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Abstract
Freshwater fungi are a poorly studied ecological group that includes a high taxonomic diversity. Most 
studies on aquatic fungal diversity have focused on single habitats, thus the linkage between habitat het-
erogeneity and fungal diversity remains largely unexplored. We took 216 samples from 54 locations repre-
senting eight different habitats in the meso-oligotrophic, temperate Lake Stechlin in North-East Germa-
ny. These included the pelagic and littoral water column, sediments, and biotic substrates. We performed 
high throughput sequencing using the Roche 454 platform, employing a universal eukaryotic marker 
region within the large ribosomal subunit (LSU) to compare fungal diversity, community structure, and 
species turnover among habitats. Our analysis recovered 1027 fungal OTUs (97% sequence similarity). 
Richness estimates were highest in the sediment, biofilms, and benthic samples (189–231 OTUs), inter-
mediate in water samples (42–85 OTUs), and lowest in plankton samples (8 OTUs). NMDS grouped the 
eight studied habitats into six clusters, indicating that community composition was strongly influenced 
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by turnover among habitats. Fungal communities exhibited changes at the phylum and order levels along 
three different substrate categories from littoral to pelagic habitats. The large majority of OTUs (> 75%) 
could not be classified below the order level due to the lack of aquatic fungal entries in public sequence 
databases. Our study provides a first estimate of lake-wide fungal diversity and highlights the important 
contribution of habitat heterogeneity to overall diversity and community composition. Habitat diversity 
should be considered in any sampling strategy aiming to assess the fungal diversity of a water body.
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Introduction

Aquatic fungi play an important role in the cycling of carbon and nutrients in ecosys-
tems (Gleason et al. 2008; Wurzbacher et al. 2010; Jobard et al. 2010; Grossart and 
Rojas-Jimenez 2016). Fungi may be involved in many stages of nutrient cycling, but 
can also be quite specific in their ecological functions. The degradation of recalcitrant 
plant, algal and animal residues may be carried out by a number of poorly known 
groups within the phyla Chytridiomycota and Rozellomycota (Corsaro et al. 2014, 
syn. Cryptomycota; Jones et al. 2011), and by ecological groups of aquatic hyphomy-
cetes and yeasts (reviewed by Wurzbacher et al. 2010; Jobard et al. 2010). Parasitism 
by Chytridiomycota species facilitates the trophic transfer of nutrients from other-
wise inedible phytoplankton to filter-feeding zooplankton (termed the “mycoloop”; 
Kagami et al. 2007, 2014). Aquatic fungi also form symbiotic relationships, such as 
endophytic or mycorrhiza-forming fungi (Kohout et al. 2012) or Chytridiomycota 
symbioses with algae (Picard et al. 2013). Despite their important functional role in 
lakes, the biodiversity of freshwater fungi remains poorly known.

Estimates of total fungal diversity currently range from 1.5–3 M species worldwide 
(Hawksworth 2012). Of these, roughly 100,000 species are described, with only ca. 3000 
of these from aquatic habitats (Shearer et al. 2007; Tsui et al. 2016). The low diversity of 
aquatic compared to terrestrial (e.g., soil) fungi partly results from the fact that mycologi-
cal studies in aquatic systems remain rare. Apart from a few well studied lotic ecosystems 
and wetlands (Wong et al. 1998; Shearer et al. 2007; Gulis et al. 2009; Krauss et al. 
2011), the total diversity of aquatic fungi has not been linked to habitat heterogeneity. 
Most studies in freshwaters have focussed on marshlands (reviewed in Kuehn 2008) and 
examined the open water, leaf litter or emergent macrophytes (e.g., Typha, Phragmites). 
Studies in lakes have often concentrated on seasonal patterns in the water column (e.g., 
van Donk and Ringelberg 1983; Holfeld 1998; Lefèvre et al. 2012; Rasconi et al. 2012) 
or have compared different lakes (e.g. Zhao et al. 2011; Lefèvre et al. 2012; Taib et al. 
2013). Several studies have found evidence for vertical and horizontal structuring of fun-
gal communities in the water column (Lefèvre et al. 2007; Chen et al. 2008; Lepère et 
al. 2010), suggesting that there is an important spatial component of diversity. A recent 
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meta-analysis of global diversity found that aquatic fungi clustered in habitat-specific 
biomes, with freshwater biomes having the highest diversity at the phylum level (Panzer 
et al. 2015). The authors attributed this to the high substrate diversity and temporal dy-
namics of environmental parameters in freshwater ecosystems.

Considering the multitude of available niches and fungal lifestyles in aquatic habitats 
(Karling et al. 1977; Wurzbacher et al. 2010), the actual species number of aquatic fungi 
is likely to be much higher than what is currently recognized. Freshwater systems con-
tain a great diversity of habitats including the boundaries that connect them to terrestrial 
and groundwater ecosystems (Vadeboncoeur et al. 2002; Schindler and Scheuerell 2002). 
Temperate, stratified lakes encompass horizontal gradients from shallow (littoral zone) to 
open water (pelagic zone) habitats, as well as vertical gradients from the surface associated 
epilimnion (often photic, light) to the deeper hypolimnion (often aphotic, dark) and the 
sediment. Shore regions are transition zones between terrestrial and aquatic habitats, and 
include biogeochemical gradients and macrostructures such as aquatic macrophytes, ani-
mals, plant debris and biofilms. These shore regions may thus be “hot spots” of aquatic, 
amphibious and terrestrial fungal diversity (Wurzbacher et al. 2010). In contrast, pelagic 
habitats have little or no macrostructure, and pelagic fungi may be limited to planktonic 
substrates such as dissolved organic matter (DOM), phytoplankton and zooplankton (liv-
ing or dead). In particular, accompanying the change of substrate from coarse particulate 
organic matter (CPOM) near the edges of the lake to fine particulate organic matter 
(FPOM) in the open water, filamentous Dikarya are expected to be replaced by less abun-
dant single celled yeasts and flagellated Chytridiomycota (Wurzbacher et al. 2010). We 
hypothesize that such a change in “fungal morphotypes” to unicellular fungi is linked to a 
change in the abundance and size of substrates present in the various lake habitats.

