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Abstract
Schizopora paradoxa, current name Xylodon paradoxus, is a white-rot fungus with certain useful biotechno-
logical properties. The representative genome of Schizopora paradoxa strain KUC8140 was published in 
2015 as part of the 1000 Fungal Genomes Project. Multilocus phylogenetic analyses, based on three nu-
clear regions (ITS, LSU and rpb2), confirmed a misidentification of S. paradoxa strain KUC8140 which 
should be identified as Xylodon ovisporus. This wrong identification explains the unexpected geographical 
distribution of S. paradoxa, since this species has a European distribution, whereas the strain KUC8140 
was recorded from Korea, Eastern Asia.
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Introduction

The genus Schizopora Velen., currently synonymous with Xylodon (Pers.) Fr. (Riebesehl 
and Langer 2017), includes white-rot fungi that play an important role in ecosys-
tem processes as a wood decomposer. The description and identification of Xylodon 
(=Schizopora) species, based on morphological characters, has led to inaccuracies due 
to a lack of clear diagnostic characters and it has been assumed that many Xylodon 
species have a worldwide distribution (Paulus et al. 2000). However, during the last 
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decade, it has been pointed out that fungal cosmopolitanism could be the result of the 
application of a morphological species recognition criterion and not the result of an 
actual biogeographical pattern (Taylor et al. 2006). Moreover, phylogenetic analyses 
have revealed an undescribed species diversity masked by the morphological species 
recognition approach (Taylor et al. 2000).

The representative genome of Schizopora paradoxa strain KUC8140, current name 
Xylodon paradoxus (Schrad.) Chevall., was sequenced in 2015 as part of the 1000 Fun-
gal Genomes Project (http://jgi.doe.gov/fungi) (Min et al. 2015); this strain was col-
lected from an oak forest in Korea. Usually X. paradoxus has been associated with late 
stages of wood decay, mainly in deciduous forests and shows useful biotechnological 
properties for bioremediation, such as tolerance to heavy metals or dye decolourising 
activity (Lee et al. 2014). It has been recorded around the world; however, available ge-
netic data point to a European distribution (Paulus et al. 2000). Within the framework 
of a broader study of Xylodon through molecular approaches, the taxonomic identity of 
the strain KUC8140 has been assessed.

Materials and methods

In order to infer the taxonomic position of the strain KUC8140, phylogenetic rela-
tionships of six Xylodon species were addressed. DNA from specimens of X. paradoxus, 
X. quercinus (Pers.) Gray, X. nothofagi (G. Cunn.) Hjorstam & Ryvarden, X. raduloides 
Riebesehl & E. Langer, X. flaviporus (Ber. & M.A. Curtis ex Cooke) Riebesehl & E. 
Langer and X. ovisporus (Corner) Riebesehl & E. Langer was extracted from herbaria 
specimens and culture collections (Table 1). Three specimens of the sister genus Lyo-
myces P. Karst. were included as outgroup in the phylogenetic analyses (Table 1). DNA 
isolation was performed using DNeasy™ Plant Mini Kit (Qiagen, Valencia, California, 
USA) following the manufacturer’s instructions. Three nuclear regions were amplified 
and sequenced: nuclear ribosomal internal transcribed spacer (ITS, fungal barcoding; 
Schoch et al. 2012), nuclear large ribosomal subunit (LSU) and the second largest 
subunit of RNA polymerase II (rpb2). Direct Polymerase chain reactions (PCRs) were 
performed to obtain sequences from ITS and LSU with the pair of primers ITS5/ITS4 
(White et al. 1990) and LR0R/LR5 (Rehner and Samuels 1994), respectively. Nested-
PCRs were done to obtain amplifications of rpb2 fragments, using RPB2-5F/RPB2-
7.1R (Liu et al. 1999, Matheny 2005) for the first amplification followed by RPB2-6F/
RPB2-7R2 (Matheny et al. 2007), using 1 μl of the first PCR as target DNA. Ampli-
fications were undertaken using illustra™ PuReTaq™ Ready-To-Go™ PCR beads (GE 
Healthcare, Buckinghamshire, UK) as described in Winka et al. (1998), following 
thermal cycling conditions in Martín and Winka (2000). Negative controls lacking 
fungal DNA were run for each experiment to check for contamination. Amplifications 
were assayed by gel electrophoresis in 2% Pronadisa D-1 Agarose (Lab. Conda, Tor-
rejón de Ardoz, Spain). Amplified DNA fragments were purified from the agarose gel 
using the Wizard SV Gel and PCR Clean-Up System (Promega Corporation, Madi-
son, WI, USA) and sent to Macrogen Korea (Seoul, Korea) for sequencing. Primers, 
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Table 1. Specimen information, GenBank accession numbers and genome BLAST searches (ID) used in 
this study. New sequences generated in this study are indicated in bold. n.d.: no data.

