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Abstract
Mycological investigation of various foods (mainly cowpea, groundnut, maize, rice, sorghum) and agri-
cultural soils from two states in north-central Nigeria (Nasarawa and Niger), was conducted in order to 
understand the role of filamentous fungi in food contamination and public health. A total of 839 fungal 
isolates were recovered from 84% of the 250 food and all 30 soil samples. Preliminary identifications were 
made, based on macro- and micromorphological characters. Representative strains (n = 121) were stud-
ied in detail using morphology and DNA sequencing, involving genera/species-specific markers, while 
extrolite profiles using LC-MS/MS were obtained for a selection of strains. The representative strains 
grouped in seven genera (Aspergillus, Fusarium, Macrophomina, Meyerozyma, Neocosmospora, Neotestudina 
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and Phoma). Amongst the 21 species that were isolated during this study was one novel species belonging 
to the Fusarium fujikuroi species complex, F. madaense sp. nov., obtained from groundnut and sorghum 
in Nasarawa state. The examined strains produced diverse extrolites, including several uncommon com-
pounds: averantinmethylether in A. aflatoxiformans; aspergillimide in A. flavus; heptelidic acid in A. aus-
twickii; desoxypaxillin, kotanin A and paspalitrems (A and B) in A. aflatoxiformans, A. austwickii and A. 
cerealis; aurasperon C, dimethylsulochrin, fellutanine A, methylorsellinic acid, nigragillin and pyrophen 
in A. brunneoviolaceus; cyclosporins (A, B, C and H) in A. niger; methylorsellinic acid, pyrophen and 
secalonic acid in A. piperis; aspulvinone E, fonsecin, kojic acid, kotanin A, malformin C, pyranonigrin 
and pyrophen in A. vadensis; and all compounds in F. madaense sp. nov., Meyerozyma, Neocosmospora and 
Neotestudina. This study provides snapshot data for prediction of food contamination and fungal biodi-
versity exploitation.
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Introduction

Fungi are ubiquitous and diverse, inhabiting various environments including agricul-
tural soils and the crops grown on them (Stajich et al. 2009). Fungi in soil can contam-
inate, invade and colonise crops on the field during pre-harvest stages and can remain 
present during the post-harvest processing stages. Depending on the processing steps, 
these fungi may later spoil foods during storage or in households or markets when stor-
age conditions are sub-optimal and climatic conditions are favourable for their growth 
(Prange et al. 2005, Taniwaki et al. 2018). Thus, fungal contamination and coloni-
sation of crops could directly lead to pre- and post-harvest food losses, mycotoxin 
contamination and indirectly to public health risks from consumption of mycotoxin-
contaminated foods (Avery et al. 2019). Additionally, soil could serve as a reservoir 
for pathogenic fungi, constituting public health hazards to farmers who spend much 
of their time on farms and have direct contact with agricultural soils. On the posi-
tive side, beneficial fungi, including biological control strains and species of industrial 
relevance, are also present in agricultural soils, waiting to be explored (Donner et al. 
2009, Bautista-Rosales et al. 2013, Bandyopadhyay et al. 2016).

Proper characterisation of fungi is fundamental to effectively determine their ecol-
ogy and roles in the environment. In Nigeria, several studies have focused on fungal 
contamination of food crops (Adebajo et al. 1994, Bankole et al. 2003, Marley et 
al. 2004, Afolabi et al. 2006, Adejumo et al. 2007, Atehnkeng et al. 2008, Makun 
et al. 2009, 2011, Fapohunda et al. 2012, Abdus-Salaam et al. 2016, Oyedele et al. 
2017, Ezekiel et al. 2013a, 2013b, 2014, 2016, 2019, Frisvad et al. 2019, Akinfala 
et al. 2020) and soil (Donner et al. 2009, Bandyopadhyay et al. 2019, Ezekiel et al. 
2019). Many of these reports focused mainly on characterising aflatoxigenic Aspergil-
lus species, because of their high incidence and their ability to produce aflatoxins and 
less on other mycotoxins produced by other fungal genera and species. Thus, studies 
on characterisation of other fungi including Fusarium, a genus also comprising im-
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portant mycotoxin producers, have rarely been conducted in Nigeria (Marley et al. 
2004, Afolabi et al. 2006, Adejumo et al. 2007, Makun et al. 2011, Fapohunda et al. 
2012). Regardless of the fungal genera studied, the application of robust taxonomic 
tools comprising a combination of phenotypic characterisation, DNA sequence-based 
methods and extrolite profiling for fungal identification is scarce (Frisvad et al. 2019, 
Ezekiel et al. 2020, Akinfala et al. 2020). This comprehensive approach is valuable due 
to the high precision, based on the use of species-specific DNA markers (Houbraken 
et al. 2011, 2012, Samson et al. 2014, 2019).

Therefore, in view of the need to understand the roles of fungi in food contamina-
tion and other processes, we conducted a mycological investigation into agricultural 
crops (foods) commonly consumed and available in agrarian households and soils on 
which the crops were grown in two north-central states (Nasarawa and Niger) in Nige-
ria. The two states were selected for this study, based on previous reports (Adetunji et 
al. 2014, Abdus-Salaam et al. 2015, Oyedele et al. 2017) that implicated these states 
and/or the agro-ecological zone to which they belong (Southern Guinea Savanna) as 
regions of moderate-to-high aflatoxin and fumonisin contamination in foods. Conse-
quently, it was necessary to study the fungal diversity in these states.