We examined the fungal diversity of a temperate lake in North-East Germany 
(Lake Stechlin) using a high throughput sequencing and metabarcoding approach. 
Our first aim was to examine the effect of habitat specificity on the fungal community 
by measuring the extent to which different habitat types contained similar communi-
ties, or whether there was a pronounced taxa turnover among habitats. Our second 
aim was to test the morphotype hypothesis, specifically whether fungal groups present 
were related to the availability of major types of particulate organic matter (POM). 
We expected that the broad diversity of substrate size and structures sampled (e.g. 
plankton, macrophytes) would reveal a more heterogeneous fungal community than 
previously detected by traditional lake sampling strategies.

Methods

Sampling site

Lake Stechlin is a deep (maximum depth: 69.5 m), oligo-mesotrophic, dimictic 
hard-water lake in North-East Germany (53°10'N; 13°02'E). It has a surface area of 
4.25 km2 and is divided into three distinct basins (Figure 1). The lake has a littoral reed 
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belt of Phragmites australis that is interspersed with areas of underwater macrophytes 
(mainly Characea). It is surrounded by mixed forest dominated by Pinus sylvestris and 
Fagus sylvatica. Lake Stechlin is part of the global lake ecological observatory network 
(GLEON) and has been monitored since 1959 (Casper 1985). Of the many publica-
tions from Lake Stechlin, few have examined the fungi (Casper 1965; Luo et al. 2011; 
Wurzbacher et al. 2014). This study thus represents the first attempt to characterize 
Lake Stechlin’s mycobiota. During the course of our field sampling (April–June 2010), 

Figure 1. Sampling sites in Lake Stechlin. Integrated water samples, above-sediment water, plankton (> 
55 µm), and sediment were taken from pelagic locations. Surface water samples, reed plants (Phragmites 
australis), biofilm samples (from stone, wood and macrophytes) and benthic samples (detritus, macrozoo-
benthos) were taken from littoral locations.
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the phytoplankton community was dominated by diatoms and by filamentous cy-
anobacteria (Dolichospermum flos-aquae). The nutrient status of the lake during the 
sampling period is detailed in the Suppl. material 1.

Sampling

We sampled eight different habitat types (Table 1) at three time points encompassing 
spring and early summer 2010 (8–9 April; 11–12 May; and 9–10 June). Sampling was 
carried out relatively early in the year to avoid an over-representation of wood-degrading 
Basidiomycetes that are introduced as airborne spores from the surrounding forest be-
tween July to November (personal observation). Our sampling scheme was designed to 
cover for both pelagic (defined here as areas with > 20 m depth and > 100 m from shore) 
and littoral (< 10 m from shore) habitats (Figure 1). Habitats were defined as follows: “Pe-
lagic” samples consisted of a 1 litre water sample integrated from three depths: 1 m below 
the surface, at mid-depth, and at 2–3 m above the sediment. These were collected using 
a Niskin-type water sampler (Hydro-Bios, Germany); “Plankton” was obtained from an 
integrated sample (surface to 2–3 m above sediment) from a plankton net (55 µm mesh; 
Hydro-Bios, Germany); “Above Sediment” was a water sample from 0–20 cm above the 
sediment that was retrieved together with “Sediment”, which itself comprised 1 ml of 
the uppermost cm of the core, using a sediment corer (6 cm diameter; Uwitec, Austria). 
“Littoral” samples consisted of a 1 litre water sample taken from 0.5–1 m depth in the 

Table 1. Overview of the total abundance of eukaryotic sequences and OTUs (97% similarity clustering) 
recovered for each lake habitat. Fungal contribution (reads, OTUs) was calculated as median percentage 
with standard deviation. Habitat abbreviations used in Figs 2 and 3 are indicated to the right of habitat 
names. POM mainly consisted of three types: fine (FPOM), coarse particulate organic matter (CPOM), 
or a mixture of both (MIX). Reported values were obtained from analysis of 3 samples in each habitat, ex-
cept for Reed habitat which had only 1 sample. Each of these samples contained pooled DNA from three 
time points (April – June 2010). The shared Chao OTU richness is given as a range between a conservative 
and a non-conservative estimate (see Method section).

Habitat
POM 
type

n
Total reads/ 
total OTU

Fungal 
reads % ± 

SD

Fungal 
OTU % 

± SD

Shared 
Chao 
(total)

Shared 
Chao 

(fungal)
Pelagic Pelagic water - Pel FPOM 3 19795/470 2.4 ± 0.4 5.8 ± 0.6 303–711 42–107

Above Sediment -AS FPOM 3 18701/592 2.2 ± 0.3 7.7 ± 2.5 467–1005 85–148
Plankton - PT FPOM 3 17902/165 0.4 ± 0.2 3.7 ± 0.5 151–294 8–8*
Sediment - Sed MIX 3 79190/1759 5.1 ± 1.2 23.5 ± 0.9 612–3219 189–853

Littoral Littoral water - Lit FPOM 3 29128/521 1.5 ± 0.2 6.8 ± 1.0 363–883 54–116
Biofilm - Bio MIX 3 26302/1053 11.0 ± 6.8 25.1 ± 2.6 541–1971 225–640
Benthos - Ben CPOM 3 59169/1070 63.1 ± 13.1 30.9 ± 8.4 580–2280 231–1323
Reed CPOM 1 4277/179 88.7 35.8 n.a. n.a.