Species Specimen voucher Country
GenBank accession number

ITS LSU rpb2

Lyomyces crustosus
HHB 10401 USA MH260068 MH260061 MH259316
HHB 13100 USA MH260069 MH260062 MH259317
UC 2022841 USA KP814310 n.d. n.d.

Xylodon flaviporus
ICMP 13836 Taiwan AF145585 n.d. n.d.

MA-Fungi 79440, 12094IS Germany MH260071 MH260066 MH259319

Xylodon nothofagi
ICMP 13839 New Zealand AF145582 MH260064 MH259322

PDD 91630, BCP 3306 New Zealand GQ411524 n.d. n.d.

Xylodon ovisporus
ICMP 13835 Taiwan AF145586 MH260063 MH259320
ICMP 13837 Taiwan AF145587 n.d. n.d.

Xylodon paradoxus
FCUG 2425 Russia AF145577 n.d. n.d.

MA-Fungi 70444, 11060MD France MH260070 MH260065 n.d.
MA-Fungi 81294, 13833MD France MH260072 n.d. MH259318

Xylodon quercinus
H 6013352 Finland KT361632 n.d. n.d.

MA-Fungi 91311, 1JFL Spain MH260073 MH260067 MH259321

Xylodon raduloides
ICMP 13833 Australia AF145580 KY962853 n.d.

MA-Fungi 75310, GP2291 Spain KY962825 KY962864 KY967055
Schizopora paradoxa KUC8140 Korea ID14957398 ID14957349 ID1495735

used for sequencing, were those used for PCR amplifications. Additional searches for 
the six Xylodon species in EMBL/GenBank/DDBJ databases were performed in order 
to complete the molecular information available for this genus.

Using the BLAST tool from the JGI portal, ITS, LSU and rpb2 sequences were 
extracted from the KUC8140 strain genome (https://genome.jgi.doe.gov/pages/blast-
query.jsf?db=Schpa1). The same regions from X. paradoxus specimens FCUG-2425, 
MA-Fungi 70444 and MA-Fungi 81294 were used as reference sequences for BLAST 
searches, respectively (Table 1). For ITS and LSU, custom search settings were used 
(blastn; all databases; Expect = 1*10-3; Word size = 11; Filter low complexity regions; 
Scoring matrix = PAM30; ITS Job ID = 14957398; LSU Job ID = 14957349). For 
rpb2, default BLAST settings were used (blastn; assembly database; Expect = 1*10-5; 
Word size = 11; Filter low complexity regions; Scoring matrix = BLOSUM62; rpb2 
Job ID = 14957357). The best scoring sequence from the S. paradoxa KUC8140 strain 
genome for each region was extracted and downloaded.

Raw sequence data were processed and assembled with Geneious version 9.0.2. 
(Kearse et al. 2012). Two individual datasets, ITS-LSU concatenated and rpb2, were 
created to compare the KUC8140 strain with other Xylodon species. The combination 
of novel, GenBank and KUC8140 sequences for each dataset were aligned in Geneious 
9.0.2 with the MAFFT nucleotide sequence alignment function (Katoh and Standley 
2013). The automatic alignments were reviewed manually through Geneious 9.0.2.