Materials and methods

Food and soil sampling

Various food (n = 250) and soil (n = 30) samples were collected in two states (Na-
sarawa and Niger) in north-central Nigeria. Samples were collected in September 2018 
(harvest season) and January 2019 (storage season). The distribution of samples by 
sampling season were: harvest (food, n = 143) and storage (food, n = 107; soil, n = 30). 
Samples were collected from households within one week of harvest and after three 
months of storage (storage samples). In each state, food samples (1 kg per sample) were 
collected from households within three randomly selected communities that are at 
least 5–20 km apart: Mada station, Tundun Adabu and Yelwa Doma in Nasarawa state 
and Diko, Nubwa Koro and Sabon Wuse in Niger state. The food samples collected 
included: cowpea (n = 7); groundnut (n = 53), maize (n = 142), millet (n = 1), rice (n 
= 23) and sorghum (n = 24). Soil samples were collected from the farmlands belonging 
to five randomly selected households in each community. Sampled fields were at least 
1 km apart. In each field, one composite sample (90–100 g) was collected by traversing 
the field and taking five subsamples from random points. The depth of soil sampling 
was 3–4 cm.

Food samples were placed in polyethylene bags whilst soil samples were placed 
in paper bags. All food samples were fragmented in an electric blender (MX-AC400, 
Panasonic, India) and stored at 4°C prior to analysis within 48 h. Soil samples were 
transferred to plastic bags and clods were crushed using a mortar and pestle. Soil sam-
ples were then homogenised by hand-mixing prior to immediate fungal analysis.
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Mycological studies of food and soil

Fungal isolation

Filamentous fungi, present in the food and soil samples, were isolated and enumerated 
using the dilution plating technique described by Samson et al. (1995). The fragment-
ed samples (10 g each) were diluted in sterile distilled water (90 ml). Each mixture was 
homogenised on a vortex mixer for 2 min prior to surface-plating of 100 µl on malt 
extract agar (MEA; Oxoid, UK). The inoculated plates were incubated at 25 °C for 3 to 
5 d. The number of fungal colonies on the plates was counted and the colony forming 
units per gram (CFU/g) of the analysed samples calculated. Distinct colonies, appear-
ing on the isolation plates, were carefully transferred to freshly prepared MEA plates 
and incubated at 25 °C for 7 d. All pure cultures were stored at 25 °C on MEA slants 
in 4 ml vials covered with sterile distilled water.

Characterisation of fungal isolates

Fungal isolates from the food and soil samples were characterised, based on morpho-
logical characteristics, DNA sequence data and/or secondary metabolites. The strains 
were first cultivated on MEA and assessed for macro- and microscopic characters, 
which were then compared with descriptions in appropriate keys (Frisvad and Samson 
2004, Leslie and Summerell 2006, Pitt and Hocking 2009, Samson et al. 2011, 2019). 
Phenotypically similar isolates were grouped and selected isolates representing each 
group were identified using a sequence-based approach. For Fusarium and Neocosmos-
pora spp., colony features and growth rates were assessed using MEA, oatmeal agar 
(OA), potato dextrose agar (PDA; recipes in Crous et al. 2019) and synthetic nutrient-
poor agar (SNA; Nirenberg 1976); and micromorphology was studied using carnation 
leaf agar (CLA; Fisher et al. 1982) and SNA following protocols described elsewhere 
(Leslie and Summerell 2006, Sandoval-Denis et al. 2018). For the molecular analysis, 
DNA was extracted from each selected isolate previously cultivated on MEA at 25 °C 
for 5 d. Parts of the β-tubulin (BenA) and calmodulin (CaM) genes of the Aspergillus 
isolates were amplified and sequenced as previously described (Houbraken et al. 2011, 
2012, Samson et al. 2019). The ITS regions, a part of the translation elongation factor 
1 alpha (TEF-1α) and/or the RNA polymerase II second largest subunit (RPB2) gene 
of all the other fungal species were amplified and sequenced in accordance with Groe-
newald et al. (2005), Groenewald et al. (2013), Chen et al. (2015), Chen et al. (2017) 
and O’Donnell et al. (1998, 2010). Additionally, partial fragments of the BenA, CaM, 
TEF-1a and RNA polymerase II largest subunit (RPB1) were generated for a subset of 
Fusarium strains, according to O’Donnell et al. (1998, 2009, 2010) and Woudenberg 
et al. (2009). All generated sequences were compared with the sequences present in the 
NCBI database and internal curated databases of the Westerdijk Fungal Biodiversity 
Institute (WI) for confirmation of species identities. The identified isolates are main-
tained in the working culture collection of WI (“DTO culture collection”) and in the 
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culture collection of WI (“CBS culture collection”). All newly-generated sequences are 
deposited in GenBank (Suppl. material 1: Table S1).

To further explore the species diversity and determine the presence of putative 
novel taxa amongst the fusaria, phylogenetic analyses were carried out, based on BenA, 
CaM, RPB1, RPB2 and TEF-1a sequences. A first analysis, based on partial RPB2 se-
quences, was intended to determine the generic distribution of the Nigerian isolates. 
A second multi-locus analysis, based on the five gene regions above-mentioned, was 
used to determine the genetic exclusivity of an undescribed phylogenetic clade belong-
ing to the Fusarium fujikuroi species complex (FFSC, O’Donnell et al. 2015, Choi 
et al. 2018). Additional sequences of type and reference strains were retrieved from 
GenBank and included in the analyses (Suppl. material 1: Table S2). Sequences of the 
individual loci were aligned using MAFFT v. 7.110 (Katoh et al. 2017). The individual 
gene datasets were assessed for incongruency prior to concatenation using a 70% re-
ciprocal bootstrap criterion (Mason-Gamer and Kellogg 1996). Phylogenetic analyses 
were based on Maximum-Likelihood (ML) and Maximum-Parsimony (MP). For ML, 
randomised accelerated (sic) ML (RAxML) for high performance computing (Stama-
takis 2014) was used on the CIPRES Science Gateway portal (Miller et al. 2012) and 
clade stability was tested with a bootstrap analysis (BS) using default parameters. For 
MP, PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10; Swofford 2003) was 
used and phylogenetic relationships were estimated by heuristic searches with 1000 
random addition sequences with tree-bisection-reconnection and branch swapping 
option set to ‘best trees’ only. All characters were weighted equally and alignment gaps 
treated as missing data. Tree length (TL), consistency index (CI), retention index (RI) 
and homoplasy index (HI) were calculated. Clade stability was assessed by bootstrap 
analyses, based on 1000 replications.