n.a. (non applicable)
* Chao estimate may be not reliable for small sample sizes
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littoral zone; “Reed” samples were taken from aerial, submerged, and rhizosphere parts 
of reed plants, following the physical removal of biofilm; “Biofilm” samples were taken 
from stones, woody debris, and reed stems (removed using a scalpel); and “Benthos” con-
sisted of detritus and zoobenthos sampled from the littoral zone using a sediment grabber 
(Ekman-Birge bottom sampler, Hydrobios, Germany). Each of the eight habitat types was 
sampled at 3 locations in each of the 3 basins at each of the 3 time points (n = 27), for 
a total of 216 samples. Samples were pooled by combining one sample from each of the 
three basins, resulting in 3 representative samples of each habitat per time point. These 
were further pooled for sequencing analysis (see below). Water samples were filtered on a 
0.22 µm Sterivex filter (Millipore, USA), plankton-net samples were filtered onto a 12 µm 
cellulose acetate filter (Sartorius AG, Germany), and 1 ml of sediment was transferred to a 
cryotube for storage. All samples and filters were stored at -80 °C until further processing. 
We categorized the typically predominant POM type for each habitat. Water samples were 
FPOM dominated and Reed and Benthos habitats were CPOM dominated, while Sedi-
ment and Biofilm was classified as a mixture of both POM types (Table 1).

DNA extraction

Total DNA was extracted using the Power Soil kit (MoBio Laboratories, Carlsbad, 
USA) for Sediment samples; the Qiagen Plant kit (Qiagen, Hilden, Germany) for 
Reed, Biofilm, and Benthos samples; and the Qiagen Blood & Tissue kit for Littoral, 
Pelagic, Above Sediment and Plankton samples. Manufacturers’ instructions were fol-
lowed with the following modifications: Reed and Benthos samples were homogenized 
with a mill (Pulverisette 9, rpm = self-optimize speed, 20 sec, Fritsch, Germany) and 
all other samples were subjected to a bead-beating step prior to extraction (MMX400, 
2 × 2 min, f = 30 sec-1, Retsch, Germany). We added 20 µl Proteinase K (Qiagen, Neth-
erlands) to the lysis buffer for Sediment, Reed, Biofilm, and Benthos samples, and in-
cubated these for 1 h at 56 °C. DNA concentrations were measured using a PicoGreen 
assay (Invitrogen, USA). Approximately 20 ng of DNA was used as template for PCR.

Library preparation for pyrosequencing

DNA metabarcoding was carried out on all samples using the D1/D2 variable re-
gion of the ribosomal LSU with the eukaryotic primers NLF184cw (TACCCGCT-
GAAYTTAAGCATAT; modified from Van der Auwera et al. 1994) and Euk573rev 
(AGACTCCTTGGTCCRTGT; modified from NLR818, Van der Auwera et al. 
1994). After in silico tests using TestPrime (Klindworth et al. 2012) we found the primer 
pair covered 84% of all eukaryotes deposited in the SILVA database (LSU r123 version) 
when allowing for two mismatches, neither of which was in the last 3 bp of the 3’ re-
gion. The primer pair potentially excludes single eukaryotic lineages within Amoebozoa, 
Excavata, Cercozoa. Within fungi it covers 93.4% of deposited sequences in all phyla, 
except Microsporidia. Oomycetes were covered at 76%. Among the fungal phyla, the 
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lowest coverage was 85% for Basidiomycota, followed by Zygomycota with 93%. Prim-
ers were modified with 5’ sequencing adaptors (extended primer list in Suppl. material 
2), consisting of barcodes recommended by Roche and Lennon et al. (2010) and Lib-L 
adapters (Roche). PCR was conducted with AccuPrime Taq Polymerase High Fidelity 
(Invitrogen, USA) in a 40 µl reaction with the following conditions: initial denatura-
tion for 3 min at 98 °C followed by 32 cycles of 1 min denaturation at 94 °C and 2 min 
annealing/elongation at 60 °C. The quality and intensity of the amplicons were checked 
on an agarose gel to ensure semi-quantitative assumptions (Lindahl et al. 2013). PCR 
amplicons were purified using AMPure XP Beads (Beckman Coulter) and quality was 
verified by microfluidics electrophoresis (Bioanalyzer, Agilent). The 9 PCR products 
per habitat (3 replicates per sampling time) were then pooled into three final replicates 
for sequencing, each of which contained all 3 time points. As a result, the sequenc-
ing triplicates were representative for the habitat biota within the sampled timespan of 
April-June. Pooling also helps to ameliorate PCR bias and template stochasticity. We 
sequenced only one of the triplicates of the reed habitat. Afterwards all amplicons were 
pooled equimolar for emulsion PCR and subjected to pyrosequencing library prepara-
tion and sequencing following the manufacturer’s recommendations (Lib-L, FLX tita-
nium chemistry, Roche, Switzerland). The sequence data was deposited at ENA (http://
www.ebi.ac.uk/ena) under following accession number: PRJEB14236.

