

Research Article

Molecular phylogeny and morphology reveal two new entomopathogenic species of *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China

Qi Fan^{1,2,3*}, Tao Yang^{2,3,4*}, Hui Li^{2,3}, Xue-Mei Wang^{2,3,4}, He-Fa Liao^{2,3,4}, Pei-Hong Shen¹, Zhu-Liang Yang^{2,3}, Wen-Bo Zeng⁵, Yuan-Bing Wang^{2,3}

1 College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China

2 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China

3 Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China

4 College of Life Science, Yunnan University, Kunming 650091, Yunnan, China

5 Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, Yunnan, China

Corresponding authors: Wen-Bo Zeng (zengwenboherb@163.com); Yuan-Bing Wang (wangyuanbing@mail.kib.ac.cn)

Abstract

Two new termite-pathogenic species, *Ophiocordyceps globiperitheciata* and *O. longistipes*, are described from Yunnan Province, China. Six-locus (ITS, nrSSU, nrLSU, *tef-1a*, *rpb1* and *rpb2*) phylogenetic analyses in combination with morphological observations were employed to characterize these two species. Phylogenetically, *O. globiperitheciata* is most closely related to *Hirsutella cryptosclerotium* and *O. communis*, whereas *O. longistipes* shares a sister relationship with *O. fusiformis*. However, *O. globiperitheciata* differs from *H. cryptosclerotium* by parasitizing Blattodea and producing clavate, unbifurcated stromata. *Ophiocordyceps globiperitheciata* is distinguished from *O. communis* by multiple stromata, shorter asci and ascospores. *Ophiocordyceps longistipes* differs from *O. fusiformis* in producing larger stromata, perithecia, asci and ascospores, as well as smaller citriform or oval conidia. Morphological descriptions of the two new species and a dichotomous key to the 19 termite-pathogenic *Ophiocordyceps* species are presented.

Key words: New species, morphology, Ophiocordyceps, phylogeny, termites

Introduction

Invertebrate-associated fungi are intriguing and diverse, widely distributed around the world (Araújo et al. 2018; Luangsa-ard et al. 2018; Haelewaters and Kasson 2020; Wilson et al. 2021; Santamaria et al. 2023). There are two typical relationships between fungi and invertebrates. One is mutualism. Mutualism is reciprocally positive interactions between pairs of species (Bronstein 2009). For example, *Termitomyces* Heim (Lyophyllaceae, Agaricomycetes) can decompose plants to provide food for termites; in return, termites shelter *Termitomyces* from external threats (Da Costa et al. 2019). The other is parasitism.

Academic editor: Marc Stadler Received: 23 November 2023 Accepted: 11 January 2024 Published: 8 March 2024

Citation: Fan Q, Yang T, Li H, Wang X-M, Liao H-F, Shen P-H, Yang Z-L, Zeng W-B, Wang Y-B (2024) Molecular phylogeny and morphology reveal two new entomopathogenic species of *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China. MycoKeys 103: 1–24. https://doi. org/10.3897/mycokeys.103.116153

Copyright: © Qi Fan et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International – CC BY 4.0).

^{*} Contributed equally as the first authors.

Parasitism is the interaction between two species where one party (the parasite) benefits, while the other party (the host) suffers harm (Roper et al. 2019). As exemplified by species of Cordyceps Fr. sensu lato (s. l.), fungi parasitize invertebrates and eventually kill them. Invertebrate-pathogenic fungi are considered as the most well-known parasitic fungi (Araújo et al. 2018; Araújo et al. 2021; Wilson et al. 2021). They are ubiquitous inhabitants of forests worldwide, especially in tropical and subtropical regions. Invertebrate-pathogenic fungi are highly virulent and are known to have significant effects on host populations (Evans 1974). Cordyceps s. l. represents the most abundant and diverse group among invertebrate-pathogenic fungi (Araújo et al. 2021). Representatives of this group can colonize hosts in more than 10 invertebrate orders (Sanjuan et al. 2015; Araújo and Hughes 2016). They spread primarily through their hosts, evolving extensively in their morphologies and parasitic strategies. (Araújo and Hughes 2016). According to the current status of Cordyceps s. l. taxonomy, it belongs to four families: Clavicipitaceae, Cordycipitaceae, Ophiocordycipitaceae and Polycephalomycetaceae (Sung et al. 2007a; Xiao et al. 2023). Among them, the genus Ophiocordyceps Petch (Ophiocordycipitaceae) has received significant attention for its unique interactions with hosts and medical values (Zou et al. 2017; Araújo et al. 2018; Luangsa-ard et al. 2018; Khonsanit et al. 2019; Wang et al. 2021a; Zou et al. 2022; Tang et al. 2023a).

Ophiocordyceps is the largest genus in the family Ophiocordycipitaceae (Araújo et al. 2018; Luangsa-ard et al. 2018). The genus was established by Petch based on the type species *O. blattae* Petch (Petch 1931). In recent years, an increasing number of species have been described in *Ophiocordyceps*, with approximately 410 accepted species names to date (http://www.indexfungorum.org/names/Names.asp) (Sung et al. 2007a; Sanjuan et al. 2015; Spatafora et al. 2015; Araújo et al. 2018; Evans et al. 2018; Luangsa-ard et al. 2018; Wijayawardene et al. 2018; Khonsanit et al. 2019; Mongkolsamrit et al. 2023; Tang et al. 2023a, b).

The majority of species in Ophiocordyceps exhibit clavate, entirely, or partially darkly pigmented stromata or synnemata, especially those species with a hirsutella-like anamorph, while some species possess brightly colored stromata with hymenostilbe-like anamorph. The stromata are mostly wiry, tough, leathery, and flexible. Perithecia are superficial to pseudo-immersed to fully immersed, and are vertically or obliquely inserted in the stromata. Asci are usually cylindrical with thickened apex and contain eight ascospores. Ascospores are typically cylindrical or clavate, multiseptate, either disarticulating into secondary spores or remaining whole after discharge (Sung et al. 2007a; Quandt et al. 2014; Luangsa-ard et al. 2018). Species in Ophiocordyceps mainly attack insects of Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Odonata, and Orthoptera. Generally, they can attack all stages (larva, pupa, nymph, and adult) of the insects, with the majority of targets being larvae of Coleoptera and Lepidoptera living in wood or buried in soil (Sung et al. 2007a; Shrestha et al. 2016). Among species of Ophiocordyceps, only 17 species attack termites (Tasanathai et al. 2019; Araújo et al. 2021; Tang et al. 2022; Tasanathai et al. 2022; Xu et al. 2022).

Termites (Termitidae, Blattodea) are typically eusocial soil-dwelling insects, widely distributed around the world, especially in tropical and subtropical regions (Pearce 1997). Most termites are considered pests, causing significant impacts on forest ecosystems, and agricultural and forestry crops, with subterranean termites being particularly destructive (Rust and Su 2012; Scharf 2015).

Some species of termite-pathogenic *Ophiocordyceps* have been regarded as potential biological agents to control termite populations (Rath 2000).

During surveys of invertebrate-pathogenic fungi in Yunnan Province, China, several specimens attacking termites were collected. Morphological and molecular evidence indicates that they belong to two different taxa distinct from previously described species. This study aims to introduce these two new species and discuss their evolutionary placement among related species.

Materials and methods

Collection and isolation

Stromata emerging above fallen leaves were found in subtropical evergreen broad-leaved forests of Ruili City and Jinghong City, Yunnan Province, China. Specimens were documented and photographed in the field using a Canon 90D digital camera, and then each was placed in a sterilized 50 mL plastic centrifugal tube. All samples were stored in a cooler with ice packs until they were taken to the laboratory. Pure cultures were obtained on potato dextrose agar (PDA) with the composition of 200 g/L potato, 20 g/L dextrose, and 20 g/L agar, following the method previously presented (Wang et al. 2020). Subsequently, pure cultures were transferred to PDA slants and stored at the Kunming Institute of Botany Culture Collection (**KUNCC**), Chinese Academy of Sciences. Dried specimens were deposited in the Cryptogamic Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences (**KUN-HKAS**).

Morphological observations

The newly collected specimens were macroscopically examined with the Canon 750D camera and Olympus SZ60 stereo microscope. The characteristics of stromata (size, texture, shape, and color) were recorded. For the observation of teleomorph, perithecia were removed from the stromata and mounted on a glass slide with either 3% potassium hydroxide (KOH) (w/v) or 0.04% lactophenol cotton blue stain solution (w/v). Subsequently, the sizes and shapes of the perithecia, asci, and ascospores were measured under Olympus BX53 microscope. For each species, at least two specimens are measured, and each characteristic is measured at least 15 times repeatedly. The characteristics of pure cultures (size, texture, and color) were photographed using a Canon 750D camera after six weeks of culturing in an incubator at 25 °C. For the morphological description of anamorph, microscope slide cultures were prepared using the previous described method (Wang et al. 2020). Conidiogenous structures and conidia were measured and photographed using an Olympus BX53 microscope.

DNA extraction, amplification and sequencing

Genomic DNA was extracted from fresh mycelia cultured for three weeks using Ezup Column Fungi Genomic DNA Extraction Kit (Sangon Bio Co., Ltd., Shanghai, China), following the manufacturer's protocol. Polymerase chain reactions (PCRs) were used to amplify genetic markers using the following primer pairs: nrSSU-COF/nrSSU-COR for the nuclear ribosomal small subunits (nrSSU) (Wang et al. 2015), LR0R/LR5 for the nuclear ribosomal large subunits (nrLSU) (Vilgalys and Hester 1990; Hopple 1994), ITS5/ITS4 for the internal transcribed spacer (ITS) (White et al. 1990), EF1 α -EF/EF1 α -ER for the translation elongation factor 1 α (*tef-1\alpha*) (Bischoff et al. 2006; Sung et al. 2007b), RPB1-5F/RPB1-5R for the largest subunits of RNA polymerase II (*rpb1*) (Bischoff et al. 2006), and RPB2-5F/RPB2-7cR for the second largest subunits of RNA polymerase II (*rpb2*) (Bischoff et al. 2006; Sung et al. 2007b).

