RESEARCH ARTICLE

Crassisporus gen. nov. (Polyporaceae, Basidiomycota) evidenced by morphological characters and phylogenetic analyses with descriptions of four new species

Xing Ji¹, Dong-Mei Wu², Shun Liu¹, Jing Si¹, Bao-Kai Cui¹

l Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China **2** Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences / Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi, Xinjiang 832000, China

Corresponding author: Bao-Kai Cui (cuibaokai@yahoo.com)

Academic editor: María P. Martín | Received 6 July 2019 | Accepted 9 August 2019 | Published 21 August 2019

Citation: Ji X, Wu D-M, Liu S, Si J, Cui B-K (2019) *Crassisporus* gen. nov. (Polyporaceae, Basidiomycota) evidenced by morphological characters and phylogenetic analyses with descriptions of four new species. MycoKeys 57: 61–84. https://doi.org/10.3897/mycokeys.57.38035

Abstract

A new poroid wood-inhabiting fungal genus, *Crassisporus* gen. nov., is proposed on the basis of morphological characters and molecular evidence. The genus is characterized by an annual growth habit, effused-reflexed to pileate basidiocarps with pale yellowish brown to yellowish brown, concentrically zonate or sulcate, and velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues turning to dark in KOH, oblong to broadly ellipsoid, hyaline, smooth, and slightly thick-walled basidiospores. Phylogenetic analysis based on ITS+nLSU sequences indicate that *Crassisporus* belongs to the core polyporoid clade. The combined ITS+nLSU+mtSSU+EF1- α +RPB2 sequences dataset of representative taxa in the Polyporaceae demonstrate that *Crassisporus* is grouped with *Haploporus* but forms a monophyletic lineage. In addition, four new species of *Crassisporus*, *C. imbricatus*, *C. leucoporus*, *C. macroporus*, and *C. microsporus* are described.

Keywords

core polyporoid clade, molecular phylogeny, polypore, taxonomy, wood-decaying fungi

Introduction

Polyporales is one of the most diverse orders of Basidiomycota including more than 1800 described species in 216 genera and 13 families (Kirk et al. 2008). In the last 10 years, many new genera in Polyporales have been established, such as *Datroniella* B.K.

Cui, Hai J. Li & Y.C. Dai (Li et al. 2014a), *Fragifomes* B.K. Cui, M.L. Han & Y.C. Dai (Han et al. 2016), *Megasporia* B.K. Cui, Y.C. Dai & Hai J. Li (Li and Cui 2013), *Pseudofibroporia* Yuan Y. Chen & B.K. Cui (Chen et al. 2017), and *Pseudomegasporoporia* X.H.Ji & F.Wu (Ji and Wu 2017).

During the investigations of species diversity and phylogeny of Polyporales, four new species were found that did not belong to any known genus, for which reason, a new genus is established to accommodate them. Morphologically, these four taxa do not fit any of the known polypore taxa. To confirm the position of the new genus, phylogenetic analyses of the new genus and related taxa within Polyporales were carried out based on the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit mitochondrial rRNA gene sequences (mtSSU), the translation elongation factor $1-\alpha$ gene (EF1- α), and the second largest subunit of RNA polymerase II (RPB2).

Materials and methods

Morphological studies

The studied specimens were deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC). Macro-morphological descriptions are based on the field notes and measurements of herbarium specimens. Color terms follow Petersen (1996). Micro-morphological data were obtained from the dried specimens and observed under a light microscope following Shen et al. (2019). Sections were studied at magnifications up to 1000× using a Nikon E80i microscope and phase contrast illumination (Nikon, Tokyo, Japan). Drawings were made with the aid of a drawing tube. Microscopic features, measurements, and drawings were made from slide preparations stained with cotton blue and Melzer's reagent. Spores were measured from sections cut from the tubes. In presenting the variation of spore size, 5% of measurements were excluded from each end of the range, and were given in parentheses. The following abbreviations were used: KOH, 5% potassium hydroxide; IKI, Melzer's reagent; IKI-, neither amyloid nor dextrinoid; CB, cotton blue; CB+, cyanophilous; CB-, acyanophilous; L, mean spore length (arithmetic average of all spores); W, mean spore width (arithmetic average of all spores); \mathbf{Q} , variation in the L/W ratios between the specimens studied; n (a/b), number of spores (a) measured from given number (b) of specimens.

DNA extraction and sequencing

A CTAB rapid plant genome extraction kit (Aidlab Biotechnologies Co. Ltd, Beijing) was used to extract total genomic DNA from dried specimens, and performed the polymerase chain reaction (**PCR**) according to the manufacturer's instructions with

some modifications (Chen et al. 2015). The ITS region was amplified with primer pairs ITS5 and ITS4 (White et al. 1990). The nLSU region was amplified with primer pairs LR0R and LR7 (http://www.biology.duke.edu/fungi/mycolab/primers.htm). The mtSSU region was amplified with primer pairs MS1 and MS2 (White et al. 1990). Part of EF1- α was amplified with primer pairs EF1-983F and EF1-1567R (Rehner and Buckley 2005). RPB2 was amplified with primer pairs fRPB2-5F and fRPB2-7cR or bRPB2-6F and bRPB2-7R (Liu et al. 1999; Matheny 2005). The PCR procedure for ITS, mtSSU and EF1- α was as follows: initial denaturation at 95 °C for 3 min, followed by 34 cycles at 94 °C for 40 s, 54 °C for ITS and mtSSU, 54–56 °C for EF1- α for 45 s, 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 34 cycles at 94 °C for 30 s, 50 °C for 1 min, 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for RPB2 was as follows: initial denaturation at 94 °C for 2 min, followed by 10 cycles at 94 °C for 40 s, 60 °C for 40 s and 72 °C for 2 min, then followed by 37 cycles at 94 °C for 45 s, 55–57 °C for 1.5 min and 72 °C for 2 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Beijing Genomics Institute, China, with the same primers. All newly generated sequences were submitted to GenBank (Table 1).