Sequence data processing

Sequences were processed as briefly outlined in Suppl. material 3. Raw 454 sequencing 
data were transformed by coding any nucleotide with a Phred score < 11 as N. We re-
moved all reads shorter than 300 nt and trimmed reads with trailing Ns. The D1 region 
is highly variable and has a pronounced length polymorphism, which renders an accu-
rate alignment difficult. We therefore defined an end position to serve as an alignment 
anchor by screening the SILVA reference database (v123) for a conservative eukaryotic 
region located within our amplicon. We identified a conserved 42-nt sequence (GAG-
NCCGATAGNNNACAAGTANNGNGANNGAAAGWTGNAAAG) located after 
the D1 region as being suitable to serve as a stable 3’ end for the alignment by using 
the probe design tool of ARB (Ludwig et al. 2004). We subsequently clipped all fil-
tered reads (fastq format) after the last nucleotide using Shore oligo-match: a sequence 
context-aware clipping tool (Ossowski et al. 2008). This normalized the length of the 
reads to a fixed position in a global alignment (average read length: 360 ± 13, n = 
596k). We allowed for mismatches by scoring each match with 3, mismatches with -1, 
and gaps with -4. The threshold for clipping was set to scoreMAX > 0.5 and the effect on 
the size-frequency distribution can be found in Suppl. material 3. Unclipped sequences 
were rejected and analysed separately (Suppl. material 3).

Clipped reads were processed in Mothur following 4-5-4 SOP (Schloss et al. 
2009, accessed in August 2012). Quality filtering was achieved by using the sliding-
window option (quality threshold of 25). For the alignment-based procedure, we 
constructed a reference dataset with long, high-quality reads processed with pyrotag-

http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
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ger (http://pyrotagger.jgi-psf.org) using a cutoff at > 500 nt. These were aligned to the 
eukaryotic backbone provided by the SILVA database LSURef (version 111; www.
arb-silva.de) using the SINA aligner (Pruesse et al. 2012). This reference alignment 
was used to align our reads in Mothur. After clustering at 97% sequence similarity 
(average neighbour algorithm), the OTU abundance matrix was imported into R 
(www.r-project.org, version 3.3.1.) for further analysis (see below). As a comparison 
to a fixed 97% sequence similarity cutoff, we employed a coalescent-based clustering 
analysis as implemented by the gmyc model (Powell et al. 2011; Fujisawa and Barra-
clough 2013) with an UPGMA tree for the early diverging lineages (456 OTUs). 
OTUs were classified by the RDP classifier using the RDP fungal LSU training data-
set with a confidence level of 80% (version 11; Liu et al. 2011; Figure 2; see Suppl. 
material 4 for classifications).

Habitat richness and statistics

OTU count was positively correlated with read count (Pearson’s r = 0.90), thus we 
avoided single sample based richness estimates. For richness estimates of the habitats 
we applied a shared corrected Chao index (Chiu et al. 2014). More specifically, we 
provided a range for the Chao estimates based on a lower conservative OTU filtering 
and an upper overestimate based on unfiltered OTUs. In the former case all OTUs 
that occurred only in one sample of the dataset (independent of the absolute OTU 

Figure 2. Classification of fungal OTUs by the RDP classifier to the different taxonomic levels as a 
percentage. Classification cutoff was a confidence level of 0.8.

http://pyrotagger.jgi-psf.org
http://www.arb-silva.de
http://www.arb-silva.de
http://www.r-project.org
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frequency) were removed while in the latter case all OTUs including singletons were 
kept. Supporting rarefaction curves displaying the sampling effort for Eukarya and 
Fungi based on a singleton filtered OTU matrix are provided in the Suppl. material 5).

POM and habitat types were compared by employing parametric statistics (ANO-
VA and Tukey honest significant difference) on “logit” transformed proportional read 
(read counts) or OTU (OTU counts) data. Plankton samples were excluded due to 
their skewing effect on the distribution caused by their low fungal proportion (includ-
ing Plankton samples will still lead to a significant Kruskal-Wallis test, p<0.001, but 
renders PostHoc tests difficult to apply). Normality and homogeneity of variances 
were confirmed by Shapiro-Wilk tests and Levene’s Tests, respectively.

Multivariate analyses

For all subsequent β-diversity analyses, an OTU table without singletons was used to 
account for noise in the data (e.g., Reeder and Knight 2009). Differences among habi-
tats within the fungal sub-community were examined with a non-metric multidimen-
sional scaling (NMDS) ordination plot based on the Cao distance (Cao et al. 1997), 
which accounts for variable sampling intensity. Ellipses correspond to the standard 
deviation around the habitat group centroids. Stress values below 0.1 can be consid-
ered as a very good fit. We additionally tested for significance when separating habitats 
(excluding Reed) and POM type and using a PERMANOVA (1000 permutations) on 
the distance matrices. The robustness of the results were evaluated by comparing them 
with a presence/absence transformed OTU matrix using Jaccard distances, as well as 
with a classified taxonomy abundance table generated with SILVA NGS (see below) 
using Cao distance. Both additional analyses resulted in similar outcomes (Suppl. ma-
terial 6).

Alternative sequence data processing

As an alternative to the OTU-based RDP classification of our sequences, we per-
formed two additional analyses with the aim to gain resolution for the taxonomic 
classifications of our sequences (see also Suppl. material 3). First, clipped sequences 
were demultiplexed and quality trimmed in Mothur as described above and then sub-
mitted to SILVA NGS (www.arb-silva.de/ngs/) (Quast et al. 2013) for classification 
at the minimum similarity level of 85% against the LSU reference database (version 
123). This resulted in 57 fungal taxonomic paths (unique taxonomic names, hierar-
chical, see Quast et al. 2013; Suppl. material 4). Second, we performed an analysis, 
in which we pooled all clipped sequences of one habitat and then subjected these 
to a blast search (Blast+) against the nt database (GenBank, accessed January 2015) 
for eukaryotes. Sequences were then classified using the LCA classifier implemented 
in Megan5 (Huson et al. 2011) using the following parameters: Min. Score = 100, 

http://www.arb-silva.de/ngs/
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Max. Expected = 0.01, Top % = 5.0, Min. Support % = 0.01, Min. Support = 2, 
LCA = 75 %, Min. Complexity = 0. Habitats were compared based on square root 
normalization (Suppl. material 7).