Each 25 µL-PCR reaction contained 12.5 µL of 2× Taq PCR Master Mix (Tiangen Biotech Co., Ltd., Beijing, China), 9.5 µL of RNase-Free water (Sangon Bio Co., Ltd., Shanghai, China), 1 µL of each forward and reverse primer (10 µmol/L), 1 µL of DNA template (500 ng/µL). PCR reactions were placed in a LongGene T20 multi-block thermal cycler (Hangzhou LongGene Scientific Instruments Co., Ltd., Hangzhou, China) under the following conditions: For ITS, (1) 3 min at 95 °C, (2) 36 cycles of denaturation at 94 °C for 30 sec, annealing at 55 °C for 50 sec and extension at 72 °C for 1 min, (3) extension at 72 °C for 5 min and 12 °C soak. For nrSSU, (1) 4 min at 95 °C, (2) 22 cycles of denaturation at 94 °C for 1 min, annealing at 51 °C for 1 min and extension at 72 °C for 90 sec, followed by (3) 12 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min and extension at 72 °C for 95 sec, (4) extension at 72 °C for 10 min and 12 °C soak. For nrL-SU, (1) 4 min at 95 °C, (2) 36 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min and extension at 72 °C for 2 min, (3) extension at 72 °C for 10 min and 12 °C soak. For tef-1a, (1) 3 min at 95 °C, (2) 36 cycles of denaturation at 94 °C for 30 sec, annealing at 50 °C for 30 sec and extension at 72 °C for 1 min, (3) extension at 72 °C for 10 min and 12 °C soak. For rpb1, (1) 4 min at 95 °C, (2) 36 cycles of denaturation at 94 °C for 40 sec, annealing at 50 °C for 40 sec and extension at 72 °C for 90 sec, (3) extension at 72 °C for 10 min and 12 °C soak. For rpb2, (1) 3 min at 95 °C, (2) 36 cycles of denaturation at 94 °C for 45 s, annealing at 58 °C for 45 s and extension at 72 °C for 90 s, (3) extension at 72 °C for 10 min and 12 °C soak. Standard DNA markers (Sangon Bio Co., Ltd., Shanghai, China) of known size and weight were used to quantify the PCR products. PCR products were purified using the DiaSpin PCR Product Purification Kit (Sangon Bio Co., Ltd., Shanghai, China), following the manufacturer's instructions. Purified PCR products were sent to Sangon Bio Co., Ltd., (Kunming, China) for Sanger sequencing. The newly generated sequences were checked using MEGA v. 7.0 (Kumar et al. 2016). Consensus sequences were obtained using SegMan of the Lasergene software package v. 14.1 (DNAstar, Madison, Wisconsin, USA) and deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank).

Sequencing alignments and phylogenetic analyses

We generated sequences for six loci from five specimens (Table 1). These were complemented with sequences of 125 related samples downloaded from NCBI GenBank based on BLAST searches and recent publications on Ophiocordycipitaceae (Tang et al. 2022; Xu et al. 2022). *Tolypocladium inflatum* Gams OSC 71235 and *T. ophioglossoides* (J.F. Gmel.) Quandt et al. CBS 100239 were selected as the outgroup. The sequence datasets were aligned using MAFFT v. 7, and alignments were manually corrected in MEGA v. 7.0 (Katoh and Standley 2013; Kumar et al. 2016). Ambiguously aligned sites were manually eliminated and gaps were regarded as missing data. ModelFinder (Kalyaanamoorthy et al.

Species	Voucher			GenBank ac	cession no.			Poforonoo	
Species	information	ITS	nrSSU	nrLSU	tef-1a	rpb1	rpb2	Reference	
Hirsutella satumaensis	ARSEF 996	-	KM652082	KM652125	KM652008	KM652047	-	Simmons et al. 2015	
H. cf. haptospora	ARSEF 2228	KM652166	KM652075	KM652118	KM652001	KM652041	_	Simmons et al. 2015	
H. citriformis	ARSEF 1446	KM652154	KM652065	KM652106	KM651990	KM652031	-	Simmons et al. 2015	
H. cryptosclerotium	ARSEF 4517	KM652157	KM652066	KM652109	KM651992	KM652032	-	Simmons et al. 2015	
H. fusiformis	ARSEF 5474	-	KM652067	KM652110	KM651993	KM652033	-	Simmons et al. 2015	
H. gigantea	ARSEF 30	-	-	JX566977	JX566980	KM652034	-	Simmons et al. 2015	
H. guyana	ARSEF 878	-	KM652068	KM652111	KM651994	KM652035	_	Simmons et al. 2015	
H. haptospora	ARSEF 2226	KM652159	-	-	KM651995	KM652036	-	Simmons et al. 2015	
H. illustris	ARSEF 5539	KM652160	KM652069	KM652112	KM651996	KM652037	-	Simmons et al. 2015	
H. kirchneri	ARSEF 5551	-	KM652070	KM652113	KM651997	-	-	Simmons et al. 2015	
H. lecaniicola	ARSEF 8888	KM652162	KM652071	KM652114	KM651998	KM652038	-	Simmons et al. 2015	
H. liboensis	ARSEF 9603	KM652163	KM652072	KM652115	-	-	-	Simmons et al. 2015	
H. necatrix	ARSEF 5549	KM652164	KM652073	KM652116	KM651999	KM652039	-	Simmons et al. 2015	
H. nodulosa	ARSEF 5473	KM652165	KM652074	KM652117	KM652000	KM652040	-	Simmons et al. 2015	
H. radiata	ARSEF 1369	-	KM652076	KM652119	KM652002	KM652042	-	Simmons et al. 2015	
H. repens nom. inval.	ARSEF 2348	KM652167	KM652077	KM652120	KM652003	_	-	Simmons et al. 2015	
H. rhossiliensis	ARSEF 3747	KM652168	KM652080	KM652123	KM652006	KM652045	-	Simmons et al. 2015	
H. strigosa	ARSEF 2197	KM652174	KM652085	KM652129	KM652012	KM652050	-	Simmons et al. 2015	
H. subulata	ARSEF 2227	KM652176	KM652086	KM652130	KM652013	KM652051	-	Simmons et al. 2015	
H. thompsonii	ARSEF 257	KM652182	-	KM652139	KM652019	KM652056	-	Simmons et al. 2015	
	ARSEF 414	KM652184	-	KM652143	KM652021	KM652059	-	Simmons et al. 2015	
H. thompsonii var. vina	ARSEF 254	-	KM652101	KM652149	KM652028	KM652062	-	Simmons et al. 2015	
H. versicolor	ARSEF 1037	-	KM652102	KM652150	KM652029	KM652063	-	Simmons et al. 2015	
Ophiocordyceps acicularis	OSC 110988	-	EF468951	EF468804	EF468745	EF468853	-	Sung et al. 2007a	
0. agriotidis	ARSEF 5692	JN049819	DQ522540	DQ518754	DQ522322	DQ522368	DQ522418	Spatafora et al. 2007	
0. annulata	CEM 303	-	KJ878915	KJ878881	KJ878962	KJ878995	-	Quandt et al. 2014	
0. appendiculata	NBRC 106960	JN943326	JN941728	JN941413	AB968577	JN992462	AB968539	Schoch et al. 2012	
0. arborescens	NBRC 105891	AB968398	AB968386	AB968414	AB968572	-	AB968534	Ban et al. 2015	
0. asiana	MY11878	MW285719	_	MW280213	MW292448	MW296049	-	Khao-ngam et al. 2021	
0. asiatica	BCC 30516	MH754722	-	MH753675	MK284263	MK214105	MK214091	Tasanathai et al. 2019	
	BCC 86435	MH754723	-	MH753676	_	MK214106	MK214092	Tasanathai et al. 2019	
0. barnesii	BCC 28560	-	EU408776	-	_	EU408773	EU418599	Luangsa-ard et al. 2010	
0. bidoupensis	YFCC 8793	-	OM304638	-	OK556894	OK556898	OK556900	Zou et al. 2022	
0. brunneinigra	BCC 69032	-	_	MF614654	MF614638	MF614668	MF614681	Luangsa-ard et al. 2018	
0. brunneiperitheciata	BCC 66167	-	-	MF614659	MF614644	-	MF614684	Luangsa-ard et al. 2018	
0. brunneipunctata	OSC 128576	-	DQ522542	DQ518756	DQ522324	DQ522369	DQ522420	Spatafora et al. 2007	
0. brunneirubra	BCC 14384	MH754736	-	MH753690	GU797121	MK751465	MK751468	Tasanathai et al. 2019	
0. campes	BCC 36938	MT783955	-	MT118175	MT118167	MT118183	MT118188	Tasanathai et al. 2020	
0. communis	BCC 1842	MH754726	-	MH753680	MK284266	MK214110	MK214096	Tasanathai et al. 2019	
	BCC 1874	MH754725	-	MH753679	MK284267	MK214109	MK214095	Tasanathai et al. 2019	
	BCC 2754	MH754727	-	MH753681	MK284268	MK214111	MK214097	Tasanathai et al. 2019	
0. cossidarum	MFLU 17-0752	-	MF398186	MF398187	MF928403	MF928404	-	Xiao et al. 2019	
0. crinalis	GDGM 17327	-	KF226253	KF226254	KF226256	KF226255	-	Wang et al. 2014	
O. dipterigena	OSC 151911	-	KJ878919	KJ878886	KJ878966	KJ879000	-	Quandt et al. 2014	
0. elongata	OSC 110989	-	-	EF468808	EF468748	EF468856	-	Sung et al. 2007a	

Table 1. Voucher information and GenBank accession numbers for the sequences included in this study.