Phylogenetic analyses

Sequences used for phylogenetic analyses in this study are listed in Table 1. Sequences of ITS, nLSU, mtSSU, EF1- α , and RPB2 were aligned initially in MAFFT 7 (Katoh and Standley 2013; http://mafft.cbrc.jp/alignment/server/) and then manually adjusted in BioEdit (Hall 1999). Finally, these gene fragments were concatenated with Mesquite 3.2 (Maddison and Maddison 2017) for further phylogenetic analyses. Phylogenies were inferred from the combined 2-gene dataset (ITS+nLSU) and 5-gene dataset (ITS+nLSU+mtSSU+EF1- α +RPB2). *Heterobasidion annosum* (Fr.) Bref. and *Stereum hirsutum* (Willd.) Pers. obtained from GenBank were used as outgroups to root trees in the 2-gene based analysis. *Laetiporus montanus* Černý ex Tomšovský & Jankovský and *L. sulphureus* (Bull.) Murrill were selected as outgroups to root trees in the 5-gene based analysis. The final concatenated sequence alignments were deposited in TreeBase (https://treebase.org/treebase-web/home.html; submission ID 23521).

Phylogenetic analyses used in this study followed the approach of Zhu et al. (2019) and Song and Cui (2017). Maximum parsimony (**MP**) analysis was performed in PAUP* v. 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (**BT**) analysis with 1000 replicates

Species	Sample no.	Locality	GenBank accessions			ons	
			ITS	nLSU	mtSSU	EF1-α	RPB2
Abortiporus biennis	EL 65-03	Sweden	JN649325	JN649325	_	_	_
Abundisporus	Cui 10950	China	KC456254	KC456256	KF051025	KF181154	_
fuscopurpureus							
A. pubertatis	Dai 11310	China	KC787568	KC787575	KF051031	KF181125	
	Dai 11927	China	KC787569	KC787576	KF051034	KF181128	_
A. sclerosetosus	MUCL 41438	Singapore	FJ411101	FJ393868	_	_	_
A. violaceus	Ryvarden 32807	Finland	KF018127	KF018135	KF051038	KF181132	_
Antrodia albida	CBS 308.82	USA	DQ491414	AY515348	_	_	_
A. macra	MUAF 887	Czech Republic	EU340898	_	_	_	_
Bjerkandera adusta	NBRC 4983	Unknown	AB733156	AB733333	_	_	_
Cinereomyces lindbladii	KHL 12078	Norway	FN907906	FN907906	_	_	_
Climacocystis borealis	KHL 13318	Estonia	JQ031126	JQ031126	_	_	_
Coriolopsis brunneoleuca	Cui 13911	China	MK116480ª	MK116489ª	MK116498ª	_	MK124544ª
C. brunneoleuca	Dai 12180	China	KC867414	KC867432	_	_	KF274655
C. polvzona	BKW004	Ghana	IN164978	IN164790	_	IN164881	IN164856
C. retropicta	Cui 13849	China	MK116481*	MK116490 ^a	MK116499ª	MK122979ª	MK124545ª
51 · · · · · · · · · · · · · · · · · · ·	Cui 14030	China	MK116482 ^a	MK116491ª	MK116500 ^a	MK122980ª	MK122987 ^a
Crassisporus imbricatus	Cui 6556	China	KC867351	KC867426	_	_	_
C imbricatus	Dai 10788	China	KC867350	KC867425	KX838374	_	_
C. leucoporus	Cui 16801	Australia	MK116488 ^a	MK116497 ^a	MK116507 ^a	MK122986 ^a	MK122993 ^a
C macroporus	Cui 14465	China	MK116485 ^a	MK116494 ^a	MK116504 ^a	MK122983 ^a	MK122990 ^a
C. macroporus	Cui 14468	China	MK116486 ^a	MK116495 ^a	MK116505 ^a	MK122984a	MK122990
C microsporus	Cui 16221	China	MK116487ª	MK116496 ^a	MK116506 ^a	MK122985 ^a	MK122991
C. microsporus Daedaleopeie confrancea	Cui 6892	China	KT 1802/28	K11802448	KY838381	KY838/18	KU802507
Daeuaieopsis confragosa D hainanancic	Cui 5178	China	KU802/35	KU802/62	KV838/13	KV8384/1	KU892/05
D. nutnunensis Datronia mollic	PLC630/cp	LISA	IN165002	IN164791	KA030413	IN164001	IN164872
Equially contract	DD 1 200	Duorto Pico	JN165002	JN164702	_	JIN104701	JN1648/2
Euritetta scabrosa	ES 2008 2	Swadan	IV100860	JN104/ //	_	—	JIN104800
Formes Jomentarius	LS 2008-5	Cuatamala	JA109800	JA109800	_	_	—
Fomileua supina	D 20027	Decenter Disc	KF2/404)	KF2/4040	_	_	—
r. supina	Ryvarden 5902/	China	KF2/4045	- VD(05727	- VD(05000	- VD(1072)	- VD(1001(
Fomilopsis beluina	Dai 11449	China	KK003/98	KK003/3/	KR003998	KR010/20	KR010810
r. pinicola	Cui 10403	China	KC844832	KC84483/	KK003901	KK010090	KK010/81
Fraguiporia fraguis	Dai 13080	China	KJ/54200	KJ/34204	_	_	_
r. jraguis	Dai 15559	China	KJ754201	KJ734263	_	_	_
T 1: 11:	Yuan 5516	China	KJ/34263	KJ/3426/	-	-	-
Fundila gallica	Dai 109/7	China	KC86/3/8	KC86/452	_	-	KU182651
F. trogu	RLG42865p	USA C I D II:	JIN 164995	JIN164808	-	JIN 164898	JIN16486/
Gelatoporia subvermispora	BKNU 592909	Czech Republic	FJ496694	FJ496/06	-	-	-
Grammethelopsis	Cui 9035	China	JQ845094	JQ84509/	KF051030	KF181124	-
	Cui 9041	China	JQ845096	JQ845099	KF051039	KF181155	-
Haploporus latisporus	Dai 118/3	China	KU94184/	KU9418/1	KU941896	KU941934	KU941918
H. latisporus	Dai 10562	China	KU941848	KU9418/2	KU94189/	KU941935	KU941919
H. odorus	Yuan 2365	China	KU941846	KU9418/0	KU941895	KU941933	KU941917
** 1	Dai 11296	China	KU941845	KU941869	KU941894	KU941932	KU941916
H. subtrameteus	Dai 4222	China	KU941849	KU941873	KU941898	KU941936	KU941920
	Cui 10656	China	KU941850	KU941874	KU941899	KU941937	KU941921
Heterobasidion annosum	PFC 5327	Greece	KC492915	-	_	KC571655	-
Hexagonia apiaria	Cui 6447	China	KC867362	KC867481	MG847228	MG867697	KF274660
H. apiaria	Dai 10784	China	KX900635	KX900682	KX900732	KX900822	MG867677
H. hirta	Dai 5081	China	-	KC867486	-	-	-
	Cui 4051	China	KC867359	KC867471	-	-	-
Hornodermoporus	Cui 6625	China	HQ876604	JF706340	KF051040	KF181134	-
latissimus	Dai 12054	China	KX900639	KX900686	KF218297	KF286303	_