Phylogenetic inference

We recovered several Neocallimastigales (rumen fungi) sequences, as classified by SIL-
VA NGS and also by the RDP classifier with a low probability (< 55%). We took 26 
representative sequences and constructed a phylogenetic tree with an extension of the 
reference dataset from James et al. (2006) in order to confirm or reject this potential 
classification. A matrix was aligned using the SINA aligner (Pruesse et al. 2012) fol-
lowed by manual inspection. For tree reconstruction, we used MrBayes (v3.2.6; Ron-
quist et al. 2012) with 10 million generations and an “invgamma” model.

Results

A total of 54 sampling stations, representing eight habitat types, were sampled at three 
time points in spring of 2010 and analysed using pyrosequencing of the large ribo-
somal subunit (LSU) as a universal eukaryotic marker. Across all habitats, the total 
number of eukaryotic OTUs was 3695, as estimated using alignment-based clustering 
at 97%, 47% of which were singletons. The lower limit of shared estimated OTUs 
(shared corrected Chao index) varied considerably among habitats, with the highest 
values found in Sediment, Benthos and Biofilm habitats, and the lowest in Plankton 
and water samples (Table 1). Of the total OTUs, 1027 (27%) were classified as fungi 
by RDP (48% of which were singletons). The gmyc method of OTU delimitation 
for the non-Dikarya taxa (mainly aquatic lineages that comprised 52% of the fun-
gal OTUs in our data) resulted in 65% of OTUs with more than one occurrence, 
compared with 68% of units defined by gmyc clustering. The ability of each type of 
taxonomic unit to predict habitat (97%: adj. r2 = 0.59; gmyc: adj. r2 = 0.61) was very 
similar and we thus decided, to hereafter use the more conservative OTUs based on 
the 97% criterion. The shared lower estimated OTUs were following similar trends as 
for all eukaryotes with Benthos and Biofilm ranking highest (231 and 225 estimated 
OTUs, respectively) and markedly lower ranks for the water samples (42–85 estimated 
OTUs) and only 8 estimated OTUs for Plankton samples (Table 1). Both, the fungal 
proportions (fungal reads) as well as the proportional fungal diversity (fungal OTUs) 
were significantly different for each POM type (reads: ANOVA, F = 104.4, p = 6.6-10, 
Tukey Post Hoc Test p < 0.001 (Figure 3); OTUs: ANOVA, F = 132.9, p = 1.08-10, 
Tukey Post Hoc Test p < 0.01).

Fungal community composition was significantly structured into different habitats 
according to the NMDS clustering of OTUs (Figure 4, stress = 0.08; PERMANOVA, r2 
= 0.71, p < 0.001) and POM types (PERMANOVA, r2 = 0.36, p < 0.001). The three wa-
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Figure 3. Contribution of fungal phyla within each of the lakes habitat. Pie chart diameters are scaled 
by the contribution of fungal diversity to the total eukaryotic diversity in each habitat. Lower case letters 
group significantly different POM types in terms of OTU diversity and fungal reads (Tukey Post-Hoc 
tests, p < 0.01).

Figure 4. Habitat specificity of the fungal community in Lake Stechlin. NMDS plots based on the fun-
gal OTU matrix (1027 OTUs). Ordination is based on Cao distances (Cao et al. 1997), which are insensi-
tive to differences in sampling effort. Ellipses are based on standard deviations around habitat centroids 
(based on a confidence level of 0.95) and are coloured according to their POM type: FPOM (blue), MIX 
(magenta), CPOM (brown). Habitat codes and POM categories are taken from Table 1.
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ter samples (Pelagic, Littoral, and Above Sediment) appeared to be very similar, whereas 
all other habitats were distinct (Figure 4). Comparable results were found by NMDS 
clustering of the presence/absence OTU matrix or by clustering the fungal taxonomic 
paths generated by SILVA NGS, indicating that the habitat clustering was robust and 
took place at even higher taxonomic levels (phylum to order level; Suppl. material 6).

Only 23% of the fungal OTUs could be classified to the family or genus level, and 
around 20% of the sequences could not be assigned to the kingdom level at 0.8 con-
fidence threshold (Figure 2). RDP classifier seem to provide limited classification suc-
cess when certain early diverging lineages are targeted (e.g., see “Pel“ sample in Suppl. 
material 4). Thus we decided to also evaluate other alternatives. By using Blast against 
the nucleotide database of NCBI most fungal sequences could only be classified as 
“fungi” or “environmental samples” (mean: 70.2% of sequences; range: 36.5–89.7% 
of sequences in a given habitat; see Suppl. material 7). Then by processing the se-
quences by SILVA NGS we obtained a classification on the order level. Hence, we will 
use RDP to discuss the fine scale resolution and the SILVA classification for overall 
comparisons on the order or phyla level (Figure 3, 5). The orders Spizellomycetales and 
Rhizophydiales (both Chytridiomycetes) comprised the majority of fungal sequences 
in the four pelagic habitats and the Littoral water sample, with a greater proportion 
of Spizellomycetales in the three types of water samples compared to more Rhizo-
phydiales in the Plankton and Sediment habitats (Figure 5). In contrast, the Biofilm 
habitat harboured a good representation of all major fungal phyla (Figure 3) with 
Chytridiales, Rhizophydiales (both Chytridiomycetes), and Agaricomycetes (Basidi-
omycota) forming the most prominent orders (Figure 4). Capnodiales and Helotiales 
(both Ascomycota) were the most prominent orders in the Benthic habitat whereas the 
Reed habitat was dominated by Pleosporales (Ascomycota) (Figure 4).