0	Voucher			GenBank ad	cession no.			Deferrer	
Species	information	ITS	nrSSU	nrLSU	tef-1a	rpb1	rpb2	Reference	
O. flavida	BCC 84256	-	-	MT512655	MT533482	MT533476	-	Mongkolsamrit et al. 2021	
0. formosana	TNM F13893	-	KJ878908	-	KJ878956	KJ878988	KJ878943	Quandt et al. 2014	
0. furcatosubulata	YFCC 902	-	MT774214	MT774221	MT774242	MT774228	MT774235	Wang et al. 2021b	
0. fusiformis	BCC 93025	MZ676743	-	MZ675422	MZ707849	MZ707855	MZ707805	Tasanathai et al. 2022	
	BCC 93026	MZ676744	-	MZ675423	MZ707850	MZ707856	MZ707806	Tasanathai et al. 2022	
0. geometridicola	BCC 35947	-	-	MF614647	MF614631	MF614664	MF614678	Luangsa-ard et al. 2018	
O. globiceps	MFLU 18-0661	MH725816	MH725812	MH725830	MH727388	-	-	Xiao et al. 2019	
0. globiperitheciata	HKAS 126130	OR015963	OR082950	OR015968	OR030532	OR119834	_	This study	
	HKAS 126131	OR015964	OR082951	OR015969	OR030533	OR119835	_	This study	
0. globosa	BCC 93023	MZ676740		MZ675419	MZ707846	MZ707861	-	Tasanathai et al. 2022	
0. halabalaensis	MY5151	GU723763	KM655826	-	GU797110	-	-	Luangsa-ard et al. 2011	
O. hydrangea	YFCC 8832	-	OM304636	OM304640	OM831277	OM831280	OM831283	Zou et al. 2022	
0. irangiensis	BCC 82795	MH028142	-	-	MH028186	MH028164	MH028174	Khonsanit et al. 2019	
0. isopterae	MY12376	MZ676741	-	MZ675420	MZ707847	MZ707859	MZ707803	Tasanathai et al. 2022	
	BCC 93042	MZ676742	-	MZ675421	MZ707848		MZ707804	Tasanathai et al. 2022	
0. karstii	MFLU 15-3884	-	KU854952	_	KU854945	KU854943	_	Li et al. 2016	
0. khokpasiensis	BCC 48071	MH754728	_	MH753682	MK284269	MK214112	_	Tasanathai et al. 2019	
	BCC 48072	MH754729	_	MH753683	MK284270	MK214113	_	Tasanathai et al. 2019	
	BCC 1764	MH754730		MH753684	MK284271	MK214114	MK214098	Tasanathai et al. 2019	
	BCC 81464	MK632043	MK632128	MK632103	MK632077	MK632170	MK632159	Tasanathai et al. 2019	
0. kimflemingiae	SC09B	-	KX713631	KX713620	KX713698	KX713724	-	Araújo et al. 2018	
0. konnoana	EFCC 7315	-	EF468959	_	EF468753	EF468861	EF468916	Sung et al. 2007a	
0. longissima	EFCC 6814	-	_	EF468817	EF468757	EF468865	_	Sung et al. 2007a	
	NBRC 106965	AB968406	AB968392	AB968420	AB968584	_	AB968546	Ban et al. 2015	
0. longistipes	KUNCC 5224	OR015962	OR082949	OR015967	OR030530	OR062224	OR113082	This study	
	HKAS 126186	OR015960	OR082947	OR015966	OR030531	OR062225		This study	
	HKAS 126187	OR015961	OR082948	OR015965	OR030529	OR062223		This study	
0. longistromata	BCC 44497	MT783956	-	MT118178	MT118170	_	MT118191	Tasanathai et al. 2020	
0. macroacicularis	NBRC 100685	AB968400	AB968388	AB968416	AB968574	-	AB968536	Ban et al. 2015	
0. megacuculla	BCC 82984	-	-	MH028162	MH028192	-	MH028181	Khonsanit et al. 2019	
0. mosingtoensis	BCC 30904	MH754732	-	MH753686	MK284273	MK214115	MK214100	Tasanathai et al. 2019	
0. mosingtoensis	BCC 36921	MH754731	_	MH753685	MK284272	MK214116	MK214099	Tasanathai et al. 2019	
0. multiperitheciata	BCC 22861	-	_	MF614656	MF614640	MF614670	MF614683	Luangsa-ard et al. 2018	
0. myrmecophila	CEM 1710	-	_	KJ878894	KJ878974	KJ879008	_	Quandt et al. 2014	
0. nigrella	EFCC 9247	JN049853	EF468963	EF468818	EF468758	EF468866	EF468920	Sung et al. 2007a	
0. nutans	OSC 110994	-	DQ522549	DQ518763	DQ522333	DQ522378	-	Spatafora et al. 2007	
0. ovatospora	YHH 2206001	OP295105	0P295110	0P295113	OP313801	OP313803	0P313805	Tang et al. 2022	
	YFCC 22069184	OP295106	0P295111	0P295114	0P313802	0P313804	-	Tang et al. 2022	
0. pauciovoperitheciata	TBRC 8096	-	-	MF614649	MF614636	MF614665	MF614672	Luangsa-ard et al. 2018	
0. phuwiangensis	BCC 85351	MT783958	-	-	MT118174	MT118187	MT118195	Tasanathai et al. 2020	
	BCC 86208	-	_	MT118180	MT118172	MT118185	MT118193	Tasanathai et al. 2020	
0. pruinosa	NHJ 12994	-	EU369106	EU369041	EU369024	EU369063	EU369084	Johnson et al. 2009	
0. pseudoacicularis	BCC 53843	-	_	MF614646	MF614630	MF614661	MF614677	Luangsa-ard et al. 2018	
0. pseudocommunis	NHJ 12581	-	EF468973	EF468831	EF468775	-	EF468930	Luangsa-ard et al. 2018	
	NHJ 12582		EF468975	EF468830	EF468771	-	EF468926	Luangsa-ard et al. 2018	
0. pseudocommunis	BCC 16757	MH754733	-	MH753687	MK284274	MK214117	MK214101	Tasanathai et al. 2019	

Creation	Voucher			GenBank ad	cession no.			Reference Xiao et al. 2017	
Species	information	ITS	nrSSU	nrLSU	tef-1a	rpb1	rpb2		
0. pseudolloydii	MFLUCC 15-0689	MF351725	-	-	MF372758	MF372761	-	Xiao et al. 2017	
0. pseudorhizoidea	BCC 48879	MH754720	_	MH753673	MK284261	MK214104	MK214089	Tasanathai et al. 2019	
	BCC 86431	MH754721	-	MH753674	MK284262	MK751469	MK214090	Tasanathai et al. 2019	
	NHJ 12522	JN049857	_	EF468825	EF468764	EF468873	EF468923	Tasanathai et al. 2019	
	NHJ 12529	-	-	EF468824	EF468765	EF468872	EF468922	Tasanathai et al. 2019	
0. puluongensis	YFCC 6442	_	MT141118	MT270528	MT270520	MT270523	MT270526	Xu et al. 2022	
	YFCC 6443	-	MT141119	MT270529	MT270521	MT270524	MT270527	Xu et al. 2022	
	YHH 16017	_	_	MT270530	MT270522	MT270525	-	Xu et al. 2022	
0. pulvinata	TNS-F 30044	AB721302	GU904208	-	GU904209	GU904210	-	Kepler et al. 2011	
0. radiciformis	BCC 93036	MZ676746	_	MZ675425	MZ707852	MZ707857	MZ707808	Tasanathai et al. 2022	
	BCC 93035	MZ676747	-	MZ675426	MZ707853	MZ707858	MZ707809	Tasanathai et al. 2022	
0. ramosissimum	GZUHHN8	KJ028007	KJ028012	-	KJ028014	KJ028017	-	Wen et al. 2014	
0. ravenelii	OSC 110995	-	DQ522550	DQ518764	DQ522334	DQ522379	DQ522430	Spatafora et al. 2007	
0. rhizoidea	NHJ 12522	JN049857	EF468970	EF468825	EF468764	EF468873	EF468923	Tasanathai et al. 2019	
	NHJ 12529	_	EF468969	EF468824	EF468765	EF468872	EF468922	Tasanathai et al. 2019	
0. robertsii	KEW 27083	AJ309335	-	EF468826	EF468766	-	-	Sung et al. 2007a	
0. rubiginosiperitheciata	NBRC 106966	JN943344	JN941704	JN941437	AB968582	JN992438	AB968544	Kepler et al. 2012	
0. salganeicola	Mori01	-	MT741705	MT741719	MT759575	MT759578	MT759580	Araújo et al. 2021	
	Mori02	-	MT741704	MT741718	MT759572	MT759579	MT759581	Araújo et al. 2021	
0. satoi	J7	-	KX713653	KX713599	KX713683	KX713711	-	Araújo et al. 2018	
0. sinensis	ARSEF 6282	KM652173	KM652083	KM652126	KM652009	KM652048	-	Simmons et al. 2015	
	EFCC 7287	JN049854	EF468971	EF468827	EF468767	EF468874	EF468924	Kepler et al. 2012	
0. sobolifera	NBRC 106967	AB968409	AB968395	AB968422	AB968590	-	-	Ban et al. 2015	
0. spataforae	NHJ 12525	-	EF469125	EF469078	EF469063	EF469092	EF469111	Sung et al. 2007a	
	OSC 128575	JN049845	EF469126	EF469079	EF469064	EF469093	EF469110	Sung et al. 2007a	
O. sphecocephala	NBRC 101752	JN943351	JN941696	JN941445	AB968591	JN992430	AB968552	Schoch et al. 2012	
0. spicatus	MFLU 18-0164	MK863254	MK863047	MK863054	MK860192	_	_	Zha et al. 2021	
0. stylophora	OSC 111000	JN049828	DQ522552	DQ518766	DQ522337	DQ522382	DQ522433	Spatafora et al. 2007	
	OSC 110999	_	EF468982	EF468837	_	EF468882	EF468931	Sung et al. 2007a	
0. termiticola	BCC 1920	MH754724	_	MH753678	MK284265	MK214108	MK214094	Tasanathai et al. 2019	
	BCC 1770	GU723780	_	MH753677	MK284264	MK214107	MK214093	Tasanathai et al. 2019	
	BCC 93002	_	_	MZ675427	MZ707854	MZ707862	MZ707810	Tasanathai et al. 2019	
0. thanathonensis	MFLU 16-2909	MF850376	_	MF850377	MF872613	MF872615	_	Xiao et al. 2017	
0. tricentri	NBRC 106968	AB968410	AB968393	AB968423	AB968593	-	AB968554	Ban et al. 2015	
0. unilateralis	OSC 128574	-	DQ522554	DQ518768	DQ522339	DQ522385	DQ522436	Spatafora et al. 2007	
0. unituberculata	YFCC HU1301	_	KY923214	_	KY923216	KY923218	KY923220	Wang et al. 2018	
0. xuefengensis	GZUHHN13	KC631804	KC631785	_	KC631790	KC631795	-	Wen et al. 2013	
	GZUH2012HN13	KC631801	KC631787	_	KC631792	KC631797	-	Wen et al. 2013	
0. trichospora	CBS 109876	-	AF543766	AF543790	AF543779	AY489669	DQ522457	Sung et al. 2007a	
Tolypocladium inflatum	OSC 71235	JN049844	EF469124	EF469077	EF469061	EF469090	EF469108	Sung et al. 2007b	
T. ophioglossoides	CBS 100239	_	KJ878910	KJ878874	KJ878958	KJ878990	KJ878944	Quandt et al. 2014	
Note: Newly-generated sequ	iences are shown in	bold.							