Table 1. Species, specimens and GenBank accession numbers of sequences used in this study.

Species	Sample no.	Locality	GenBank accessions				
			ITS	nLSU	mtSSU	EF1-a	RPB2
H. martius	MUCL 41677	Argentina	FJ411092	FJ393859	-	-	-
	MUCL 41678	Argentina	FJ411093	FJ393860	-	-	-
Hydnopolyporus fimbriatus	LR 40855	Puerto Rico	JN649347	JN649347	_	_	_
Hypochnicium lyndoniae	NL 041031	UK	JX124704	JX124704	_	_	_
Laetiporus montanus	Cui 10011	China	KF951274	KF951315	KX354570	KX354617	KT894790
L. sulphureus	Cui 12388	China	KR187105	KX354486	KX354560	KX354607	KX354652
Lenzites betulina	HHB9942Sp	USA	JN164983	JN164794	_	JN164895	JN164860
Megasporia ellipsoidea	Cui 13854	China	MK116483 ^a	MK116492 ^a	MK116501 ^a	MK122981ª	MK122988ª
M. major	Cui 10253	China	JQ314366	JQ780437	MK116502 ^a	_	_
Megasporoporiella rhododendri	Cui 10745	China	MK116484 ^a	MK116493 ^a	MK116503ª	MK122982 ^a	MK122989ª
M. subcavernulosa	Cui 14247	China	MG847213	MG847222	MG847234	MG867705	MG867685
Microporus affinis	Cui 7714	China	JX569739	JX569746	KX880696	_	KF274661
M. vernicipes	Dai 9283	China	KX880618	KX880658	KX880701	KX880926	_
M. xanthopus	Cui 8284	China	JX290074	JX290071	KX880703	KX880878	JX559313
Neodatronia sinensis	Dai 11921	China	JX559272	JX559283	_	_	IX559320
Neofomitella fumosipora	Cui 8816	China	IX569734	IX569741	KX900766	_	_
JJ. 1	Cui 13581a	China	KX900664	KX900714	KX900767	KX900848	KX900815
N. rhodophaea	TFRI 414	Unknown	EU232216	EU232300	_	_	_
Obba rivulosa	KCTC 6892	Canada	FI496693	FI496710	_	_	_
Perenniporia hainaniana	Cui 6364	China	IO861743	IO861759	KF051044	KF181138	_
P hainaniana	Cui 6365	China	IO861744	IO861760	KF051045	KF181139	_
P. medulla-panis	MUCL 49581	Poland	FI411088	FI393876	_	_	_
I man I	Cui 14515	China	MG847214	MG847223	_	MG867707	MG867687
P substraminea	Cui 10177	China	IO001852	IO001844	KF051046	KF181140	_
1. 500501000000	Cui 10191	China	IO001853	IO001845	KF051047	KF181141	_
Perenniporiella chaquenia	MUCL 47648	Argentina	FI411084	FI393856	_	HM467610	_
P micropora	MUCL 43581	Cuba	FI411086	FI393858	_	HM467608	_
P neofulva	MUCL 45091	Cuba	FI411080	FI393852	_	HM467599	_
P. pendula	MUCL 46034	Cuba	FI411081	FI393853	_	HM467601	_
Phanerochaete	BKM-E-1767	LISSR	HO188436	CO470643	_		_
chrysosporium	DIGWI-1-1/0/	03510	11Q100450	001			
Phlehia unica	KHL 11786	Sweden	EU118657	EU118657	_	_	_
Pvcnoporus cinnabarinus	Dai 14386	China	KX880629	KX880667	KX880712	KX880885	KX880854
Skeletocutis amorpha	Miettinen 11038	Finland	FN907913	FN907913	_	_	_
Stereum hirsutum	NBRC 6520	Unknown	AB733150	AB733325	_	_	_
Trametes conchifer	FP106793Sp	USA	IN164924	IN164797	_	IN164887	IN164849
T pubescens	FP101414Sp	USA	IN164963	IN164811	_	IN164889	IN164851
T. tephroleuca	Cui 7987	China	KC848293	KC848378	KX880755	KX880934	KX880869
T. versicolor	FP135156Sp	LISA	IN164919	IN164809	-	IN164878	IN164850
Truncochora detrita	MUCI 42649	Erench Guyana	FI411099	FI393866	_		
T macrospora	Cui 8106	Chipa	IX941573	IX941596	- KX880763	KX880920	- KX880871
1. <i>macrospora</i>	Vuan 3777	China	IX941574	IX941597		-	
T ochrolauca	MUCL 30726	China Taiwan	FI/11008	FI303865	-	-	-
1. 001/10101010	Cui 5671	China	IV9/158/	IY9/1602	- KE218300	- KE286315	_
T aliansia	MUCI /1026	LISA	FI/11006	EI202862	KI ² 10507	KI ² 200313	_
Tunonna daion ana	Cui 10225	China	FJ411090	FJ555605 VEC007/5	_	_	_
Tyromyces cmoneus Thuratii	Donttilä 12/7/	China	KF098/ 30	KF098/4)	_	_	—
1. KMem Vandarhulia furninga	DD 92	Linna	AM260700	AT/03041	-	-	-
vunueroyuu jraxinea	DF 85	Franco	FI/1100/	FI202061	-	-	-
V nohinisthil-	Cui 57520	China	FJ411094	FJ575801 IE70(242	- VE051051	- VE101147	- MC9(7(01
v. rooiniopmia	Cui 3644	China	11Q8/0009	JF/06342	KE051052	AF101143	1/1690/091
V mining	Cui / 144	China Fabi :-	EI/11005	JF/00341 E12029/2	KF031032	rt181140	-
v. vicina Whithandiana d	Di: 10720	CL:	ГJ411095 VC9(72()	ГJ393862 VC9(7492	-	-	-
wnitfordia scopulosa	Dai 10/39	China	KC86/364	KC86/482	КХ880/66	КХ880922	MG86/692