Figure 5. Distribution of fungal orders in Lake Stechlin habitats based on the mean percentages as 
determined with SILVA NGS. Fungal phyla are highlighted with brackets. Habitat codes are taken from 
Table 1. (*) marks the false classified Neocallimastigales as clarified by phylogenetic inference (see discus-
sion paragraph on sediments).
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Only a small proportion of fungal sequences (0–6%) could be assigned to what we 
assume are forest taxa (Agaricales, Auriculariales, Boletales, Cantharellales, Gleophylla-
les, Hymenochaetales, Polyporales, Russulales; Suppl. material 1). This proportion was 
significantly different among habitats (Kruskal-Wallis test, df = 5, p = 0.023), being 
highest in the Sediment samples (mean = 4.9%, SD = 0.9). From all habitats, we re-
covered sequences from oomycetes (i.e. Albugo, Aphanomyces, Phytophthora, Pythium, 
Saprolegnia), a group that was formerly related to aquatic fungi and that occupied 
similar ecological niches (Sparrow 1960). They have a Chytridiomycota-like life cycle 
and serve as parasites (e.g., agent of the European cray-fish plague) and saprophytes in 
aquatic systems. These sequences were 1–3 orders of magnitude lower in abundance 
compared to the fungal sequences, with maxima in Benthos and Sediment samples 
(Suppl. material 1).

Discussion

In the following discussion, we first address methodological considerations and then 
discuss fungal diversity separately for the major habitats.

Methodological considerations

The occurrence of early diverging fungal lineages as well as members of the Dikarya 
renders a comprehensive assessment of the aquatic mycobiota challenging. This is due 
to the difficulty in finding a universally suitable marker (i.e., “DNA barcode”) with 
both sufficient coverage of evolutionary distant groups and meaningful resolution 
within any of the individual groups. We employed the D1 region of the LSU as a 
marker because of its high variability while still being conservative enough to amplify 
across the fungal kingdom (Porter and Golding 2012). Both D1 and D2 regions were 
formerly used as molecular markers for fungi, especially yeast (Kurtzman and Robnett 
1997) and perform almost as well as the commonly used ITS region in discriminating 
fungal groups (Schoch et al. 2012). The LSU is an established phylogenetic marker for 
Chytridiomycota (Letcher et al. 2006) and, unlike the ITS region, it can be used to 
delimit distant aquatic fungal lineages (Lefèvre et al. 2012; Wurzbacher et al. 2014). 
The small ribosomal subunit (SSU) is also well established for early diverging lineages 
(e.g., Jobard et al. 2012; Ishii et al. 2015); however, it is less suitable for fungal groups 
within Dikarya (Lindahl et al. 2013; Tedersoo et al. 2015) and would fail to generate 
meaningful OTUs for a broad spectrum of simultaneously occurring fungal phyla, 
such as in our biofilm habitat. Currently, the major disadvantage of using LSU regions 
as taxonomic markers for aquatic fungi is the lack of reference sequences that allow 
assignment. Although the RDP classifier identified at least two aquatic hyphomycetes 
genera in our dataset (Spirosphaera and Tetracladium) most previous work on this eco-
logical group was done with ITS (Duarte et al. 2014). The ITS region may pose a 
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better solution for those lake habitats that were dominated by Dikarya, however, as of 
2014 only 26% of described aquatic hyphomycetes species had an ITS database record 
(Duarte et al. 2014). The RDP database had also problems with classifying Chytridi-
omycota (and Rozellomycota) from the water samples and similar problems may arise 
with freshwater Chytridiomycota for ITS data (currently there are 1121 Chytridi-
omycota sequences in UNITE version 7.0, excluding Batrachochytrium sequences) 
pointing to larger gaps in the reference datasets for aquatic species. The UNITE spe-
cies hypothesis concept introduced by Kõljalg et al. (2013) might be a good interim 
solution for dealing with undocumented species; however, the LSU offered alternatives 
here, namely (i) it was possible to employ species delimitation methods for clustering 
(GMYC) and classification (see below) and (ii) it allowed the multivariate analyses for 
using evolutionary (or trait based) based diversity indexes such as UniFrac, which is 
frequently used in microbial ecology (Lozupone et al. 2011).

Water and large plankton

All three water habitats (Pelagic, Littoral, and Above Sediment) had a low proportion 
of fungal sequences. Each were characterised by a predominance of Chytridiomycota. 
This was also the case for the habitats directly connected to processes in the open water 
(Plankton and Sediment). The proportion of fungal sequences in all samples classified 
as FPOM was significantly lower (Figure 3). Previous results from Lake Stechlin also 
reported a low proportion of fungi in water samples (Luo et al. 2011), which may 
be related to the fact that we did not enrich for fungi by prefiltration or by primer 
selection. Lefèvre et al. (2012) provided a summary of fungal and chytrid percentages 
ranging from 1–50% in water samples, relating these observations to prefiltration and 
primer pair used. Like Monchy et al. (2011), we observed similar communities in all 
of the water samples (Littoral, Pelagic, and Above Sediment). The greater number 
of OTUs per read abundance may originate from a rare fungal parasite community 
(Mangot et al. 2013), whereby parasitic chytrids can recruit for temporally variable 
infection opportunities such as may occur over time scales of a few weeks (e.g., Ibelings 
et al. 2004; Alster and Zohary 2007).