For extrolite profiling, each representative Aspergillus isolate was grown on Czapek 
yeast autolysate (CYA) agar, MEA and yeast extract sucrose (YES) agar and the selected 
Fusarium and Neocosmospora strains were grown on OA and PDA prior to extraction 
(Yilmaz et al. 2014, Samson et al. 2019). The culture media were incubated for 7 and 
14 d at 25 °C. The agar plug extraction method of Filtenborg et al. (1983) with modifi-
cations as described by Smedsgaard (1997) was applied to extract cultural compounds. 
Extraction solvent for the agar plugs included ethylacetate/dichloromethane/methanol 
(3:2:1, v/v/v) containing 1% formic acid. All extracts were air-dried prior to LC–MS/
MS screening as described below.

LC-MS/MS extrolite analysis of agar plug extracts

Extrolites of fungal cultures were determined by a dilute and shoot LC–MS/MS meth-
od (Sulyok et al. 2020). The air-dried extracts were dissolved in 1 ml (ratio 1:1, v/v) of 
extraction solvent (acetonitrile/water/acetic acid 79:20:1, v/v/v) and then diluted with 
acetonitrile/water/acetic acid 20:79:1, v/v/v in a 1:1 (v/v) ratio prior to injection into 
the LC–MS/MS instrument. The QTrap 5500 LC–MS/MS System (Applied Biosys-



C. N. Ezekiel et al.  /  MycoKeys 67: 95–124 (2020)100

tems, Foster City, CA, USA), equipped with TurboIonSpray electrospray ionisation 
(ESI) source and a 1290 Series HPLC System (Agilent, Waldbronn, Germany) was ap-
plied to screen the compounds. Chromatographic separation was performed at 25 °C 
on a Gemini C18–column, 150 × 4.6 mm i.d., 5 μm particle size, equipped with a 
C18 4 × 3 mm i.d. security guard cartridge (Phenomenex, Torrance, CA, USA). The 
chromatographic method, chromatographic and mass spectrometric parameters are as 
described by Sulyok et al. (2020). ESI-MS/MS was conducted in the time-scheduled 
multiple reaction monitoring (MRM) mode both in positive and negative polarities in 
two separate chromatographic runs per sample by scanning two fragmentation reac-
tions per analyte. The MRM detection window of each analyte was set to its expected 
retention time ± 20 s and ± 26 s in the positive and the negative modes, respectively. 
The identified positive analytes were confirmed by the acquisition of two MRMs per 
analyte. This yielded 4.0 identification points, according to European Commission 
decision 2002/657 (EC 2002). Additionally, the LC retention time and the intensity 
ratio of the two MRM transitions were in agreement with the related values of an 
authentic standard within 0.03 min and 30%, respectively, following the criteria for 
mycotoxin identification as laid down in SANTE 12089/2016.

Data analysis

The IBM SPSS v21.0 (SPSS Inc., IL, USA) was applied for data analysis. Data on fun-
gal load were first normalised by a logarithm to base 10 transformation of the original 
data prior to the calculation of mean values. Means were tested for significance by 
One-way ANOVA (α = 0.05). Means of the concentrations (µg/kg) of the extrolites, 
produced by the fungal strains in culture media, were also calculated.

Results and discussion

Distribution of fungi in food and soil

Fungal propagules were recovered from 84% (n = 209) of the 250 food samples and 
from all of the soil samples (n = 30). The fungal load in the food samples was signifi-
cantly (p < 0.05) higher at harvest (range: 2.00–6.22; mean: 4.07 ± 0.95 Log10CFU/g) 
than in storage (range: 2.00–4.60; mean: 3.44 ± 0.69 Log10CFU/g). The load of fungal 
propagules in the soil samples ranged 2.70–4.20 (mean: 3.45 ± 0.34 Log10CFU/g). 
Variations observed in fungal load during the two seasons (harvest and storage) may 
be attributed to the sampling environment and nature of samples. For example, har-
vest samples were recently collected from the field where crops are in contact with soil 
and a large diversity of fungal propagules were present (Bankole et al. 2006), whereas 
storage conditions are often controlled (crops stored individually in local granaries), 
thereby leading to lower fungal densities (Williams et al. 2014). In addition, harvest 
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samples were not yet “cleaned” (threshed or deshelled) and so harboured more viable 
fungal propagules compared to samples collected from storage bins which were already 
threshed, deshelled and bagged. A similar fungal load found in soil samples in the 
present study was previously reported for 55 soil samples collected from maize fields 
(range: 55–3736 CFU/g = 1.74–3.57 Log10CFU/g) across three agro-ecological zones 
of Nigeria (Donner et al. 2009). A total of 839 fungal isolates were recovered from 
the food and soil samples and grouped, based on similarities in phenotypic characters. 
Representative isolates (n = 121) selected from the groups clustered into seven genera 
(Fig. 1) and 21 species (Fig. 2C), based on a polyphasic taxonomic scheme. The over-
all incidences of the recovered fungal genera in decreasing order of magnitude were: 
Aspergillus (60%), Fusarium (17%), Neotestudina (12%), Neocosmospora (8%), Phoma 
(2%), Macrophomina (1%) and Meyerozyma (1%). The overall highest incidence of 
Aspergillus in the samples, as recorded in the present study, agrees with previous studies 
from different locations and substrates (Atehnkeng et al. 2008, Donner et al. 2009, 
Diedhiou et al. 2011, Makun et al. 2011, Ezekiel et al. 2013a, 2013b, 2016, 2019, 
Probst et al. 2014, Oyedele et al. 2017). To the best of our knowledge, we present the 
first report of Neotestudina from Nigerian soil.