^a Newly generated sequences for this study

(Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated for each maximum parsimonious tree generated.

RAxML v. 7.2.6 (Stamatakis 2006) was used to perform maximum likelihood (ML) analysis involved 200 ML searches under the GTR+GAMMA model and only the best tree from all searches was kept. In addition, 200 rapid bootstrap replicates were run with the GTR+CAT model to assess the reliability of the nodes.

MrModeltest v. 2.3 (Posada and Crandall 1998; Nylander 2004) was used to determine the best fit evolution model for the combined multi-gene dataset for Bayesian inference (BI). Bayesian inference was calculated with MrBayes v. 3.1.2 with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist and Huelsenbeck 2003). Four Markov chains were run for two runs from random starting trees for 2 million generations (ITS+nLSU), for 5 million generations (ITS+nLSU+mtSSU+EF1- α +RPB2) until the split deviation frequency value <0.01, and trees were sampled every 100 generation. The first quarter generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated.

Phylogenetic trees were viewed using FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/ software/figtree/). Branches that received bootstrap support for maximum parsimony (MP), maximum likelihood (ML) and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported, respectively.

Results

Molecular phylogeny

The combined 2-gene dataset included sequences from 68 fungal samples representing 59 taxa. The dataset had an aligned length of 2111 characters, of which 1249 characters were constant, 196 were variable and parsimony-uninformative, and 666 were parsimony-informative. MP analysis yielded 37 equally parsimonious trees (TL = 4143, CI = 0.345, RI = 0.617, RC = 0.213, HI = 0.655). Best model for the combined 2-gene dataset estimated and applied in the BI was GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). MP, ML and BI analyses yielded similar tree topologies with an average standard deviation of split frequencies = 0.006293 (BI), and the ML topology is shown in Figure 1. The phylogeny (Fig. 1) inferred from the combined ITS+nLSU sequences demonstrated seven major clades for 59 species of the Polyporales. The new genus *Crassisporus* embed in the core polyporoid clade and grouped with *Haploporus* Bondartsev & Singer.

The combined 5-gene (ITS, nLSU, mtSSU, EF1- α , RPB2) dataset included sequences of 82 fungal samples representing 57 taxa. The dataset had an aligned

Figure 1. Phylogeny of *Crassisporus* and related genera in Polyporales based on combined ITS and nLSU sequences. Topology is from ML analysis with parsimony bootstrap support values (\geq 50 %), maximum likelihood bootstrap support values (\geq 50 %) and Bayesian posterior probability values (\geq 0.95).

length of 4306 characters, of which 2521 characters were constant, 258 were variable and parsimony-uninformative, and 1527 were parsimony-informative. MP analysis yielded 1 equally parsimonious tree (TL = 8989, CI = 0.339, RI = 0.620, RC = 0.210, HI = 0.661). Bayesian and ML analyses resulted in a similar topology as the MP analysis, with an average standard deviation of split frequencies = 0.006328(BI); and the ML topology is shown in Figure 2. A further phylogeny (Fig. 2) inferred from the combined 5-gene dataset was obtained for more representative taxa in the Polyporaceae and showed that the new genus grouped with *Haploporus* clade but distinctly formed a monophyletic lineage.

Figure 2. Phylogeny of *Crassisporus* and related species obtained for more representative taxa in the Polyporaceae based on combined sequences dataset of ITS+nLSU+mtSSU+EF1- α +RPB2. Topology is from ML analysis with parsimony bootstrap support values (\geq 50 %), maximum likelihood bootstrap support values (\geq 50 %), and Bayesian posterior probability values (\geq 0.95).

Taxonomy

Crassisporus B.K. Cui & Xing Ji, gen. nov.

MycoBank: MB 828486

Notes. Differs from other genera by the combination of effused-reflexed to pileate basidiocarps, pale yellowish brown to yellowish brown, concentrically zonate or sulcate, velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues darkening in KOH, and oblong to broadly ellipsoid, hyaline, smooth and slightly thick-walled basidiospores.

Etymology. Crassisporus (Lat.): referring to thick-walled basidiospores.