Phylogenetic tree estimation for each alignment was performed using Maximum 
Likelihood (ML) and Bayesian Inference (BI). ML and bootstrapping analyses were 
conducted in RAxML (Stamatakis 2006), using default parameters established in the 
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CIPRES web portal (http://www.phylo.org/portal2/; Miller et al. 2010) and calculat-
ing bootstrap statistics from 1000 replicates. Bayesian inference analyses were imple-
mented in BEAST v2.4.3 (Drummond and Rambaut 2007). Site model partition was 
selected using jModelTest2 (Darriba et al. 2012) and defined using BEAUti v2.4.3 
interface. HKY and GTR substitution models were selected for ITS+LSU and rpb2 
alignments, respectively, as the closest available in BEAST from the results obtained 
in jModelTest2. We used relative timing with an uncorrelated lognormal relaxed clock 
by calibrating the tree with a value of 1 in the root for the Xylodon clade. Birth Death 
model was used as a tree prior. One MCMC run was specified for 50 million gen-
erations, sampling every 5000th generation. Results were visualised in Tracer v.1.6 
(Rambaut et al. 2018) to evaluate whether the effective sample size (ESS) values were 
above 200. The trees obtained were summarised in a maximum clade credibility tree 
by TreeAnnotator v.1.7. with a burn-in of 5000.

Results and discussion

The ITS+LSU dataset was 1193 characters long (ITS = 594; LSU = 599) and the rpb2 
dataset was 647 characters long. The results of phylogenetic analyses of ITS+LSU and 
rpb2 datasets are summarised in Fig. 1, using phytools R package (Revell 2012). Each 
phylogram represents the best tree produced from the RAxML analysis. All effective 
sample sizes from BEAST analyses were higher than 200 for all parameters. Those 
clades with Maximum likelihood bootstrap (MLB) percentages ≥ 75% and Bayesian 
posterior probabilities (BPP) ≥ 0.99 are marked with empty circles in Fig. 1. The re-
maining support values are represented above branches (MLB/BPP); specimen vouch-
ers and species names are provided on the tip labels.

Our phylogenetic analyses confirmed the misidentification of S. paradoxa strain 
KUC8140, since sequences of this strain grouped in the X. ovisporus clade, showing a dif-
ferent evolutionary history from X. paradoxus. Therefore, S. paradoxa strain KUC8140, 
from Korea, must be identified as Xylodon ovisporus, reported from Asia and West Pacific 
areas (Wu 2000, Hattori 2003). The new identity of the strain KUC8140 is also sup-
ported by geographical data, since S. paradoxa has a European distribution. This rectifi-
cation helps to explain the biogeographical patterns of Xylodon and also sustains the idea 
that “not everything is everywhere” for wood-decay fungi (Lumbsch et al. 2008).

According to our phylogenetic analyses, Xylodon ovisporus is the sister species of X. 
flaviporus and morphological characters confirm this relationship. The species can be 
discriminated by the spore size, shorter in the first one (Hattori 2003). This example 
accords with studies that warn about misidentifications or mislabelled vouchers in 
public sequence databases (Bidartondo 2008). It has been estimated that around 20% 
of DNA fungal sequences in the GenBank repository may have erroneous lineage as-
signations (Bridge et al. 2003, Nilsson et al. 2006). Assessing accuracy in GenBank and 
other DNA repositories is a key stage for species identification in current biodiversity 
analyses based on similarity of DNA sequences (Hibbett et al. 2016). It is especially 

http://www.phylo.org/portal2/
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Figure 1. Maximum likelihood trees for ITS+LSU (left) and rpb2 (right) regions of Xylodon species. 
In order to assess genealogical concordance, dotted lines link the position of the same specimen in both 
trees. Grey boxes indicate the position of KUC8140 strain with Xylodon ovisporus and the position of X. 
paradoxus. Numbers over branches are maximum likelihood bootstrap (MLB) values and posterior prob-
abilities (BPP). Voucher numbers and species names are indicated in Table 1.

important in cases like Xylodon paradoxus, with useful biotechnological properties 
since, according to Bortolus (2008), a wrong taxonomy could lead not only to inac-
curate knowledge of nature, but also to important economic losses.
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