Based on the fungal isolates recovered from food and soil samples and identified 
in this study, sample type-specific fungal incidences were estimated as 40.5%, 28%, 
14.9%, 9.9%, 4.9% and 1.7% in soil, maize, sorghum, groundnut, cowpea and rice, 
respectively. Aspergilli were widely distributed in soil and food, although a higher pro-
portion of isolates (35.6%) was recovered from soil compared to the individual foods. 
Nine Aspergillus species, belonging to two sections, were recovered in this study (Fig. 
2). The species include: A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus and A. 
tamarii in section Flavi (Frisvad et al. 2019) and A. brunneoviolaceus, A. niger, A. piperis 

Figure 1. Overall incidence of fungal genera recovered from food and soil in two states in north-central 
Nigeria.
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Figure 2. Distribution of fungal species in food and soil in two states A Nasarawa state B Niger state 
C combined/both states) in north-central Nigeria. 
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and A. vadensis in section Nigri (Samson et al. 2007, Perrone et al. 2011, Varga et al. 
2011). Aspergillus aflatoxiformans (27.3%) was the predominant species found in this 
study, based on the identified representative isolates (Fig. 2C). However, the predomi-
nance of A. aflatoxiformans here contradicts several previous reports that presented A. 
flavus as the predominant Aspergillus species in food and crops in Nigeria and elsewhere 
(Atehnkeng et al. 2008, Donner et al. 2009, Ezekiel et al. 2013a, 2013b, 2016, 2019, 
Probst et al. 2014, Oyedele et al. 2017). The disparity between our finding and previ-
ous reports is explainable and owes to bias during sub-culturing and selection of fungal 
isolates for molecular identification as less emphasis was given to A. flavus isolates. 
With respect to location, A. austwickii and A. cerealis were recovered only from soil in 
Niger state, while A. brunneoviolaceus, A. niger and A. piperis were recovered only in 
food and soil from Nasarawa state. Here, we present for the first time, A. vadensis as 
isolates from Nigerian food.

Four Fusarium species (F. andiyazi, F. madaense sp. nov., F. thapsinum and F. ver-
ticillioides), belonging to FFSC, were identified. All the Fusarium spp. were recovered 
from food samples, except F. verticillioides that was found in both food (maize, rice 
and sorghum) and soil (Fig. 2C). Fusarium andiyazi was isolated from sorghum in the 
Nasarawa state (Fig. 2A), F. andiyazi was specific to sorghum from Niger state (Fig. 2B) 
and F. madaense sp. nov. was recovered from groundnut and sorghum from Nasarawa 
state (Fig. 2A). The diversity of Fusarium observed in this study is remarkable, as we 
present unique occurrences of F. madaense sp. nov. and F. thapsinum from Nigerian 
grains, in addition to the previously reported F. andiyazi and F. verticillioides (Marley 
et al. 2004, Afolabi et al. 2006, Makun et al. 2009, 2011). Fusarium verticillioides and 
other members of the FFSC, including those found in the present study (F. andiyazi, 
F. proliferatum, F. pseudonygamai, F. subglutinans and F. thapsinum), have been docu-
mented in cereals and natural environments in different countries (Fandohan et al. 
2005, Ncube et al. 2011, Leyva-Madrigal et al. 2014, O’Donnell et al. 2015, Moussa 
et al. 2017, Choi et al. 2018, Chala et al. 2019). The specificity of F. andiyazi and F. 
thapsinum to sorghum, which we observed here, agrees with literature (Marley et al. 
2004, Pena et al. 2018, Chala et al. 2019). The additional discovery of F. madaense sp. 
nov. in groundnut and sorghum in this study emphasises the need to adopt adequate 
and robust characterisation approaches in fungal studies, as well as to conduct large-
scale fungal biodiversity studies of food and soil in the country.

Macrophomina phaseolina, Meyerozyma caribbica and Phoma species were isolated 
only from food in Nasarawa state (Fig. 2A, C). Macrophomina phaseolina and M. carib-
bica were specific to cowpea, while Phoma species were recovered from sorghum. Mac-
rophomina phaseolina is a common pathogen of legumes, including cowpea and causes 
charcoal rot and root rot (Amusa et al. 2007, Oladimeji et al. 2012, Sarr et al. 2014, 
Khan et al. 2017). Meyerozyma caribbica (anamorph Candida fermentati) is a halophilic 
and rhizospheric yeast with biological control potential against phytopathogenic fungi 
(Bautista-Rosales et al. 2013), while Phoma is a genus of mostly phytopathogens (Chen 
et al. 2015, 2017). Future studies may explore the role of M. caribbica in biological 
control of mycotoxigenic fungi found in this study. Neotestudina rosatii was present 
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only in soil (Fig. 2C). This fungus was actually first described in Africa in 1961 as the 
agent for maduromycosis (Segretain and Destombes 1961) and has been associated 
with the same human disease in two African countries, Senegal and Somalia (Baylet 
et al. 1968, Destombes et al. 1977). Four species of Neocosmospora (N. falciformis, N. 
ipomoeae, N. suttoniana and N. vasinfecta) were recovered from food and soil (Fig. 
2C). Neocosmospora ipomoeae and N. vasinfecta and N. suttoniana were specific only 
to soils in Niger and Nasarawa states, respectively, while N. falciformis was found in 
food and soil in both states (Fig. 2A, B). Neocosmospora (formerly ‘Fusarium’ solani 
species complex, FSSC) comprises common pathogens of plants, humans and animals 
(Sandoval-Denis and Crous 2018). For example, N. falciformis (syn. F. falciforme) is 
known to be associated with diverse cutaneous and subcutaneous fungal infections 
(Dignani and Anaissie 2004, Garcia et al. 2015). This species is frequently found in 
equine ocular infections and in canines and reptiles (O’Donnell et al. 2016). Recently, 
Sandoval-Denis and Crous (2018) described N. suttoniana; this species is implicated 
in uncommon human eye infections in Africa and the USA (O’Donnell et al. 2008).