Type species. Crassisporus macroporus B.K. Cui & Xing Ji.

Basidiocarps annual, effused-reflexed to pileate. Pileal surface pale yellowish brown, yellowish brown to umber-brown when dry, concentrically zonate or sulcate, velutinate. Pore surface usually white, cream buff to cinnamon-buff when fresh, buff, pale yellowish brown to yellowish brown when dry. Context pale yellowish brown to yellowish brown, leathery to corky when dry. Tubes concolorous with the context, corky when dry. Hyphal system trimitic with clamped generative hyphae, skeletal hyphae hyaline to pale yellowish brown, binding hyphae hyaline to pale yellowish brown, negative in Melzer's reagent, tissues turning to black in KOH. Cystidia absent, thinwalled cystidioles usually present. Basidiospores oblong to broadly ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-. Causing a white rot.

Crassisporus imbricatus B.K. Cui & Xing Ji, sp. nov.

MycoBank: MB 828487 Figs 3, 4

Notes. *Crassisporus imbricatus* is characterized by imbricate basidiocarps, pale greyishbrown pore surface when dry, round to angular pores (3–5 per mm), and oblong ellipsoid basidiospores (10–14 × 4.5–6.2 μ m).

Holotype. CHINA. Hainan Province, Changjiang County, Bawangling Nature Reserve, on dead angiosperm tree, 9 May 2009, Dai 10788 (BJFC).

Etymology. Imbricatus (Lat.): referring to the imbricate basidiocarps.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, imbricate, soft corky, without odor or taste when fresh, leathery to corky upon drying. Pilei semicircular or elongated, projecting up to 1.5 cm, 3.5 cm wide, and 2.5 mm thick at base. Pileal surface yellowish brown, velutinate, concentrically zonate. Pore surface buff when fresh, becoming pale greyish brown when dry; sterile margin indistinct, pores round to angular, 3–5 per mm; dissepiments slightly thick, entire to slightly lacerate.

Figure 3. Basidiocarps of Crassisporus imbricatus. Scale bar: 2 cm.

Context yellowish brown, leathery, up to 2.5 mm thick. Tubes concolorous with context, corky, up to 1.5 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, 2–3.5 μ m in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, rarely branched, straight, interwoven, occasionally simple-septate, 2.5–5.5 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 1.2–2.5 μ m in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, $1.5-3 \mu m$ in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled, occasionally branched, strongly interwoven, rarely simple-septate, $1.5-3.5 \mu m$ in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, $1-2 \mu m$ in diam. Cystidia and cystidioles absent. Basidia clavate, bearing four sterigmata and a basal clamp connection, $19-32 \times 9-12 \mu m$; basidioles dominant, in shape similar to basidia, but distinctly smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, slightly thick-walled, smooth, IKI-, CB-, $10-14(-15) \times 4.5-6.2(-6.6) \mu m$, L = $12.33 \mu m$, W = $5.34 \mu m$, Q = 2.27-2.36 (n = 60/2).

Type of rot. White rot.

Additional specimen (paratype) examined. CHINA. Hainan Province, Changjiang County, Bawangling Nature Reserve, on fallen branch of *Pinus latteri*, 10 May 2009, Cui 6556 (BJFC).

Figure 4. Microscopic structures of *Crassisporus imbricatus* (drawn from the holotype) **A** basidiospores **B** basidia and basidioles **C** hyphae from trama **D** hyphae from context.

Crassisporus leucoporus B.K. Cui & Xing Ji, sp. nov.

MycoBank: MB 828488 Figs 5, 6

Notes. *Crassisporus leucoporus* is characterized by a white pore surface when fresh, round to angular pores (3–4 per mm) and oblong ellipsoid basidiospores (8.4–11.2 × $4.2-5.4 \mu m$).

Holotype. AUSTRALIA. Queensland, Cairns, Roadside of Mount Whitfield Park, on fallen angiosperm branch, 18 May 2018, Cui 16801 (BJFC).

Etymology. Leucoporus (Lat.): referring to the white pore surface when fresh.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, corky, without odor or taste when fresh, soft leathery to corky upon drying. Pilei semicircular or elongated, projecting up to 1.5 cm, 3 cm wide, and 6 mm thick at base. Pileal surface yellowish brown to umber-brown, finely velutinate, concentrically sulcate. Pore surface white when fresh, becoming cream, clay buff to pale yellowish brown when dry; sterile margin distinct, cream to pale yellowish brown, up to 1.5 mm wide; pores round to angular, 3–4 per mm; dissepiments slightly thick, entire. Context pale yellowish brown to fulvous, leathery, up to 3 mm thick. Tubes pale yellowish brown, corky, up to 2.5 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, $1.1-2.6 \mu m$ in diam.; skeletal hyphae in context dominant, pale yellowish brown, thick-walled with a narrow to wide lumen, unbranched, straight, interwoven, occasionally simple-septate, $1.8-3.9 \mu m$ in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, $0.7-2.2 \mu m$ in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1–2.8 μ m in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow to wide lumen, occasionally branched, more or less straight, strongly interwoven, 0.9–3.3 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.1 μ m in diam. Cystidia absent, cystidioles fusoid, sometimes septate at the tips, hyaline, thin-walled, 16.7–28.1 × 5.1–6.3 μ m. Basidia clavate, bearing four sterigmata and a basal clamp connection, 18.1–29.2 × 6.4–9.8 μ m; basidioles dominant, in shape similar to basidia, but smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, $(7.9-)8.4-11.2(-11.5) \times (4-)4.2-5.4(-5.7) \mu m$, L = 9.49 μm , W = 4.79 μm , Q = 1.99 (*n* = 60/1).

Type of rot. White rot.

Figure 5. Basidiocarps of Crassisporus leucoporus. Scale bars: 1 cm (A); 2 cm (B).