2017) was used to select the best-fit nucleotide substitution models for Maximum Likelihood (ML) and Bayesian Inference (BI) analyses under the Akaike Information Criterion (AIC). The optimized models for each locus partition are presented in Table 2. Partitioned ML and BI analyses were performed on the

Gene name	ML	BI
ITS	GTR+F+I+G4	GTR+F+I+G4
nrSSU	TNe+I+G4	SYM+I+G4
nrLSU	TIM+F+I+G4	GTR+F+I+G4
tef-1a	TIM2+F+I+G4	GTR+F+I+G4
rpb1	TIM+F+I+G4	GTR+F+I+G4
rpb2	TIM3+F+I+G4	GTR+F+I+G4

 Table 2. Results of the best-ftting model for maximum likelihood (ML) and Bayesian inference (BI) for six loci partitions.

concatenated data set. The BI analysis was conducted using the MrBayes v. 3.2 (Ronquist et al. 2012). Four simultaneous Markov chains were run for 2,000,000 generations with a sub-sampling frequency every 100 generations. A burn-in of the first 25% of the total run was discarded. ML analysis was conducted using IQ-TREE v. 2.1.3 (Nguyen et al. 2015) under partitioned models (Chernomor et al. 2016) with 1000 ultrafast bootstrap (Hoang et al. 2018). Trees were visualized with its Maximum-Likelihood bootstrap proportions (ML-BS) and Bayesian posterior probability (BI-PP) in FigTree v. 1.4.4 and edited with Adobe Illustrator CS6.0.

Results

Phylogenetic analyses

The combined dataset of six loci was composed of 5021 bp (585 bp for ITS, 903 bp for nrLSU, 1037 bp for nrSSU, 859 bp for tef-1a, 664 bp for rpb1, and 973 bp for rpb2). Phylogenetic trees inferred from ML and BI analyses exhibited nearly consistent overall topologies and recognized four statistically well-supported clades within Ophiocordyceps, namely Hirsutella Pat, O. sphecocephala (Klotzsch ex Berk.) Sung et al., O. sobolifera (Hill ex Watson) Sung et al., and O. ravenelii (Berk. & M.A. Curtis) Sung et al. clades (Fig. 1). Among them, the Hirsutella clade includes six distinct subclades, namely H. citriformis Speare, H. thompsonii Fisher, H. nodulosa Petch, H. guyana Minter & Brady, H. sinensis (Berk.) Sung et al., and the Hirsutella ant pathogen subclades. As revealed from phylogenetic analyses, all specimens collected in this study were placed in the H. thompsonii subclade. Three samples (HKAS 126185, HKAS 126186, and HKAS 126187), newly described as O. longistipes, were clustered closely with O. fusiformis Tasan et al. However, the phylogenetic evidence indicated that these three samples formed a monophyletic clade in Ophiocordyceps, with high statistical support (ML-BS/BI-PP=100/1). The other two samples (HKAS 126130 and HKAS 126131), newly described as O. globiperitheciata, clustered together and formed a separate clade, distinguishing from other species in Ophiocordyceps with moderate bootstrap support (ML-BS/BI-PP=84/0.99). Therefore, the phylogenetic data supported the recognition of O. longistipes and O. globiperitheciata as distinct species in Ophiocordyceps.

Figure 1. Phylogenetic tree based on the combined dataset of nrSSU, nrLSU, *tef-1a*, *rpb1*, *rpb2*, and ITS showing the relationship of two new species on termites from China with other *Ophiocordyceps* species. Values at the nodes before and after the backslash are BI posterior probabilities (BI-PP greater than 0.60) and ML bootstrap proportions (ML-BP greater than 70%), respectively. New species described in this paper are shown in bold red.

Taxonomy

Ophiocordyceps longistipes Y.B. Wang, T. Yang, Q. Fan & Zhu L. Yang, sp. nov. Index Fungorum: IF901029

Fig. 2

Etymology. Referring to the long stipe of stromata.

Type. *Holotype*: CHINA, Yunnan Province, Ruili City, 26°1.07'N, 97°51.33'E, alt. 1140 m, on a termite buried in soil, 2 July 2022, Tao Yang (holotype HKAS 126185, ex-type culture KUNCC 5224). Ex-type sequences (ITS: OR015962, nrLSU: OR015967, nrSSU: OR082949, *tef-1a*: OR030530, *rpb1*: OR062224, *rpb2*: OR113082).

Description. Stromata arising from the back of termites buried in soil, solitary, unbranched, cylindrical, flexible, leathery, 17-24 cm long, 0.5-1.0 mm wide, grayish white to yellowish brown. Fertile parts cylindrical, yellowish brown, 3-5.5 cm long, generating toward the upper part of stromata, covered by a spinous surface, with a sterile tip of $11-28 \times 0.5-1.0$ mm. Perithecia superficial, pale yellow at early stage, brown at maturity, pyramidal to oval, densely distributed in the upper of stromata, arranged in a disordered manner, $390-420 \times 295-350$ µm. Asci 8-spored, filiform, hyaline, $160-195 \times 4.5-6.5$ µm, with hemispheric apical cap. Ascospores whole, hyaline, filiform, tapering at both ends, $70-85 \times 3.5-4.5$ µm, multiseptate, septa 4.5-13.8 µm long.

Anamorph. hirsutella-like. Colonies on PDA growing very slowly, reaching 3–3.5 cm diam after six weeks at 25 °C, felty, irregularly convex, cream, reverse pale brown to dark brown. Hyphae hyaline, branched, septate, smooth-walled, 2–3 µm wide. Conidiogenous cells arising from aerial mycelia, monophialidic or rarely polyphialidic, on hyphae laterally or terminally, hyaline, smooth, flask-shaped, 29–60 µm long, with a swollen base, 4–4.5 µm wide, tapering sharply into a thin neck, 0.5–0.8 µm wide. Conidia borne directly on the tip of phialides, hyaline, one-celled, solitary, smooth-walled, citriform or oval, 7–10 × 4.5–7 µm, with a mucous sheath.

Additional specimens examined. CHINA, Yunnan Province, Ruili City, 26°1.07'N, 97°51.33'E, alt. 1140 m, on a termite buried in soil, 2 July 2022, Tao Yang (HKAS 126186), sequences (ITS: OR015960, nrLSU: OR015966, nrSSU: OR082947, *tef-1a*: OR030531, *rpb1*: OR062225). *Ibid.*, (HKAS 126187), sequences (ITS: OR015961, nrLSU: OR015965, nrSSU: OR082948, *tef-1a*: OR030529, *rpb1*: OR062223).

Habitat and ecology. Parasitic on termites buried in soil of the subtropical evergreen broad-leaved forests, emerging from fallen leaves on the forest floor. Known distribution. Ruili City, Yunnan Province, China.

Notes. Ophiocordyceps longistipes is characterized by solitary stromata, superficial and pyramidal to oval perithecia, filiform asci, and filiform ascospores, hirsutella-like anamorph with monophialidic or rarely polyphialidic, flask-shaped conidiogenous cells, and citriform or oval conidia embedded in a mucous sheath. Phylogenetically, all specimens of *O. longistipes* are clustered in the *H. thompsonii* subclade of *Hirsutella* lineages and form a monophyletic clade, which is placed sister to *O. fusiformis* with maximum support (Fig. 1). However, *O. longistipes* exhibits significant morphological differences from *O. fusiformis* in its both teleomorph and anamorph. For the teleomorph, *O. longistipes* produce longer stromata of 17–24 cm (up to 6 cm

Figure 2. Ophiocordyceps longistipes A, B stromata of fungus arising from termites C fertile part D perithecia E colony on PDA (obverse and reverse) F, G ascospores H, I asci J–L conidiogenous cells and conidia. Scale bars: 1 cm (A, B, E); 2 mm (C); 100 μm (D); 20 μm (F–L).

long for *O. fusiformis*), larger perithecia of $390-420 \times 295-350 \mu m$ ($300-360 \times 180-270 \mu m$ for *O. fusiformis*). For the anamorph, *O. longistipes* possess both monophialidic and polyphialidic conidiogenous cells, but *O. fusiformis* is only monophialidic. Moreover, *O. longistipes* produces oval conidia, while *O. fusiformis* produces narrower fusiform conidia (Table 3).

Ophiocordyceps globiperitheciata Y.B. Wang, T. Yang, Q. Fan & Zhu L. Yang, sp. nov.