Extrolites produced in fungal cultures

The elucidation of extrolite patterns from fungal strains grown on mycological media, 
using the highly sensitive LC-MS/MS technique, remains the gold standard chemo-
taxonomic approach to fungal characterisation (Frisvad et al. 2007, 2018, Samson et 
al. 2019). In this study, extrolite production in solid media was examined by LC-MS/
MS in strains belonging to 20 of the 21 identified fungal species. Cultures of A. tama-
rii and M. phaseolina were not included in extrolite analysis. Whereas all compounds 
were quantitatively determined, aflatrem, asparason A, aspulvinone E, aurasperons, 
desoxypaxillin, fonsecin, nigragillin, paspalin, paspalinin, paspalitrems and tensidol 
B were only semi-quantified in the cultures due to lack of a quantitative standard. 
All the examined fungal strains/species produced at least three (Tables 1, 2) and as 
many as 33 compounds in A. aflatoxiformans (Table 1). Brevianamid F and cyclo(L-
Pro-L-Tyr) were detected in examined cultures and cyclo(L-Pro-L-Val) was present in 
all except three Neocosmospora species (N. falciformis, N. ipomoeae and N. suttoniana). 
These three compounds, found in almost all fungal species in this study, were the only 
metabolites detected in cultures of M. caribbica and Phoma sp. in addition to tryptop-
hol in M. caribbica (data not shown). Brevianamid F, cyclo(L-Pro-L-Tyr) and cyclo(L-
Pro-L-Val) were previously reported in cultures of A. niger, A. tamarii, Paecilomyces and 
Talaromyces from cocoa beans processing in Nigeria (Akinfala et al. 2020).

Aspergillus metabolites

The extrolite patterns of the Aspergillus species, isolated and identified in this study, 
except A. tamarii which was not evaluated, are shown in Table 1. Members of the sec-
tion Flavi produced metabolites (aflatoxins and their biosynthetic pathway precursors, 
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asparason A, cyclopiazonic acid, desoxypaxillin, kojic acid, kotanin A, paspalin and 
paspalitrems) consistent with previous reports (Frisvad et al. 2019, Uka et al. 2019, 
Ezekiel et al. 2020). However, some new findings are reported herein. For example, 
desoxypaxillin, heptelidic acid, kotanin A and paspalitrems were previously reported 
in A. flavus (Uka et al. 2019, Kovac et al. 2020, Ezekiel et al. 2020), but not in A. 
aflatoxiformans, A. austwickii and A. cerealis. Hence, we present the first report of des-
oxypaxillin, kotanin A (mean: 534 µg/kg) and paspalitrems in the three S-type sclero-
tium (minisclerotium) producing species and heptelidic acid (10.2 mg/kg) only in A. 
austwickii. In addition, averantinmethylether (9.4 µg/kg) and aspergillimide (21.3 µg/
kg) are two uncommon compounds found only in cultures of one strain of A. aflatoxi-
formans and A. flavus, respectively. Similar to a recent report (Ezekiel et al. 2020), two 
of the four A. flavus strains, examined in this study, produced sporogen AO1 (mean: 
974 µg/kg), confirming the production of this compound in A. flavus. One of the 
four A. flavus strains, DTO 421-G6, did not produce aflatoxins, any of its pathway 
metabolites, cyclopiazonic acid or kojic acid, but produced cyclosporins A, B, C and 
H. Cyclosporin production has been reported in Aspergillus terreus (Sallam et al. 2003), 
Neocosmospora solani (Sawai et al. 1981) and Tolypocladium (El-Enshasy et al. 2008). It 
is, therefore, suggested that strain DTO 421-G6, whose origin is sorghum grain from 
Sabon Wuse in Niger state, may be a prospective candidate for biological control of 
aflatoxins in view of its inability to biosynthesise aflatoxins, its pathway metabolites 
and cyclopiazonic acid. The biological control product, aflasafe, commercially available 
for aflatoxin control in Nigeria, contains strains of A. flavus original to Niger state and 
which possesses a similar inability to secrete the aforementioned metabolites (Bandyo-
padhyay et al. 2016, 2019).