Crassisporus macroporus B.K. Cui & Xing Ji, sp. nov.

MycoBank: MB 828489 Figs 7, 8

Notes. *Crassisporus macroporus* is characterized by cream-buff to cinnamon-buff colored pore surface with distinct sterile margin when fresh, large pores (2–3 per mm) with thin dissepiments, a trimitic hyphal system with cyanophilous skeletal hyphae, the presence of fusoid cystidioles, and oblong ellipsoid basidiospores (9.5–13.2 × 4–6.2 μ m).

Figure 6. Microscopic structures of *Crassisporus leucoporus* (drawn from the holotype) **A** basidiospores **B** basidia and basidioles **C** cystidioles **D** hyphae from trama **E** hyphae from context.

Figure 7. Basidiocarps of Crassisporus macroporus. Scale bars: 2 cm.

Holotype. CHINA. Guangxi Autonomous Region, Huanjiang County, Mulun Nature Reserve, on fallen angiosperm branch, 10 July 2017, Cui 14468 (BJFC).

Etymology. Macroporus (Lat.): referring to the large pores.

Description. Fruitbody: Basidiocarps annual, effused-reflexed to pileate, corky to leathery, without odor or taste when fresh, soft leathery upon drying. Pilei flabelliform, semicircular or elongated, projecting up to 1.5 cm, 4 cm wide and 5 mm thick at base; resupinate part up to 7 cm long, 4 cm wide, and 5 mm thick at center. Pileal surface buff to yellowish brown when fresh, becoming yellowish brown upon drying, finely velutinate, concentrically sulcate. Pore surface cream, buff to cinnamon-buff when fresh, becoming buff, pale yellowish brown to yellowish brown when dry; sterile margin distinct, buff to pale yellowish brown, up to 2 mm wide; pores round to angular,

Figure 8. Microscopic structures of *Crassisporus macroporus* (drawn from the holotype) **A** basidiospores **B** basidia and basidioles **C** cystidioles **D** hyphae from trama **e** hyphae from context.

2–3 per mm; dissepiments thin, entire to lacerate. Context yellowish brown to pale yellowish brown, leathery, up to 1.5 mm thick. Tubes pale yellowish brown, corky, up to 2 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB+; tissues turning to black in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, unbranched, 1.5– 3.5 μ m in diam.; skeletal hyphae dominant, pale yellowish brown, thick-walled with a narrow lumen to subsolid, unbranched, more or less straight, interwoven, occasionally simple-septate, 2–5.5 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 1–3 μ m in diam.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1–2 μ m in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thickwalled with a narrow lumen to subsolid, occasionally branched, more or less straight, strongly interwoven, 1.5–3 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2 μ m in diam. Cystidia absent, cystidioles fusoid, hyaline, thin-walled, 13–20 × 4.5–6 μ m. Basidia clavate, bearing four sterigmata and a basal clamp connection, 17–28 × 7–8 μ m; basidioles dominant, in shape similar to basidia, but smaller.

Spores: Basidiospores oblong ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, 9.5–13.2(–14) × 4–6.2(–6.5) μ m, L = 11.24 μ m, W = 4.96 μ m, Q = 2.26–2.31 (*n* = 60/2).

Type of rot. White rot.

Additional specimen (paratype) examined. CHINA. Guangxi Autonomous Region, Huanjiang County, Mulun Nature Reserve, on dead angiosperm tree, 10 July 2017, Cui 14465 (BJFC).

Crassisporus microsporus B.K. Cui & Xing Ji, sp. nov.

MycoBank: MB 828514 Figs 9, 10

Notes. *Crassisporus microsporus* is characterized by pileate basidiocarps, small pores (5–7 per mm), and small, broadly ellipsoid basidiospores ($4-5 \times 3-3.7 \mu m$).

Holotype. CHINA. Yunnan Province, Ruili, Mori Tropical Rainforest Park, on living angiosperm tree, 17 September 2017, Cui 16221 (BJFC).

Etymology. Microsporus (Lat.): referring to the small basidiospores.

Description. Fruitbody: Basidiocarps annual, pileate, sessile, corky, without odor or taste when fresh, soft leathery to corky upon drying. Pilei semicircular, projecting up to 2 cm, 4 cm wide, and 4.5 mm thick at base. Pileal surface pale yellowish brown to yellowish brown, finely velutinate, concentrically sulcate. Pore surface cream, buff to cinnamon-buff when fresh, buff, pale yellowish brown to yellowish brown when dry; sterile margin distinct, buff, up to 1 mm wide; pores round to angular, 5–7 per mm;

Figure 9. Basidiocarps of Crassisporus microsporus. Scale bars: 1 cm.

dissepiments slightly thick, entire. Context pale yellowish brown to yellowish brown, leathery to corky when dry, up to 1.5 mm thick. Tubes concolorous with context, soft corky to corky, up to 3 mm long.

Hyphal structure: Hyphal system trimitic; generative hyphae bearing clamp connections; skeletal and binding hyphae IKI-, CB-; tissues turning to deep brown in KOH.

Context: Generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 1.2–3.5 μ m in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen, rarely branched, straight, interwoven, occasionally simple-septate, 2.5–6 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.5 μ m in diam.

Figure 10. Microscopic structures of *Crassisporus microsporus* (drawn from the holotype) **A** basidiospores **B** basidia and basidioles **C** cystidioles **D** hyphae from trama **E** hyphae from context.

Tubes: Generative hyphae infrequent, hyaline, thin-walled, rarely branched, 1.2–3 μ m in diam.; skeletal hyphae dominant, hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, moderately branched, more or less straight, strongly interwoven, 1.5–3 μ m in diam.; binding hyphae hyaline to pale yellowish brown, thick-walled with a narrow lumen to subsolid, flexuous, frequently branched, interwoven, 0.8–2.5 μ m in diam. Cystidia absent, cystidioles fusoid, hyaline, thin-walled, 12.5–18 × 4–5.5 μ m. Basidia clavate, bearing four sterigmata and a basal clamp connection, 14–21 × 4.5–6 μ m; basidioles in shape similar to basidia, but distinctly smaller.