Index Fungorum: IF901030 Fig. 3

Etymology. Referring to the shape of perithecia, with "globi" meaning globose. **Type.** *Holotype*: CHINA, Yunnan Province, Jinghong City, Puwen Town, 22°26.35'N, 101°1.32'E, alt. 970 m, on a termite buried in soil, 28 Sep. 2022, Tao Yang (HKAS 126130). Holotype sequences (ITS: OR015963, nrLSU: OR015968, nrSSU: OR082950, *tef-1α*: OR030532, *rpb1*: OR119834).

Description. Stromata arising from the termite buried in soil, multiple (2–5), clavate, unbranched, flexible, leathery, 8–15 cm long, 1–1.5 mm wide, tapering from base to tip, base brown, tip gray. Fertile parts cylindrical, pale brown, generating toward the upper part of stromata, covered by a spinous surface, with a sterile

Figure 3. *Ophiocordyceps globiperitheciata* **A** stromata of fungus arising from termites **B** sterile tip and fertile part **C** fertile part **D** perithecia **E**-**G** asci **H**-**J** ascospores. Scale bars: 1 cm (**A**); 2 mm (**B**); 500 μm (**C**); 50 μm (**D**); 20 μm (**E**-**J**).

tip. Perithecia superficial, pale brown to brown, subglobose, aggregating loosely at the upper of stromata, arranged in a disordered manner, $240-295 \times 215-280$ µm. Asci 8-spored, filiform, hyaline, $135-170 \times 8.5-13.5$ µm, with a hemispheric apical cap. Ascospores whole, hyaline, tapering at both ends, filiform, $85-110 \times 3.5-4.5$ µm, multiseptate, septa 11-14.5 µm long. Anamorph not detected.

Additional specimens examined. CHINA, Yunnan Province, Jinghong City, Puwen Town, 22°26.35'N, 101°1.32'E, alt. 970 m, on a termite buried in soil, 28 Sep. 2022, Tao Yang (HKAS 126131). Sequences (ITS: OR015964, nrLSU: OR015969, nrSSU: OR082951, *tef-1a*: OR030533, *rpb1*: OR119835).

Species	Host	Stromata (cm)	Perithecia (µm)	Asci (µm)	Ascospore (µm)	Conidiogenous cells (µm)	Conidia (µm)	Reference
O. asiatica	Termites	Solitary, simple, filiform, orange brown, up to 15 long	Superficial, globose to subglobose, 240– 320 × 180–260	Filiform, 92.5−175 × 5−6.3	Filiform, septate, whole, 80− 132.5 × 1−2	Monophialidic or rarely polyphialidic, 15–20 × 2–3	Fusiform, 7−9 × 2−3	(Tasanathai et al. 2019)
O. bispora	Termites	Multiple (20–30), simple or branched, clavate	Immersed, globose, 300–375 × 375	Clavate, 162–163 × 58–61	Elliptical closely appressed, septate, 95–105 × 34–35.4			(Blackwell and Gilbertson 1984; Ochiel et al. 1997)
0. brunneirubra	Termites	Solitary, simple or branched, narrowly clavate, orange brown to red brown, 9.5 long	Immersed, ovoid, 300–400 × 130–200	Cylindrical, 155–225 × 4.5–8	Filiform, septate, whole, 156.5– 197.5 × 2–3	Monophialidic, 32−50 × 2−3	Fusiform, 12–17 × 2–4	(Tasanathai et al. 2019)
O. communis	Termites	Solitary, simple, filiform, base whitish- grey, upper part yellow-brown, 5–13 long	Superficial, 285– 675 × 195–390	Filiform, 215–250 × 15	Filiform, septate, whole, 100–180 × 5–6	Monophialidic or rarely polyphialidic, 10–14 × 2.7–3.3	Almond- shaped, 7–9 × 2.5–3	(Sung et al. 2007a)
0. fusiformis	Termite	Solitary, simple, cylindrical, brown, up to 6 long	Superficial, ovoid, 300–360 × 180–270	Cylindrical, 141–227 × 7–15	Cylindrical, septate, whole, 36–78 × 5–6.5	Monophialidic, 9-24 × 2-4	Fusiform, 6−18 × 2−4	(Tasanathai et al. 2022)
0. globosa	Termites	Solitary, simple, cylindrical, brown, up to 8 long	Pseudo-immersed, ovoid, 190–245 × 120–190	Filiform, 100−157 × 7−13	Filiform, septate, whole, 58–118 × 2–3	Monophialidic or polyphialidic, 9–15 × 3–5	Globose, 2-4	(Tasanathai et al. 2022)
0. globiperitheciata	Termites	Multiple (2–5), unbifurcated, clavate, base brown, tip gray, 8–15 long	Superficial, subglobose, 240−295 × 215−280	Filiform, 135–170 × 8.5–13.5	Filiform, septate, whole, 85–110 × 3.5–4.5			This study
0. isopterae	Termites	Solitary, simple, cylindrical, brown, up to 10 long	Superficial, ovoid, 270–320 × 140–180	Filiform, 81–137 × 5–9	Filiform, septate, whole, 55–78 × 2–2.5	Monophialidic, 14−28 × 2−4	Fusiform, 6–11 × 1.5–3	(Tasanathai et al. 2022)
0. khokpasiensis	Termites	Solitary, simple, cylindrical, brown, 16 long	Pseudo-immersed, subglobose, 200– 250 × 120–200	Filiform, 62.5–125 × 4–5	Filiform, whole, 46–90 × 2–3	Monophialidic or polyphialidic, 15–28 × 3–5	Globose to oval, 4–6 × 2.5–4	(Khonsanit et al. 2019)
0. koningsbergeri	Termites	Solitary, filiform, gray- white, 8–10 long	Immersed, 450 × 90	Cylindrica, 180–200 × 4–5	Filiform, whole, 150 × 1			(Penzig and Saccardo 1904)
O. longistipes	Termites	Solitary, unbifurcated, cylindrical, grayish white to yellowish brown, 17–24 long	Superficial, pyramidal to oval, 390–420 × 295–350	Filiform, 160–195 × 4.5–6.5	Filiform, septate, whole, 70−85 × 3.5−4.5	Monophialidic or rarely polyphialidic, on hyphae laterally or terminally, 29–60 long, with a swollen base, 4–4.5 wide, tapering sharply into a thin neck, 0.5–0.8 wide.	Citriform or oval, 7–10 × 4.5–7	This study
0. mosingtoensis	Termites	Solitary, simple, cylindrical, brown to grey, 11 long	Pseudo-immersed, ovoid, 400–500 × 200–300	Filiform, 187.5–287.5 × 4.5–7.5	Filiform, septate, whole, 230–315 × 1.5–3	Monophialidic, 10−17 × 2−3	Oval, 3−5 × 2−3	(Tasanathai et al. 2019)
0. octospora	Termites	Multiple, clavate, white to pale tan, 0.2–0.3 long	Immersed, subglobose to ovoid, 180–220 × 200	Clavate, about 250 × 60	Cylindrical, septate, 40–70 × 15–30			(Blackwell and Gilbertson 1981)
0. ovatospora	Termites	Solitary, simple, cylindrical or clavate, light-yellow, up to 13 long	Pseudo-immersed, ovoid to pyriform, 110–140 × 80–110	Filiform, 110−125 × 5−7	Filiform, septate, whole, 110− 130 × 1−2	Monophialidic or rarely polyphialidic, 15–35 × 3–6	Oval, 3−5× 3−4	(Tang et al. 2022)
0. pseudocommunis	Termites	Solitary, simple, cylindrical, brown, 21 long	Superficial, Subglobose, 520– 600 × 360–440	Filiform, 160–165 × 14–17	Filiform,septate, whole, 107.5– 147.5 × 6–7.5	Arising from hyphae laterally or terminally	Fusiform, septate (2-3), 13-27 × 3-5	(Tasanathai et al. 2019)

Table 3. Mor	phological	l comparison	between C)phiocord	yceps s	pecies	parasitic on	termites

Species	Host	Stromata (cm)	Perithecia (µm)	Asci (µm)	Ascospore (µm)	Conidiogenous cells (µm)	Conidia (µm)	Reference
0. pseudorhizoidea	Termites	Solitary, simple, filiform, light brown, up to 21 long	Superficial, ovoid, 280–390 × 160–220	Cylindrical, 120–150 × 5–7	Filiform, whole, 65−82.5 × 2−3	Monophialidic, 9−21 × 2−4	Fusiform, 5−10 × 1−2	(Tasanathai et al. 2019)
0. puluongensis	Termites	Solitary, simple or branched, filiform, pale orange to red brown, 7.1–13.3 long	Superficial, subglobose, 181.8-251.0 × 123.7-205.4	Fliform, 74.3-138.5 × 4.6-6.5	Filiform, septate, whole, $67.0-124.5 \times$ 1.5-2.5	Monophialidic or rarely polyphialidic, 7.9–21.2 × 1.7–5.0	Fusiform or citriform, 2.8–6.1 × 1.9–3.4	(Xu et al. 2022)
O. radiciformis	Termites	Solitary, simple, cylindrical, brown, up to 11 long	Superficial, ovoid, 330–460 × 200–320	Cylindrical, 140–296 × 6–10	Filiform septate, whole, 154–215 × 2–3	6-15×2-5	Fusiform, 5−7 × 2−3	(Tasanathai et al. 2022)
0. termiticola	Termites	Solitary, simple, filiform, yellow brown, up to 14 long	Pseudo-immersed, globose to subglobose, 200– 280 × 150–250	Filiform 62.5–110 × 4–6	Filiform, whole, 85 × 2	Monophialidic to polyphialidic, 7–11 × 2.5–4	Globose, 2.5–3.5	(Tasanathai et al. 2019)

Habitat and ecology. Parasitic on termites buried in soil of tropical evergreen broad-leaved forests, emerging from fallen leaves on the forest floor.

Known distribution. Puwen Town, Jinghong City, Yunnan Province, China.