The members of Aspergillus section Nigri (A. brunneoviolaceus, A. niger, A. piperis 
and A. vadensis) secreted a total of 31 extrolites (Table 1). However, only three extrolites, 
aurasperons, nigragillin and pyrophen, were common to all four species within this 
section. Varga et al. (2011) placed A. brunneoviolaceus in the A. aculeatus clade, whilst 
A. niger, A. piperis and A. vadensis were grouped into the A. niger clade. In the present 
study, members of the A. niger clade shared only four (aspulvinone E, fonsecin, mal-
formins and pyranonigrin) of the compounds. Obviously, high variability in the types 
of metabolites produced was recorded amongst these closely-related species (Frisvad et 
al. 2007, Samson et al. 2007). Strains of A. brunneoviolaceus (syn. A. fijiensis) liberated 
several known extrolites: aspergillimide (mean: 30.1 mg/kg), emodin (mean: 541 µg/
kg), endocrocin (mean: 23 mg/kg), iso-rhodoptilometrin (mean: 340 µg/kg), meleagrin 
(mean: 7.6 mg/kg), oxaline (mean: 17.3 mg/kg), paraherquamide E (mean: 6 mg/kg) 
and secalonic acid D (mean: 64.7 mg/kg) (Varga et al. 2011, Vesth et al. 2018, Ezekiel 
et al. 2020). However, citreorosein and tryprostatin B, two compounds recently re-
ported to be produced by A. brunneoviolaceus from garri (farinated cassava) in Nigeria 
(Ezekiel et al. 2020), were not detected in cultures of the present strains. Nonetheless, 
six uncommon compounds (aurasperon C, dimethylsulochrin (mean: 1.9 mg/kg), fel-
lutanine A (152 µg/kg), methylorsellinic acid (mean: 1.2 mg/kg), nigragillin and py-
rophen (mean: 190 µg/kg)) were produced by strains examined in the present study. Of 
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all the extrolites found in cultures of the four species within the section Nigri, asper-
gillimide, dimethylsulochrin, fellutanine A, meleagrin, oxaline and paraherquamide E 
were specific to only A. brunneoviolaceus, whilst cyclosporins (A, B, C and H) and ten-
sidol B were unique to A. niger. This is the first report of cyclosporin production in A. 
niger; only 2/9 of the strains, DTO 422-H5 and DTO 422-H6, were implicated here. 
In addition, we observed emodin (48 µg/kg) and endocrocin (262 µg/kg) production in 
only one strain (DTO 421-I7) of A. niger. All other compounds found in cultures of A. 
niger in the present study are known extrolites (de Vries et al. 2005, Samson et al. 2007, 
Nielsen et al. 2009, Perrone et al. 2011, Akinfala et al. 2020).

Two strains of A. piperis, screened in this study, secreted compounds agreeable to 
those previously documented in literature (Samson et al. 2007, Ezekiel et al. 2020). 
Amongst the extrolites found in the present study are those being reported here for the 
first time in A. piperis: methylorsellinic acid (mean: 1.7 mg/kg), pyrophen (mean: 50 mg/
kg) and secalonic acid (24.3 μg/kg) (Table 1). de Vries et al. (2005) examined extrolite 
production in one strain of A. vadensis and found aurasperon B, asperazine, nigragillin 
and a more polar kotanin-like compound. Here, we report aspulvinone E, aurasperons 
(B, C and G), fonsecin, kojic acid (mean: 281 µg/kg), kotanin A (91 µg/kg), malformin 
C (mean: 857 µg/kg), nigragillin, pyranonigrin (mean: 72 mg/kg) and pyrophen (mean: 
52.4 mg/kg). The complexity in small molecule chemical profiles observed in the species 
belonging to the section Nigri suggests a high degree of close-relatedness amongst these 
species (Samson et al. 2007, Nielsen et al. 2009, Perrone et al. 2011).

Extrolites from Fusarium and its related fungal species

A total of 15, 12 and 11 extrolites were found in cultures of Fusarium, Neocosmospora 
and Neotestudina (Table 2). With the exception of N. vasinfecta, gibepyron D produc-
tion was shared by all examined strains of these three genera; higher quantities were 
found in cultures of F. madaense sp. nov. (mean: 4.9 mg/kg) and F. thapsinum (mean: 
4.2 mg/kg). Gibepyron D is an oxidised derivative of gibepyrone A that has been 
reported in F. fujikuroi, F. oxysporum and F. proliferatum (Wang et al. 2011, Liu et al. 
2013, Janevska et al. 2016). Thus, its production by three fungal genera suggests an-
cestral relatedness of a gene cluster encoding production of this compound (Janevska 
et al. 2016). Fumonisins (FA1 (mean: 616 µg/kg), FB1 (mean: 3.4 mg/kg), FB2 (mean: 
2 mg/kg) and FB3 (mean: 1.4 mg/kg)), fusarin C (mean: 27 mg/kg) and fusarinolic 
acid (mean: 84,856 mg/kg) were exclusively produced by the Fusarium species exam-
ined in this study. Fumonisins were produced as expected only by F. verticillioides, al-
though the cultures of two strains, DTO 421-G2 and DTO 424-H5, did not contain 
any of the fumonisins. Fumonisin production is a signature in this species as well as 
in other selected members of the FFSC not found in the present study (Makun et al. 
2011, Ncube et al. 2011, de Oliveira Rocha et al. 2011, Fanelli et al. 2012, Rocha et 
al. 2016, Choi et al. 2018).

All the species of Fusarium, except F. andiyazi, produced fusarin C in this study. 
Beauvericin, bikaverin, deoxyfusapyron and fusapyron were found in cultures of certain 
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species of Fusarium, Neocosmospora and Neotestudina. Specifically, F. madaense sp. nov. 
and N. rosatii produced all four aforementioned compounds together with the other 
three species of Fusarium for bikaverin and F. andiyazi for deoxyfusapyron and fusapy-
ron. The immunosuppressant cyclosporins [A (mean: 42.2 mg/kg), B (mean: 27.3 mg/
kg), C (mean: 29.9 mg/kg), D (mean: 4.6 mg/kg) and H (mean: 32.9 mg/kg)] were 
specific to Neocosmospora and were found only in cultures of N. falciformis and N. 
vasinfecta. Radicicol (323 mg/kg) and sulochrin (1.8 mg/kg) were found in one strain 
of N. vasinfecta and N. rosatii, respectively. Based on the recorded chemical profiles in 
this study, the three studied genera are closely related chemotaxonomically. However, 
F. madaense sp. nov. and N. rosatii seem to be more closely related than the other spe-
cies. This is the first chemotaxonomic profiling of F. madaense sp. nov., Meyerozyma, 
Neocosmospora and Neotestudina.