Spores: Basidiospores broadly ellipsoid, hyaline, smooth, slightly thick-walled, IKI-, CB-, $4-5(-5.2) \times (-2.8)3-3.7(-3.9) \mu m$, L = $4.5 \mu m$, W = $3.23 \mu m$, Q = 1.4 (n = 60/1). **Type of rot.** White rot.

Discussion

In the present study, *Crassisporus* is proposed based on morphological characters and phylogenetic analyses. In the ITS+nLSU analysis, *Crassisporus* was nested in the core polyporoid clade with strong support (100% MP, 100% ML, 1.00 BPP; Fig. 1). A further study based on combined ITS+nLSU+mtSSU+EF1- α +RPB2 sequences data indicated that *Crassisporus* grouped with *Haploporus* with low support, but formed a monophyletic lineage with a strong support (100% MP, 100% ML, 1.00 BPP; Fig. 2). Morphologically, *Crassisporus* is characterized by the combination of an annual growth habit, effused-reflexed to pileate basidiocarps, pale yellowish brown to yellowish brown, concentrically zonate or sulcate pilei, velutinate pileal surface, a trimitic hyphal system with clamped generative hyphae, tissues turning to dark in KOH, oblong to broadly ellipsoid, hyaline, smooth and slightly thick-walled basidiospores.

Morphologically, the four *Crassisporus* species can be easily distinguished from each other. *Crassisporus microsporus* differs from other species by its small pores (5–7 per mm), and small broadly ellipsoid basidiospores (4–5 × 3–3.7 μ m). Except for *C. imbricatus, C. leucoporus, C. macroporus*, and *C. microsporus*, all have fusoid cystidioles in the hymenium; moreover, *C. imbricatus* produces imbricate basidiocarps. Previously, the type specimen of *C. imbricatus* was identified as *Coriolopsis byrsina* (Mont.) Ryvarden based on morphological characters (Li and Cui 2010). After careful examination of the basidiospores along with DNA sequences analyses, the specimen was found to represent an unknown taxon. Here, we describe it as a new species of *Crassisporus* based on morphological characters and phylogenetic analysis. *Crassisporus macroporus* may be confused with *C. leucoporus* due to their similarity in effused-reflexed to pileate basidiocarps and oblong ellipsoid basidiospores (3–4 per mm), white pore surface when fresh, and acyanophilous skeletal and binding hyphae.

Phylogenetically, *Haploporus* groups together with *Crassisporus* (Figs 1, 2), but the former differs by its annual to perennial growth habit, dimitic to trimitic hyphal system, and ornamented, cyanophilous basidiospores (Shen et al. 2016; Cui et al. 2019).

Crassisporus is similar to *Hexagonia* Fr. and *Neofomitella* Y.C. Dai, Hai J. Li & Vlasák, because these genera share pileate brown basidiocarps, a trimitic hyphal system

with clamped generative hyphae, and tissues becoming dark in KOH. However, *Hexagonia* is distinguished from *Crassisporus* by its larger hexagonal pores and thin-walled basidiospores (Núñez and Ryvarden 2001). *Neofomitella* differs from *Crassisporus* in having crusted basidiocarps with the cuticle developing from base to margin, and smaller, thin-walled basidiospores (Li et al. 2014b).

Both *Perenniporia* Murrill and *Crassisporus* have hyaline and thick-walled basidiospores, but species of *Perenniporia* have cyanophilous, and variable dextrinoid skeletal hyphae. In addition, *Perenniporia* usually has truncate basidiospores (Gilbertson and Ryvarden 1987; Núñez and Ryvarden 2001; Zhao et al. 2013; Cui et al. 2019).

Truncospora Pilát is similar to *Crassisporus* in having pileate basidiocarps and variable presence of cystidioles. However, *Truncospora* is distinguished from *Crassisporus* by variable dextrinoid and cyanophilous skeletal hyphae and truncate, strongly dextrinoid basidiospores (Zhao and Cui 2013; Cui et al. 2019).

Abundisporus Ryvarden and *Crassisporus* share effused-reflexed or pileate basidiocarps, but *Abundisporus* differs by its pale-umber to deep-purplish-brown or greyish- to umber-brown context, dimitic hyphal system, and pale-yellowish basidiospores (Ryvarden 1998; Zhao et al. 2015; Cui et al. 2019).

Perenniporiella Decock & Ryvarden also has annual, pileate basidiocarps, and hyaline, thick-walled basidiospores, but it differs from *Crassisporus* in having a dimitic hyphal system (Decock and Ryvarden 2003).

Grammothelopsis Jülich is similar to *Crassisporus* in having thick-walled basidiospores; however, it differs from *Crassisporus* in its resupinate to effused basidiocarps with shallow irregular pores, and variable dextrinoid skeletal hyphae (Robledo and Ryvarden 2007; Zhao and Cui 2012).

Key to species of Crassisporus

1	Cystidioles absent	C. imbricatus
_	Cystidioles present	2
2	Basidiospores broadly ellipsoid	C. microsporus
_	Basidiospores oblong ellipsoid	
3	Pore surface cream, buff to cinnamon-buff when fresh, po	ores 2–3 per mm
	-	C. macroporus
_	Pore surface white when fresh, pores 3–4 per mm	C. leucoporus

Acknowledgments

We express our gratitude to Drs Tom May (Royal Botanic Gardens Victoria, Australia) and Yu-Cheng Dai (Beijing Forestry University) for arrangement of and assistance during field collections. The research was financed by the National Natural Science Foundation of China (Project Nos. 31670016, 31870008) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019JQ03016).