Notes. Ophiocordyceps globiperitheciata is characterized by multiple and unbranched stromata, superficial and subglobose perithecia, and filiform asci and ascospores. Phylogenetically, *O. globiperitheciata* forms a separate clade from other *Ophiocordyceps* species in the *H. thompsonii* subclade with moderate bootstrap support (Fig. 1). It is closed to *H. cryptosclerotium* Fern. et al. and *O. communis* Hywel-Jones & Samson. However, it differs from *H. cryptosclerotium* in parasitizing Blattodea (*H. cryptosclerotium* parasitic on Hemiptera), producing multiple clavate stromata (*H. cryptosclerotium* stroma absence). *Ophiocordyceps globiperitheciata* is distinguished from *O. communis* by multiple and thicker stromata, shorter asci of 135–170 µm (215–250 µm for *O. communis*) and ascospores of 85–110 µm (100–180 µm for *O. communis*) (Table 3).

Key to species of Ophiocordyceps parasitic on termites

2	Stromata multiple	1
4	Stromata solitary	_
O. globiperitheciata	Perithecia superficial	2
3	Perithecia immersed	-
0. octospora	Perithecia subglobose to ovoid	3
O. bispora	Perithecia globose	_
5	Perithecia nonsuperficial	4
11	Perithecia superficial	_
6	Perithecia immersed	5
7	Perithecia pseudo-immersed	_
O. brunneirubra	Stromata orange brown to red brown	6
O. koningsbergeri	Stromata gray-white	-
O. mosingtoensis	Only monophialidic	7
8	Possessing polyphialidic	_
O. globosa	Large asci (100–160 µm long)	8
9	Small asci (60–130 µm long)	-
O. ovatospora	Large ascospores (> 100 µm long)	9
	Small ascospores (< 100 µm long)	-

O. termiticola	Conidia globose	10
O. khokpasiensis	Conidia globose to oval	-
O. puluongensis	Stromata sometimes branched	11
12	Stromata unbranched	-
13	Long stromata (≥ 15 cm long)	12
16	Short stromata (< 15 cm long)	-
O. pseudocommunis	Conidia have septa	13
14	Conidia have no septa	-
O. asiatica	Short stromata (< 16 cm long)	14
15	Long stromata (> 16 cm long)	-
O. longistipes	Long conidiogenous cells (> 25 µm long)	15
0. pseudorhizoidea	Short conidiogenous cells (< 25 µm long)	-
0. communis	Conidia almond-shaped	16
17	Conidia fusiform	-
0. isopterae	Short asci (< 140 µm long)	17
	Long asci (≥ 140 µm long)	-
0. radiciformis	Long stromata (> 6 cm long)	18
O. fusiformis	Short stromata (≤6 cm long)	-

Discussion

Thus far, only 17 species of *Ophiocordyceps* parasitic on termites were described, mainly clustered in the *H. thompsonii* subclade (Tasanathai et al. 2019; Tasanathai et al. 2022). These species are: *O. asiatica* Tasanathai et al., *O. bispora* (Stifler) G.H. Sung et al., *O. brunneirubra* Tasanathai et al., *O. communis* Hywel-Jones & Samson, *O. fusiformis* Tasanathai et al., *O. globosa* Tasanathai et al., *O. isopterae* Tasanathai et al., *O. khokpasiensis* Tasanathai et al., *O. koningsbergeri* (Penz. & Sacc.) G.H. Sung et al., *O. mosingtoensis* Tasanathai et al., *O. octospora* (M. Blackw. & Gilb.) G.H. Sung et al., *O. ovatospora* H. Yu et al., *O. pseudocommunis* Tasanathai et al., *O. pseudocordyceps* species are found in tropical and subtropical regions, which may be related to the higher diversity of both *Ophiocordyceps* fungi and their termite hosts in these climatic zones (Sung et al. 2007a; Tasanathai et al. 2019; Cerezer et al. 2020; Araújo et al. 2021; Wilson et al. 2021; Tang et al. 2022; Tasanathai et al. 2022; Xu et al. 2022).

Phylogenetically, almost all *Ophiocordyceps* species parasitic on termites are placed in the *H. thompsonii* subclade, except for *O. brunneirubra*. Termite-pathogenic species exhibit significant morphological variation overall. Among these species, the length of stromata ranges from extremely short to very long, the existence pattern of perithecia from superficial to pseudo-immersed to immersed, and the size of perithecia ranges from about 100 to 600 µm (Tasanathai et al. 2019; Araújo et al. 2021; Tasanathai et al. 2022; Xu et al. 2022). However, some of these species exhibit minimal interspecific morphological variation, making it challenging to distinguish them only through morphological studies. Therefore, the use of molecular systematics is necessary to accurately identify these species. For example, *O. asiatica* and *O. puluongensis*, as well as *O. khokpasiensis* and *O. termiticola*, share similar morphological char-

acteristics. *Ophiocordyceps asiatica* and *O. puluongensis* produce subglobose superficial perithecia, similar asci, ascospores, conidiogenous cells, and conidia (Tasanathai et al. 2019; Xu et al. 2022). *Ophiocordyceps khokpasiensis* and *O. termiticola* possess similar colored and shaped stromata, pseudo-immersed perithecia, and similar asci, ascospores, and conidiogenous cells (Tasanathai et al. 2019). Although these species are morphologically indistinguishable, phylogenetic analyses support them as separate taxa.

It's worth noting that the hosts of these termite-pathogenic *Ophiocordyceps* species are usually buried underground, typically 5 to 15 cm below the ground, which may be relevant to the subterranean living habits of the host termites (Martelossi et al. 2023). However, this can pose a challenge for species identification, as hosts are often lost due to separation from fragile stromata during excavation (Tasanathai et al. 2022).

Termites are notorious pests known for damaging wood, cultivated plants, buildings, pastures, forests, and even non-cellulosic materials like cables, causing annual economic losses amounting to tens of billions of dollars. Subterranean termites are responsible for about 80% of the total damage (Rust and Su 2012; Scharf 2015; Oi 2022). Therefore, the control of termites has become the focus of attention in various industries. Previously, many chlorinated hydrocarbon insecticides were used for termite control, but they were banned due to their irreversible environmental impact and negative effects on crop production. Consequently, environmentally friendly and sustainable control measures for termites are urgently needed. Entomopathogenic fungi may represent a potent solution (Afzal et al. 2019; Tasanathai et al. 2019; Oi 2022; Moon et al. 2023). These fungi, with strong infectivity, can continuously spread spores in the field to control pests and are considered environmentally non-polluting, so they have significant advantages in pest control (Shimazu et al. 1995; Meyling and Eilenberg 2007). Most members of *H. thompsonii* subclade have been found to obligately parasitize termites, they may have a regulatory effect on natural termite populations. Particularly, O. bispora, for which field investigations have revealed a high infection rate against termites, and laboratory experiments have also shown that it can effectively kill termites (Blackwell and Gilbertson 1984; Suh et al. 1998). Although laboratory experiments have not been conducted with O. longistipes, field observations have found that termites infected by this fungus often appear in groups. This may indicate that it has strong lethality against termites and possesses the potential to become a biological control agent for termites.

Acknowledgements

The authors gratefully acknowledge Mr. Maolin Yan, Mr. Shouhua Cun, Mr. Haijun Yin, and Ms. Zhaolin Yang of the Tongbiguan Provincial Nature Reserve in Yunnan for their invaluable assistance and support during the sample collection process.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was financially supported by the Science and Technology Planning Project of Yunnan Province (202207AB110016, 202001BA070001-078), the High Level Talent Introduction Plan, Kunming Institute of Botany, CAS (E16N61), and the Innovation Project of Guangxi Graduate Education (YCBZ2022028).

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xue-Mei Wang, He-Fa Liao, Qi Fan and Tao Yang. The first draft of the manuscript was written by Qi Fan and Tao Yang. Pei-Hong Shen, Zhu-Liang Yang, Wen-Bo Zeng, and Yuan-Bing Wang reviewed and revised the manuscript. All authors commented on previous versions of the manuscript.

Author ORCIDs

Qi Fan [©] https://orcid.org/0000-0003-3168-0347 Tao Yang [©] https://orcid.org/0009-0000-8579-1574 Hui Li [©] https://orcid.org/0009-0003-4255-8312 Xue-Mei Wang [©] https://orcid.org/0009-0001-0171-4924 He-Fa Liao [©] https://orcid.org/0009-0006-7287-1384 Pei-Hong Shen [©] https://orcid.org/0000-0003-0980-9562 Zhu-Liang Yang [©] https://orcid.org/0000-0001-9745-8453 Wen-Bo Zeng [©] https://orcid.org/0009-0000-0251-5890 Yuan-Bing Wang [©] https://orcid.org/0000-0002-3305-9418

Data availability

All of the data that support the findings of this study are available in the main text.

