde KD (2020) Distoseptispora bambusae sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand. Biodiversity Data Journal 8: e53678. https://doi.org/10.3897/BDJ.8.e53678
- Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu JC, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6
- White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, Sninsky JJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong SW, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7(9): 1187–1206. https://doi.org/10.1023/A:1008883716975
- Xia JW, Ma YR, Li Z, Zhang XG (2017) Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae. Scientific Reports 7(1): e7888. https://doi.org/10.1038/s41598-017-08318-x
- Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) *Pseudostanjehughesia aquitropica* gen. et sp. nov. and *Sporidesmium* sensu lato species from freshwater habitats. Mycological Progress 17(5): 591–616. https://doi.org/10.1007/ s11557-017-1339-4