References

- Chen JJ, Cui BK, Zhou LW, Korhonen K, Dai YC (2015) Phylogeny, divergence time estimation, and biogeography of the genus *Heterobasidion* (Basidiomycota, Russulales). Fungal Diversity 71: 185–200. https://doi.org/10.1007/s13225-014-0317-2
- Chen YY, Wu F, Wang M, Cui BK (2017) Species diversity and molecular systematics of *Fibroporia* (Polyporales, Basidiomycota) and its related genera. Mycological Progress 16: 521–533. https://doi.org/10.1007/s11557-017-1285-1
- Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137–392. https://doi.org/10.1007/s13225-019-00427-4
- Decock C, Ryvarden L (2003) Perenniporiella gen. nov. segregated from Perenniporia, including a key to Neotropical Perenniporia species with pileate basidiomes. Mycological Research 107 :93–103. https://doi.org/10.1017/S0953756202006986
- Decock C, Stalpers J (2006) Studies in Perenniporia: Polyporus unitus, Boletus medulla-panis, the nomenclature of Perenniporia, Poria and Physisporus, and a note on European Perenniporia with a resupinate basidiome. Taxon 53: 759–778. https://doi.org/10.2307/25065650
- Felsenstein J (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Gilbertson RL, Ryvarden L (1987) North American Polypores. Vol. 2. Fungiflora, Oslo, 885 pp.
- Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Han ML, Chen YY, Shen LL, Song J, Vlasák J, Dai YC, Cui BK (2016) Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. Fungal Diversity 80: 343– 373. https://doi.org/10.1007/s13225-016-0364-y
- Ji XH, Wu F (2017) Pseudomegasporoporia neriicola gen. et sp. nov. (Polyporaceae, Basidiomycota) from East Asia. Nova Hedwigia 105:435–443. https://doi.org/10.1127/nova_ hedwigia/2017/0424
- Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Kirk PM, Cannon PF, David JC, Minter DW, Stalpers JA (2008) Ainsworth and Bisby's Dictionary of the Fungi, 10th ed. CAB International Press, Wallingford, UK, 771 pp. https:// doi.org/10.1079/9780851998268.0000
- Li HJ, Cui BK (2010) Two species of polypores from Hainan new to China. Mycosystema 29: 824–827.
- Li HJ, Cui BK (2013) Taxonomy and phylogeny of the genus *Megasporoporia* and its related genera. Mycologia 105: 368–383. https://doi.org/10.3852/12-114
- Li HJ, Cui BK, Dai YC (2014a) Taxonomy and multi-gene phylogeny of *Datronia* (Polyporales, Basidiomycota). Persoonia 32: 170–182. https://doi.org/10.3767/003158514X681828
- Li HJ, Li XC, Vlasák J, Dai YC (2014b) Neofomitella polyzonata gen. et sp. nov., and N. fumosipora and N. rhodophaea transferred from Fomitella. Mycotaxon 129: 7–20. https://doi. org/10.5248/129.7

- Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org
- Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*, Agaricales). Molecular Phylogenetics and Evolution 35: 1–20. https://doi.org/10.1016/j.ympev.2004.11.014
- Núñez M, Ryvarden L (2001) East Asian polypores 2. Polyporaceae s. lato. Synopsis Fungorum 14: 170–522.
- Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Petersen JH (1996) Farvekort. The Danish Mycological Society's color chart. Foreningen til Svampekundskabens Fremme, Greve, 6 pp.
- Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
- Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to *Cordyceps teleomorphs*. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84
- Robledo G, Ryvarden L (2007). The genus *Grammothelopsis* (Basidiomycota, aphyllophoroid fungi). Synopsis Fungorum 23: 7–12.
- Ronquist F, Huelsenbeck JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Ryvarden L (1998) African polypores: a review. Paul Heinemann memorial symposium: systematics and ecology of the macromycetes. Belgian Journal of Botany 131: 150–155
- Shen LL, Chen JJ, Wang M, Cui BK (2016) Taxonomy and multi-gene phylogeny of *Haploporus* (Polyporales, Basidiomycota). Mycological Progress 15: 731–742. https://doi.org/10.1007/s11557-016-1203-y
- Shen LL, Wang M, Zhou JL, Xing JH, Cui BK, Dai YC (2019) Taxonomy and phylogeny of *Postia*. Multi-gene phylogeny and taxonomy of the brown-rot fungi: *Postia* (Polyporales, Basidiomycota) and related genera. Persoonia 42: 101–126. https://doi.org/10.3767/persoonia.2019.42.05
- Song J, Cui BK (2017) Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evolutionary Biology 17: 102. https://doi. org/10.1186/s12862-017-0948-5
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
- Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

- Zhao CL, Cui BK (2012) A new species of *Grammothelopsis* (Polyporales, Basidiomycota) from southern China. Mycotaxon 121: 291–296. https://doi.org/10.5248/121.291
- Zhao CL, Cui BK (2013) *Truncospora macrospora* sp. nov. (Polyporales) from southwest China based on morphological and molecular data. Phytotaxa 87: 30–38. https://doi. org/10.11646/phytotaxa.87.2.2
- Zhao CL, Cui BK, Dai YC (2013) New species and phylogeny of *Perenniporia* based on morphological and molecular characters. Fungal Diversity 58: 47–60. https://doi.org/10.1007/ s13225-012-0177-6
- Zhao CL, Chen H, Song J, Cui BK (2015) Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycological Progress 14: 38. https://doi.org/10.1007/ s11557-015-1062-y
- Zhu L, Song J, Zhou JL, Si J, Cui BK (2019) Species diversity, phylogeny, divergence time and biogeography of the genus *Sanghuangporus* (Basidiomycota). Frontiers in Microbiology 10:812. https://doi.org/10.3389/fmicb.2019.00812