References

- Afzal M, Farman M, Rasib KZ, Qureshi NA (2019) Biocidal action of silver oak (*Grevillea robusta*) leaf extract on the termite *Heterotermes indicola* wasmann (Blattodea: Rhinotermitidae). International Biodeterioration & Biodegradation 139: 1–10. https://doi. org/10.1016/j.ibiod.2019.02.001
- Araújo JPM, Hughes DP (2016) Diversity of entomopathogenic fungi: Which groups conquered the insect body? Advances in Genetics 94: 1–39. https://doi.org/10.1016/ bs.adgen.2016.01.001
- Araújo JPM, Evans HC, Kepler R, Hughes DP (2018) Zombie-ant fungi across continents: 15 new species and new combinations within *Ophiocordyceps*. I. Myrmecophilous hirsutelloid species. Studies in Mycology 90(1): 119–160. https://doi.org/10.1016/j. simyco.2017.12.002
- Araújo JPM, Moriguchi MG, Uchiyama S, Kinjo N, Matsuura Y (2021) *Ophiocordyceps* salganeicola, a parasite of social cockroaches in Japan and insights into the evolution of other closely-related Blattodea-associated lineages. IMA Fungus 12(1): 1–17. https://doi.org/10.1186/s43008-020-00053-9

- Ban S, Sakane T, Nakagiri A (2015) Three new species of *Ophiocordyceps* and overview of anamorph types in the genus and the family Ophiocordyceptaceae. Mycological Progress 14(1): 1–12. https://doi.org/10.1007/s11557-014-1017-8
- Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frgidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 98(5): 737–745. https://doi.org/10.1080/15572536.2006.11832645
- Blackwell M, Gilbertson RL (1981) Cordycepioideus octosporus, a termite suspected pathogen from Jalisco, Mexico. Mycologia 73(2): 358–362. https://doi.org/10.1080/00275514.1981.12021355
- Blackwell M, Gilbertson RL (1984) New information on Cordycepioideus bisporus and Cordycepioideus octosporus. Mycologia 76(4): 763–765. https://doi.org/10.1080/0 0275514.1984.12023912
- Bronstein JL (2009) The evolution of facilitation and mutualism. Journal of Ecology 97(6): 1160–1170. https://doi.org/10.1111/j.1365-2745.2009.01566.x
- Cerezer FO, de Azevedo RA, Nascimento MAS, Franklin E, de Morais JW, de Sales Dambros C (2020) Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Global Ecology and Biogeography 29(11): 1967–1977. https://doi.org/10.1111/geb.13167
- Chernomor O, Von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65(6): 997–1008. https:// doi.org/10.1093/sysbio/syw037
- Da Costa RR, Vreeburg SME, Shik JZ, Aanen DK, Poulsen M (2019) Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop? Fungal Ecology 38: 54–61. https://doi.org/10.1016/j.funeco.2018.08.009
- Evans HC (1974) Natural control of arthropods, with special reference to ants (Formicidae), by fungi in the tropical high forest of Ghana. Journal of Applied Ecology 11(1): 37–49. https://doi.org/10.2307/2402003
- Evans HC, Araújo JPM, Halfeld VR, Hughes DP (2018) Epitypification and re-description of the zombie-ant fungus, *Ophiocordyceps unilateralis* (Ophiocordycipitaceae). Fungal Systematics and Evolution 1(1): 13–22. https://doi.org/10.3114/fuse.2018.01.02
- Haelewaters D, Kasson MT (2020) Animal-associated fungi. Mycologia 112(6): 1045–1047. https://doi.org/10.1080/00275514.2020.1841469
- Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2): 518– 522. https://doi.org/10.1093/molbev/msx281
- Hopple JS (1994) Phylogenetic investigations in the genus *Coprinus* based on morphological and molecular characters. PhD dissertation, Duke University.
- Johnson D, Sung GH, Hywel-Jones NL, Luangsa-ard JJ, Bischoff JF, Kepler RM, Spatafora JW (2009) Systematics and evolution of the genus *Torrubiella* (Hypocreales, Ascomycota). Mycological Research 113(3): 279–289. https://doi.org/10.1016/j.mycres.2008.09.008
- Kalyaanamoorthy S, Bui Quang M, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010

- Kepler RM, Kaitsu Y, Tanaka E, Shimano S, Spatafora JW (2011) Ophiocordyceps pulvinata sp. nov., a pathogen of ants with a reduced stroma. Mycoscience 52(1): 39–47. https://doi.org/10.1007/S10267-010-0072-5
- Kepler RM, Sung GH, Ban S, Nakagiri A, Chen MJ, Huang B, Li Z, Spatafora JW (2012) New teleomorph combinations in the entomopathogenic genus *Metacordyceps*. Mycologia 104(1): 182–197. https://doi.org/10.3852/11-070
- Khao-ngam S, Mongkolsamrit S, Rungjindamai N, Noisripoom W, Pooissarakul W, Duangthisan J, Himaman W, Luangsa-ard JJ (2021) Ophiocordyceps asiana and Ophiocordyceps tessaratomidarum (Ophiocordycipitaceae, Hypocreales), two new species on stink bugs from Thailand. Mycological Progress 20(3): 341–353. https://doi.org/10.1007/s11557-021-01684-x
- Khonsanit A, Luangsa-ard JJ, Thanakitpipattana D, Kobmoo N, Piasai O (2019) Cryptic species within Ophiocordyceps myrmecophila complex on formicine ants from Thailand. Mycological Progress 18(1–2): 147–161. https://doi.org/10.1007/s11557-018-1412-7
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
- Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathne MC, De Crop E, De Oliveira RJV, Fragoso de Souza CA, de Souza JI, Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejhad M, Gilmore SP, Goes-Neto A, Gorczak M, Haitjema CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jernimo GH, Jesus AL, Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee HB, Li WJ, Li XH, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Luecking R, Lumbsch HT, Lumyong S, Leano EM, Marano AV, Matsumura M, McKenzie EHC, Mongkolsamrit S, Mortimer PE, Thi Thuong Thuong N, Niskanen T, Norphanphoun C, O'Malley MA, Parnmen S, Pawlowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspe O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Srikitikulchai P, Stadler M, Suetrong S, Takahashi H, Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK, Thongbai B, Thummarukcharoen T, Tian Q, Tibpromma S, Verbeken A, Vizzini A, Vlasak J, Voigt K, Wanasinghe DN, Wang Y, Weerakoon G, Wen HA, Wen TC, Wijayawardene NN, Wongkanoun S, Wrzosek M, Xiao YP, Xu JC, Yan JY, Yang J, Yang SD, Hu Y, Zhang JF, Zhao J. Zhou LW. Persoh D. Phillips AJL. Maharachchikumbura SSN (2016) Fungal diversity notes 253-366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78(1): 1-237. https://doi.org/10.1007/s13225-016-0366-9
- Luangsa-ard JJ, Ridkaew R, Mongkolsamrit S, Tasanathai K, Hywel-Jones NL (2010) *Ophiocordyceps barnesii* and its relationship to other melolonthid pathogens with dark stromata. Fungal Biology 114(9): 739–745. https://doi.org/10.1016/j.funbio.2010.06.007
- Luangsa-ard JJ, Ridkaew R, Tasanathai K, Thanakitpipattana D, Hywel-Jones N (2011) Ophiocordyceps halabalaensis: A new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biology 115(7): 608–614. https://doi.org/10.1016/j.funbio.2011.03.002

- Luangsa-ard JJ, Tasanathai K, Thanakitpipattana D, Khonsanit A, Stadler M (2018) Novel and interesting *Ophiocordyceps* spp. (Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Studies in Mycology 89(1): 125–142. https://doi. org/10.1016/j.simyco.2018.02.001
- Martelossi J, Forni G, Iannello M, Savojardo C, Martelli PL, Casadio R, Mantovani B, Luchetti A, Rota-Stabelli O (2023) Wood feeding and social living: Draft genome of the subterranean termite *Reticulitermes lucifugus* (Blattodea; Termitoidae). Insect Molecular Biology 32(2): 118–131. https://doi.org/10.1111/imb.12818
- Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* in temperate agroecosystems: Potential for conservation biological control. Biological Control 43(2): 145–155. https://doi.org/10.1016/j. biocontrol.2007.07.007
- Mongkolsamrit S, Noisripoom W, Pumiputikul S, Boonlarppradab C, Samson RA, Stadler M, Becker K, Luangsa-ard JJ (2021) *Ophiocordyceps flavida* sp. nov. (Ophiocordycipitaceae), a new species from Thailand associated with *Pseudogibellula formicarum* (Cordycipitaceae), and their bioactive secondary metabolites. Mycological Progress 20(4): 477–492. https://doi.org/10.1007/s11557-021-01683-y
- Mongkolsamrit S, Noisripoom W, Hasin S, Sinchu P, Jangsantear P, Luangsa-ard JJ (2023) Multi-gene phylogeny and morphology of *Ophiocordyceps laotii* sp. nov. and a new record of *O. buquetii* (Ophiocordycipitaceae, Hypocreales) on ants from Thailand. Mycological Progress 22(1): 1–5. https://doi.org/10.1007/s11557-022-01855-4
- Moon JH, Ajuna HB, Won SJ, Choub V, Choi SI, Yun JY, Hwang WJ, Park SW, Ahn YS (2023) Entomopathogenic potential of *Bacillus velezensis* CE 100 for the biological control of termite damage in wooden architectural buildings of korean cultural heritage. International Journal of Molecular Sciences 24(9): e8189. https://doi. org/10.3390/ijms24098189
- Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300
- Ochiel GS, Evans HC, Eilenberg J (1997) *Cordycepioideus*, a pathogen of termites in Kenya. The Mycologist 1(11): 7–9. https://doi.org/10.1016/S0269-915X(97)80059-6
- Oi F (2022) A review of the evolution of termite control: A continuum of alternatives to termiticides in the United States with emphasis on efficacy testing requirements for product registration. Insects 13(1): 1–50. https://doi.org/10.3390/insects13010050
- Pearce MJ (1997) Termites: Biology and Pest Management. CAB International, Wallingford, 172 pp. https://doi.org/10.1079/9780851991306.0000
- Penzig O, Saccardo PA (1904) Icones Fungorum Javanicorum. Buchhandlung and Druckerei EJ Brill, Leiden, 55–57. https://doi.org/10.5962/bhl.title.17234
- Petch T (1931) Notes on entomogenous fungi. Transactions of the British Mycological Society 16(1): 55–75. https://doi.org/10.1016/S0007-1536(31)80006-3
- Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, Evans HC, Hughes D, Humber R, Hywel-Jones N, Li Z, Luangsa-ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung GH, Yao YJ, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in *Tolypocladium*. IMA Fungus 5(1): 121–134. https://doi.org/10.5598/imafungus.2014.05.01.12