Phylogenetic analyses of Fusarium and Neocosmospora and description of a novel Fusar-
ium species

A first phylogenetic analysis, based on partial RPB2 sequences, was conducted to iden-
tify Nigerian isolates morphologically compatible with Fusarium and Neocosmospora 
spp. (Fig. 3). The analysis included 659 positions of 78 isolates, including the two 
outgroup taxa (Fusicolla aquaeductuum NRRL 20686 and Fusicolla sp. NRRL 22136), 
of which 284 bp were constant sites, 375 bp were variable and 336 bp were parsimony-
informative. The ingroup taxa included representative isolates of 40 species from 17 
species complexes of Fusarium and seven species of Neocosmospora. Four isolates (CBS 
146648, 146651, 146656 and 146669) clustered in a partially supported, putative 
novel clade, closely related to F. andiyazi; the latter taxon, however, clustered in an 
unresolved phylogenetic position.

To further determine the relationship between the putative novel clade and F. andi-
yazi, a second analysis was conducted which encompassed 4456 positions of five loci 
(BenA 525 bp, CaM 545 bp, RPB1 978 bp, RPB2 1 735 bp and TEF-1a 673 bp), of 
which 3417 were constant (BenA 406 bp, CaM 421 bp, RPB1 777 bp, RPB2 1 379 bp 
and TEF-1a 434 bp), 1018 were variable (BenA 118 bp, CaM 120 bp, RPB1 201 bp, 
RPB2 356 bp and TEF-1a 223 bp) and 614 were parsimony informative (BenA 64 bp, 
CaM 63 bp, RPB1 132 bp, RPB2 236 bp and TEF-1a 119 bp). The final alignment 
included 44 isolates, representing 35 Fusarium spp. from the three biogeographical 
phylogenetic clades of FFSC (African, American and Asian clades, O’Donnell et al. 
1998) plus two outgroups (F. oxysporum NRRL 20433 and NRRL 22902) (Fig. 4). 
The multi-locus phylogeny confirmed the previous results. The putative novel clade 
(CBS 146648, 146651, 146656 and 146669) was resolved as a fully supported phy-
logenetic lineage (MP BS = 100, ML BS = 100), sister to a moderately-supported 
clade (MP BS 97, ML BS 100), encompassing the ex-type strain of F. andiyazi (CBS 
119857), plus four additional representative isolates of the latter species, two of them 
(CBS 146647 and 146657) being obtained in this study. The novel phylogenetic line-
age is here recognised as Fusarium madaense sp. nov.
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Figure 3. The first of 1000 equally parsimonious trees obtained from Maximum-Parsimony (MP) analy-
sis of RPB2 sequences of 76 isolates of Fusarium and Neocosmospora spp. Numbers on the nodes are MP 
bootstrap values (BS) and Maximum-Likelihood BS values above 70%. Branch lengths are proportional 
to distance. Ex-type and ex-epitype strains are indicated with T and ET, respectively. The names of 17 spe-
cies complexes of Fusarium are shown in grey. Nigerian isolates obtained in this study are shown in red 
together with their geographical origin and source of isolation. The internal square shows MP statistics as 
follows: TL = tree length, CI = consistency index, RI = retention index and HI = homoplasy index.
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Figure 4. The first of 24 equally parsimonious trees obtained from Maximum-Parsimony (MP) analysis 
of BenA, CaM, RPB1, RPB2 and TEF-1a sequences of 42 isolates of Fusarium spp. Numbers on the nodes 
are MP bootstrap values (BS) and Maximum-Likelihood BS values above 70%. Branch lengths are pro-
portional to distance. Ex-type strains are indicated with T. Strains corresponding to new species described 
here are shown in bold. The internal square shows MP statistics as follows: TL = tree length, CI = consist-
ency index, RI = retention index and HI = homoplasy index.

Taxonomy

Fusarium madaense Ezekiel, Sand.-Den., Houbraken & Crous, sp. nov.
MycoBank No: MB835266
Figure 5

Diagnosis. Different from F. thapsinum by the absence of napiform microconidia. 
Different from F. andiyazi, F. thapsinum and F. verticillioides by its lighter colony pig-

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=MB835266
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mentation, growth rates, microconidial septation, presence of true chlamydospores 
and secondary metabolite patterns.

Type. Nigeria, Nasarawa, Mada Station, from groundnut (Arachis hypogaea), Sep. 
2018, C.N. Ezekiel, holotype CBS H-24346, ex-holotype strain CBS 146669 = CPC 
38344 = 12B(3)2.

Description. Colonies grown in the dark at 24°C. On MEA and PDA with an average 
radial growth rate of 5.9–6.5 mm/d and filling an entire 90 mm Petri dish in 7 d. Surface 
white to pale rosy buff, flat, velvety to felty with abundant patches of white aerial myce-
lium; margin regular, filiform. Reverse pale saffron to peach, a pale bay diffusible pigment 
can be scarcely produced. On OA, occupying an entire 90 mm Petri dish in 7 d. Surface 
white to pale rosy buff, flat, velvety to felty with abundant patches of white aerial myce-
lium; margin regular. Reverse pale luteous to saffron. On SNA, reaching 24–25 mm diam. 
in 7 d. Surface white, velvety, with scarce aerial mycelium, margins filiform. Reverse white.