There was a limited number of fungal taxa associated with water borne zoo- and 
phytoplankton samples (Plankton; > 55 µm), which presumably should represent at-
tached or infective stages of fungi. 84–93% of these fungi belonged to Rhizophydiales, 
a group of well described phytoplankton parasites. By contrast, Rhizophydiales ac-
counted for only 14–17% in the pelagic (open) water samples. This is insofar impor-
tant because most microscopic studies on chytrids refer to infected algae of approxi-
mate the size of 50 µm or larger (e.g., Hohlfeld 1998; Ibelings et al. 2004; Rasconi et 
al. 2012). However, in an unbiased water sample (i.e. not fractionated by filtration or 
enriched by a plankton net), they were replaced as dominant group by the order Spi-
zellomycetales, which are common saproptrophs in soil and may underline to the im-
portance of saprotrophic chytrids in aquatic environments (Wurzbacher et al. 2014). 
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This may establish the mycoloop (Kagami et al. 2014) as a trophic link during times 
with low prevalence of algal infections, based on the mineralization of detritus (cf. 
Gleason et al. 2008). Finally, there was a low proportion of Rozellomycota in the large 
plankton. Rozellomycota are discussed as inter alia attached algal parasites (Jones et 
al. 2011); however, their under-representation in Plankton samples indicates that they 
were not relevant parasites of the larger plankton in Lake Stechlin, where Chytridi-
omycota occupied this niche. Due to the small size of Rozellomycota, they may rather 
have a specialization towards smaller hosts, which do not provide enough resources for 
Chytridiomycota to complete their life cycle.

Sediment

The profundal sediment temperature in Lake Stechlin remains ca. 4 °C year-round 
while the upper sediment surface (~ 5 mm) is usually oxic. The sediment has a high 
water content (> 95%) and high organic matter content at the sampled sites because 
it receives sinking matter from pelagic organisms. Thus the sediments serve as a fungal 
spore bank. We therefore expected to observe elevated proportions of forest fungi that 
had probably blown in or been washed in as spores. The dominant fungal group was 
the Rhizophydiales (Chytridiomycota), as also found in the large plankton samples. 
Similar to their hosts, parasitic chytrids develop thick-walled resting spores (cysts), 
which can be found in sediment, while other parasitic species can actively infect algal 
resting stages in sediments (Canter 1948, Canter 1968). The few studies that have 
investigated lake or pond sediments reported Chytridiomycota and Rozellomycota (at 
that time referred to as LKM11 & LKM15) to be the dominant fungal phyla (Luo et 
al. 2005; Slapeta et al. 2005). Rozellomycota species appear to occur in the hypolim-
nion of lakes (Lepère et al. 2010) and also in anoxic habitats (Jones et al. 2011), but 
their ecological function remains unclear (Grossart et al. 2016). Similarly enigmatic 
was the appearance of Zygomycota (Mortierella) at the sediment surface in our study. 
Some of them can grow at low temperatures under oxic conditions, e.g. under snow 
packs in sub-alpine regions (Schmidt et al. 2008). Very surprising was the appearance 
of Neocallimastigomycota, which are by definition obligate, mutualistic, anaerobic ru-
men fungi. They are exceptional in that they break down a broad variety of plant 
polymers under anaerobic conditions (Solomon et al. 2016). These fungi must have 
had an environmental ancestor and it is possible that anoxic sediments may represent 
such an ancestral habitat. However, the sequences were only approx. 90% similar to 
Orpinomyces and the RDP classifier assigned a low probability to this classification (< 
0.55). Lefèvre et al. (2012) also described sequences from lake plankton samples that 
may support such a new environmental lineage of “rumen fungi”. Our test of whether 
those sequences clustered within the Neocallimastigomycota in a phylogenetic tree 
(Suppl. material 8) found no support for this. The sequences resembled unknown 
fungal lineages or belonged to Rozellomycota or Zygomycota lineages with a moderate 
probability.
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Biofilm (Periphyton)

Biofilm samples appeared to represent an intermediate fungal habitat between sedi-
ments and benthic samples by including a high diversity of early diverging lineages as 
well as elevated proportions of Dikarya (16–36%, Figure 3). Fungi formed a signifi-
cant proportion of the overall eukaryotic biofilm community recovered (28% of the 
OTUs recorded in the habitat were identified as fungi), dominated by biofilm-forming 
algae (the ratio of fungi to periphyton/epilithic algae was roughly 1:5, see Suppl. mate-
rial 4, SILVA NGS). Biofilms represent a complex environment (exhibiting the high-
est eukaryotic taxon richness of all eight habitats) and this is also reflected by a broad 
range of fungal groups and taxa. Along with Rhizophydiales and Spizellomycetales, 
we found other chytrids of the orders Chytridiales and Cladochytridiales. The spatial 
proximity of host cells in periphyton could be ideal for chytrid species, facilitating 
a high encounter rate with potential hosts and substrates. In contrast to the water 
samples, the RDP classifier was able to classify more Chytridiomycota to genus level: 
Nowakowskiella, Chyridium and Betamyces. The RDP classifier also identified the ear-
lier mentioned aquatic hyphomycetes. However a large part of sequences was only clas-
sified to phylum level (Suppl. material 4). These autotrophic lake biofilms seem to be a 
rich source of fungal biodiversity and pose promising target habitats for future studies. 
Biofilms (in our case mainly littoral periphyton and epilithic biofilms) have been rarely 
examined for fungi, and only a few studies on stream ecosystems have investigated the 
fungal occurrence (measured as ergosterol) on substrates other than leaves (Tank and 
Dodds 2003; Artigas et al. 2004; Aguilera et al. 2007; Frossard et al. 2012). In lakes 
and streams, periphyton can contribute substantially to the primary production of the 
whole ecosystem (Lalonde et al. 1991; Vadeboncoeur et al. 2007 and references there-
in; Vis et al. 2007) and can be the primary food source for macrozoobenthic grazers 
(Cattaneo and Mousseau 1995). Our findings suggest that it is not only a rich source 
of widely divergent fungal lineages, but that fungi might play an important ecological 
role in periphyton, turning over a significant amount of algal carbon and thus total 
carbon in the lake.