Rath AC (2000) The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology 10(5): 563–581.https://doi.org/10.1080/095831500750016370
 Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic

inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029

- Roper C, Castro C, Ingel B (2019) *Xylella fastidiosa*: Bacterial parasitism with hallmarks of commensalism. Current Opinion in Plant Biology 50: 140–147. https://doi. org/10.1016/j.pbi.2019.05.005
- Rust MK, Su NY (2012) Managing social insects of urban importance. Annual Review of Entomology 57(1): 355–375. https://doi.org/10.1146/annurev-ento-120710-100634
- Sanjuan TI, Franco-Molano AE, Kepler RM, Spatafora JW, Tabima J, Vasco-Palacios AM, Restrepo S (2015) Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical *Ophiocordyceps*. Fungal Biology 119(10): 901–916. https://doi.org/10.1016/j.funbio.2015.06.010
- Santamaria B, Verbeken A, Haelewaters D (2023) Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. Journal of Fungi 9(2): e163. https://doi. org/10.3390/jof9020163
- Scharf ME (2015) Termites as targets and models for biotechnology. Annual Review of Entomology 60(1): 77–102. https://doi.org/10.1146/annurev-ento-010814-020902
- Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Fungal Barcoding C (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109(16): 6241-6246. https://doi.org/10.1073/ pnas.1117018109
- Shimazu M, Tsuchiya D, Sato H, Kushida T (1995) Microbial control of Monochamus alternatus Hope (Coleoptera: Cerambycidae) by application of nonwoven fabric strips with Beauveria bassiana (Deuteromycotina: Hyphomycetes) on infested tree trunks. Applied Entomology and Zoology 30(1): 207–213. https://doi.org/10.1303/aez.30.207
- Shrestha B, Tanaka E, Hyun MW, Han JG, Kim CS, Jo JW, Han SK, Oh J, Sung GH (2016) Coleopteran and lepidopteran hosts of the entomopathogenic genus *Cordyceps* sensu lato. Journal of Mycology 2016: 1–14. https://doi.org/10.1155/2016/7648219

- Simmons DR, Kepler RM, Rehner SA, Groden E (2015) Phylogeny of *Hirsutella* species (Ophiocordycipitaceae) from the USA: Remedying the paucity of *Hirsutella* sequence data. IMA Fungus 6(2): 345–356. https://doi.org/10.5598/imafungus.2015.06.02.06
- Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White Jr JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology 16(8): 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
- Spatafora JW, Quandt CA, Kepler RM, Sung GH, Shrestha B, Hywel-Jones NL, Luangsa-ard JJ (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6(2): 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07
- Suh SO, Spatafora JW, Ochiel GRS, Evans HC, Blackwell M (1998) Molecular phylogenetic study of a termite pathogen *Cordycepioideus bisporus*. Mycologia 90(4): 611–617. https://doi.org/10.1080/00275514.1998.12026950
- Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007a) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01
- Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007b) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44(3): 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011
- Tang DX, Zhu JY, Luo LY, Hou DH, Wang ZQ, Yang SD, Yu H (2022) Ophiocordyceps ovatospora sp. nov. (Ophiocordycipitaceae, Hypocreales), pathogenic on termites from China. Phytotaxa 574(1): 105–117. https://doi.org/10.11646/phytotaxa.574.1.8
- Tang DX, Huang O, Zou WQ, Wang YB, Wang Y, Dong QY, Sun T, Yang G, Yu H (2023a) Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 14(1): 1–9. https://doi.org/10.1186/s43008-023-00114-9
- Tang DX, Xu ZH, Wang Y, Wang YB, Tran NL, Yu H (2023b) Multigene phylogeny and morphology reveal two novel zombie-ant fungi in *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales). Mycological Progress 22(4): 1–22. https://doi.org/10.1007/ s11557-023-01874-9
- Tasanathai K, Noisripoom W, Chaitika T, Khonsanit A, Hasin S, Luangsa-ard JJ (2019) Phylogenetic and morphological classification of *Ophiocordyceps* species on termites from Thailand. MycoKeys 56: 101–129. https://doi.org/10.3897/mycokeys.56.37636
- Tasanathai K, Thanakitpipattana D, Himaman W, Phommavong K, Dengkhhamounh N, Luangsa-ard JJ (2020) Three new Ophiocordyceps species in the Ophiocordyceps pseudoacicularis species complex on Lepidoptera larvae in Southeast Asia. Mycological Progress 19(10): 1043–1056. https://doi.org/10.1007/s11557-020-01611-6
- Tasanathai K, Khonsanit A, Noisripoom W, Kobmoo N, Luangsa-ard JJ (2022) Hidden species behind *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales) on termites: Four new species from Thailand. Mycological Progress 21(10): 86–102. https://doi. org/10.1007/s11557-022-01837-6
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- Wang L, Li HH, Chen YQ, Zhang WM, Qu LH (2014) Polycephalomyces lianzhouensis sp. nov., a new species, co-occurs with Ophiocordyceps crinalis. Mycological Progress 13(4): 1089–1096. https://doi.org/10.1007/s11557-014-0996-9
- Wang YB, Yu H, Dai YD, Wu CK, Zeng WB, Yuan F, Liang ZQ (2015) *Polycephalomyces* agaricus, a new hyperparasite of *Ophiocordyceps* sp. infecting melolonthid larvae

in southwestern China. Mycological Progress 14(9): 1-70. https://doi.org/10.1007/ s11557-015-1090-7

- Wang YB, Thi Tra N, Dai YD, Yu H, Zeng WB, Wu CK (2018) Molecular phylogeny and morphology of *Ophiocordyceps unituberculata* sp. nov. (Ophiocordycipitaceae), a pathogen of caterpillars (Noctuidae, Lepidoptera) from Yunnan, China. Mycological Progress 17(6): 745–753. https://doi.org/10.1007/s11557-017-1370-5
- Wang YB, Wang Y, Fan Q, Duan DE, Zhang GD, Dai RQ, Dai YD, Zeng WB, Chen ZH, Li DD, Tang DX, Xu ZH, Sun T, Nguyen TT, Tran NL, Dao VM, Zhang CM, Huang LD, Liu YJ, Zhang XM, Yang DR, Sanjuan T, Liu XZ, Yang ZL, Yu H (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus *Paecilomyces hepiali*. Fungal Diversity 103(1): 1–46. https://doi.org/10.1007/s13225-020-00457-3
- Wang Y, Dai YD, Yang ZL, Guo R, Wang YB, Yang ZL, Ding L, Yu H (2021a) Morphological and molecular phylogenetic data of the Chinese medicinal fungus *Cordyceps liangshanensis* reveal its new systematic position in the family Ophiocordycipitaceae. Mycobiology 49(4): 297–307. https://doi.org/10.1080/12298093.2021.1923388
- Wang Y, Wu HJ, Tran NL, Zhang GD, Souvanhnachit S, Wang YB, Yu H (2021b) Ophiocordyceps furcatosubulata, a new entomopathogenic fungus parasitizing beetle larvae (Coleoptera: Elateridae). Phytotaxa 482(3): 268–278. https://doi.org/10.11646/ phytotaxa.482.3.5
- Wen TC, Zhu RC, Kang JC, Huang MH, Tan DB, Ariyawansha H, Hyde KD, Liu H (2013) *Ophiocordyceps xuefengensis* sp. nov. from larvae of *Phassus nodus* (Hepialidae) in Hunan Province, southern China. Phytotaxa 123(1): 41–50. https://doi.org/10.11646/ phytotaxa.123.1.2
- Wen TC, Xiao YP, Li WJ, Kang JC, Hyde KD (2014) Systematic analyses of Ophiocordyceps ramosissimum sp. nov., a new species from a larvae of Hepialidae in China. Phytotaxa 161(3): 227–234. https://doi.org/10.11646/phytotaxa.161.3.6
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Diversity 88(1): 167–263. https://doi.org/10.1007/s13225-018-0394-8
- Wilson M, Barden P, Ware J (2021) A review of ectoparasitic fungi associated with termites. Annals of the Entomological Society of America 114(4): 373–396. https://doi. org/10.1093/aesa/saab001
- Xiao YP, Wen TC, Hongsanan S, Sun JZ, Hyde KD (2017) Introducing *Ophiocordyceps thanathonensis*, a new species of entomogenous fungi on ants, and a reference specimen for *O. pseudolloydii*. Phytotaxa 328(2): 115–126. https://doi.org/10.11646/phytotaxa.328.2.2
- Xiao YP, Hongsanan S, Hyde KD, Brooks S, Xie N, Long FY, Wen TC (2019) Two new entomopathogenic species of *Ophiocordyceps* in Thailand. MycoKeys 47: 53–74. https:// doi.org/10.3897/mycokeys.47.29898
- Xiao YP, Wang YB, Hyde KD, Eleni G, Sun JZ, Yang Y, Meng J, Yu H, Wen TC (2023) Polycephalomycetaceae, a new family of clavicipitoid fungi segregates from Ophiocordycipitaceae. Fungal Diversity 120(1): 1–76. https://doi.org/10.1007/s13225-023-00517-4

- Xu ZH, Tran NL, Wang Y, Zhang GD, Dao VM, Nguyen TT, Wang YB, Yu H (2022) Phylogeny and morphology of *Ophiocordyceps puluongensis* sp. nov. (Ophiocordycipitaceae, Hypocreales), a new fungal pathogen on termites from Vietnam. Journal of Invertebrate Pathology 192: e107771. https://doi.org/10.1016/j.jip.2022.107771
- Zha LS, Kryukov VY, Ding JH, Jeewon R, Chomnunti P (2021) Novel taxa and species diversity of *Cordyceps* sensu lato (Hypocreales, Ascomycota) developing on wireworms (Elateroidea and Tenebrionoidea, Coleoptera). MycoKeys 78: 79–117. https:// doi.org/10.3897/mycokeys.78.61836
- Zou J, Wu L, He ZM, Zhang P, Chen ZH (2017) Determination of the main nucleosides and nucleobases in natural and cultured *Ophiocordyceps xuefengensis*. Molecules 22(9): e1530. https://doi.org/10.3390/molecules22091530
- Zou WQ, Tang DX, Xu ZH, Huang O, Wang YB, Tran NL, Yu H (2022) Multigene phylogeny and morphology reveal *Ophiocordyceps hydrangea* sp. nov. and *Ophiocordyceps bidoupensis* sp. nov. (Ophiocordycipitaceae). MycoKeys 92: 109–130. https://doi. org/10.3897/mycokeys.92.86160