Conidiophores on aerial mycelium straight, erect, septate, smooth- and thin-walled, 
commonly simple or reduced to conidiogenous cells, borne laterally on hyphae or lat-
erally branched at various levels, bearing terminal single monophialides; phialides sub-
ulate to subcylindrical, smooth- and thin-walled, (17–)25.5–39.5 μm long, (2–)2.5–
3.5 μm at widest point, periclinal thickening and collarettes inconspicuous or absent; 
microconidia hyaline, clavate, smooth- and thin-walled, 0–3-septate, (7–)9–15(–21) × 
(2–)2.5–4(–5) μm, arranged in long chains at the tip of monophialides. Sporodochia 
pale to bright orange, formed abundantly on the surface of carnation leaves and on agar 
surface. Conidiophores in sporodochia, 21–60 μm tall, simple or irregularly and ver-
ticillately branched, bearing terminal, single monophialides or groups up 2–3 mono-
phialides; sporodochial phialides doliiform to subcylindrical, (10.5–)13–18(–20.5) × 
(2.5–)3–4(–4.5) μm, smooth- and thin-walled, with conspicuous periclinal thickening 
and an often short apical collarette. Sporodochial conidia lunate to falcate, tapering 
towards apical and basal ends, moderately curved dorsiventrally or with an almost 
straight ventral part; apical cell more or less equally sized than the adjacent cell, apically 
slightly elongated to papillate; basal cell distinctly notched, (0–)1–5(–6)-septate, hya-
line, thin- and smooth-walled. Aseptate conidia: (38–)38.5–42(–44) × 3.5–4.5 μm; 
one-septate conidia: (37.5–)40–48(–53) × 3.5–4(–4.5) μm; two-septate conidia: 43 × 
3.7 μm; three-septate conidia: (29–)38–48.5(–61.5) × (3–)4–4.5(–5) μm; four-septate 
conidia: (45–)46.5–54(–59) × (3.5–)4–4.5(–5) μm; five-septate conidia: 47.5–55.5(–
60) × 4–4.5 μm; six-septate conidia: 55.5 × 4.5 μm; overall (29–)38.5–50(–61.5) × 
(3–)4–4.5(–5) μm. Chlamydospores present on MEA, PDA and SNA, globose to sub-
globose, hyaline, smooth and thick-walled, (6–)6.5–8.5(–10) μm diam., terminal or 
intercalary in the aerial hyphae, solitary or in chains

Distribution. Nigeria.
Etymology. Name refers to Mada Station, a locality in Nasarawa State, Nigeria, 

where the species was found.
Additional isolates examined. Nigeria, Mada Station, from groundnut (Ara-

chis hypogaea), Sept 2018, C.N. Ezekiel, CBS 146648 = CPC 38321 = 12B(3), 
CBS 146656 = CPC 38330 = 12B(5); from sorghum, Jan 2019, C.N. Ezekiel, CBS 
146651 = CPC 38324 = 7S(6).
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Figure 5. Fusarium madaense sp. nov. (ex-type culture CBS 146669). A–C aspect of colonies on PDA, 
OA and SNA, respectively, after 14 d at 24°C in the dark D colony reverse on OA (up) and PDA (down) 
after 14 d at 24 °C in the dark E–G, J aerial conidiophores and phialides H, I sporodochia formed on the 
surface of carnation leaves K, L sporodochial conidiophores M, N chlamydospores O, P microconidia 
Q  sporodochial conidia. Scale bars: 100 μm (H, I); 20 μm (J); 10 μm (all others).
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Notes. Although clearly recognisable based on genetic markers, Fusarium madaense 
is hardly distinguishable from its closer relatives, based on morphological features only. 
The novel species is characterised by abundant long, slender and slightly curved mac-
roconidia, a morphology typical of the FFSC. The overall morphology of F. madaense 
is similar to that of F. andiyazi, F. thapsinum and F. verticillioides; all species are charac-
terised by clavate microconidia formed in long chains from relatively long monophi-
alides. Moreover, the four mentioned species are known to be pathogenic on sorghum 
(Leslie and Summerell 2006) and have been isolated here from the same geographical 
regions. Nevertheless, some morphological features of F. madaense can provide an in-
dication of its identity. These include a pale saffron colony pigmentation on OA and 
PDA, not developing the intense purple colour typical of F. andiyazi and F. verticil-
lioides, nor the yellow pigmentation of F. thapsinum; the presence of up to 3-septate 
clavate microconidia vs. the up to 2-septate and aseptate microconidia of F. andiyazi 
and F. verticillioides, respectively; and the aseptate, but also rarely napiform microco-
nidia of F. thapsinum (Nirenberg 1976, Klittich et al. 1997, Marasas et al. 2001). In 
addition, F. madaense can be differentiated from F. andiyazi, its closest morphological 
and phylogenetic relative, by its slightly faster growth rates on PDA, somewhat wider 
macroconidia and the presence of true chlamydospores.

The proposal of the novel species F. madaense and its differentiation from F. andiya-
zi, F. thapsinum and F. verticillioides is also supported by secondary metabolite profiling 
of all the above-mentioned species, as found in this study. Fusarium madaense was the 
only beauvericin-producing species in our dataset. Nevertheless, it has been reported 
that F. verticillioides strains can produce trace levels of this toxin (Leslie et al. 2004, 
Leslie and Summerell 2006). The alpha-pyrones deoxyfusapyron and fusapyron were 
produced only by F. madaense and its closest relative F. andiyazi; by contrast, fusarin C 
was produced by F. madaense, F. thapsinum and F. verticillioides, but not by F. andiyazi.

Conclusions

We have shown the importance of applying robust taxonomic approaches to fungal charac-
terisation in this study. Here, diverse fungal species, including those not previously reported 
from Nigerian food and soil, as well as a novel Fusarium species, F. madaense sp. nov., were 
identified and described. Several of these species possess mycotoxigenic, as well as plant, 
human and animal pathogenic, potential. We further elucidated the secondary metabolite 
profiles of strains within the identified fungal species. A handful of small molecule com-
pounds were found in the cultures of the strains, including several compounds not previ-
ously reported from some strains; a few could serve as species-specific chemotaxonomic 
markers. Overall, we provide snapshot data on the fungal biodiversity in two north-central 
Nigerian states. The findings of this study are valuable to guide researchers to predict my-
cotoxin contamination of crops/food and possible sources of fungal infections in humans 
and animals, as well as to find, where unavailable and implement where available, strategies 
towards the control of problematic fungi and the adverse effects they may pose.
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