Benthic and reed samples (CPOM)

In contrast to water samples, fungal sequences were dominant in CPOM (Benthos, 
Reed) samples and their relative proportions were significantly elevated in this POM 
type. Samples consisted mainly of submerged plant residues in addition to algae and 
benthic animals. Mitosporic ascomycetes lineages were predominant, followed by a 
small percentage of chytrids (mainly Cladochytridiales) and very few Basidiomycota. 
This appears congruent with our initial “morphotype hypothesis”. Mitosporic ascomy-
cetes are effective plant decomposers in freshwater systems (Gessner et al. 2007), where 
they are ecologically grouped together as aquatic hyphomycetes (e.g. Spirosphaera, a 
potential aero-aquatic hyphomycete increased to 12% in Benthos samples). The Ben-
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thos habitat had a high proportion of fungal OTUs and fungal reads and is probably 
home to those fungi responsible for the breakdown of submerged plant remains. Inter-
estingly, the importance of aquatic hyphomycetes for plant litter breakdown has thus 
far only been demonstrated in lotic environments, with lakes not yet investigated in 
detail (see Chauvet et al. 2016). In contrast to the benthic samples, the Reed sample 
exhibited a dominance of the fungal order of Pleosporales (93%). Early molecular 
work has already established the high diversity of reed endophytes (Neubert et al. 
2005, Angelini et al. 2012) and we could confirm their presence. The reed sample 
can be seen as an outgroup in our study, as it comprised the emergent parts of plants. 
Sequences of the order Pleosporales were largely restricted to the reed and, to a lesser 
extent, benthic samples.

Conclusions

Fungi play an important role in the cycling of carbon and nutrients in a wide range of 
freshwater habitats (Bärlocher and Boddy 2016). While much of our understanding of 
their diversity and ecological roles stems from research in the terrestrial realm, there is in-
creasing interest in their taxonomic and functional diversity in freshwater systems (Gros-
sart et al. 2016; Grossart and Rojas-Jimenez 2016). We examined fungal community 
composition in eight different habitats of a single lake, in contrast to most studies which 
have compared water samples among seasons or lakes (e.g., Monchy et al. 2011; Taib et 
al. 2013). We found pronounced differences in diversity and community composition 
among the sampled habitat types, and conclude that the habitat heterogeneity within a 
single lake offers a wide range of fungal niches. The results extend previous research of 
fungal diversity and distribution in freshwaters and clearly indicate that lake biofilms can 
be hotspots for aquatic fungi. Most of the fungi from the water samples were rather ho-
mogeneous in their community composition, with a clear dominance of Chytridiomy-
cota. This may be due to the predominance of FPOM in the sampled habitats. Our study 
highlights the importance of habitat heterogeneity and we hope will stimulate further 
research on under-sampled lake habitats, such as sediments, biofilms, and submerged 
macrophytes. A more holistic approach in evaluating fungal diversity, using a more com-
prehensive inclusion of habitat types and taxonomic markers, should provide deeper 
insights into the multiple ecological roles of fungi in diverse freshwater environments.
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Supplementary material 1

Accompanying data tables
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: Two additional tables stating 1) the physicochemistry of the lake 

during the sampled time span, 2) the proportions of fungal-like organism and ter-
restrial fungi (“forest fungi”, see main text).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 2

List of pyrosequencing primers.
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: List of employed pyrosequencing fusion primers.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 3

Detailed results of the clipping procedure
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: ZIP file
Explanation note: File archive in “zip” format. Decompress with e.g., “unzip” for in-

specting individual files. Files describing the bioinformatic processing and the ef-
fects of the clipping procedure.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 4

Krona charts of classified OTUs (RDP) and sequences (SILVA NGS).
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: ZIP file
Explanation note: File archive in “zip” format. Decompress with e.g., “unzip” for in-

specting individual html files. Open html files with an internet browser (network 
connection must be enabled). Krona charts presenting the classified sequences 
based on a) OTUs classified by the RDP classifier, and b) based clipped reads pro-
cessed by the SILVA NGS pipeline.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 5

Rarefaction analysis
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: Rarefaction curves based on the OTU table without OTU single-

tons for all eukaryotes (left panel) and for fungal OTUs (right panel).
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 6

Alternative ordinations based on binary data and taxonomy
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: Two alternative NMDS accompanied by corresponding PER-

MANOVA statistics based on a) the presence/absence of OTUs (left panel) and the 
Jaccard index, and b) the taxonomic classification of SILVA NGS and the Cao in-
dex. The ellipses (coloured to POM type) are based on standard deviations around 
centroids with a confidence level of 0.95.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Comprehensive Blast analysis
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: Blast results against the NCBI nt database (June 2015) for all eu-

karyotes presented in a Megan5 plot.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
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Supplementary material 8

Phylogenetic tree of Neocallimastigales sequences
Authors: Christian Wurzbacher, Norman Warthmann, Elizabeth Bourne, Katrin At-
termeyer, Martin Allgaier, Jeff R. Powell, Harald Detering, Susan Mbedi, Hans-Peter 
Grossart, Michael T. Monaghan
Data type: PDF file
Explanation note: Phylogenetic bayesian tree based on 10 million generations. Se-

quences that were classified as Neocallimastigales in the manuscript are coloured in 
red with the frequency of sequences in the dataset in black. The name corresponds 
to the representative read identifier in the dataset (accessible at ENA nucleotide ar-
chive: PRJEB14236). Node labels are posterior probabilities above 0.8. Statistically 
supported branches have an probability of 0.95-1.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

http://opendatacommons.org/licenses/odbl/1.0/
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